1
|
Bhatt P, Garad PS, Rayala VVSPK, Radhakrishnanand P, Sankaranarayanan K. Non-thermal plasma modulated l-tyrosine self-assemblies: a potential avenue for fabrication of supramolecular self-assembled biomaterials. RSC Adv 2024; 14:13984-13996. [PMID: 38686299 PMCID: PMC11056826 DOI: 10.1039/d4ra01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Aromatic amino acids (AAs) have garnered particular interest due to their pivotal roles in numerous biological processes and disorders. Variations in AA self-assembly not only affect protein structures and functions, but their non-covalent interactions such as hydrogen bonding, van der Waals forces, and π-π stacking, yield versatile assemblies vital in bio-inspired material fabrication. Tyrosine (Tyr), a non-essential aromatic amino acid, holds multifaceted significance in the body as a protein building block, neurotransmitter precursor, thyroid hormone contributor, and melanin synthesis regulator. The proficiency of Cold Atmospheric Plasma (CAP) in generating a spectrum of reactive oxygen and nitrogen species has spurred innovative research avenues in the studies of biomolecular components, including its potential for targeted cancer cell ablation and biomolecule modification. In this work, we have assessed the chemical as well as the structural changes in Tyrosine-derived self-assembled structures arising from the CAP-induced reactive species. For a comprehensive understanding of the mechanism, different treatment times, feed gases, and the role of solvent acidification are compared using various spectroscopic and microscopic techniques. LC-ESI-QQQ mass spectra unveiled the emergence of oxygenated and nitro derivatives of l-tyrosine following its interaction with CAP-derived ROS/RNS. SEM and TEM images demonstrated an enhanced surface size of self-assembled structures and the formation of novel nanomaterial-shaped assemblies following CAP treatment. Overall, this study aims to explore CAP's interaction with a single-amino acid, hypothesizing the creation of novel supramolecular structures and scrutinizing CAP-instigated transformations in l-tyrosine self-assembled structures, potentially advancing biomimetic-attributed nanomaterial fabrication which might present a novel frontier in the field of designing functional biomaterials.
Collapse
Affiliation(s)
- Priya Bhatt
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
- Academy of Scientific and Innovative Research (AcSIR), Campus Postal Staff College Area Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Prajakta Sharad Garad
- Department of Medical Device, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - V V S Prasanna Kumari Rayala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - Kamatchi Sankaranarayanan
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| |
Collapse
|
2
|
Wang Y, Rencus-Lazar S, Zhou H, Yin Y, Jiang X, Cai K, Gazit E, Ji W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS NANO 2024; 18:1257-1288. [PMID: 38157317 DOI: 10.1021/acsnano.3c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
3
|
Abad J, Martínez JI, Gómez P, Más-Montoya M, Rodríguez L, Cossaro A, Verdini A, Floreano L, Martín-Gago JA, Curiel D, Méndez J. Two-Dimensional Self-Assembly Driven by Intermolecular Hydrogen Bonding in Benzodi-7-azaindole Molecules on Au(111). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:11591-11599. [PMID: 37377501 PMCID: PMC10291637 DOI: 10.1021/acs.jpcc.3c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Indexed: 06/29/2023]
Abstract
The control of molecular structures at the nanoscale plays a critical role in the development of materials and applications. The adsorption of a polyheteroaromatic molecule with hydrogen bond donor and acceptor sites integrated in the conjugated structure itself, namely, benzodi-7-azaindole (BDAI), has been studied on Au(111). Intermolecular hydrogen bonding determines the formation of highly organized linear structures where surface chirality, resulting from the 2D confinement of the centrosymmetric molecules, is observed. Moreover, the structural features of the BDAI molecule lead to the formation of two differentiated arrangements with extended brick-wall and herringbone packing. A comprehensive experimental study that combines scanning tunneling microscopy, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory theoretical calculations has been performed to fully characterize the 2D hydrogen-bonded domains and the on-surface thermal stability of the physisorbed material.
