1
|
Mereuta L, Park J, Park Y, Luchian T. Repurposing an antimicrobial peptide for the development of a dual ion channel/molecular receptor-like platform for metal ion detection. NANOSCALE 2024; 16:15984-15994. [PMID: 39141323 DOI: 10.1039/d4nr02433h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The presence of non-essential metals in the environment as contaminants is prone to cause hazardous health problems following accumulation in the human body and the ensuing toxic effects. This calls for continuous discovery and innovation in the realm of developing easy-to-operate, cheap and sensitive sensors. Herein, we describe the proof of concept approach for designing a molecular receptor-like, chimeric sensor based on the pore-forming peptide alamethicin (Alm), tethered via a linker with an ultrashort peptide nucleic acid (PNA) moiety, capable of generating functional ion channel oligomers in planar lipid membranes. The working principle of the sensor exploits the ability of Hg2+ ions to complex mismatching thymine-thymine sequences between the PNA receptor moiety on Alm oligomers and free, thymine-based, single-stranded DNAs (ssDNAs) in solution, thus creating a stable base pair at the oligomer entrance. This generates a transducing mechanism which converts the metal ion complexation into a specific electrical signature of the self-assembled Alm oligomers, enabling selective Hg2+ ion detection. The platform is programmable, whereby the simple exchange of the PNA sequence and its ssDNA counterpart in solution rendered the system selective for Cu2+ ion detection. With further optimization, the presented solution has the potential to translate into miniaturized, cost-effective biosensors suitable for the real-time, label-free and continuous detection of metal ions or other biomolecules.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, 32588, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, 61452, Republic of Korea.
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
| |
Collapse
|
2
|
Lin Y, Wu B, Zeng Y, Yuan H, Ji C, Liu Z, Sui Y, Yin T, Kong X, Zhu Y, Chen J, Lang C. Artificial Channels Based on Bottlebrush Polymers: Enhanced Ion Transport Through Polymer Topology Control. Angew Chem Int Ed Engl 2024; 63:e202408558. [PMID: 38842471 DOI: 10.1002/anie.202408558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Synthetic structures mimicking the transport function of natural ion channel proteins have a wide range of applications, including therapeutic treatments, separation membranes, sensing, and biotechnologies. However, the development of polymer-based artificial channels has been hampered due to the limitation on available models. In this study, we demonstrate the great potential of bottlebrush polymers as accessible and versatile molecular scaffolds for developing efficient artificial ion channels. Adopting the bottlebrush configuration enhanced ion transport activity of the channels compared to their linear analogs. Matching the structure of lipid bilayers, the bottlebrush channel with a hydrophilic-hydrophobic-hydrophilic triblock architecture exhibited the highest activity among the series. Functionalized with urea groups, these channels displayed high anion selectivity. Additionally, we illustrated that the transport properties could be fine-tuned by modifying the chemistry of ion binding sites. This work not only highlights the importance of polymer topology control in channel design, but also reveals the great potential for further developing bottlebrush channels with customized features and diverse functionalities.
Collapse
Affiliation(s)
- Yangyang Lin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Bei Wu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | | | - Haoxuan Yuan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Changxing Ji
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ziqi Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yan Sui
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tingting Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Xian Kong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuting Zhu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Jie Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Chao Lang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
3
|
Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Hussein EA, White RJ. Maintaining Single-Channel Recordings on a Silver Nanoneedle through Probe Design and Feedback Tip Positioning Control. J Phys Chem B 2022; 126:10111-10119. [PMID: 36395597 DOI: 10.1021/acs.jpcb.2c06275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ion channel proteins showed great promise in the field of nanopore sensing and molecular flux imaging applications due to the atomic-level precision of the pore size and a high signal-to-noise ratio. More specifically, ion channel probes, where the protein channels are integrated at the end of a solid probe, can achieve highly localized detection. Metal probe materials such as gold and silver have been developed to support lipid bilayers and enable the use of smaller probes, or nanoneedles, compared to more traditional glass micropipette ion channel probes. Silver probes are preferable because they support sustained DC stable channel current due to the AgCl layer formed around the tip during the fabrication process. However, one of the current challenges in ion channel measurements is maintaining a single-channel recording. Multiple protein insertions complicate data analysis and destabilize the bilayer. Herein, we combine the promising probe material (Ag/AgCl) with an approach based on current feedback-controlled tip positioning to maintain long-term single-channel recordings for up to 3 h. We develop a hybrid positioning control system, where the channel current is used as feedback to control the vertical movement of the silver tip and, subsequently, control the number of protein channels inserted in the lipid membrane. Our findings reveal that the area of the lipid bilayer decreases with moving the silver tip up (i.e., decreasing the displacement in the z-direction). By reducing the bilayer area around the fine silver tip, we minimize the probability of multiple insertions and remove unwanted proteins. In addition, we characterize the effect of lipid properties such as fluidity on the lipid membrane area. We believe that the use of silver nanoneedles, which enables DC stable channel current, coupled with the developed tip displacement mechanism will offer more opportunities to employ these probes for chemical imaging and mapping different surfaces.
