1
|
Wang Z, Fei H, Wu YN. Unveiling Advancements: Trends and Hotspots of Metal-Organic Frameworks in Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2024; 17:e202400504. [PMID: 38666390 DOI: 10.1002/cssc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Metal-organic frameworks (MOFs) are robust, crystalline, and porous materials featured by their superior CO2 adsorption capacity, tunable energy band structure, and enhanced photovoltaic conversion efficiency, making them highly promising for photocatalytic CO2 reduction reaction (PCO2RR). This study presents a comprehensive examination of the advancements in MOFs-based PCO2RR field spanning the period from 2011 to 2023. Employing bibliometric analysis, the paper scrutinizes the widely adopted terminology and citation patterns, elucidating trends in publication, leading research entities, and the thematic evolution within the field. The findings highlight a period of rapid expansion and increasing interdisciplinary integration, with extensive international and institutional collaboration. A notable emphasis on significant research clusters and key terminologies identified through co-occurrence network analysis, highlighting predominant research on MOFs such as UiO, MIL, ZIF, porphyrin-based MOFs, their composites, and the hybridization with photosensitizers and molecular catalysts. Furthermore, prospective design approaches for catalysts are explored, encompassing single-atom catalysts (SACs), interfacial interaction enhancement, novel MOF constructions, biocatalysis, etc. It also delves into potential avenues for scaling these materials from the laboratory to industrial applications, underlining the primary technical challenges that need to be overcome to facilitate the broader application and development of MOFs-based PCO2RR technologies.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
2
|
Liu H, Zhang X, Zhang S, Kou Y, Fu H, Zhou F, Wu ZS, Shi Q. Intrinsically Flexible Phase Change Fibers for Intelligent Thermal Regulation. Angew Chem Int Ed Engl 2024; 63:e202408857. [PMID: 38993074 DOI: 10.1002/anie.202408857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
Owing to the significant latent heat generated at constant temperatures, phase change fibers (PCFs) have recently received much attention in the field of wearable thermal management. However, the phase change materials involved in the existing PCFs still experience a solid-liquid transition process, severely restricting their practicality as wearable thermal management materials. Herein, we, for the first time, developed intrinsically flexible PCFs (polyethylene glycol/4,4'-methylenebis(cyclohexyl isocyanate) fibers, PMFs) through polycondensation and wet-spinning process, exhibiting an inherent solid-solid phase transition property, adjustable phase transition behaviors, and outstanding knittability. The PMFs also present superior mechanical strength (28 MPa), washability (>100 cycles), thermal cycling stability (>2000 cycles), facile dyeability, and heat-induced recoverability, all of which are highly significant for practical wearable applications. Additionally, the PMFs can be easily recycled by directly dissolving them in solvents for reprocessing, revealing promising applications as sustainable materials for thermal management. Most importantly, the applicability of the PMFs was demonstrated by knitting them into permeable fabrics, which exhibit considerably improved thermal management performance compared with the cotton fabric. The PMFs offer great potential for intelligent thermal regulation in smart textiles and wearable electronics.
Collapse
Affiliation(s)
- Hanqing Liu
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, 457 Zhongshan Road, Dalian, 116023, P. R. China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyu Zhang
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, 457 Zhongshan Road, Dalian, 116023, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shihui Zhang
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Yan Kou
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Haocheng Fu
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, 457 Zhongshan Road, Dalian, 116023, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feng Zhou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Quan Shi
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, 457 Zhongshan Road, Dalian, 116023, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Filonchyk M, Peterson MP, Yan H, Gusev A, Zhang L, He Y, Yang S. Greenhouse gas emissions and reduction strategies for the world's largest greenhouse gas emitters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173895. [PMID: 38862038 DOI: 10.1016/j.scitotenv.2024.173895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
In the context of climate change, it is crucial to examine the contributions of leading countries in greenhouse gas (GHG) emissions. This research provides an overview of global GHG emissions from 1970 to 2022 for the world's most polluting countries: the United States, China, India, Russia, Brazil, Indonesia, Japan, Iran, Mexico, and Saudi Arabia. These countries collectively account for approximately 64% of GHG emissions. The aim is to understand the impact of various economic sectors, such as industry, energy, agriculture, and transportation, on overall emissions. The analysis highlights the disparity in per capita emissions, with smaller but major oil-producing countries in the Persian Gulf, such as Qatar and the United Arab Emirates, exhibiting high per capita emission levels, while more populated countries like the United States and South Korea show lower per capita values but significant total emission volumes. The study suggests that transitioning to renewable energy, improving energy efficiency in industry, promoting sustainable agriculture, reforestation, and electrifying transportation are key methods to achieve United Nations Sustainable Development Goals (UN SDG). Recommendations include encouraging technological innovations, implementing stringent government regulations and standards, and garnering active support for GHG reduction programs from governments, financial institutions, and the business community. The urgency is emphasized for global efforts to combat climate change for ensuring a sustainable future.
Collapse
Affiliation(s)
- Mikalai Filonchyk
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China; Department of Geology and Geography, Francisk Skorina Gomel State University, Gomel 46019, Belarus.
| | - Michael P Peterson
- Department of Geography/Geology, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Haowen Yan
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China.
| | - Andrei Gusev
- Department of Geology and Geography, Francisk Skorina Gomel State University, Gomel 46019, Belarus
| | - Lifeng Zhang
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Yi He
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Shuwen Yang
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| |
Collapse
|
4
|
Yan RW, Li XH, Zhang RZ, Cui HL. Computational Investigation on Cr-Doped Sc 2CO 2 MXene under Strain for Electronic Properties, Quantum Capacitance, and Photocatalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19619-19630. [PMID: 39213539 DOI: 10.1021/acs.langmuir.4c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sc2CO2 MXene has potential applications in energy storage and optoelectronics due to its superior structure and excellent properties. The electronic properties, quantum capacitance, and photocatalytic activity of Cr-doped Sc2CO2 under strain are studied by the density functional theory. Cr doping makes the system produce magnetism. The spin-down states of Sc2CO2-Cr under strain are direct semiconductors, while their spin-up states are indirect semiconductors. Sc2CO2-Cr under +5, -5, -3, and -2% strains in an aqueous system are suitable for cathode material. A large voltage drastically modulates the type of electrode materials. Sc2CO2-Cr under strains from 0 to +2% can perform the oxygen evolution reaction at an alkaline environment, while the Sc2CO2-Cr system under strain is a good for CO2 photocatalysis at pH 0 and 7.
Collapse
Affiliation(s)
- Rui-Wen Yan
- College of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| | - Xiao-Hong Li
- College of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang, Henan 471023, People's Republic of China
- Longmen Laboratory, Luoyang, Henan 471023, People's Republic of China
| | - Rui-Zhou Zhang
- College of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| | - Hong-Ling Cui
- College of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| |
Collapse
|
5
|
Khwaja M, Harada T. High-throughput screening of nano-hybrid metal-organic-frameworks for photocatalytic CO 2 reduction. MATERIALS HORIZONS 2024; 11:4311-4320. [PMID: 39118471 DOI: 10.1039/d4mh00702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Photocatalytic conversion of CO2 into fuel feed stocks is a promising method for sustainable fuel production. A highly attractive class of materials, inorganic-core@metal-organic-framework heterogeneous catalysts, boasts a significant increase in catalytic performance when compared to the individual materials. However, due to the ever-expanding chemical space of inorganic-core catalysts and metal-organic frameworks (MOFs), identification of these optimal heterojunctions is difficult without appropriate computational screening. In this work, a novel high-throughput screening method of nano-hybrid photocatalysts is presented by screening 65 784 inorganic-core materials and 20 375 MOF-shells for their ability to reduce CO2 based on their synthesizability, aqueous stability, visible light absorption, and electronic structure; the passing materials were then paired based on their electronic structure to create novel heterojunctions. The results showed 58 suitable inorganic-core materials and 204 suitable MOFs ranging from never-before-synthesized catalysts to catalysts that have been overlooked for their photocatalytic ability. These materials lay a new foundation of photocatalysts that have passed theoretical requirements and can significantly increase the rate of catalyst discovery.
Collapse
Affiliation(s)
- Moin Khwaja
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan.
| | - Takuya Harada
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan.
| |
Collapse
|
6
|
Qi XC, Lang F, Li C, Liu MW, Wang YF, Pang J. Synergistic Effects of MOFs and Noble Metals in Photocatalytic Reactions: Mechanisms and Applications. Chempluschem 2024; 89:e202400158. [PMID: 38733075 DOI: 10.1002/cplu.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Photocatalytic technology can efficiently convert solar energy to chemical energy and this process is considered as one of the green and sustainable technology for practical implementation. In recent years, metal-organic frameworks (MOFs) have attracted widespread attention due to their unique advantages and have been widely applied in the field of photocatalysis. Among them, noble metals have contributed significant advances to the field as effective catalysts in photocatalytic reactions. Importantly, noble metals can also form a synergistic catalytic effect with MOFs to further improve the efficiency of photocatalytic reactions. However, how to precisely control the synergistic effect between MOFs and noble metals to improve the photocatalytic performance of materials still needs to be further studied. In this review, the synergistic effects of MOFs and noble metal catalysts in photocatalytic reactions are firstly summarized in terms of noble metal nanoparticles, noble metal monoatoms, noble metal compounds, and noble metal complexes, and focus on the mechanisms and advantages of these synergistic effects, so as to provide useful guidance for the further research and application of MOFs and contribute to the development of the field of photocatalysis.