Collapse
Affiliation(s)
- José Abad
- Applied
Physics Department, Technical University
of Cartagena, c/ Dr. Fleming s/n, 30202 Cartagena, Spain
| | - José I. Martínez
- Department
of Low Dimensional Systems, Institute of
Materials Science of Madrid (ICMM-CSIC), c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Paula Gómez
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
| | - Miriam Más-Montoya
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
| | - Luis Rodríguez
- Department
of Low Dimensional Systems, Institute of
Materials Science of Madrid (ICMM-CSIC), c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Albano Cossaro
- CNR-IOM,
Laboratorio TASC, 34149 Trieste, Italy
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste I-34149, Italy
| | | | | | - José A. Martín-Gago
- Department
of Low Dimensional Systems, Institute of
Materials Science of Madrid (ICMM-CSIC), c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - David Curiel
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
| | - Javier Méndez
- Department
of Low Dimensional Systems, Institute of
Materials Science of Madrid (ICMM-CSIC), c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
4
|
Carraro G, Smerieri M, Passaglia S, Bracco G, Vattuone L, Rocca M, Cossaro A, Verdini A, Floreano L, Savio L. Adsorption of glutamic acid on clean and hydroxylated rutile TiO 2(110): an XPS and NEXAFS investigation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:274001. [PMID: 35354128 DOI: 10.1088/1361-648x/ac62a6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Due to its biocompatibility, TiO2is a relevant material for the study of bio-interfaces. Its electronic and chemical properties are influenced by defects, which mainly consist of oxygen vacancies or adsorbed OH groups and which affect, consequently, also the interaction with biological molecules. Here we report on an x-ray photoemission spectroscopy and near edge adsorption fine structure study of glutamic acid (Glu) adsorption on the rutile TiO2(110) surface, either clean or partially hydroxylated. We show that Glu anchors to the surface through a carboxylate group and that the final adsorption state is influenced by the presence of hydroxyl groups on the surface prior to Glu deposition. Indeed, molecules adsorb both in the anionic and in the zwitterionic form, the former species being favored on the hydroxylated substrate.
Collapse
Affiliation(s)
- Giovanni Carraro
- IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Marco Smerieri
- IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | | | - Gianangelo Bracco
- IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Luca Vattuone
- IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Mario Rocca
- IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Albano Cossaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- CNR-IOM, Istituto Officina dei Materiali, 34149 Trieste, Italy
| | - Alberto Verdini
- CNR-IOM, Istituto Officina dei Materiali, 34149 Trieste, Italy
| | - Luca Floreano
- CNR-IOM, Istituto Officina dei Materiali, 34149 Trieste, Italy
| | - Letizia Savio
- IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
5
|
Ren J, Meng X, Xiang X, Ji F, Han L, Gao X, Jia L. Tyrosine-Based Dual-Functional Interface for Trapping and On-Site Photo-Induced Covalent Immobilization of Proteins. Bioconjug Chem 2022; 33:829-838. [PMID: 35413182 DOI: 10.1021/acs.bioconjchem.2c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine, a simple and well-available natural amino acid, is featured by the small size of the compound that contains multiple reactive groups. This study developed an efficient bioconjugation strategy using tyrosine-based dual-functional interfaces. When tyrosine molecules are immobilized on the surface of a supporting material through amino groups, their carboxyl groups can function as an attracting trap due to their anionic nature at neutral pH and ability to chelate nickel(II) ions (Ni2+), allowing the capture and enrichment of cationic proteins and histidine (His)-tagged proteins on the surface. The trapped proteins can be further covalently immobilized on site through ruthenium-mediated photochemical cross-linking, which has been found to be highly efficient and can be completed within minutes. This strategy was successfully applied to two different material systems. We found that tyrosine-modified agarose beads had a binding capacity of the His-tagged enhanced green fluorescent protein comparable to that of commonly used nitrilotriacetic acid-based resins, and further covalent coupling via dityrosine cross-linking achieved a yield of 85% within 5 min, without compromising much on its fluorescence activity. On the surface of tyrosine-modified 316L stainless steel, lysozyme was captured through electrostatic interaction and further immobilized. The resultant surface exhibited remarkable antibacterial activity against both Staphylococcus aureus and Escherichia coli. Such a tyrosine-based capture-then-coupling method is featured by its simplicity, high coupling efficiency, and high utilization rate of target molecules, making it particularly suitable for the proteins that are highly priced or vulnerable to general immobilization chemistry.
Collapse
Affiliation(s)
- Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Xiao Meng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Xu Xiang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Xiaorong Gao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
6
|
Zhang T, Svensson PHW, Brumboiu IE, Lanzilotto V, Grazioli C, Guarnaccio A, Johansson FOL, Beranová K, Coreno M, de Simone M, Floreano L, Cossaro A, Brena B, Puglia C. Clarifying the Adsorption of Triphenylamine on Au(111): Filling the HOMO-LUMO Gap. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:1635-1643. [PMID: 35116088 PMCID: PMC8802676 DOI: 10.1021/acs.jpcc.1c08877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/21/2021] [Indexed: 05/30/2023]
Abstract
In this article, we analyze the electronic structure modifications of triphenylamine (TPA), a well-known electron donor molecule widely used in photovoltaics and optoelectronics, upon deposition on Au(111) at a monolayer coverage. A detailed study was carried out by synchrotron radiation-based photoelectron spectroscopy, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, scanning tunneling microscopy (STM), and ab initio calculations. We detect a new feature in the pre-edge energy region of the N K-edge NEXAFS spectrum that extends over 3 eV, which we assign to transitions involving new electronic states. According to our calculations, upon adsorption, a number of new unoccupied electronic states fill the energy region between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the free TPA molecule and give rise to the new feature in the pre-edge region of the NEXAFS spectrum. This finding highlights the occurrence of a considerable modification of the electronic structure of TPA. The appearance of new states in the HOMO-LUMO gap of TPA when adsorbed on Au(111) has crucial implications for the design of molecular nanoelectronic devices based on similar donor systems.