Collapse
Affiliation(s)
- Essraa A Hussein
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio45221, United States
| | - Ryan J White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio45221, United States.,Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio45221, United States
| |
Collapse
|
5
|
Wu Y, Gooding JJ. The application of single molecule nanopore sensing for quantitative analysis. Chem Soc Rev 2022; 51:3862-3885. [PMID: 35506519 DOI: 10.1039/d1cs00988e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanopore-based sensors typically work by monitoring transient pulses in conductance via current-time traces as molecules translocate through the nanopore. The unique property of being able to monitor single molecules gives nanopore sensors the potential as quantitative sensors based on the counting of single molecules. This review provides an overview of the concepts and fabrication of nanopore sensors as well as nanopore sensing with a view toward using nanopore sensors for quantitative analysis. We first introduce the classification of nanopores and highlight their applications in molecular identification with some pioneering studies. The review then shifts focus to recent strategies to extend nanopore sensors to devices that can rapidly and accurately quantify the amount of an analyte of interest. Finally, future prospects are provided and briefly discussed. The aim of this review is to aid in understanding recent advances, challenges, and prospects for nanopore sensors for quantitative analysis.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
6
|
Protein Sensing Device with Multi-Recognition Ability Composed of Self-Organized Glycopeptide Bundle. Int J Mol Sci 2020; 22:ijms22010366. [PMID: 33396442 PMCID: PMC7795492 DOI: 10.3390/ijms22010366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 01/09/2023] Open
Abstract
We designed and synthesized amphiphilic glycopeptides with glucose or galactose at the C-terminals. We observed the protein-induced structural changes of the amphiphilic glycopeptide assembly in the lipid bilayer membrane using transmission electron microscopy (TEM) and Fourier transform infrared reflection-absorption spectra (FTIR-RAS) measurements. The glycopeptides re-arranged to form a bundle that acted as an ion channel due to the interaction among the target protein and the terminal sugar groups of the glycopeptides. The bundle in the lipid bilayer membrane was fixed on a gold-deposited quartz crystal microbalance (QCM) electrode by the membrane fusion method. The protein-induced re-arrangement of the terminal sugar groups formed a binding site that acted as a receptor, and the re-binding of the target protein to the binding site induced the closing of the channel. We monitored the detection of target proteins by the changes of the electrochemical properties of the membrane. The response current of the membrane induced by the target protein recognition was expressed by an equivalent circuit consisting of resistors and capacitors when a triangular voltage was applied. We used peanut lectin (PNA) and concanavalin A (ConA) as target proteins. The sensing membrane induced by PNA shows the specific response to PNA, and the ConA-induced membrane responded selectively to ConA. Furthermore, PNA-induced sensing membranes showed relatively low recognition ability for lectin from Ricinus Agglutinin (RCA120) and mushroom lectin (ABA), which have galactose binding sites. The protein-induced self-organization formed the spatial arrangement of the sugar chains specific to the binding site of the target protein. These findings demonstrate the possibility of fabricating a sensing device with multi-recognition ability that can recognize proteins even if the structure is unknown, by the protein-induced self-organization process.
Collapse
|
7
|
R SK, Puthumadathil N, Shaji AH, Santhosh Kumar K, Mohan G, Mahendran KR. Designed alpha-helical barrels for charge-selective peptide translocation. Chem Sci 2020; 12:639-649. [PMID: 34163795 PMCID: PMC8178987 DOI: 10.1039/d0sc04856a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 11/21/2022] Open
Abstract
Synthetic alpha-helix based pores for selective sensing of peptides have not been characterized previously. Here, we report large transmembrane pores, pPorA formed from short synthetic alpha-helical peptides of tunable conductance and selectivity for single-molecule sensing of peptides. We quantified the selective translocation kinetics of differently charged cationic and anionic peptides through these synthetic pores at single-molecule resolution. The charged peptides are electrophoretically pulled into the pores resulting in an increase in the dissociation rate with the voltage indicating successful translocation of peptides. More specifically, we elucidated the charge pattern lining the pore lumen and the orientation of the pores in the membrane based on the asymmetry in the peptide-binding kinetics. The salt and pH-dependent measurements confirm the electrostatic dominance and charge selectivity in controlling target peptide interaction with the pores. Remarkably, we tuned the selectivity of the pores to charged peptides by modifying the charge composition of the pores, thus establishing the molecular and electrostatic basis of peptide translocation. We suggest that these synthetic pores that selectively conduct specific ions and biomolecules are advantageous for nanopore proteomics analysis and synthetic nanobiotechnology applications.
Collapse
Affiliation(s)
- Smrithi Krishnan R
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram 695014 India
- Manipal Academy of Higher Education Manipal Karnataka India-576104
| | - Neethu Puthumadathil
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram 695014 India
- Manipal Academy of Higher Education Manipal Karnataka India-576104
| | - Amina H Shaji
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram 695014 India
| | - K Santhosh Kumar
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram 695014 India
| | - Gayathri Mohan
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram 695014 India
| | - Kozhinjampara R Mahendran
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram 695014 India
| |
Collapse
|
8
|
Eggenberger OM, Ying C, Mayer M. Surface coatings for solid-state nanopores. NANOSCALE 2019; 11:19636-19657. [PMID: 31603455 DOI: 10.1039/c9nr05367k] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since their introduction in 2001, solid-state nanopores have been increasingly exploited for the detection and characterization of biomolecules ranging from single DNA strands to protein complexes. A major factor that enables the application of nanopores to the analysis and characterization of a broad range of macromolecules is the preparation of coatings on the pore wall to either prevent non-specific adhesion of molecules or to facilitate specific interactions of molecules of interest within the pore. Surface coatings can therefore be useful to minimize clogging of nanopores or to increase the residence time of target analytes in the pore. This review article describes various coatings and their utility for changing pore diameters, increasing the stability of nanopores, reducing non-specific interactions, manipulating surface charges, enabling interactions with specific target molecules, and reducing the noise of current recordings through nanopores. We compare the coating methods with respect to the ease of preparing the coating, the stability of the coating and the requirement for specialized equipment to prepare the coating.