Collapse
Affiliation(s)
- Xiao-Chen Qi
- Energy & Materials Engineering Center, College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350
| | - Feifan Lang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350
| | - Cha Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350
| | - Ming-Wu Liu
- Energy & Materials Engineering Center, College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350
| | - Yu-Fen Wang
- Energy & Materials Engineering Center, College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350
| |
Collapse
|
7
|
Cai YS, Chen JQ, Su P, Yan X, Chen Q, Wu Y, Xiao FX. Atomically precise metal nanoclusters combine with MXene towards solar CO 2 conversion. Chem Sci 2024; 15:13495-13505. [PMID: 39183912 PMCID: PMC11339972 DOI: 10.1039/d4sc03663h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024] Open
Abstract
Atomically precise metal nanoclusters (NCs) have been deemed a new generation of photosensitizers for light harvesting on account of their quantum confinement effect, peculiar atom-stacking mode, and enriched catalytic active sites. Nonetheless, to date, precise charge modulation over metal NCs has still been challenging considering their ultra-short carrier lifetime and poor stability. In this work, we conceptually demonstrate the integration of metal NCs with MXene in transition metal chalcogenide (TMC) photosystems via a progressive, exquisite, and elegant interface design to trigger tunable, precise and high-efficiency charge motion over metal NCs, stimulating a directional carrier transport pathway. In this customized ternary heterostructured photosystem, metal NCs function as light-harvesting antennas, MXene serves as a terminal electron reservoir, and the TMC substrate provides suitable energy level alignment for retracting photocarriers of metal NCs, giving rise to a spatial cascade charge transport route and markedly boosting charge separation efficiency. The interface configuration and energy level alignment engineering synergistically contribute to the considerably enhanced visible-light-driven photocatalytic CO2-to-CO reduction performance of the metal NCs/TMCs/MXene heterostructure. The intermediate active species during the photocatalytic CO2 reduction are unambiguously determined, based on which the photocatalytic mechanism is elucidated. Our work will provide an inspiring idea to bridge the gap between atomically precise metal NCs and MXene in terms of controllable charge migration for solar-to-fuel conversion.
Collapse
Affiliation(s)
- Yu-Shan Cai
- College of Materials Science and Engineering, Fuzhou University, New Campus Minhou Fujian Province 350108 China
| | - Jia-Qi Chen
- College of Materials Science and Engineering, Fuzhou University, New Campus Minhou Fujian Province 350108 China
| | - Peng Su
- College of Materials Science and Engineering, Fuzhou University, New Campus Minhou Fujian Province 350108 China
| | - Xian Yan
- College of Materials Science and Engineering, Fuzhou University, New Campus Minhou Fujian Province 350108 China
| | - Qing Chen
- College of Materials Science and Engineering, Fuzhou University, New Campus Minhou Fujian Province 350108 China
| | - Yue Wu
- College of Materials Science and Engineering, Fuzhou University, New Campus Minhou Fujian Province 350108 China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus Minhou Fujian Province 350108 China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 PR China
| |
Collapse
|
8
|
Wang TH, Lai YS, Tsai CK, Fu H, Doong RA, Westerhoff P, Rittmann BE. Efficient CO 2 Conversion through a Novel Dual-Fiber Reactor System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13717-13725. [PMID: 39066729 DOI: 10.1021/acs.est.3c10274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Carbon dioxide (CO2) can be converted to valuable organic chemicals using light irradiation and photocatalysis. Today, light-energy loss, poor conversion efficiency, and low quantum efficiency (QE) hamper the application of photocatalytic CO2 reduction. To overcome these drawbacks, we developed an efficient photocatalytic reactor platform for producing formic acid (HCOOH) by coating an iron-based metal-organic framework (Fe-MOF) onto side-emitting polymeric optical fibers (POFs) and using hollow-fiber membranes (HFMs) to deliver bubble-free CO2. The photocatalyst, Fe-MOF with amine-group (-NH2) decoration, provided exceptional dissolved inorganic carbon (DIC) absorption. The dual-fiber system gave a CO2-to-HCOOH conversion rate of 116 ± 1.2 mM h-1 g-1, which is ≥18-fold higher than the rates in photocatalytic slurry systems. The 12% QE obtained using the POF was 18-fold greater than the QE obtained by a photocatalytic slurry. The conversion efficiency and product selectivity of CO2-to-HCOOH were up to 22 and 99%, respectively. Due to the dual efficiencies of bubble-free CO2 delivery and the high QE achieved using the POF platform, the dual-fiber system had energy consumption of only 0.60 ± 0.05 kWh mol-1, 3000-fold better than photocatalysis using slurry-based systems. This innovative dual-fiber design enables efficient CO2 valorization without the use of platinum group metals or rare earth elements.
Collapse
Affiliation(s)
- Tzu-Heng Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| | - YenJung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| | - Cheng-Kuo Tsai
- Emergency Response Information Center, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Han Fu
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Paul Westerhoff
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
9
|
Karmakar A, Santos AACD, Liu P, Gurbanov AV, Pires J, Alegria ECBA, Hasanov KI, Guedes da Silva MFC, Wang Z, Pombeiro AJL. Thiophene-Functionalized Cadmium(II)-Based Metal-Organic Frameworks for CO 2 Adsorption with Gate-Opening Effect, Separation, and Catalytic Conversion. Inorg Chem 2024; 63:13321-13337. [PMID: 38987901 DOI: 10.1021/acs.inorgchem.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Two new porous three-dimensional cadmium(II) metal-organic frameworks (MOFs) containing thiophene-appended carboxylate acid ligands, formulated as [Cd(L1)(4,4'-Bipy)]n.2n(DMF) (1) and [Cd(L2)(4,4'-Bipy)]n.2n(DMF) (2) [where L1 = 5-{(thiophen-2-ylmethyl)amino}isophthalate, L2 = 5-{(thiophen-3-ylmethyl)amino}isophthalate, 4,4'-Bipy = 4,4'-bipyridine, and DMF = N,N'-dimethylformamide] have been synthesized and structurally characterized. The gas adsorption analysis of the activated MOFs shows that they specifically capture CO2 (uptake amount 4.36 mmol/g under 1 bar at 195 K) over N2 and CH4. Moreover, both MOFs show a gate-opening-closing phenomenon, which features the S-shaped isotherms with impressive hysteretic desorption during the CO2 adsorption-desorption process at 195 K. Ideal adsorbed solution theory (IAST) calculations of these MOFs displayed that the obtained selectivity values for CO2/CH4 (50:50) and CO2/N2 (15:85) are approximately 8.6-23 and 93-565, respectively. Configurational bias Monte Carlo simulation was performed to understand the mechanism behind the better CO2 adsorption by these MOFs. Catalytic activity of the MOFs for the CO2 fixation reactions with different epoxides to form cyclic carbonates were tested. These MOFs demonstrated a significantly high conversion (94-99%) of epichlorohydrin to the corresponding cyclic carbonate within 8 h of reaction time at 1 bar of CO2 pressure, at 70 °C, and they can be reused up to five cycles without losing considerably their activity.
Collapse
Affiliation(s)
- Anirban Karmakar
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| | - Andreia A C D Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, Lisboa 1959-007, Portugal
| | - Peixi Liu
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China
| | - Atash V Gurbanov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
- Excellence Center, Baku State University, Z. Xalilov Str. 33, AZ 1148 Baku, Azerbaijan
| | - João Pires
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Elisabete C B A Alegria
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, Lisboa 1959-007, Portugal
| | - Khudayar I Hasanov
- Western Caspian University, Istiqlaliyyat Str. 31, AZ 1001 Baku , Azerbaijan
- Azerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14, AZ 1022 Baku, Azerbaijan
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| | - Zhihua Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| |
Collapse
|
10
|
Mallick L, Samanta K, Chakraborty B. Post-synthetic Metalation on the Ionic TiO 2 Surface to Enhance Metal-CO 2 Interaction During Photochemical CO 2 Reduction. Chemistry 2024; 30:e202400428. [PMID: 38715434 DOI: 10.1002/chem.202400428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 06/21/2024]
Abstract
During the photochemical CO2 reduction reaction, CO2 adsorption on the catalyst's surface is a crucial step where the binding mode of the [metal-CO2] adduct directs the product selectivity and efficiency. Herein, an ionic TiO2 nanostructure stabilized by polyoxometalates (POM), ([POM]x@TiO2), is prepared and the sodium counter ions present on the surface to balance the POMs' charge are replaced with copper(II) ions, (Cux[POM]@TiO2). The microscopic and spectroscopic studies affirm the copper exchange without altering the TiO2 core and weak coordination of copper (II) ions to the POMs' surface. Band structure analysis suggests the photo-harvesting efficiency of the TiO2 core with the conduction band edge higher than the reduction potential of CuII/I and multi-electron CO2 reduction potentials. Photochemical CO2 reduction with Cux[POM]@TiO2 results in 30 μmol gcat. -1 CO (79 %) and 8 μmol gcat -1 of CH4 (21 %). Quasi-in-situ Raman study provides evidence in support of CO2 adsorption on the Cux[POM]@TiO2 surface. 13C and D2O labeling studies affirm the {Cu-[CO2]-} adduct formation. Despite the photo-harvesting ability of Nax[POM]@TiO2 itself, the poor CO2 adsorption ability of sodium ions highlights the crucial role of copper ion CO2 photo-reduction. Characterization of the {M-[η2-CO2]-} species via surface tuning validates the CO2 activation and photochemical reduction pathway proposed earlier.