Collapse
Affiliation(s)
- Teng Zhang
- School
of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional
Quantum Structure and Devices, Beijing Institute
of Technology, 100081 Beijing, China
| | - Pamela H. W. Svensson
- Department
of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Iulia Emilia Brumboiu
- Department
of Chemistry, Pohang University of Science
and Technology (P.O.STECH), 37673 Pohang, Republic of Korea
| | - Valeria Lanzilotto
- Department
of Chemistry, Sapienza Università
di Roma, P.le A. Moro
5, 00185 Roma, Italy
| | - Cesare Grazioli
- IOM-CNR,
Laboratorio TASC, Sincrotrone Trieste, Basovizza, 34149 Trieste, Italy
| | - Ambra Guarnaccio
- ISM-CNR,
Istituto di Struttura della Materia, 85050 Tito Scalo (Pz), Italy
| | - Fredrik O. L. Johansson
- Department
of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
- Division
of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Sorbonne
Université, UMR CNRS 7588, Institut des Nanosciences de Paris, F-75005 Paris, France
| | - Klára Beranová
- Elettra-Sincrotrone
Trieste S. C. p. A., Strada Statale 14, km 163.5, Basovizza, 34149 Trieste, Italy
- FZU—Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Marcello Coreno
- ISM-CNR,
Istituto di Struttura della Materia, 85050 Tito Scalo (Pz), Italy
| | - Monica de Simone
- IOM-CNR,
Laboratorio TASC, Sincrotrone Trieste, Basovizza, 34149 Trieste, Italy
| | - Luca Floreano
- IOM-CNR,
Laboratorio TASC, Sincrotrone Trieste, Basovizza, 34149 Trieste, Italy
| | - Albano Cossaro
- IOM-CNR,
Laboratorio TASC, Sincrotrone Trieste, Basovizza, 34149 Trieste, Italy
- Department of Chemical and Pharmaceutical
Sciences, University of Trieste, 34127 Trieste, Italy
| | - Barbara Brena
- Department
of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Carla Puglia
- Department
of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
7
|
Spectroscopic Evidence of New Low-Dimensional Planar Carbon Allotropes Based on Biphenylene via On-Surface Ullmann Coupling. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The bottom-up synthesis and preliminary characterizations of a new biphenylene-based 2D framework are presented. This new low-dimensional carbon allotrope potentially completes the many hypothesized carbon networks based on biphenylene.
Collapse
|
8
|
Zakhtser A, Naitabdi A, Benbalagh R, Rochet F, Salzemann C, Petit C, Giorgio S. Chemical Evolution of Pt-Zn Nanoalloys Dressed in Oleylamine. ACS NANO 2021; 15:4018-4033. [PMID: 32786209 DOI: 10.1021/acsnano.0c03366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on the shape, composition (from Pt95Zn5 to Pt77Zn23), and surface chemistry of Pt-Zn nanoparticles obtained by reduction of precursors M2+(acac)2- (M2+: Pt2+ and Zn2+) in oleylamine, which serves as both solvent and ligand. We show first that the addition of phenyl ether or benzyl ether determines the composition and shape of the nanoparticles, which point to an adsorbate-controlled synthesis. The organic (ligand)/inorganic (nanoparticles) interface is characterized on the structural and chemical level. We observe that the particles, after washing with ethanol, are coated with oleylamine and the oxidation products of the latter, namely, an aldimine and a nitrile. After exposure to air, the particles oxidize, covering themselves with a few monolayer thick ZnO film, which is certainly discontinuous when the particles are low in zinc. Pt-Zn particles are unstable and prone to losing Zn. We have strong indications that the driving force is the preferential oxidation of the less noble metal. Finally, we show that adsorption of CO on the surface of nanoparticles modifies the oxidation state of amine ligands and attribute it to the displacement of hydrogen adsorbed on Pt. All the structural and chemical information provided by the combination of electron microscopy and X-ray photoelectron spectroscopy allows us to give a fairly accurate picture of the surface of nanoparticles and to better understand why Pt-Zn alloys are efficient in certain electrocatalytic reactions such as the oxidation of methanol.