Collapse
Affiliation(s)
- Olivia M Eggenberger
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Cuifeng Ying
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Michael Mayer
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
9
|
Misawa N, Osaki T, Takeuchi S. Membrane protein-based biosensors. J R Soc Interface 2019; 15:rsif.2017.0952. [PMID: 29669891 DOI: 10.1098/rsif.2017.0952] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023] Open
Abstract
This review highlights recent development of biosensors that use the functions of membrane proteins. Membrane proteins are essential components of biological membranes and have a central role in detection of various environmental stimuli such as olfaction and gustation. A number of studies have attempted for development of biosensors using the sensing property of these membrane proteins. Their specificity to target molecules is particularly attractive as it is significantly superior to that of traditional human-made sensors. In this review, we classified the membrane protein-based biosensors into two platforms: the lipid bilayer-based platform and the cell-based platform. On lipid bilayer platforms, the membrane proteins are embedded in a lipid bilayer that bridges between the protein and a sensor device. On cell-based platforms, the membrane proteins are expressed in a cultured cell, which is then integrated in a sensor device. For both platforms we introduce the fundamental information and the recent progress in the development of the biosensors, and remark on the outlook for practical biosensing applications.
Collapse
Affiliation(s)
- Nobuo Misawa
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan .,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
10
|
Balbaied T, Moore E. Overview of Optical and Electrochemical Alkaline Phosphatase (ALP) Biosensors: Recent Approaches in Cells Culture Techniques. BIOSENSORS 2019; 9:E102. [PMID: 31450819 PMCID: PMC6784369 DOI: 10.3390/bios9030102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
Alkaline phosphatase (ALP), which catalyzes the dephosphorylation process of proteins, nucleic acids, and small molecules, can be found in a variety of tissues (intestine, liver, bone, kidney, and placenta) of almost all living organisms. This enzyme has been extensively used as a biomarker in enzyme immunoassays and molecular biology. ALP is also one of the most commonly assayed enzymes in routine clinical practice. Due to its close relation to a variety of pathological processes, ALP's abnormal level is an important diagnostic biomarker of many human diseases, such as liver dysfunction, bone diseases, kidney acute injury, and cancer. Therefore, the development of convenient and reliable assay methods for monitoring ALP activity/level is extremely important and valuable, not only for clinical diagnoses but also in the area of biomedical research. This paper comprehensively reviews the strategies of optical and electrochemical detection of ALP and discusses the electrochemical techniques that have been addressed to make them suitable for ALP analysis in cell culture.
Collapse
Affiliation(s)
- Thanih Balbaied
- University College Cork, Sensing & Separation Group, School of Chemistry and life Science Interface, Tyndall National Institute, T12R5CP Cork, Ireland
| | - Eric Moore
- University College Cork, Sensing & Separation Group, School of Chemistry and life Science Interface, Tyndall National Institute, T12R5CP Cork, Ireland.
| |
Collapse
|
11
|
Meng FN, Ying YL, Yang J, Long YT. A Wild-Type Nanopore Sensor for Protein Kinase Activity. Anal Chem 2019; 91:9910-9915. [DOI: 10.1021/acs.analchem.9b01570] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fu-Na Meng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi-Lun Ying
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jie Yang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
12
|
Robertson JWF, Reiner JE. The Utility of Nanopore Technology for Protein and Peptide Sensing. Proteomics 2018; 18:e1800026. [PMID: 29952121 PMCID: PMC10935609 DOI: 10.1002/pmic.201800026] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Indexed: 04/29/2024]
Abstract
Resistive pulse nanopore sensing enables label-free single-molecule analysis of a wide range of analytes. An increasing number of studies have demonstrated the feasibility and usefulness of nanopore sensing for protein and peptide characterization. Nanopores offer the potential to study a variety of protein-related phenomena that includes unfolding kinetics, differences in unfolding pathways, protein structure stability, and free-energy profiles of DNA-protein and RNA-protein binding. In addition to providing a tool for fundamental protein characterization, nanopores have also been used as highly selective protein detectors in various solution mixtures and conditions. This review highlights these and other developments in the area of nanopore-based protein and peptide detection.
Collapse
Affiliation(s)
- Joseph W F Robertson
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Joseph E Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
13
|
ZHOU S, TANG P, WANG YJ, WANG L, WANG DQ. Applications of Nanopore Sensing in Detection of Toxic Molecules. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61089-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Hu ZL, Li ZY, Ying YL, Zhang J, Cao C, Long YT, Tian H. Real-Time and Accurate Identification of Single Oligonucleotide Photoisomers via an Aerolysin Nanopore. Anal Chem 2018. [PMID: 29516718 DOI: 10.1021/acs.analchem.8b00096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Identification of the configuration for the photoresponsive oligonucleotide plays an important role in the ingenious design of DNA nanomolecules and nanodevices. Due to the limited resolution and sensitivity of present methods, it remains a challenge to determine the accurate configuration of photoresponsive oligonucleotides, much less a precise description of their photoconversion process. Here, we used an aerolysin (AeL) nanopore-based confined space for real-time determination and quantification of the absolute cis/ trans configuration of each azobenzene-modified oligonucleotide (Azo-ODN) with a single molecule resolution. The two completely separated current distributions with narrow peak widths at half height (<0.62 pA) are assigned to cis/ trans-Azo-ODN isomers, respectively. Due to the high current sensitivity, each isomer of Azo-ODN could be undoubtedly identified, which gives the accurate photostationary conversion values of 82.7% for trans-to- cis under UV irradiation and 82.5% for cis-to- trans under vis irradiation. Further real-time kinetic evaluation reveals that the photoresponsive rate constants of Azo-ODN from trans-to- cis and cis-to -trans are 0.43 and 0.20 min-1, respectively. This study will promote the sophisticated design of photoresponsive ODN to achieve an efficient and applicable photocontrollable process.