Collapse
Affiliation(s)
- Laxmikanta Mallick
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India
| | - Krishna Samanta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India
| |
Collapse
|
11
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
12
|
Pishro KA, Gonzalez MH. Use of deep eutectic solvents in environmentally-friendly dye-sensitized solar cells and their physicochemical properties: a brief review. RSC Adv 2024; 14:14480-14504. [PMID: 38708112 PMCID: PMC11063684 DOI: 10.1039/d4ra01610f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
A novel way to mitigate the greenhouse effect is to use dye-sensitized solar cells (DSSCs) to convert carbon dioxide from the air into useful products, such as hydrocarbons, which can also store energy from the sun, a plentiful, clean, and safe resource. The conversion of CO2 can help reduce the impacts of greenhouse gas emissions that contribute to global warming. However, there is a major obstacle in using DSSCs, since many solar devices operate with organic electrolytes, producing pollutants including toxic substances. Therefore, a key research area is to find new eco-friendly electrolytes that can effectively dissolve carbon dioxide. One option is to use deep eutectic solvents (DESs), which are potential substitutes for ionic liquids (ILs) and have similar advantages, such as being customizable, economical, and environmentally friendly. DESs are composed of low-cost materials and have very low toxicity and high biodegradability, making them suitable for use as electrolytes in DSSCs, within the framework of green chemistry. The purpose of this brief review is to explore the existing knowledge about how CO2 dissolves in DESs and how these solvents can be used as electrolytes in solar devices, especially in DSSCs. The physical and chemical properties of the DESs are described, and areas are suggested where further research should be focused.
Collapse
Affiliation(s)
- Khatereh A Pishro
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM) São José do Rio Preto SP 15054-000 Brazil +55 17 32212512 +55 17 32212512
| | - Mario Henrique Gonzalez
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM) São José do Rio Preto SP 15054-000 Brazil +55 17 32212512 +55 17 32212512
| |
Collapse
|
13
|
Xue S, Tang H, Shen M, Liang X, Li X, Xing W, Yang C, Yu Z. Establishing Multiple-Order Built-In Electric Fields Within Heterojunctions to Achieve Photocarrier Spatial Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311937. [PMID: 38191131 DOI: 10.1002/adma.202311937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Hybridizing two heterocomponents to construct a built-in electric field (BIEF) at the interface represents a significant strategy for facilitating charge separation in carbon dioxide (CO2)-photoreduction. However, the unidirectional nature of BIEFs formed by various low-dimensional materials poses challenges in adequately segregating the photogenerated carriers produced in bulk. In this study, leveraging zinc oxide (ZnO) nanodisks, a sulfurization reaction is employed to fabricate Z-scheme ZnO/zinc sulfide (ZnS) heterojunctions featuring a multiple-order BIEF. These heterojunctions reveal distinctive interfacial structures characterized by two semicoherent phase boundaries. The cathodoluminescence 2D maps and density functional theory calculation results demonstrate that the direction of the multiple-order BIEF spans from ZnS to ZnO. This directional alignment significantly fosters the spatial separation of photogenerated electrons and holes within ZnS nanoparticles and enhances CO2-to-carbon monoxide photoreduction performance (3811.7 µmol h-1 g-1). The findings present a novel pathway for structurally designing BIEFs within heterojunctions, while providing fresh insights into the migratory behavior of photogenerated carriers across interfaces.
Collapse
Affiliation(s)
- Sikang Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- Fujian Science & Technology Innovation Laboratory for Chemical Engineering of China, College of Chemical Engineering, Fuzhou University, Quanzhou, 362114, P. R. China
| | - Hao Tang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Min Shen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaocong Liang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaoyan Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
14
|
Yin C, Li X, Sun S, Wei X, Tong Q, Tan W, Wang X, Peng B, Wan H, Dong L. High photocatalytic performance over ultrathin 2D TiO 2 for CO 2 reduction to alcohols. Chem Commun (Camb) 2024; 60:3531-3534. [PMID: 38450709 DOI: 10.1039/d4cc00068d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
We report a noble-metal-free photocatalyst, ultrathin TiO2 with atomic layer thickness, which is a potential catalyst for CO2 photoreduction. An excellent liquid-product yield of 463.9 μmol gcat-1 in 8 h with 98% selectivity to alcohols was achieved, owing to sufficient surface defects favoring CO2 adsorption/activation.
Collapse
Affiliation(s)
- Chenxu Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Centre of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China.
| | - Xue Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Centre of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China.
| | - Shangcong Sun
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China.
| | - Xiaoqian Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Centre of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China.
| | - Qing Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Centre of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China.
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Centre of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China.
| | - Xin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Centre of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China.
| | - Bo Peng
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China.
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Centre of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China.
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Centre of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Kumar Sahu A, Yadav S, Banerjee D, Rufford TE, Upadhyayula S. Accelerating Charge Separation and CO 2 Photoreduction in Aqueous Phase under Visible Light with Ru Nanoparticles Loaded on Ga-Doped NiTiO 3 in a Batch Photoreactor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7057-7069. [PMID: 38308562 DOI: 10.1021/acsami.3c15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Titanate perovskite (ATiO3) semiconductors show prospects of being active photocatalysts in the conversion of CO2 to chemical fuels such as methanol (CH3OH) in the aqueous phase. Some of the challenges in using ATiO3 are limited light-harvesting capability, rapid bulk charge recombination, and the low density of catalytic sites participating in CO2 reduction. To address these challenges, Ga-doped NiTiO3 (GNTO) photocatalysts in which Ga ions substitute for Ti ions in the crystal lattice to form electron trap states and oxygen vacancies have been synthesized in this work. The synthesized GNTO was then loaded with Ru nanoparticles to accelerate charge separation and enable excellent CO2 photoreduction activity under visible light. CO2 photoreduction was conducted in a batch photoreactor charged with a 0.1 M NaHCO3 aqueous solution at room temperature and a 3.5 bar pressure using a 1.0 wt % Ru-GNTO photocatalyst to yield methanol at a rate of 84.45 μmol g-1 h-1. A small amount of methane was produced as a side product at 21.35 μmol g-1 h-1, which is also a fuel molecule. We attribute this high catalytic activity toward CO2 photoreduction to a synergistic combination of our novel heterostructured 1.0 wt % Ru-GNTO photocatalyst and the implementation of a pressurized photoreactor. This work demonstrates an effective strategy for metal doping with active nanospecies functionality to improve the performance of ATiO3 photocatalysts in valorizing CO2 to solar fuels.
Collapse
Affiliation(s)
- Aloka Kumar Sahu
- The University of Queensland─IIT Delhi Academy of Research (UQIDAR), Hauz Khas 110016, New Delhi, India
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas 110016, New Delhi, India
- School of Chemical Engineering, The University of Queensland, Brisbane QLD 4072, St Lucia, Australia
| | - Sushant Yadav
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas 110016, New Delhi, India
| | - Debarun Banerjee
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas 110016, New Delhi, India
| | - Thomas E Rufford
- School of Chemical Engineering, The University of Queensland, Brisbane QLD 4072, St Lucia, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane QLD 4072, St Lucia, Australia
| | - Sreedevi Upadhyayula
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas 110016, New Delhi, India
| |
Collapse
|
16
|
Yu LQ, Guo RT, Guo SH, Yan JS, Liu H, Pan WG. Research progress on photocatalytic reduction of CO 2 based on ferroelectric materials. NANOSCALE 2024; 16:1058-1079. [PMID: 38126461 DOI: 10.1039/d3nr05018a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Transforming CO2 into renewable fuels or valuable carbon compounds could be a practical means to tackle the issues of global warming and energy crisis. Photocatalytic CO2 reduction is more energy-efficient and environmentally friendly, and offers a broader range of potential applications than other CO2 conversion techniques. Ferroelectric materials, which belong to a class of materials with switchable polarization, are attractive candidates as catalysts due to their distinctive and substantial impact on surface physical and chemical characteristics. This review provides a concise overview of the fundamental principles underlying photocatalysis and the mechanism involved in CO2 reduction. Additionally, the composition and properties of ferroelectric materials are introduced. This review expands on the research progress in using ferroelectric materials for photocatalytic reduction of CO2 from three perspectives: directly as a catalyst, by modification, and construction of heterojunctions. Finally, the future potential of ferroelectric materials for photocatalytic CO2 reduction is presented. This review may be a valuable guide for creating reasonable and more effective photocatalysts based on ferroelectric materials.
Collapse
Affiliation(s)
- Ling-Qi Yu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China
| | - Sheng-Hui Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Ji-Song Yan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Hao Liu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China
| |
Collapse
|
17
|
Cui Y, He S, Yang J, Gao R, Hu K, Chen X, Xu L, Deng C, Lin C, Peng S, Zhang C. Research Progress of Non-Noble Metal Catalysts for Carbon Dioxide Methanation. Molecules 2024; 29:374. [PMID: 38257287 PMCID: PMC10821115 DOI: 10.3390/molecules29020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The extensive utilization of fossil fuels has led to a rapid increase in atmospheric CO2 concentration, resulting in various environmental issues. To reduce reliance on fossil fuels and mitigate CO2 emissions, it is important to explore alternative methods of utilizing CO2 and H2 as raw materials to obtain high-value-added chemicals or fuels. One such method is CO2 methanation, which converts CO2 and H2 into methane (CH4), a valuable fuel and raw material for other chemicals. However, CO2 methanation faces challenges in terms of kinetics and thermodynamics. The reaction rate, CO2 conversion, and CH4 yield need to be improved to make the process more efficient. To overcome these challenges, the development of suitable catalysts is essential. Non-noble metal catalysts have gained significant attention due to their high catalytic activity and relatively low cost. In this paper, the thermodynamics and kinetics of the CO2 methanation reaction are discussed. The focus is primarily on reviewing Ni-based, Co-based, and other commonly used catalysts such as Fe-based. The effects of catalyst supports, preparation methods, and promoters on the catalytic performance of the methanation reaction are highlighted. Additionally, the paper summarizes the impact of reaction conditions such as temperature, pressure, space velocity, and H2/CO2 ratio on the catalyst performance. The mechanism of CO2 methanation is also summarized to provide a comprehensive understanding of the process. The objective of this paper is to deepen the understanding of non-noble metal catalysts in CO2 methanation reactions and provide insights for improving catalyst performance. By addressing the limitations of CO2 methanation and exploring the factors influencing catalyst effectiveness, researchers can develop more efficient and cost-effective catalysts for this reaction.