Collapse
Affiliation(s)
- Alter Zakhtser
- Sorbonne Université, CNRS, MONARIS, UMR 8233, 4 Place Jussieu, 75005 Paris, France
- Sorbonne Université, CNRS, LCPMR, UMR 7614, 4 Place Jussieu, 75005 Paris, France
| | - Ahmed Naitabdi
- Sorbonne Université, CNRS, LCPMR, UMR 7614, 4 Place Jussieu, 75005 Paris, France
| | - Rabah Benbalagh
- Sorbonne Université, CNRS, LCPMR, UMR 7614, 4 Place Jussieu, 75005 Paris, France
| | - François Rochet
- Sorbonne Université, CNRS, LCPMR, UMR 7614, 4 Place Jussieu, 75005 Paris, France
| | - Caroline Salzemann
- Sorbonne Université, CNRS, MONARIS, UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Christophe Petit
- Sorbonne Université, CNRS, MONARIS, UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Suzanne Giorgio
- Aix Marseille Université, CNRS, CINaM, UMR 7325, 13288 Marseille, France
| |
Collapse
|
9
|
Jeong Y, Kim HW, Ku J, Seo J. Breakdown of chiral recognition of amino acids in reduced dimensions. Sci Rep 2020; 10:16166. [PMID: 32999433 PMCID: PMC7527561 DOI: 10.1038/s41598-020-73300-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022] Open
Abstract
The homochirality of amino acids in living organisms is one of the great mysteries in the phenomena of life. To understand the chiral recognition of amino acids, we have used scanning tunnelling microscopy to investigate the self-assembly of molecules of the amino acid tryptophan (Trp) on Au(111). Earlier experiments showed only homochiral configurations in the self-assembly of amino acids, despite using a mixture of the two opposite enantiomers. In our study, we demonstrate that heterochiral configurations can be favored energetically when L- and D-Trp molecules are mixed to form self-assembly on the Au surface. Using density functional theory calculations, we show that the indole side chain strongly interacts with the Au surface, which reduces the system effectively to two-dimension, with chiral recognition disabled. Our study provides important insight into the recognition of the chirality of amino acid molecules in life.
Collapse
Affiliation(s)
- Yongchan Jeong
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea.
| | - Hyo Won Kim
- Samsung Advanced Institute of Technology, Suwon, 16678, Korea
| | - JiYeon Ku
- Samsung Advanced Institute of Technology, Suwon, 16678, Korea
| | - Jungpil Seo
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
10
|
Awuah JB, Walsh TR. Side-chain effects on the co-existence of emergent nanopatterns in amino acid adlayers on graphene. NANOSCALE 2020; 12:13662-13673. [PMID: 32568329 DOI: 10.1039/d0nr01333a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The spontaneous tendency of amino acid adlayers to self-assemble into ordered patterns on non-reactive surfaces is thought to be chiefly influenced by amino acid termination state. Experiments have shown that different side chains can produce different patterns, with a distinction drawn between side chains that can support hydrogen bonds or electrostatic interactions, and those that are hydrophobic. However, as is demonstrated in this work, this distinction is not clear cut, implying that there is currently no way to predict in advance what type of pattern will be formed. Here, we use molecular dynamics simulations of amino acid adlayers in neutral, zwitterion, and neutral-zwitterion states for two types of amino acids, either histidine or alanine, adsorbed at the in-vacuo graphene interface. In contrast to earlier studies on adlayers of tryptophan and methionine on graphene that reveal the presence of only a single type of pattern motif, the canonical dimer row, here we find that emergent patterns of histidine and alanine adlayers supported the co-existence of several different types of motifs, influenced by the different side-chain characteristics. For alanine, the compact side-chain does not support hydrogen bonding and engages weakly with the surface, leading to the emergence of a new dimer row configuration in addition to the canonical dimer row motif. On the contrary, for histidine, the side-chain supports hydrogen bonding, leading to the emergence of a dimer row motif different from the canonical dimer row, co-existing with several different monomer row motifs. On this basis, we propose that emergent canonical dimer row patterns are more likely for amino acids with side-chains that are non-compact and that also lack extensive hydrogen bonding capacity, and that engage strongly with the underlying substrate. These findings provide a fundamental basis to rationally guide the design of desired self-assembled nanostructures on planar surfaces.
Collapse
Affiliation(s)
- Joel B Awuah
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia.
| | | |
Collapse
|
11
|
Awuah JB, Walsh TR. Predictions of Pattern Formation in Amino Acid Adlayers at the In Vacuo Graphene Interface: Influence of Termination State. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903403. [PMID: 31663292 DOI: 10.1002/smll.201903403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Controlled self-assembly of biomolecules on graphene offers a pathway for realizing its full potential in biological applications. Microscopy has revealed the self-assembly of amino acid adlayers into dimer rows on nonreactive substrates. However, neither the spontaneous formation of these patterns, nor the influence of amino acid termination state on the formation of patterns has been directly resolved to date. Molecular dynamics simulations, with the ability to reveal atomic level details and exert full control over the termination state, are used here to model initially disordered adlayers of neutral, zwitterionic, and neutral-zwitterionic mixtures for two types of amino acids, tryptophan and methionine, adsorbed on graphene in vacuo. The simulations of the zwitterion-containing adlayers exhibit the spontaneous emergence of dimer row ordering, mediated by charge-driven intermolecular interactions. In contrast, adlayers containing only neutral species do not assemble into ordered patterns. It is also found that the presence of trace amounts of water reduces the interamino acid interactions in the adlayers, but does not induce or disrupt pattern formation. Overall, the findings reveal the balance between the lateral interamino acid interactions and amino acid-graphene interactions, providing foundational insights for ultimately realizing the predictable pattern formation of biomolecules adsorbed on unreactive surfaces.