Collapse
Affiliation(s)
- Zheng-Li Hu
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China
| | - Zi-Yuan Li
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China
| | - Chan Cao
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China
| |
Collapse
|
15
|
Kim YH, Hang L, Cifelli JL, Sept D, Mayer M, Yang J. Frequency-Based Analysis of Gramicidin A Nanopores Enabling Detection of Small Molecules with Picomolar Sensitivity. Anal Chem 2018; 90:1635-1642. [DOI: 10.1021/acs.analchem.7b02961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | | | - David Sept
- Department
of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2110, United States
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | |
Collapse
|
16
|
Lazenby RA, Macazo FC, Wormsbecher RF, White RJ. Quantitative Framework for Stochastic Nanopore Sensors Using Multiple Channels. Anal Chem 2017; 90:903-911. [PMID: 29185715 DOI: 10.1021/acs.analchem.7b03845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Membrane protein channels employed as stochastic sensors offer large signal-to-noise ratios and high specificity in single molecule binding measurements. Stochastic events in a single ion channel system can be measured using current-time traces, which are straightforward to analyze. Signals arising from measurement using multiple ion channels are more complicated to interpret. We show that multiple independent ion channels offer improved detection sensitivity compared to single channel measurements and that increased signal complexity can be accounted for using binding event frequency. More specifically, the leading edge of binding events follows a Poisson point process, which means signals from multiple channels can be superimposed and the association times (between each binding event leading edge), allow for sensitive and quantitative measurements. We expand our calibration to high ligand concentrations and high numbers of ion channels to demonstrate that there is an upper limit of quantification, defined by the time resolution of the measurement. The upper limit is a combination of the instrumental time resolution and the dissociation time of a ligand and protein which limits the number of detectable events. This upper limit also allows us to predict, in general, the measurement requirements needed to observe any process as a Poisson point process. The nanopore-based sensing analysis has wide implications for stochastic sensing platforms that operate using multiple simultaneous superimposable signals.
Collapse
Affiliation(s)
- Robert A Lazenby
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| | - Florika C Macazo
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| | - Richard F Wormsbecher
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| | - Ryan J White
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| |
Collapse
|
17
|
Chavis AE, Brady KT, Hatmaker GA, Angevine CE, Kothalawala N, Dass A, Robertson JWF, Reiner JE. Single Molecule Nanopore Spectrometry for Peptide Detection. ACS Sens 2017; 2:1319-1328. [PMID: 28812356 PMCID: PMC11274829 DOI: 10.1021/acssensors.7b00362] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sensing and characterization of water-soluble peptides is of critical importance in a wide variety of bioapplications. Single molecule nanopore spectrometry (SMNS) is based on the idea that one can use biological protein nanopores to resolve different sized molecules down to limits set by the blockade duration and noise. Previous work has shown that this enables discrimination between polyethylene glycol (PEG) molecules that differ by a single monomer unit. This paper describes efforts to extend SMNS to a variety of biologically relevant, water-soluble peptides. We describe the use of Au25(SG)18 clusters, previously shown to improve PEG detection, to increase the on- and off-rate of peptides to the pore. In addition, we study the role that fluctuations play in the single molecule nanopore spectrometry (SMNS) methodology and show that modifying solution conditions to increase peptide flexibility (via pH or chaotropic salt) leads to a nearly 2-fold reduction in the current blockade fluctuations and a corresponding narrowing of the peaks in the blockade distributions. Finally, a model is presented that connects the current blockade depths to the mass of the peptides, which shows that our enhanced SMNS detection improves the mass resolution of the nanopore sensor more than 2-fold for the largest cationic peptides studied.
Collapse
Affiliation(s)
- Amy E. Chavis
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kyle T. Brady
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Grace A. Hatmaker
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Christopher E. Angevine
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Nuwan Kothalawala
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Joseph W. F. Robertson
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8120, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
18
|
Neveshkin A, Citak F, Ball V, Winterhalter M. Polydopamine Coating To Stabilize a Free-Standing Lipid Bilayer for Channel Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7256-7262. [PMID: 28657327 DOI: 10.1021/acs.langmuir.7b01959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An appropriate method to study the function of membrane channels is to insert them into free-standing lipid bilayers and to record the ion conductance across the membrane. The insulating property of a free-standing lipid bilayer versus the single-channel conductivity provides sufficient sensitivity to detect minor changes in the pathway of ions along the channel. A potential application is to use membrane channels as label-free sensors for molecules, with DNA sequencing as its most prominent application. However, the inherent instability of free-standing bilayers limits broader use as a biosensor. Here we report on a possible stabilization of free-standing lipid bilayers using polydopamine deposition from dopamine-containing solutions in the presence of an oxidant. This stabilization treatment can be initiated after protein reconstitution and is compatible with most reconstitution protocols.