Collapse
Affiliation(s)
- Yingchao Cui
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Shunyu He
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Jun Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Ruxing Gao
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Kehao Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Xixi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Lujing Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Chao Deng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Congji Lin
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Shuai Peng
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Chundong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| |
Collapse
|
18
|
Zhang Y, Shi H, Zhao S, Chen Z, Zheng Y, Tu G, Zhong S, Zhao Y, Bai S. Hollow Plasmonic P-Metal-N S-Scheme Heterojunction Photoreactor with Spatially Separated Dual Cocatalysts toward Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304050. [PMID: 37712104 DOI: 10.1002/smll.202304050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Semiconductor-based step-scheme (S-scheme) heterojunctions possess many merits toward mimicking natural photosynthesis. However, their applications for solar-to-chemical energy conversion are hindered by inefficient charge utilization and unsatisfactory surface reactivity. Herein, two synergistic protocols are demonstrated to overcome these limitations based on the construction of a hollow plasmonic p-metal-n S-scheme heterojunction photoreactor with spatially separated dual noble-metal-free cocatalysts. On one side, plasmonic Au, inserted into the heterointerfaces of CuS@ZnIn2 S4 core-shell nanoboxes, not only accelerates the transfer and recombination of useless charges, enabling a more thorough separation of useful ones for CO2 reduction and H2 O oxidation but also generates hot electrons and holes, respectively injects them into ZnIn2 S4 and CuS, further increasing the number of active carriers participating in redox reactions. On the other side, Fe(OH)x and Ti3 C2 cocatalysts, separately located on the CuS and ZnIn2 S4 surface, enrich the redox sites, adjust the reduction potential and pathway for selective CO2 -to-CH4 transformation, and balance the transfer and consumption of photocarriers. As expected, significantly enhanced activity and selectivity in CH4 production are achieved by the smart design along with nearly stoichiometric ratios of reduction and oxidation products. This study paves the way for optimizing artificial photosynthetic systems via rational interfacial channel introduction and surface cocatalyst modification.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Hulin Shi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuyi Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Zhulei Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yiyi Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Gaomei Tu
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yuling Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Song Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
19
|
Shukla RK, Yadav RK, Gole VL, Na CY, Jeong GH, Singh S, Baeg JO, Choi MY, Gupta NK, Kim TW. Aloe vera-derived graphene-coupled phenosafranin photocatalyst for generation and regeneration of ammonia and NADH by mimicking natural photosynthetic route. Photochem Photobiol 2024; 100:41-51. [PMID: 37458262 DOI: 10.1111/php.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 01/17/2024]
Abstract
Aloe vera-derived graphene (ADG) coupled system photocatalyst, mimicking natural photosynthesis, is one of the most promising ways for converting solar energy into ammonia (NH3 ) and nicotinamide adenine dinucleotide (NADH) that have been widely used to make the numerous chemicals such as fertilizer and fuel. In this study, we report the synthesis of the aloe vera-derived graphene-coupled phenosafranin (ADGCP) acting as a highly efficient photocatalyst for the generation of NH3 and regeneration of NADH from nitrogen (N2 ) and oxidized form of nicotinamide adenine dinucleotide (NAD+ ). The results show a benchmark instance for mimicking natural photosynthesis activity as well as the practical applications for the solar-driven selective formation of NH3 and the regeneration of NADH by using the newly designed photocatalyst.
Collapse
Affiliation(s)
- Ravindra K Shukla
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - V L Gole
- Department of Chemical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - Chae Yeong Na
- Department of Chemistry, Mokpo National University, Muan-gun, Korea
| | - Gyoung Hwa Jeong
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, Korea
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - Jin-Ook Baeg
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, Korea
| | - Navneet Kumar Gupta
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Muan-gun, Korea
| |
Collapse
|
20
|
Zou W, Cheng Y, Ye YX, Wei X, Tong Q, Dong L, Ouyang G. Metal-Free Photocatalytic CO 2 Reduction to CH 4 and H 2 O 2 under Non-sacrificial Ambient Conditions. Angew Chem Int Ed Engl 2023; 62:e202313392. [PMID: 37853513 DOI: 10.1002/anie.202313392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Photocatalytic CO2 reduction to CH4 requires photosensitizers and sacrificial agents to provide sufficient electrons and protons through metal-based photocatalysts, and the separation of CH4 from by-product O2 has poor applications. Herein, we successfully synthesize a metal-free photocatalyst of a novel electron-acceptor 4,5,9,10-pyrenetetrone (PT), to our best knowledge, this is the first time that metal-free catalyst achieves non-sacrificial photocatalytic CO2 to CH4 and easily separable H2 O2 . This photocatalyst offers CH4 product of 10.6 μmol ⋅ g-1 ⋅ h-1 under non-sacrificial ambient conditions (room temperature, and only water), which is two orders of magnitude higher than that of the reported metal-free photocatalysts. Comprehensive in situ characterizations and calculations reveal a multi-step reaction mechanism, in which the long-lived oxygen-centered radical in the excited PT provides as a site for CO2 activation, resulting in a stabilized cyclic carbonate intermediate with a lower formation energy. This key intermediate is thermodynamically crucial for the subsequent reduction to CH4 product with the electronic selectivity of up to 90 %. The work provides fresh insights on the economic viability of photocatalytic CO2 reduction to easily separable CH4 in non-sacrificial and metal-free conditions.
Collapse
Affiliation(s)
- Weixin Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Yingyi Cheng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yu-Xin Ye
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Xiaoqian Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Qing Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Gangfeng Ouyang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| |
Collapse
|
21
|
Sumaya MU, Maria KH, Toma F, Zubair M, Chowdhury M. Effect of stabilizer content in different solvents on the synthesis of ZnO nanoparticles using the chemical precipitation method. Heliyon 2023; 9:e20871. [PMID: 37867854 PMCID: PMC10585300 DOI: 10.1016/j.heliyon.2023.e20871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Zinc Oxide (ZnO) nanoparticles (NPs) have been synthesized by a simple chemical precipitation method. The effect of monoethanolamine (MEA) content in different solvents on ZnO NPs synthesis and their structural properties has been investigated. The NPs synthesized by using isopropanol (IPA) with 15 ml MEA as a stabilizer under the most favorable conditions (deposition time, td = 120 min, temperature = 60 °C) showed good structural properties. Synthesized NPs exhibited beneficial structural properties after annealing. The hexagonal wurtzite crystal structure of ZnO NPs was verified by XRD. Different models were used to calculate structural parameters such as crystallite size, strain, stress, and energy density for all the reflection peaks of XRD corresponding to ZnO lying in the range 2θ = 15⁰-80⁰. The crystallite size of the ZnO nanoparticles was found to be 50-60 nm. FTIR and EDX confirmed the presence of ZnO NPs in the samples. SEM micrograph of all the samples revealed that the grain sizes decrease gradually with the increase of the amount of MEA. UV-Visible diffuse reflectance spectroscopy results provide evidence that the ZnO NPs possess broader absorption bands, together with high band gap energy. The ZnO NPs synthesized with IPA solvent have the highest transmittance and band gap energy of 3.3eV. According to DLS data, various content of MEA stabilizer in solvent affects the hydrodynamic size of ZnO NPs.
Collapse
Affiliation(s)
| | | | - F.T.Z. Toma
- Experimental Physics Division, Atomic Energy Centre, Dhaka-1000, Bangladesh
| | - M.A. Zubair
- Department of Nanomaterials and Ceramic Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh
| | - M.T. Chowdhury
- Institute of Energy Science, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, P.O Box 3787, Dhaka-1000, Bangladesh
| |
Collapse
|
22
|
Wenderich K, Zhu K, Bu Y, Tichelaar FD, Mul G, Huijser A. Photophysical Characterization of Ru Nanoclusters on Nanostructured TiO 2 by Time-Resolved Photoluminescence Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14353-14362. [PMID: 37529662 PMCID: PMC10388344 DOI: 10.1021/acs.jpcc.3c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/23/2023] [Indexed: 08/03/2023]
Abstract
Despite the promising performance of Ru nanoparticles or nanoclusters on nanostructured TiO2 in photocatalytic and photothermal reactions, a mechanistic understanding of the photophysics is limited. The aim of this study is to uncover the nature of light-induced processes in Ru/TiO2 and the role of UV versus visible excitation by time-resolved photoluminescence (PL) spectroscopy. The PL at a 267 nm excitation is predominantly due to TiO2, with a minor contribution of the Ru nanoclusters. Relative to TiO2, the PL of Ru/TiO2 following a 267 nm excitation is significantly blue-shifted, and the bathochromic shift with time is smaller. We show by global analysis of the spectrotemporal PL behavior that for both TiO2 and Ru/TiO2 the bathochromic shift with time is likely caused by the diffusion of electrons from the TiO2 bulk toward the surface. During this directional motion, electrons may recombine (non)radiatively with relatively immobile hole polarons, causing the PL spectrum to red-shift with time following excitation. The blue-shifted PL spectra and smaller bathochromic shift with time for Ru/TiO2 relative to TiO2 indicate surface PL quenching, likely due to charge transfer from the TiO2 surface into the Ru nanoclusters. When deposited on SiO2 and excited at 532 nm, Ru shows a strong emission. The PL of Ru when deposited on TiO2 is completely quenched, demonstrating interfacial charge separation following photoexcitation of the Ru nanoclusters with a close to unity quantum yield. The nature of the charge-transfer phenomena is discussed, and the obtained insights indicate that Ru nanoclusters should be deposited on semiconducting supports to enable highly effective photo(thermal)catalysis.