Collapse
Affiliation(s)
- Joel B Awuah
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| |
Collapse
|
12
|
De Marchi F, Galeotti G, Simenas M, Ji P, Chi L, Tornau EE, Pezzella A, MacLeod J, Ebrahimi M, Rosei F. Self-assembly of 5,6-dihydroxyindole-2-carboxylic acid: polymorphism of a eumelanin building block on Au(111). NANOSCALE 2019; 11:5422-5428. [PMID: 30855042 DOI: 10.1039/c8nr09810g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Investigating two-dimensional (2D) self-assembled structures of biological monomers governed by intermolecular interactions is a prerequisite to understand the self-assembly of more complex biomolecular systems. 5,6-Dihydroxyindole carboxylic acid (DHICA) is one of the building blocks of eumelanin - an irregular heteropolymer and the most common form of melanin which has potential applications in organic electronics and bioelectronics. By means of scanning tunneling microscopy, density functional theory and Monte Carlo calculations, we investigate DHICA molecular configurations and interactions underlying the multiple 2D patterns formed on Au(111). While DHICA self-assembled molecular networks (SAMNs) are dominated by the hydrogen bonding of carboxylic acid dimers, a variety of 2D architectures are formed due to the multiple weak interactions of the catechol group. The hydroxyl group also allows for redox reactions, caused by oxidation via O2 exposure, resulting in molecular rearrangement. The susceptibility of the molecules to oxidation is affected by their SAMNs architectures, giving insights on the reactivity of indoles as well as highlighting non-covalent assembly as an approach to guide selective oxidation reactions.
Collapse
Affiliation(s)
- F De Marchi
- Centre Energie, Materiaux et Telecommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, QC, Canada J3X 1S2.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cao N, Ding J, Yang B, Zhang J, Peng C, Lin H, Zhang H, Li Q, Chi L. Deprotonation-Induced Phase Evolutions in Co-Assembled Molecular Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7852-7858. [PMID: 29886745 DOI: 10.1021/acs.langmuir.8b00228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we systematically studied the co-assembly behavior of 1,3,5-tris(4-carboxyphenyl)benzene (TCPB) and 4,4″-diamino- p-terphenyl (DATP) on a silver surface. Due to the thermal instability of carboxylic acids, the co-assembled structure exhibits temperature-dependent evolutions on Ag(111). The level of the deprotonation reactions of TCPB are clarified by the characteristic self-assembled footprints. Aided by these footprints, we are able to identify the structures of the complex co-assembly of TCPB and DATP entities at each stage. Finally, the conclusions are further evidenced by density functional theory calculations.
Collapse
Affiliation(s)
- Nan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| | - Jinqiang Ding
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| | - Biao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| | - Junjie Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| | - Chencheng Peng
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| | - Haiping Lin
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| | - Qing Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
14
|
Uyaver S, Hernandez HW, Habiboglu MG. Self-assembly of aromatic amino acids: a molecular dynamics study. Phys Chem Chem Phys 2018; 20:30525-30536. [DOI: 10.1039/c8cp06239k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Common structures identified in the assembly of aromatic amino acids and their mixtures include the four-fold tube (a and b) and the zig-zag structure (c and d).