Collapse
Affiliation(s)
- Alexander Neveshkin
- Jacobs University Bremen , Campus Ring 1, D-28759 Bremen, Germany
- Yuri Gagarin State Technical University of Saratov , 77 Politechnicheskaya Street, Saratov, Russia , 410054
| | - Funda Citak
- Jacobs University Bremen , Campus Ring 1, D-28759 Bremen, Germany
| | - Vincent Ball
- Institut National de la Santé et de la Recherche Médicale , Unité Mixte de Recherche 1121, 11 Rue Humann, 67085 Strasbourg Cedex, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire , 8 Rue Sainte Elisabeth, 67000 Strasbourg, France
| | | |
Collapse
|
19
|
Howorka S. Building membrane nanopores. NATURE NANOTECHNOLOGY 2017; 12:619-630. [PMID: 28681859 DOI: 10.1038/nnano.2017.99] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/19/2017] [Indexed: 05/28/2023]
Abstract
Membrane nanopores-hollow nanoscale barrels that puncture biological or synthetic membranes-have become powerful tools in chemical- and biosensing, and have achieved notable success in portable DNA sequencing. The pores can be self-assembled from a variety of materials, including proteins, peptides, synthetic organic compounds and, more recently, DNA. But which building material is best for which application, and what is the relationship between pore structure and function? In this Review, I critically compare the characteristics of the different building materials, and explore the influence of the building material on pore structure, dynamics and function. I also discuss the future challenges of developing nanopore technology, and consider what the next-generation of nanopore structures could be and where further practical applications might emerge.
Collapse
Affiliation(s)
- Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London WC1H 0AJ, UK
| |
Collapse
|
20
|
Affiliation(s)
- Toshihisa Osaki
- Artificial Cell
Membrane
Systems Group, Kanagawa Academy of Science and Technology, 3-2-1
Sakado, Takatsu, 213-0012 Kawasaki, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, 153-8505 Tokyo, Japan
| | - Shoji Takeuchi
- Artificial Cell
Membrane
Systems Group, Kanagawa Academy of Science and Technology, 3-2-1
Sakado, Takatsu, 213-0012 Kawasaki, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, 153-8505 Tokyo, Japan
| |
Collapse
|
21
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
22
|
Real-time label-free measurement of HIV-1 protease activity by nanopore analysis. Biosens Bioelectron 2014; 62:158-62. [PMID: 24997370 DOI: 10.1016/j.bios.2014.06.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 11/22/2022]
Abstract
A label-free method for the measurement of the activity of HIV-1 protease is developed by real-time monitoring of the cleavage of a peptide substrate by HIV-1 protease in a nanopore. The method is rapid and sensitive: picomolar concentrations of HIV-1 protease could be detected in ~10 min. Simulated clinical samples are analyzed, and the activity of HIV-1 protease could be accurately detected. Our developed nanopore sensor design strategy should find useful applications in the development of stochastic sensors for other proteases of medical, pharmaceutical, and biological importance.
Collapse
|
23
|
Wang L, Han Y, Zhou S, Wang G, Guan X. Nanopore biosensor for label-free and real-time detection of anthrax lethal factor. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7334-7339. [PMID: 24806593 PMCID: PMC4039345 DOI: 10.1021/am500749p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/07/2014] [Indexed: 05/29/2023]
Abstract
We report a label-free real-time nanopore sensing method for the detection of anthrax lethal factor, a component of the anthrax toxin, by using a complementary single-stranded DNA as a molecular probe. The method is rapid and sensitive: sub-nanomolar concentrations of the target anthrax lethal factor DNA could be detected in ∼1 min. Further, our method is selective, which can differentiate the target DNA from other single-stranded DNA molecules at the single-base resolution. This sequence-specific detection approach should find useful application in the development of nanopore sensors for the detection of other pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Xiyun Guan
- Tel: 01-312-567-8922. Fax: 01-312-567-3494. E-mail:
| |
Collapse
|
24
|
Sugawara M, Shoji A, Sakamoto M. Pore-forming compounds as signal transduction elements for highly sensitive biosensing. ANAL SCI 2014; 30:119-28. [PMID: 24420253 DOI: 10.2116/analsci.30.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pore-forming compounds are attracting much attention due to the signal transduction ability for the development of highly sensitive biosensing. In this review, we describe an overview of the recent advances made by our group in the design of molecular sensing interfaces of spherical and planar lipid bilayers and natural bilayers. The potential uses of pore-forming compounds, such as gramicidin and MCM-41, in lipid bilayers and natural glutamate receptor channels in biomembrane are presented.