Collapse
Affiliation(s)
- Kasper Wenderich
- Photocatalytic
Synthesis Group, Faculty of Science and Technology, MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Kaijian Zhu
- Photocatalytic
Synthesis Group, Faculty of Science and Technology, MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Yibin Bu
- Nanolab,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frans D. Tichelaar
- Kavli
Institute of Technology, Quantum Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Guido Mul
- Photocatalytic
Synthesis Group, Faculty of Science and Technology, MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Annemarie Huijser
- Photocatalytic
Synthesis Group, Faculty of Science and Technology, MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
23
|
Mathew MS, Krishnan G, Mathews AA, Sunil K, Mathew L, Antoine R, Thomas S. Recent Progress on Ligand-Protected Metal Nanoclusters in Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1874. [PMID: 37368304 DOI: 10.3390/nano13121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
The reckless use of non-replenishable fuels by the growing population for energy and the resultant incessant emissions of hazardous gases and waste products into the atmosphere have insisted that scientists fabricate materials capable of managing these global threats at once. In recent studies, photocatalysis has been employed to focus on utilizing renewable solar energy to initiate chemical processes with the aid of semiconductors and highly selective catalysts. A wide range of nanoparticles has showcased promising photocatalytic properties. Metal nanoclusters (MNCs) with sizes below 2 nm, stabilized by ligands, show discrete energy levels and exhibit unique optoelectronic properties, which are vital to photocatalysis. In this review, we intend to compile information on the synthesis, true nature, and stability of the MNCs decorated with ligands and the varying photocatalytic efficiency of metal NCs concerning changes in the aforementioned domains. The review discusses the photocatalytic activity of atomically precise ligand-protected MNCs and their hybrids in the domain of energy conversion processes such as the photodegradation of dyes, the oxygen evolution reaction (ORR), the hydrogen evolution reaction (HER), and the CO2 reduction reaction (CO2RR).
Collapse
Affiliation(s)
- Meegle S Mathew
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
- Research and Post Graduate Department of Chemistry, Mar Athanasius College, Kothamangalam 686666, India
| | - Greeshma Krishnan
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Amita Aanne Mathews
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Kevin Sunil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Leo Mathew
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, F-69100 Villeurbanne, France
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
24
|
dos Santos JCS, Dhenadhayalan N, Li Y, Pinilla JL. Editorial: Chemical reactions and catalysis for a sustainable future. Front Chem 2023; 11:1228591. [PMID: 37332892 PMCID: PMC10272991 DOI: 10.3389/fchem.2023.1228591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023] Open
Affiliation(s)
- José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, CE, Brazil
| | | | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, China
| | | |
Collapse
|
25
|
Liu Q, Guo Z, Wang C, Guo S, Xu Z, Hu C, Liu Y, Wang Y, He J, Wong W. A Cobalt-Based Metal-Organic Framework Nanosheet as the Electrode for High-Performance Asymmetric Supercapacitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207545. [PMID: 37088776 PMCID: PMC10288240 DOI: 10.1002/advs.202207545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Inspired by the significant advantages of the bottom-up synthesis whose structures and functionalities can be customized by the selection of molecular components, a 2D metal-organic framework (MOF) nanosheet Co-BTB-LB has been synthesized by a liquid-liquid interface-assisted method. The as-prepared Co-BTB-LB is identified by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDX) and X-ray photoelectron spectroscopy (XPS), and the sheet-like structure is verified by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM). Co-BTB-LB electrode exhibits an excellent capacity of 4969.3 F g-1 at 1 A g-1 and good cycling stability with 75% capacity retention after 1000 cycles. The asymmetric supercapacitor device with Co-BTB-LB as the positive electrode shows a maximum energy density of 150.2 Wh kg-1 at a power density of 1619.2 W kg-1 and good cycling stability with a capacitance retention of 97.1% after 10000 cycles. This represents a state-of-the-art performance reported for asymmetric supercapacitor device using electroactive bottom-up metal-complex nanosheet, which will clearly lead to a significant expansion of the applicability of this type of 2D nanomaterials.
Collapse
Affiliation(s)
- Qian Liu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Zengqi Guo
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Cong Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Su Guo
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Zhiwei Xu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Chenguang Hu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Yujing Liu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Yalei Wang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongP. R. China
| | - Jun He
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P.R. China
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongP. R. China
| |
Collapse
|
26
|
Ganji P, Chowdari RK, Likozar B. Photocatalytic Reduction of Carbon Dioxide to Methanol: Carbonaceous Materials, Kinetics, Industrial Feasibility, and Future Directions. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2023; 37:7577-7602. [PMID: 37283706 PMCID: PMC10240497 DOI: 10.1021/acs.energyfuels.3c00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Indexed: 06/08/2023]
Abstract
Photocatalytic carbon dioxide reduction (PCCR) for methanol synthesis (CH3OH) targeting renewable energy resources is an attractive way to create a sustainable environment and also balance the carbon-neutral series. The application of PCCR to methanol enables the generation of solar energy while reducing CO2, killing two birds with one stone in terms of energy and the environment. In recent years, research on CO2 utilization has focused on hydrogenation of CO2 to methanol due to global warming. This article mainly focuses on selective carbonaceous materials such as graphene, mesoporous carbon, and carbon nanotubes (CNTs) as catalysts for heterogeneous photocatalytic CO2 reduction to methanol. In addition, special emphasis will be placed on the state of the art of PCCR catalysts as this type of research will be of great benefit for further development in this field. The main features of the reaction kinetics, techno-economic study, and current technological developments in PCCR are covered in detail.
Collapse
|
27
|
Chen S, Wei J, Ren X, Song K, Sun J, Bai F, Tian S. Recent Progress in Porphyrin/g-C 3N 4 Composite Photocatalysts for Solar Energy Utilization and Conversion. Molecules 2023; 28:molecules28114283. [PMID: 37298759 DOI: 10.3390/molecules28114283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Transforming solar energy into chemical bonds is a promising and viable way to store solar energy. Porphyrins are natural light-capturing antennas, and graphitic carbon nitride (g-C3N4) is an effective, artificially synthesized organic semiconductor. Their excellent complementarity has led to a growing number of research papers on porphyrin/g-C3N4 hybrids for solar energy utilization. This review highlights the recent progress in porphyrin/g-C3N4 composites, including: (1) porphyrin molecules/g-C3N4 composite photocatalysts connected via noncovalent or covalent interactions, and (2) porphyrin-based nanomaterials/g-C3N4 composite photocatalysts, such as porphyrin-based MOF/g-C3N4, porphyrin-based COF/g-C3N4, and porphyrin-based assembly/g-C3N4 heterojunction nanostructures. Additionally, the review discusses the versatile applications of these composites, including artificial photosynthesis for hydrogen evolution, CO2 reduction, and pollutant degradation. Lastly, critical summaries and perspectives on the challenges and future directions in this field are also provided.
Collapse
Affiliation(s)
- Sudi Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative, Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Jiajia Wei
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Science, Henan University, Kaifeng 475004, China
| | - Xitong Ren
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative, Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Keke Song
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Science, Henan University, Kaifeng 475004, China
| | - Jiajie Sun
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative, Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Shufang Tian
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
28
|
Qin J, Wu N, Chen W, Liu B, Wang Z, Zhang L, Yin N, Chen Q, Zhang ZB, Ma CQ. In Situ Solution-Processed Submicron Thick SiO x C y /a-SiN x (O):H Composite Barrier Film for Polymer:Non-Fullerene Photovoltaics. SMALL METHODS 2023:e2300224. [PMID: 37029583 DOI: 10.1002/smtd.202300224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Aiming to improve the environmental stability of organic photovoltaics, a multilayered SiOx Cy /a-SiNx (O):H composite barrier film coated with a hydrophobic perfluoro copolymer stop layer for polymer:non-fullerene solar cells is developed. The composite film is prepared by spin-coating of polysilicone and perhydropolysilazane (PHPS) following a densification process by vacuum ultraviolet irradiation in an inert atmosphere. The transformation of polysilicone and PHPS to SiOx Cy and a-SiNx (O):H is confirmed by Fourier transform infrared and energy-dispersive X-ray spectroscopy measurement. However, the as-prepared PHPS-derived silicon nitride (PDSN) can react with moisture in the ambient atmosphere, yielding microscale defects and a consequent poor barrier performance. Treating the incomplete PDSN with methanol vapor significantly densifies the film yielding low water vapor transmission rates (WVTRs)of 5.0 × 10-1 and 2.0 × 10-1 g m-2 d-1 for the one- and three-couple of SiOx Cy /a-SiNx (O):H (CON) composite films, respectively. By incorporating a thin hydrophobic perfluoro copolymer layer, the three-coupled methanol-treated CON film with a total thickness of 600 nm shows an extremely low WVTR of 8.7 × 10-4 g m-2 d-1 . No performance decay is measured for the PM6:Y6 and PM6:L8-BO cells after such an encapsulation process. These encapsulated polymer cells show good stability storaged at 25 °C/50% relative humidity, or under simulated extreme rainstorm tests.