Collapse
|
15
|
Bouju X, Mattioli C, Franc G, Pujol A, Gourdon A. Bicomponent Supramolecular Architectures at the Vacuum–Solid Interface. Chem Rev 2017; 117:1407-1444. [DOI: 10.1021/acs.chemrev.6b00389] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xavier Bouju
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | | | - Grégory Franc
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | - Adeline Pujol
- Université de Toulouse, UPS, CNRS, CEMES, 118 route de Narbonne, 31062 Toulouse, France
| | - André Gourdon
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| |
Collapse
|
16
|
Rahsepar FR, Moghimi N, Leung KT. Surface-Mediated Hydrogen Bonding of Proteinogenic α-Amino Acids on Silicon. Acc Chem Res 2016; 49:942-51. [PMID: 27014956 DOI: 10.1021/acs.accounts.5b00534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the adsorption, film growth mechanisms, and hydrogen bonding interactions of biological molecules on semiconductor surfaces has attracted much recent attention because of their applications in biosensors, biocompatible materials, and biomolecule-based electronic devices. One of the most challenging questions when studying the behavior of biomolecules on a metal or semiconductor surface is "What are the driving forces and film growth mechanisms for biomolecular adsorption on these surfaces?" Despite a large volume of work on self-assembly of amino acids on single-crystal metal surfaces, semiconductor surfaces offer more direct surface-mediated interactions and processes with biomolecules. This is due to their directional surface dangling bonds that could significantly perturb hydrogen bonding arrangements. For all the proteinogenic biomolecules studied to date, our group has observed that they generally follow a "universal" three-stage growth process on Si(111)7×7 surface. This is supported by corroborating data obtained from a three-pronged approach of combining chemical-state information provided by X-ray photoelectron spectroscopy (XPS) and the site-specific local density-of-state images obtained by scanning tunneling microscopy (STM) with large-scale quantum mechanical modeling based on the density functional theory with van der Waals corrections (DFT-D2). Indeed, this three-stage growth process on the 7×7 surface has been observed for small benchmark biomolecules, including glycine (the simplest nonchiral amino acid), alanine (the simplest chiral amino acid), cysteine (the smallest amino acid with a thiol group), and glycylglycine (the smallest (di)peptide of glycine). Its universality is further validated here for the other sulfur-containing proteinogenic amino acid, methionine. We use methionine as an example of prototypical proteinogenic amino acids to illustrate this surface-mediated process. This type of growth begins with the formation of a covalent-bond driven interfacial layer (first adlayer), followed by that of a transitional layer driven by interlayer and intralayer hydrogen bonding (second adlayer), and then finally the zwitterionic multilayers (with intralayer hydrogen bonding). The important role of surface-mediated hydrogen bonding as the key for this universal three-stage growth process is demonstrated. This finding provides new insight into biomolecule-semiconductor surface interactions often found in biosensors and biomolecular electronic devices. We also establish the trends in the H-bond length among different types of the hydrogen bonding for dimolecular structures in the gas phase and on the Si(111)7×7 surface, the latter of which could be validated by their STM images. Finally, five simple rules of thumb are developed to summarize the adsorption properties of these proteinogenic biomolecules as mediated by hydrogen bonding, and they are expected to provide a helpful guide to future studies of larger biomolecules and their potential applications.
Collapse
Affiliation(s)
- Fatemeh R. Rahsepar
- WATLab
and Department of
Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Nafiseh Moghimi
- WATLab
and Department of
Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - K. T. Leung
- WATLab
and Department of
Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
17
|
Youn YS, Jeon A, Kim DH, Lee HS, Kim S. Molecular tuning of amino acids to form two-dimensional molecular networks driven by conformational preorganization. Chem Commun (Camb) 2016; 52:14055-14058. [PMID: 27858018 DOI: 10.1039/c6cc05497h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the self-assembly of rationally designed γ-Phe on Au(111) using STM with DFT calculations. In contrast to α-Phe, γ-Phe self-assembled into 2D molecular network. The better self-association was attributed to conformational preorganization through intramolecular interaction.
Collapse
Affiliation(s)
- Young-Sang Youn
- Department of Chemistry
- Molecular-Level Interface Research Center
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Aram Jeon
- Department of Chemistry
- Molecular-Level Interface Research Center
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Do Hwan Kim
- Division of Science Education and Institute of Fusion Science
- Chonbuk National University
- Jeonbuk-do 54896
- Republic of Korea
| | - Hee-Seung Lee
- Department of Chemistry
- Molecular-Level Interface Research Center
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Sehun Kim
- Department of Chemistry
- Molecular-Level Interface Research Center
- KAIST
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
18
|
Forster M, Raval R. Simple rules and the emergence of complexity in surface chirality. Chem Commun (Camb) 2016; 52:14075-14084. [DOI: 10.1039/c6cc06523f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Surface chirality arising from self-organized molecular monolayers may manifest both a handedness and footedness, leading to a dual level of chiral expression.
Collapse
Affiliation(s)
- M. Forster
- Surface Science Research Centre
- Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | - R. Raval
- Surface Science Research Centre
- Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| |
Collapse
|
19
|
Ménard-Moyon C, Venkatesh V, Krishna KV, Bonachera F, Verma S, Bianco A. Self-Assembly of Tyrosine into Controlled Supramolecular Nanostructures. Chemistry 2015; 21:11681-6. [DOI: 10.1002/chem.201502076] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/06/2022]
|
20
|
Feng Z, Castellarin Cudia C, Floreano L, Morgante A, Comelli G, Dri C, Cossaro A. A competitive amino-carboxylic hydrogen bond on a gold surface. Chem Commun (Camb) 2015; 51:5739-42. [DOI: 10.1039/c4cc10271a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel amino-carboxylic hetero-synthon is described, which drives the formation of a complex 2D hetero-organic architecture.