Collapse
Affiliation(s)
- Masao Sugawara
- Department of Chemistry, College of Humanities and Sciences, Nihon University
| | | | | |
Collapse
|
25
|
Modeling and Simulating Asymmetrical Conductance Changes in Gramicidin Pores. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2014. [DOI: 10.2478/mlbmb-2014-0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract Gramicidin A is a small and well characterized peptide that forms an ion channel in lipid membranes. An important feature of gramicidin A (gA) pore is that its conductance is affected by the electric charges near the its entrance. This property has led to the application of gramicidin A as a biochemical sensor for monitoring and quantifying a number of chemical and enzymatic reactions. Here, a mathematical model of conductance changes of gramicidin A pores in response to the presence of electrical charges near its entrance, either on membrane surface or attached to gramicidin A itself, is presented. In this numerical simulation, a two dimensional computational domain is set to mimic the structure of a gramicidin A channel in the bilayer surrounded by electrolyte. The transport of ions through the channel is modeled by the Poisson-Nernst-Planck (PNP) equations that are solved by Finite Element Method (FEM). Preliminary numerical simulations of this mathematical model are in qualitative agreement with the experimental results in the literature. In addition to the model and simulations, we also present the analysis of the stability of the solution to the boundary conditions and the convergence of FEM method for the two dimensional PNP equations in our model.
Collapse
|
26
|
Mayer M, Yang J. Engineered ion channels as emerging tools for chemical biology. Acc Chem Res 2013; 46:2998-3008. [PMID: 23932142 DOI: 10.1021/ar400129t] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild-type channels. Next we consider aspects of experimental design by comparing various membrane environments or systems that make it possible to quantify the response of ion channels to biochemical processes of interest. We present applications of ion channels to answer questions in chemical biology, and propose potential future developments and applications of these single molecule probes. Finally we discuss the hurdles that impede the routine use of ion channel probes in biochemistry and cell biology laboratories and developments and strategies that could overcome these problems. Optogenetics has facilitated breakthroughs in neuroscience, and these results give a dramatic idea of what may lie ahead for designed ion channels as a functional class of molecular probes. If researchers can improve molecular engineering to increase ion channel versatility and can overcome the barriers to collaborating across disciplines, we conclude that these structures could have tremendous potential as novel tools for chemical biology studies.
Collapse
Affiliation(s)
- Michael Mayer
- Department of Chemical Engineering and Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110, United States
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, United States
| |
Collapse
|
27
|
Fennouri A, Daniel R, Pastoriza-Gallego M, Auvray L, Pelta J, Bacri L. Kinetics of Enzymatic Degradation of High Molecular Weight Polysaccharides through a Nanopore: Experiments and Data-Modeling. Anal Chem 2013; 85:8488-92. [DOI: 10.1021/ac4020929] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aziz Fennouri
- Université d’Évry Val d’Essonne, Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry, France
- CNRS UMR 8587,
Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry, France
| | - Régis Daniel
- CNRS UMR 8587,
Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry, France
| | - Manuela Pastoriza-Gallego
- Université de Cergy-Pontoise, Laboratoire Analyse et Modélisation
pour la Biologie et l’Environnement, F-95302 Cergy-Pontoise, France
| | - Loïc Auvray
- CNRS UMR
7057,
Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, F-75205 Paris, France
| | - Juan Pelta
- Université d’Évry Val d’Essonne, Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry, France
| | - Laurent Bacri
- Université d’Évry Val d’Essonne, Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry, France
| |
Collapse
|
28
|
Albesa AG, Rafti M, Vicente JL. Trivalent cations switch the selectivity in nanopores. J Mol Model 2013; 19:2183-8. [DOI: 10.1007/s00894-013-1761-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/07/2013] [Indexed: 11/28/2022]
|
29
|
Oukhaled A, Bacri L, Pastoriza-Gallego M, Betton JM, Pelta J. Sensing proteins through nanopores: fundamental to applications. ACS Chem Biol 2012; 7:1935-49. [PMID: 23145870 DOI: 10.1021/cb300449t] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteins subjected to an electric field and forced to pass through a nanopore induce blockades of ionic current that depend on the protein and nanopore characteristics and interactions between them. Recent advances in the analysis of these blockades have highlighted a variety of phenomena that can be used to study protein translocation and protein folding, to probe single-molecule catalytic reactions in order to obtain kinetic and thermodynamic information, and to detect protein-antibody complexes, proteins with DNA and RNA aptamers, and protein-pore interactions. Nanopore design is now well controlled, allowing the development of future biotechnologies and medicine applications.