Collapse
Affiliation(s)
- Jian Qin
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230027, P. R. China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Na Wu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Wei Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230027, P. R. China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Bowen Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230027, P. R. China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Zhenguo Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230027, P. R. China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Lianping Zhang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ni Yin
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Qi Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230027, P. R. China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Zong-Bo Zhang
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chang-Qi Ma
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230027, P. R. China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
29
|
Li X, Liu J, Jiang G, Lin X, Wang J, Li Z. Self-supported CsPbBr 3/Ti 3C 2T x MXene aerogels towards efficient photocatalytic CO 2 reduction. J Colloid Interface Sci 2023; 643:174-182. [PMID: 37058892 DOI: 10.1016/j.jcis.2023.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Aerogels, especially MXene aerogels, are an ideal multifunctional platform for developing efficient photocatalysts for CO2 reduction because they are featured by abundant catalytic sites, high electrical conductivity, high gas absorption ability and self-supported structure. However, the pristine MXene aerogel has almost no ability to utilize light, which requires additional photosensitizers to assist it in achieving efficient light harvesting. Herein, we immobilized colloidal CsPbBr3 nanocrystals (NCs) onto the self-supported Ti3C2Tx (where Tx represents surface terminations such as fluorine, oxygen, and hydroxyl groups) MXene aerogels for photocatalytic CO2 reduction. The resultant CsPbBr3/Ti3C2Tx MXene aerogels exhibit a remarkable photocatalytic activity toward CO2 reduction with total electron consumption rate of 112.6 μmol g-1h-1, which is 6.6-fold higher than that of the pristine CsPbBr3 NC powders. The improvement of the photocatalytic performance is presumably attributed to the strong light absorption, effective charge separation and CO2 adsorption in the CsPbBr3/Ti3C2Tx MXene aerogels. This work presents an effective perovskite-based photocatalyst in aerogel form and opens a new avenue for their solar-to-fuel conversions.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China
| | - Jiale Liu
- Zhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China; Zhejiang Provincial Key Laboratory of Solid State Optoelectronic Devicces, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China
| | - Guocan Jiang
- Zhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China; Zhejiang Provincial Key Laboratory of Solid State Optoelectronic Devicces, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China.
| | - Xinyu Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China
| | - Jin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China; Zhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China.
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China; Zhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China.
| |
Collapse
|
30
|
Mo W, Fan Z, Zhong S, Chen W, Hu L, Zhou H, Zhao W, Lin H, Ge J, Chen J, Bai S. Embedding Plasmonic Metal into Heterointerface of MOFs-Encapsulated Semiconductor Hollow Architecture for Boosting CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207705. [PMID: 36710245 DOI: 10.1002/smll.202207705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Coupling hollow semiconductor with metal-organic frameworks (MOFs) holds great promise for constructing high-efficient CO2 photoreduction systems. However, energy band mismatch between them makes it difficult to exert their advantages to maximize the overall photocatalytic efficiency, since that the blockage of desirable interfacial charge transfer gives rise to the enrichment of photoelectrons and CO2 molecules on the different locations. Herein, an interfacial engineering is presented to overcome this impediment, based on the insertion of plasmonic metal into the heterointerfaces between them, forming a stacked semiconductor/metal@MOF photocatalyst. Experimental observations and theoretical simulations validate the critical roles of embedded Au in maneuvering the charge separation/transfer and surface reaction: (i) bridges the photoelectron transfer from hollow CdS (H-CdS) to ZIF-8; (ii) produces hot electrons and shifts them to ZIF-8; (iii) induces the formation of ZIF-8 defects in promoting the CO2 adsorption/activation and transformation to CO with low energy barriers. Consequently, the as-prepared H-CdS/Au@ZIF-8 with optimal ZIF-8 thickness exhibits distinctly boosted activity and superb selectivity in CO production as compared with H-CdS@ZIF-8 and other counterparts. This work provides protocols to take full advantages of components involved for enhanced solar-to-chemical energy conversion efficiency of hybrid artificial photosynthetic systems through rationally harnessing the charge transfer between them.
Collapse
Affiliation(s)
- Weihao Mo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Zhixin Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Wenbin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Lingxuan Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Hao Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Wei Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Jing Ge
- School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Song Bai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
31
|
Sahu AK, Zhao XS, Upadhyayula S. Ceria-based photocatalysts in water-splitting for hydrogen production and carbon dioxide reduction. CATALYSIS REVIEWS 2023. [DOI: 10.1080/01614940.2023.2166227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Aloka Kumar Sahu
- The University of Queensland−IIT Delhi Academy of Research (UQIDAR), Hauz Khas, New Delhi, India
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Australia
| | - Xiu Song Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Australia
| | - Sreedevi Upadhyayula
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
32
|
Feng Y, Chen D, Zhong Y, He Z, Ma S, Ding H, Ao W, Wu X, Niu M. A Lead-Free 0D/2D Cs 3Bi 2Br 9/Bi 2WO 6 S-Scheme Heterojunction for Efficient Photoreduction of CO 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9221-9230. [PMID: 36757377 DOI: 10.1021/acsami.2c19703] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photocatalytic reduction of CO2 into valuable hydrocarbon fuels is one of the green ways to solve the energy problem and achieve carbon neutrality. Exploring photocatalyst with low toxicity and high-efficiency is the key to realize it. Here we report a lead-free halide perovskite-based 0D/2D Cs3Bi2Br9/Bi2WO6 (CBB/BWO) S-scheme heterojunction for CO2 photoreduction, prepared by a facile electrostatic self-assembly approach. The CBB/BWO shows superior photoreduction of CO2 under visible light with CO generation rate of 220.1 μmol·g-1·h-1, which is ∼115.8 and ∼18.5 times higher than that of Cs3Bi2Br9 perovskite quantum dots (CBB PQDS) and Bi2WO6 nanosheets (BWO NS), respectively. The improved photocatalytic activity can be attributed to the tight 0D/2D structure and S-scheme charge transfer pathway between the Cs3Bi2Br9 PQDS and atomic layers of the Bi2WO6 NS, which shortens transmission distance of photogenerated carriers and boosts efficient separation and transfer of the carriers. This work provides insight in manufacturing potential lead-free perovskite-based photocatalysts for achieving carbon neutrality.
Collapse
Affiliation(s)
- Yanmei Feng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Daimei Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yi Zhong
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zetian He
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shiqing Ma
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hao Ding
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Weihua Ao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiangfeng Wu
- Hebei Key Laboratory of New Materials for Collaborative Development of Traffic Engineering and Environment, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Min Niu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
33
|
Bao K, Zhou Y, Wu J, Li Z, Yan X, Huang H, Liu Y, Kang Z. Super-Branched PdCu Alloy for Efficiently Converting Carbon Dioxide to Carbon Monoxide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:603. [PMID: 36770564 PMCID: PMC9921487 DOI: 10.3390/nano13030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The alloying of noble metals with Cu is one of the most effective strategies for improving catalytic performance and reducing cost in electrocatalytic carbon dioxide reduction reactions (CO2RR). Previous works usually focused on the influence of morphology and composition on the catalytic activity, but lacked the study of the valence state ratio of metals and the electron transfer behavior on alloys. In this work, PdCu-2 alloy (Pd/Cu molar ratio is 1:2) was obtained by a simple one-step solvothermal method, which can effectively convert CO2 to CO with a maximum Faradaic efficiency (FE) of 85% at -0.9 V (vs. RHE). Then, the effect of the chemical state of Pd and Cu on the catalytic performance was investigated. The X-ray photoelectron spectroscopy (XPS) shows that the binding energy of Pd in PdCu alloy has a negative shift, which has affected the adsorption of key intermediates. When the proportion of oxidized state and zero-valent metal in the alloy is about 1:2, the PdCu alloy shows the best catalytic activity. In addition, the transient photovoltage (TPV) measurements further demonstrate that due to the introduction of Cu, the electron transfer rate of PdCu-2 becomes the slowest, which helps the accumulation of electrons on PdCu-2 and leads to the improvement of catalytic performance for electrocatalytic CO2RR. This work can provide more insights into the alloy catalysts of electrocatalytic CO2RR.
Collapse
Affiliation(s)
- Kaili Bao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Yunjie Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Zenan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Xiong Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao 999078, China
| |
Collapse
|
34
|
Tseng IH, Yang YH, Chen YT, Hsu LC. Tailoring Copper Chemical Status and Hydrophobicity of Biomimetic Photocatalytic Films for Carbon Dioxide Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5038-5048. [PMID: 36629448 DOI: 10.1021/acsami.2c15868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Naturally hierarchical nanostructures of leaves were successfully replicated on thermally stable polyimide (PI) films to obtain biomimetic substrates for the grafting of p-type semiconductor, cuprous oxide (Cu2O). The chemical states of Cu2O and the hydrophobicity on the photocatalytic films were tunable by altering the process time of ion-exchange or chemical reduction. The obtained photocatalytic films showed activity to photocatalytically convert carbon dioxide (CO2) into carbon monoxide (CO) under visible light illumination. The yield of CO was initially improved with the increasing hydrophobicity on the film but then leveled off. The photocatalytic activity could be further improved by tailoring the amount or composition of copper oxides. An optimum ratio of Cu2O and moderate basicity on the surface, as well as more metallic Cu from the bulk, will achieve more efficient interfacial charge transfer, resulting in a higher CO production rate.