Collapse
Affiliation(s)
- Zhijing Feng
- Department of Physics
- University of Trieste
- Trieste
- Italy
- CNR-IOM Laboratorio Nazionale TASC
| | | | - Luca Floreano
- CNR-IOM Laboratorio Nazionale TASC
- I-34149 Trieste
- Italy
| | - Alberto Morgante
- Department of Physics
- University of Trieste
- Trieste
- Italy
- CNR-IOM Laboratorio Nazionale TASC
| | - Giovanni Comelli
- Department of Physics
- University of Trieste
- Trieste
- Italy
- CNR-IOM Laboratorio Nazionale TASC
| | - Carlo Dri
- Department of Physics
- University of Trieste
- Trieste
- Italy
- CNR-IOM Laboratorio Nazionale TASC
| | | |
Collapse
|
21
|
Woszczyk A, Szabelski P. Theoretical investigations of the 2D chiral segregation induced by external directional fields. RSC Adv 2015. [DOI: 10.1039/c5ra15192a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Computer simulations demonstrate the possibility of inducing 2D chiral segregation using continuously adjustable external fields.
Collapse
Affiliation(s)
- Aleksandra Woszczyk
- Department of Theoretical Chemistry
- Maria-Curie Skłodowska University
- 20-031 Lublin
- Poland
| | - Paweł Szabelski
- Department of Theoretical Chemistry
- Maria-Curie Skłodowska University
- 20-031 Lublin
- Poland
| |
Collapse
|
22
|
Zanatta G, Gottfried C, Silva AM, Caetano EWS, Sales FAM, Freire VN. L-Asparagine crystals with wide gap semiconductor features: optical absorption measurements and density functional theory computations. J Chem Phys 2014; 140:124511. [PMID: 24697463 DOI: 10.1063/1.4869179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p-carboxyl, C 2p-side chain, and C 2p-carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical anisotropy for the absorption and complex dielectric function, with more structured curves for incident light polarized along the 100 and 101 directions.
Collapse
Affiliation(s)
- G Zanatta
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre-RS, Brazil
| | - C Gottfried
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre-RS, Brazil
| | - A M Silva
- Universidade Estadual do Piauí, 64260-000 Piripiri-Pi, Brazil
| | - E W S Caetano
- Instituto de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza-CE, Brazil
| | - F A M Sales
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza-CE, Brazil
| | - V N Freire
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza-CE, Brazil
| |
Collapse
|
23
|
Fischer S, Papageorgiou AC, Lloyd JA, Oh SC, Diller K, Allegretti F, Klappenberger F, Seitsonen AP, Reichert J, Barth JV. Self-assembly and chemical modifications of bisphenol a on Cu(111): interplay between ordering and thermally activated stepwise deprotonation. ACS NANO 2014; 8:207-215. [PMID: 24341488 DOI: 10.1021/nn4030493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bisphenol A (BPA) is a chemical widely used in the synthesis pathway of polycarbonates for the production of many daily used products. Besides other adverse health effects, medical studies have shown that BPA can cause DNA hypomethylation and therefore alters the epigenetic code. In the present work, the reactivity and self-assembly of the molecule was investigated under ultra-high-vacuum conditions on a Cu(111) surface. We show that the surface-confined molecule goes through a series of thermally activated chemical transitions. Scanning tunneling microscopy investigations showed multiple distinct molecular arrangements dependent on the temperature treatment and the formation of polymer-like molecular strings for temperatures above 470 K. X-ray photoelectron spectroscopy measurements revealed the stepwise deprotonation of the hydroxy groups, which allows the molecules to interact strongly with the underlying substrate as well as their neighboring molecules and therefore drive the organization into distinct structural arrangements. On the basis of the combined experimental evidence in conjunction with density functional theory calculations, structural models for the self-assemblies after the thermal treatment were elaborated.
Collapse
Affiliation(s)
- Sybille Fischer
- Physik Department E20, Technische Universität München , D-85748 Garching, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Smerieri M, Vattuone L, Rocca M, Savio L. Spectroscopic evidence for neutral and anionic adsorption of (S)-glutamic acid on Ag(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6867-6875. [PMID: 23668399 DOI: 10.1021/la400436r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report here on a combined photoemission and vibrational spectroscopy investigation of (S)-glutamic acid adsorption on Ag(111). We show that, in the temperature range 250 K ≤ T ≤ 400 K, non-zwitterionic adsorption takes place and the anionic form prevails at nonvanishing coverage. Significant conformational changes of the self-assembled layer must occur above 300 K, corresponding to a substantial reduction of the sticking probability and a modification of the vibrational spectrum. The similarity of behavior with respect to glutamic acid adsorption on the previously investigated Ag(100) and Ag(110) surfaces is also discussed.