Collapse
Affiliation(s)
- Abdelghani Oukhaled
- CNRS-UMR 8587,
LAMBE, Université de Cergy-Pontoise et Université d’Evry, France
| | - Laurent Bacri
- CNRS-UMR 8587,
LAMBE, Université de Cergy-Pontoise et Université d’Evry, France
| | | | - Jean-Michel Betton
- Unité de Microbiologie
Structurale, CNRS-URA 3528, Institut Pasteur, France
| | - Juan Pelta
- CNRS-UMR 8587,
LAMBE, Université de Cergy-Pontoise et Université d’Evry, France
| |
Collapse
|
30
|
Itoh H, Matsuoka S, Kreir M, Inoue M. Design, Synthesis and Functional Analysis of Dansylated Polytheonamide Mimic: An Artificial Peptide Ion Channel. J Am Chem Soc 2012; 134:14011-8. [DOI: 10.1021/ja303831a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Hiroaki Itoh
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mohamed Kreir
- Nanion Technologies GmbH, Gabrielenstrasse 9, D-80636 Munich, Germany
| | - Masayuki Inoue
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
NISHIO M, SHOJI A, SUGAWARA M. Planar Lipid Bilayers Containing Gramicidin A as a Molecular Sensing System Based on an Integrated Current. ANAL SCI 2012; 28:661-7. [DOI: 10.2116/analsci.28.661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masato NISHIO
- Department of Chemistry, College of Humanities and Sciences, Nihon University
| | - Atsushi SHOJI
- Department of Chemistry, College of Humanities and Sciences, Nihon University
| | - Masao SUGAWARA
- Department of Chemistry, College of Humanities and Sciences, Nihon University
| |
Collapse
|
32
|
Prangkio P, Rao DK, Lance KD, Rubinshtein M, Yang J, Mayer M. Self-assembled, cation-selective ion channels from an oligo(ethylene glycol) derivative of benzothiazole aniline. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2877-85. [PMID: 21889925 DOI: 10.1016/j.bbamem.2011.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/22/2011] [Accepted: 08/18/2011] [Indexed: 01/01/2023]
Abstract
This paper describes the spontaneous formation of well-defined pores in planar lipid bilayers from the self-assembly of a small synthetic molecule that contains a benzothiazole aniline (BTA) group attached to a tetra-ethylene glycol (EG4) moiety. Macroscopic and single-channel current recordings suggest that these pores are formed by the assembly of four BTA-EG4 monomers with an open pore diameter that appears similar to the one of gramicidin pores (~0.4 nm). The single-channel conductance of these pores is modulated by the pH of the electrolyte and has a minimum at pH~3. Self-assembled pores from BTA-EG4 are selective for monovalent cations and have long open channel lifetimes on the order of seconds. BTA-EG4 monomers in these pores appear to be arranged symmetrically across both leaflets of the bilayer, and spectroscopy studies suggest that the fluorescent BTA group is localized inside the lipid bilayers. In terms of biological activity, BTA-EG4 molecules inhibited growth of gram-positive Bacillus subtilis bacteria (IC50~50 μM) and human neuroblastoma SH-SY5Y cells (IC50~60 μM), while they were not toxic to gram-negative Escherichia coli bacteria at a concentration up to 500 μM. Based on these properties, this drug-like, synthetic, pore-forming molecule with a molecular weight below 500 g mol(-1) might be appealing as a starting material for development of antibiotics or membrane-permeating moieties for drug delivery. From a biophysical point of view, long-lived, well-defined ion-selective pores from BTA-EG4 molecules offer an example of a self-assembled synthetic supramolecule with biological function.
Collapse
Affiliation(s)
- Panchika Prangkio
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110, USA
| | | | | | | | | | | |
Collapse
|
33
|
Macrae MX, Schlamadinger D, Kim JE, Mayer M, Yang J. Using charge to control the functional properties of self-assembled nanopores in membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2016-2020. [PMID: 21626687 DOI: 10.1002/smll.201100394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Michael X Macrae
- University of California-San Diego, Department of Chemistry and Biochemistry, La Jolla, CA 92093-0358, USA
| | | | | | | | | |
Collapse
|
34
|
Ghale G, Ramalingam V, Urbach AR, Nau WM. Determining protease substrate selectivity and inhibition by label-free supramolecular tandem enzyme assays. J Am Chem Soc 2011; 133:7528-35. [PMID: 21513303 DOI: 10.1021/ja2013467] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An analytical method has been developed for the continuous monitoring of protease activity on unlabeled peptides in real time by fluorescence spectroscopy. The assay is enabled by a reporter pair comprising the macrocycle cucurbit[7]uril (CB7) and the fluorescent dye acridine orange (AO). CB7 functions by selectively recognizing N-terminal phenylalanine residues as they are produced during the enzymatic cleavage of enkephalin-type peptides by the metalloendopeptidase thermolysin. The substrate peptides (e.g., Thr-Gly-Ala-Phe-Met-NH(2)) bind to CB7 with moderately high affinity (K ≈ 10(4) M(-1)), while their cleavage products (e.g., Phe-Met-NH(2)) bind very tightly (K > 10(6) M(-1)). AO signals the reaction upon its selective displacement from the macrocycle by the high affinity product of proteolysis. The resulting supramolecular tandem enzyme assay effectively measures the kinetics of thermolysin, including the accurate determination of sequence specificity (Ser and Gly instead of Ala), stereospecificity (d-Ala instead of l-Ala), endo- versus exopeptidase activity (indicated by differences in absolute fluorescence response), and sensitivity to terminal charges (-CONH(2) vs -COOH). The capability of the tandem assay to measure protease inhibition constants was demonstrated on phosphoramidon as a known inhibitor to afford an inhibition constant of (17.8 ± 0.4) nM. This robust and label-free approach to the study of protease activity and inhibition should be transferable to other endo- and exopeptidases that afford products with N-terminal aromatic amino acids.
Collapse
Affiliation(s)
- Garima Ghale
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
35
|
Capek P, Kirkconnell KS, Dickerson TJ. A bacteriophage-based platform for rapid trace detection of proteases. J Am Chem Soc 2010; 132:13126-8. [PMID: 20812737 DOI: 10.1021/ja104572f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sensitive, inexpensive, and rapid protease activity assays are of great merit for clinical diagnostics. Detection of protease-based toxins produced by Clostridium botulinum and Bacillus anthracis represents a particularly challenging task, as exceptional sensitivity is a prerequisite because of the extreme potency of the toxins. Here we present an inexpensive and sensitive assay platform for activity-based protease quantification utilizing filamentous bacteriophage as an exponentially amplifiable reporter and its application to the detection of these bacterial toxins. The assay is based on specific cleavage of bacteriophage from a solid support and its subsequent quantification by means of infectivity or quantitative PCR. Detection of botulinum neurotoxin (BoNT) serotypes A and B and anthrax lethal factor in the picomolar range was demonstrated with a limit of detection of 2 pM for BoNT/A under optimized conditions.