Collapse
Affiliation(s)
- I-Hsiang Tseng
- Department of Chemical Engineering, Feng Chia University, Taichung407102, Taiwan
| | - Yu-Hsuian Yang
- Department of Chemical Engineering, Feng Chia University, Taichung407102, Taiwan
| | - Yi-Ting Chen
- Department of Chemical Engineering, Feng Chia University, Taichung407102, Taiwan
| | - Liang-Ching Hsu
- National Synchrotron Radiation Research Center, Hsinchu300092, Taiwan
| |
Collapse
|
35
|
Mo W, Chen Q, Zhou H, Zhao W, Hu L, Zhong S, Ke S, Wu XL, Chen J, Bai S. Unveiling the difference in the activity and selectivity of nickel based cocatalysts for CO2 photoreduction. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Nosrati A, Javanshir S, Feyzi F, Amirnejat S. Effective CO 2 Capture and Selective Photocatalytic Conversion into CH 3OH by Hierarchical Nanostructured GO-TiO 2-Ag 2O and GO-TiO 2-Ag 2O-Arg. ACS OMEGA 2023; 8:3981-3991. [PMID: 36743052 PMCID: PMC9893446 DOI: 10.1021/acsomega.2c06753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The attenuation of greenhouse gases, especially CO2, as one of the main causes of global warming and their conversion into valuable materials are among the challenges that must be met in the 21st century. For this purpose, hierarchical ternary and quaternary hybrid photocatalysts based on graphene oxide, TiO2, Ag2O, and arginine have been developed for combined CO2 capture and photocatalytic reductive conversion to methanol under visible and UV light irradiation. The material's band gap energy was estimated from the diffuse reflectance spectroscopy (DRS) Tauc analysis algorithm. Structural and morphological properties of the synthesized photocatalysts were studied using various analytical techniques such as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The calculated band gaps for GO-TiO2-Ag2O and GO-TiO2-Ag2O-Arg were 3.18 and 2.62 eV, respectively. This reduction in the band gap showed that GO-TiO2-Ag2O-Arg has a significant visible light photocatalytic ability. The investigation of CO2 capture for the designed catalyst showed that GO-TiO2-Ag2O-Arg and GO-TiO2-Ag2O have high CO2 absorption capacities (1250 and 1185 mmol g-1, respectively, at 10 bar and 273 K under visible light irradiation). The amounts of methanol produced by GO-TiO2-Ag2O and GO-TiO2-Ag2O-Arg were 8.154 and 5.1 μmol·gcat1·h-1 respectively. The main advantages of this study are the high efficiencies and selectivity of catalysts toward methanol formation. The reaction mechanism to understand the role of hybrid photocatalysts for CO2 conversion is deliberated. In addition, these catalysts remain stable during the photocatalytic process and can be used repeatedly, proving to be enlightening for environmental research.
Collapse
Affiliation(s)
- Aliakbar Nosrati
- Heterocyclic
Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Shahrzad Javanshir
- Heterocyclic
Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Farzaneh Feyzi
- Thermodynamics
Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, Tehran1684613114, Iran
| | - Sara Amirnejat
- Heterocyclic
Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| |
Collapse
|
37
|
Wang S, Zhang Y, Zheng Y, Xu Y, Yang G, Zhong S, Zhao Y, Bai S. Plasmonic Metal Mediated Charge Transfer in Stacked Core-Shell Semiconductor Heterojunction for Significantly Enhanced CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204774. [PMID: 36394158 DOI: 10.1002/smll.202204774] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Construction of core-shell semiconductor heterojunctions and plasmonic metal/semiconductor heterostructures represents two promising routes to improved light harvesting and promoted charge separation, but their photocatalytic activities are respectively limited by sluggish consumption of charge carriers confined in the cores, and contradictory migration directions of plasmon-induced hot electrons and semiconductor-generated electrons. Herein, a semiconductor/metal/semiconductor stacked core-shell design is demonstrated to overcome these limitations and significantly boost the photoactivity in CO2 reduction. In this smart design, sandwiched Au serves as a "stone", which "kills two birds" by inducing localized surface plasmon resonance for hot electron generation and mediating unidirectional transmission of conduction band electrons and hot electrons from TiO2 core to MoS2 shell. Meanwhile, upward band bending of TiO2 drives core-to-shell migration of holes through TiO2 -MoS2 interface. The co-existence of TiO2 → Au → MoS2 electron flow and TiO2 → MoS2 hole flow contributes to spatial charge separation on different locations of MoS2 outer layer for overall redox reactions. Additionally, reduction potential of photoelectrons participating in the CO2 reduction is elaborately adjusted by tuning the thickness of MoS2 shell, and thus the product selectivity is delicately regulated. This work provides fresh hints for rationally controlling the charge transfer pathways toward high-efficiency CO2 photoreduction.
Collapse
Affiliation(s)
- Shihong Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yiyi Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yanbo Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Guodong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yuling Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Song Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
38
|
Rutkowska IA, Chmielnicka A, Krzywiecki M, Kulesza PJ. Toward Effective CO 2 Reduction in an Acid Medium: Electrocatalysis at Cu 2O-Derived Polycrystalline Cu Sites Immobilized within the Network of WO 3 Nanowires. ACS MEASUREMENT SCIENCE AU 2022; 2:553-567. [PMID: 36785776 PMCID: PMC9885951 DOI: 10.1021/acsmeasuresciau.2c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A hybrid catalytic system composed of copper (I)-oxide-derived copper nanocenters immobilized within the network of tungsten oxide nanowires has exhibited electrocatalytic activity toward CO2 reduction in an acid medium (0.5 mol dm-3 H2SO4). The catalytic system facilitates conversion of CO2 to methanol and is fairly selective with respect to the competing hydrogen evolution. The preparative procedure has involved voltammetric electroreduction of Cu2O toward the formation and immobilization of catalytic Cu sites within the hexagonal structures of WO3 nanowires which are simultaneously partially reduced to mixed-valence hydrogen tungsten (VI, V) oxide bronzes, H x WO3, coexisting with sub-stoichiometric tungsten (VI, IV) oxides, WO3-y . After the initial loss of Cu through its dissolution to Cu2+ during positive potential scanning up to 1 V (vs RHE), the remaining copper is not electroactive and seems to be trapped within in the network of hexagonal WO3. Using the ultramicroelectrode-based probe, evidence has also been provided that partially reduced nonstoichiometric tungsten oxides induce reduction of CO2 to the CO-type reaction intermediates. The chronocoulometric data are consistent with the view that existence of copper sites dispersed in WO3 improves electron transfers and charge propagation within the hybrid catalytic layer. The enhanced tolerance of the catalyst to the competitive hydrogen evolution during CO2R should be explained in terms of the ability of H x WO3 to consume protons and absorb hydrogen as well as to shift the proton discharge at Cu toward more negative potentials. However, the capacity of WO3 to interact with catalytic copper and to adsorb CO-type reaction intermediates is expected to facilitate removal of the poisoning CO-type adsorbates from Cu sites.
Collapse
Affiliation(s)
- Iwona A. Rutkowska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw PL-02-093, Poland
| | - Anna Chmielnicka
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw PL-02-093, Poland
| | - Maciej Krzywiecki
- Institute
of Physics−CSE, Silesian University
of Technology, Konarskiego
22B, Gliwice PL-44-100, Poland
| | - Pawel J. Kulesza
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw PL-02-093, Poland
| |
Collapse
|
39
|
Lv J, Xie J, Mohamed AGA, Zhang X, Feng Y, Jiao L, Zhou E, Yuan D, Wang Y. Solar utilization beyond photosynthesis. Nat Rev Chem 2022; 7:91-105. [PMID: 37117911 DOI: 10.1038/s41570-022-00448-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Natural photosynthesis is an efficient biochemical process which converts solar energy into energy-rich carbohydrates. By understanding the key photoelectrochemical processes and mechanisms that underpin natural photosynthesis, advanced solar utilization technologies have been developed that may be used to provide sustainable energy to help address climate change. The processes of light harvesting, catalysis and energy storage in natural photosynthesis have inspired photovoltaics, photoelectrocatalysis and photo-rechargeable battery technologies. In this Review, we describe how advanced solar utilization technologies have drawn inspiration from natural photosynthesis, to find sustainable solutions to the challenges faced by modern society. We summarize the uses of advanced solar utilization technologies, such as converting solar energy to electrical and chemical energy, electrochemical storage and conversion, and associated thermal tandem technologies. Both the foundational mechanisms and typical materials and devices are reported. Finally, potential future solar utilization technologies are presented that may mimic, and even outperform, natural photosynthesis.
Collapse
|
40
|
Nautiyal R, Tavar D, Suryavanshi U, Singh G, Singh A, Vinu A, Mane GP. Advanced nanomaterials for highly efficient CO 2 photoreduction and photocatalytic hydrogen evolution. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:866-894. [PMID: 36506822 PMCID: PMC9733696 DOI: 10.1080/14686996.2022.2149036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
At present, CO2 photoreduction to value-added chemicals/fuels and photocatalytic hydrogen generation by water splitting are the most promising reactions to fix two main issues simultaneously, rising CO2 levels and never-lasting energy demand. CO2, a major contributor to greenhouse gases (GHGs) with about 65% of the total emission, is known to cause adverse effects like global temperature change, ocean acidification, greenhouse effects, etc. The idea of CO2 capture and its conversion to hydrocarbons can control the further rise of CO2 levels and help in producing alternative fuels that have several further applications. On the other hand, hydrogen being a zero-emission fuel is considered as a clean and sustainable form of energy that holds great promise for various industrial applications. The current review focuses on the discussion of the recent progress made in designing efficient photocatalytic materials for CO2 photoreduction and hydrogen evolution reaction (HER). The scope of the current study is limited to the TiO2 and non-TiO2 based advanced nanomaterials (i.e. metal chalcogenides, MOFs, carbon nitrides, single-atom catalysts, and low-dimensional nanomaterials). In detail, the influence of important factors that affect the performance of these photocatalysts towards CO2 photoreduction and HER is reviewed. Special attention is also given in this review to provide a brief account of CO2 adsorption modes on the catalyst surface and its subsequent reduction pathways/product selectivity. Finally, the review is concluded with additional outlooks regarding upcoming research on promising nanomaterials and reactor design strategies for increasing the efficiency of the photoreactions.