Collapse
|
25
|
Lipton-Duffin J, Miwa JA, Urquhart SG, Contini G, Cossaro A, Casalis L, Barth JV, Floreano L, Morgante A, Rosei F. Binding geometry of hydrogen-bonded chain motif in self-assembled gratings and layers on Ag(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14291-14300. [PMID: 22970746 DOI: 10.1021/la303010p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Upon adsorption on the (111) facet of Ag, 4-[trans-2-(pyrid-4-yl-vinyl)] benzoic acid (PVBA) self-assembles into a highly ordered, chiral twin chain structure at submonolayer coverages with domains that can extend for micrometers in one dimension. Using polarization-dependent measurements of C and N K-shell excitations in near-edge X-ray absorption fine structure (NEXAFS) spectra, we determine the binding geometry of single PVBA molecules within this unique ensemble for both low and high coverage regimes. At submonolayer coverage, the molecule is twisted to facilitate the formation of hydrogen bonds. The gas-phase planarity is gradually recovered as the coverage is increased, with complete planarity coinciding with loss of order in the overlayer. Thermal treatment of the PVBA film results in deprotonation of the carboxyl tail of the molecule, but despite the suppression of the stabilizing hydrogen-bonds, the overlayer remains ordered.
Collapse
Affiliation(s)
- J Lipton-Duffin
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, QC, J3X 1S2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Structural and electronic characterization of self-assembled molecular nanoarchitectures by X-ray photoelectron spectroscopy. Anal Bioanal Chem 2012; 405:1479-95. [DOI: 10.1007/s00216-012-6394-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 01/22/2023]
|
27
|
Bai Y, Abbott NL. Enantiomeric interactions between liquid crystals and organized monolayers of tyrosine-containing dipeptides. J Am Chem Soc 2012; 134:548-58. [PMID: 22091988 PMCID: PMC3257416 DOI: 10.1021/ja2089475] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the orientational ordering of nematic liquid crystals (LCs) supported on organized monolayers of dipeptides with the goal of understanding how peptide-based interfaces encode intermolecular interactions that are amplified into supramolecular ordering. By characterizing the orientations of nematic LCs (4-cyano-4'-pentylbiphenyl and TL205 (a mixture of mesogens containing cyclohexane-fluorinated biphenyls and fluorinated terphenyls)) on monolayers of l-cysteine-l-tyrosine, l-cysteine-l-phenylalanine, or l-cysteine-l-phosphotyrosine formed on crystallographically textured films of gold, we conclude that patterns of hydrogen bonds generated by the organized monolayers of dipeptides are transduced via macroscopic orientational ordering of the LCs. This conclusion is supported by the observation that the ordering exhibited by the achiral LCs is specific to the enantiomers used to form the dipeptide-based monolayers. The dominant role of the -OH group of tyrosine in dictating the patterns of hydrogen bonds that orient the LCs was also evidenced by the effects of phosphorylation of the tyrosine on the ordering of the LCs. Overall, these results reveal that crystallographic texturing of gold films can direct the formation of monolayers of dipeptides with long-range order, thus unmasking the influence of hydrogen bonding, chirality, and phosphorylation on the macroscopic orientational ordering of LCs supported on these surfaces. These results suggest new approaches based on supramolecular assembly for reporting the chemical functionality and stereochemistry of synthetic and biological peptide-based molecules displayed at surfaces.
Collapse
Affiliation(s)
- Yiqun Bai
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53705, United States
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53705, United States
| |
Collapse
|
28
|
Cossaro A, Cvetko D, Floreano L. Amino–carboxylic recognition on surfaces: from 2D to 2D + 1 nano-architectures. Phys Chem Chem Phys 2012; 14:13154-62. [DOI: 10.1039/c2cp41790a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Forster M, Dyer MS, Persson M, Raval R. Tailoring Homochirality at Surfaces: Going Beyond Molecular Handedness. J Am Chem Soc 2011; 133:15992-6000. [DOI: 10.1021/ja202986s] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew Forster
- Surface Science Research Centre and Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 3BX, U.K
| | - Matthew S. Dyer
- Surface Science Research Centre and Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 3BX, U.K
| | - Mats Persson
- Surface Science Research Centre and Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 3BX, U.K
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Rasmita Raval
- Surface Science Research Centre and Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 3BX, U.K
| |
Collapse
|
30
|
Smerieri M, Vattuone L, Kravchuk T, Costa D, Savio L. (S)-glutamic acid on Ag(100): self-assembly in the nonzwitterionic form. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2393-2404. [PMID: 21338127 DOI: 10.1021/la1033993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The fundamental understanding of adsorption and self-organization of biological molecules at surfaces is of greatest importance for a huge variety of possible applications, ranging from molecular electronics to the study of biocompatible materials, hygiene, and biofouling. In spite of that, the characterization of the interactions of organic molecules of biological interest with surfaces is far from being complete. In the present paper we report on a combined microscopic (scanning tunneling microscopy (STM)) and spectroscopic (X-ray photoemission spectroscopy and high-resolution electron energy loss spectroscopy) study of glutamic acid (Glu) adsorption and self-assembly on Ag(100) at different temperature. STM allows one to determine the structures of the Glu layers, for which empirical models are proposed, while photoemission spectra exclude adsorption in the zwitterionic form, which is the most common especially for weakly interacting substrates.
Collapse
Affiliation(s)
- M Smerieri
- IMEM-CNR , Via Dodecaneso 33, 16146 Genova, Italy
| | | | | | | | | |
Collapse
|