Collapse
Affiliation(s)
- Petr Capek
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
36
|
Rokitskaya TI, Macrae MX, Blake S, Egorova NS, Kotova EA, Yang J, Antonenko YN. Mechanistic insight into gramicidin-based detection of protein-ligand interactions via sensitized photoinactivation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454118. [PMID: 21339605 DOI: 10.1088/0953-8984/22/45/454118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Among the many challenges for the development of ion channel-based sensors is the poor understanding of how to engineer modified transmembrane pores with tailored functionality that can respond to external stimuli. Here, we use the method of sensitized photoinactivation of gramicidin A (gA) channels in planar bilayer lipid membranes to help elucidate the underlying mechanistic details for changes in macroscopic transmembrane ionic current observed upon interaction of C-terminally attached gA ligands with specific proteins in solution. Three different systems were studied: (i) carbonic anhydrase (CA) and gA-sulfonamide, (ii) PSD-95 protein (belonging to the 'PDZ domain-containing protein') and a gA analog carrying the KGGHRRSARYLESSV peptide sequence at the C-terminus, and (iii) an anti-biotin antibody and gA-biotin. The results challenge a previously proposed mechanistic hypothesis suggesting that protein-induced current suppression is due to steric blockage of the ion passage through gA channels, while they reveal new insight for consideration in alternative mechanistic models. Additionally, we demonstrate that the length of a linker between the ligand and the gA channel may be less important for gramicidin-based detection of monovalent compared to multivalent protein-ligand interactions. These studies collectively shed new light on the mechanism of protein-induced current alterations in bilayer recordings of gA derivatives, which may be important in the design of new gramicidin-based sensors.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia
| | | | | | | | | | | | | |
Collapse
|
37
|
Majd S, Yusko EC, Billeh YN, Macrae MX, Yang J, Mayer M. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotechnol 2010; 21:439-76. [PMID: 20561776 PMCID: PMC3121537 DOI: 10.1016/j.copbio.2010.05.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 12/29/2022]
Abstract
Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated - often regulated - functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics.
Collapse
Affiliation(s)
- Sheereen Majd
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110, USA
| | | | | | | | | | | |
Collapse
|
38
|
Capone R, Mustata M, Jang H, Arce FT, Nussinov R, Lal R. Antimicrobial protegrin-1 forms ion channels: molecular dynamic simulation, atomic force microscopy, and electrical conductance studies. Biophys J 2010; 98:2644-52. [PMID: 20513409 PMCID: PMC2877344 DOI: 10.1016/j.bpj.2010.02.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/27/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022] Open
Abstract
Antimicrobial peptides (AMPs) are an emerging class of antibiotics for controlling health effects of antibiotic-resistant microbial strains. Protegrin-1 (PG-1) is a model antibiotic among beta-sheet AMPs. Antibiotic activity of AMPs involves cell membrane damage, yet their membrane interactions, their 3D membrane-associated structures and the mechanism underlying their ability to disrupt cell membrane are poorly understood. Using complementary approaches, including molecular dynamics simulations, atomic force microscopy (AFM) imaging, and planar lipid bilayer reconstitution, we provide computational and experimental evidence that PG-1, a beta-hairpin peptide, forms ion channels. Simulations indicate that PG-1 forms channel-like structures with loosely attached subunits when reconstituted in anionic lipid bilayers. AFM images show the presence of channel-like structures when PG-1 is reconstituted in dioleoylphosphatidylserine/palmitoyloleoyl phosphatidylethanolamine bilayers or added to preformed bilayers. Planar lipid bilayer electrical recordings show multiple single channel conductances that are consistent with the heterogeneous oligomeric channel structures seen in AFM images. PG-1 channel formation seems to be lipid-dependent: PG-1 does not easily show ion channel electrical activity in phosphatidylcholine membranes, but readily shows channel activity in membranes rich in phosphatidylethanolamine or phosphatidylserine. The combined results support a model wherein the beta-hairpin PG-1 peptide acts as an antibiotic by altering cell ionic homeostasis through ion channel formation in cell membranes.
Collapse
Affiliation(s)
- Ricardo Capone
- Center for Nanomedicine and Department of Medicine, University of Chicago, Chicago, Illinois
| | - Mirela Mustata
- Center for Nanomedicine and Department of Medicine, University of Chicago, Chicago, Illinois
| | - Hyunbum Jang
- Center for Cancer Research Nanobiology Program, NCI-Frederick, SAIC-Frederick, Inc., Frederick, Maryland
| | - Fernando Teran Arce
- Center for Nanomedicine and Department of Medicine, University of Chicago, Chicago, Illinois
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology Program, NCI-Frederick, SAIC-Frederick, Inc., Frederick, Maryland
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ratnesh Lal
- Center for Nanomedicine and Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
39
|
Macrae MX, Blake S, Mayer M, Yang J. Nanoscale Ionic Diodes with Tunable and Switchable Rectifying Behavior. J Am Chem Soc 2010; 132:1766-7. [DOI: 10.1021/ja909876h] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael X. Macrae
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, and Departments of Chemical Engineering and Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110
| | - Steven Blake
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, and Departments of Chemical Engineering and Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110
| | - Michael Mayer
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, and Departments of Chemical Engineering and Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, and Departments of Chemical Engineering and Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110
| |
Collapse
|