Collapse
Affiliation(s)
- Rashmi Nautiyal
- Department of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be) University, Mumbai, India
| | - Deepika Tavar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Center for Advanced Radiation Shielding and Geopolymeric Material, CSIR– Advanced Material and Processes Research Institute, Bhopal, India
| | - Ulka Suryavanshi
- Rayat Shikshan Sanstha’s, Karmveer Bhaurao Patil College, Vashi, Navi Mumbai, India
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Archana Singh
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Center for Advanced Radiation Shielding and Geopolymeric Material, CSIR– Advanced Material and Processes Research Institute, Bhopal, India
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Gurudas P. Mane
- Department of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be) University, Mumbai, India
| |
Collapse
|
41
|
Wu Q, Ma H, Wang Y, Chen J, Dai J, Xu X, Wu X. Surface Electron Localization in Cu-MOF-Bonded Double-Heterojunction Cu 2O Induces Highly Efficient Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54328-54337. [PMID: 36399665 DOI: 10.1021/acsami.2c15278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Truncated octahedron Cu2O (TOC) has attracted more attention for its suitable band gap and high carrier separation efficiency due to introduction of the facet heterojunction, but its practical drawback is still the instability caused by the irreversible disproportionation reaction (Cu2O → Cu + CuO). Here, we design and fabricate the TOC/Cu-MOF (MOF: metal-organic framework) double-heterojunction structures with different Cu-MOF loadings. The introduced heterojunction between TOC and Cu-MOF not only produces a stable interface Cux+ bonding structure with the electronic states localized within the average collisional diameter of electrons 1.72 nm for TOC/2.1 wt %Cu-MOF as the active sites, but also promotes the surface energy level difference between the (100) and (111) facet heterojunctions. Meanwhile, the bonded Cu-MOF with a narrow bandgap effectively consumes holes by recombination with the photoexcited electrons from Cu-MOF itself. In our experiments, the TOC/Cu-MOF double heterostructure with a loading amount of 2.1 wt % Cu-MOF shows an optimal photocatalytic CO2 reduction performance. The CO evolution rate reaches 23.01 μmol g-1 h-1, which is about 2.01 and 4.47 times larger than those of octahedral and hexahedral Cu2O/Cu-MOF, respectively, and an excellent photostability is shown for four cycles with each cycle lasting for 4 h. Such a double heterostructure provides insight into highly efficient electron transfer and photostability in Cu2O-related composite materials.
Collapse
Affiliation(s)
- Qifan Wu
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing210093, China
| | - Heng Ma
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing210093, China
| | - Yixian Wang
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing210093, China
| | - Jian Chen
- National Laboratory of Solid States Microstructures and Research Institute of Superconductor Electronics, Nanjing University, Nanjing210093, China
| | - Jun Dai
- School of Mathematics & Physics, Jiangsu University Science & Technology, Zhenjiang212003, China
| | - Xiaobing Xu
- College of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing211171, China
| | - Xinglong Wu
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing210093, China
| |
Collapse
|
42
|
Synergistic Enhanced Solar-Driven Water Purification and CO2 Reduction via Photothermal Catalytic Membrane Distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
New Insight into CO2 Reduction to Formate by In Situ Hydrogen Produced from Hydrothermal Reactions with Iron. Molecules 2022; 27:molecules27217371. [PMID: 36364197 PMCID: PMC9655443 DOI: 10.3390/molecules27217371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
To reveal the nature of CO2 reduction to formate with high efficiency by in situ hydrogen produced from hydrothermal reactions with iron, DFT calculations were used. A reaction pathway was proposed in which the formate was produced through the key intermediate species, namely iron hydride, produced in situ in the process of hydrogen gas production. In the in situ hydrogenation of CO2, the charge of H in the iron hydride was −0.135, and the Fe–H bond distance was approximately 1.537 Å. A C-H bond was formed as a transition state during the attack of Hδ− on Cδ+. Finally, a HCOO species was formed. The distance of the C-H bond was 1.107 Å. The calculated free energy barrier was 16.43 kcal/mol. This study may provide new insight into CO2 reduction to formate in hydrothermal reactions with metal.
Collapse
|
44
|
Zhang Y, Wang Y, Guo C, Wang Y. Molybdenum Carbide-Based Photocatalysts: Synthesis, Functionalization, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12739-12756. [PMID: 36245364 DOI: 10.1021/acs.langmuir.2c01887] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an effective non-noble, molybdenum carbide (MoxC: MoC or Mo2C) has attracted extensive attention and is regarded as a promising research area in the near future owing to its good biocompatibility, high stability, band gap adjustability, rich valence states, and excellent catalytic activity. This Perspective summarizes the recent progress and achievements for the molybdenum carbide-based catalysts. First, the crystal and band structures of molybdenum carbides are generally presented. Second, various modifying strategies for molybdenum carbides are outlined to enhance the photocatalytic performance, including doping engineering, vacancy engineering, morphology and structure engineering, and the establishment of molybdenum carbide-based composite catalysts. Finally, potential applications in the photocatalysis area of molybdenum carbide-based photocatalyst are generalized. Future development trends and perspective for this promising material are also discussed.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Yan Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Chaofei Guo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
45
|
In Situ Formation of Z-Scheme Bi2WO6/WO3 Heterojunctions for Gas-Phase CO2 Photoreduction with H2O by Photohydrothermal Treatment. Catalysts 2022. [DOI: 10.3390/catal12101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report a new photohydrothermal method to prepare a Bi2WO6/WO3 catalytic material for CO2 photoreduction by solar concentrators. The photohydrothermal treatment improves the physico-chemical properties of the Bi2WO6/WO3 material and forms well contact Bi2WO6/WO3 heterojunctions, which increase the maximum reaction rate of CO2 photoreduction to 8.2 times under the simulated light, and the hydrocarbon yield under the real concentrating solar light achieves thousands of μmol·gcata−1. The reason for the high activity is attributed to the direct Z-scheme effect of Bi2WO6/WO3 heterojunctions and the photothermal effect during the course. These findings highlight the utilization of solar energy in CO2 photoreduction and open avenues for the rational design of highly efficient photocatalysts.
Collapse
|
46
|
Wang W, Zhang Y, Wu A, He L. Cost‐Effective 2D Ultrathin Metal‐Organic Layers with Bis‐Metallic Catalytic Sites for Visible Light‐Driven Photocatalytic CO
2
Reduction. Chemistry 2022; 28:e202201767. [DOI: 10.1002/chem.202201767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Wei‐Jia Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yong‐Kang Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - An‐Guo Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Liang‐Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
47
|
Yu S, Tan L, Bai S, Ning C, Liu G, Wang H, Liu B, Zhao Y, Song YF. Rational Regulation of Electronic Structure in Layered Double Hydroxide Via Vanadium Incorporation to Trigger Highly Selective CO 2 Photoreduction to CH 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202334. [PMID: 35934816 DOI: 10.1002/smll.202202334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Indexed: 06/15/2023]
Abstract
To realize excellent selectivity of CH4 in CO2 photoreduction (CO2 PR) is highly desirable, yet which is challenging due to the limited active sites for CH4 generation and severe electron-hole recombination on photocatalysts. Herein, based on the theoretically calculated effects of vanadium incorporation into the laminate of layered double hydroxides (LDHs), V into NiAl-LDH to synthesize a series of LDHs with various V contents is introduced. NiV-LDH is revealed to afford a high CH4 selectivity (78.9%), and extremely low H2 selectivity (only 0.4%) under λ > 400 nm irradiation. By further tuning the molar ratio of Ni to V, a CH4 selectivity of as high as 90.1% is achieved on Ni4 V-LDH, and H2 is completely prohibited on Ni2 V-LDH. Fine structural characterizations and comprehensive optical and electrochemical studies uncover V incorporation creates the lower-valence Ni species as active sites for generating CH4 , and enhances the generation, separation, and transfer of photogenerated carriers.
Collapse
Affiliation(s)
- Sha Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ling Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sha Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chenjun Ning
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guihao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Huijuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bin Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
48
|
|
49
|
Shipp J, Parker S, Spall S, Peralta-Arriaga SL, Robertson CC, Chekulaev D, Portius P, Turega S, Buckley A, Rothman R, Weinstein JA. Photocatalytic Reduction of CO 2 to CO in Aqueous Solution under Red-Light Irradiation by a Zn-Porphyrin-Sensitized Mn(I) Catalyst. Inorg Chem 2022; 61:13281-13292. [PMID: 35960651 PMCID: PMC9446891 DOI: 10.1021/acs.inorgchem.2c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
This work demonstrates photocatalytic CO2 reduction
by a noble-metal-free photosensitizer-catalyst system in aqueous solution
under red-light irradiation. A water-soluble Mn(I) tricarbonyl diimine
complex, [MnBr(4,4′-{Et2O3PCH2}2-2,2′-bipyridyl)(CO)3] (1), has been fully characterized, including single-crystal X-ray crystallography,
and shown to reduce CO2 to CO following photosensitization
by tetra(N-methyl-4-pyridyl)porphyrin Zn(II) tetrachloride
[Zn(TMPyP)]Cl4 (2) under 625 nm irradiation.
This is the first example of 2 employed as a photosensitizer
for CO2 reduction. The incorporation of −P(O)(OEt)2 groups, decoupled from the core of the catalyst by a −CH2– spacer, afforded water solubility without compromising
the electronic properties of the catalyst. The photostability of the
active Mn(I) catalyst over prolonged periods of irradiation with red
light was confirmed by 1H and 13C{1H} NMR spectroscopy. This first report on Mn(I) species as a homogeneous
photocatalyst, working in water and under red light, illustrates further
future prospects of intrinsically photounstable Mn(I) complexes as
solar-driven catalysts in an aqueous environment. A Mn(I) bipyridyl tricarbonyl complex,
where the diimine
ligand is functionalized with water-solubilizing phosphonate ester
groups, has been prepared and is shown to catalytically convert CO2 to CO in aqueous solution following photosensitization from
a water-soluble Zn(II) porphyrin under red-light irradiation.
Collapse
Affiliation(s)
- James Shipp
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Simon Parker
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Steven Spall
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | | | - Craig C Robertson
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Peter Portius
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Simon Turega
- Department of Chemistry, Sheffield Hallam University, Sheffield S1 1WB, U.K
| | - Alastair Buckley
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Rachael Rothman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| |
Collapse
|
50
|
Tang B, Xiao FX. An Overview of Solar-Driven Photoelectrochemical CO 2 Conversion to Chemical Fuels. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Tang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, People’s Republic of China
| |
Collapse
|