1
|
Zhang Y, Allen A, Petrek ZJ, Cao HH, Kumar D, Goodlad MC, Martinez VG, Singh J, Zhang JZ, Ye T. Formation of Linear Plasmonic Heterotrimers Using Nanoparticle Docking to DNA Origami Cages. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:11699-11708. [PMID: 39050926 PMCID: PMC11264316 DOI: 10.1021/acs.jpcc.4c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
The fabrication of complex assemblies with interesting collective properties from plasmonic nanoparticles (NPs) is often challenging. While DNA-directed self-assembly has emerged as one of the most promising approaches to forming such complex assemblies, the resulting structures tend to have large variability in gap sizes and shapes, as the DNA strands used to organize these particles are flexible, and the polydispersity of the NPs leads to variability in these critical structural features. Here, we use a new strategy termed docking to DNA origami cages (D-DOC) to organize spherical NPs into a linear heterotrimer with a precisely defined geometrical arrangement. Instead of binding NPs to the exterior of the DNA templates, D-DOC binds the NPs to either the interior or the opening of a 3D cage, which significantly reduces the variability of critical structural features by incorporating multiple diametrically arranged capture strands to tether NPs. Additionally, such a spatial arrangement of the capture strand can work synergistically with shape complementarity to achieve tighter confinement. To assemble NPs via D-DOC, we developed a multistep assembly process that first encapsulates an NP inside a cage and then binds two other NPs to the openings. Microscopic characterization shows low variability in the bond angles and gap sizes. Both UV-vis absorption and surface-enhanced Raman scattering (SERS) measurements showed strong plasmonic coupling that aligned with predictions by electrodynamic simulations, further confirming the precision of the assembly. These results suggest D-DOC could open new opportunities in biomolecular sensing, SERS and fluorescence spectroscopies, and energy harvesting through the self-assembly of NPs into more complex 3D assemblies.
Collapse
Affiliation(s)
- Yehan Zhang
- Department
of Chemistry and Biochemistry, University
of California, Merced, California 95343, United States
| | - A’Lester
C. Allen
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Zachary J. Petrek
- Department
of Chemistry and Biochemistry, University
of California, Merced, California 95343, United States
| | - Huan H. Cao
- Department
of Chemistry and Biochemistry, University
of California, Merced, California 95343, United States
| | - Devanshu Kumar
- Department
of Chemistry and Biochemistry, University
of California, Merced, California 95343, United States
| | - Melissa C. Goodlad
- Department
of Chemistry and Biochemistry, University
of California, Merced, California 95343, United States
| | - Vianna G. Martinez
- Department
of Chemistry and Biochemistry, University
of California, Merced, California 95343, United States
| | - Jasdip Singh
- Department
of Chemistry and Biochemistry, University
of California, Merced, California 95343, United States
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Tao Ye
- Department
of Chemistry and Biochemistry, University
of California, Merced, California 95343, United States
| |
Collapse
|
2
|
Hwang YJ, Park Y, Jeong W, Kim M, Lee H, An B, Lee Y, Jeong H, Kim G, Choi J, Ha DH. Morphology Control of Au-Ni Hybrid Nanoparticles: Exploring Heterostructures and Optical Tuning. Inorg Chem 2024; 63:11660-11666. [PMID: 38861724 DOI: 10.1021/acs.inorgchem.4c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Hybrid nanoparticles (NPs) have attracted considerable attention because of their ability to provide diverse properties by integrating the inherent properties of multiple components; however, synthetic strategies to control their morphology remain unexplored. In this study, a new method was used to control the morphology and optical properties of Au-Ni heterostructure (ANH) NPs. Unique morphological changes were observed by varying the Au/Ni precursor ratio from 2:1 to 1:4, exhibiting a shape transformation from dumbbell-like to quasi-spherical owing to the Ni NP size expansion, whereas the Au NP maintained their size. Moreover, increasing the Ni ratio induced plasmonic band broadening and wavelength redshift, resulting in color changes from red to navy and black. In terms of the structure, the atomic orientation of the crystallite showed that even a large lattice mismatch can result in heterojunctions at the NPs. In addition, the reaction aliquots uncovered heterogeneous nucleation and growth of ANH NPs in the colloidal system, demonstrating Ni reduction on the preformed Au NP owing to the reduction in potential gap. This study provides new insights into controlling the morphology of hybrid NPs using colloidal synthesis and the design of optimized materials for various applications.
Collapse
Affiliation(s)
- Yun Jae Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yoonsu Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Wooseok Jeong
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Minyoung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyeonseok Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Boeun An
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yeongbin Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Heesoo Jeong
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Gyuhyeon Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
3
|
Itoh T, Yamamoto YS. Electromagnetic enhancement spectra of one-dimensional plasmonic hotspots along silver nanowire dimer derived via surface-enhanced fluorescence. J Chem Phys 2024; 160:024703. [PMID: 38189611 DOI: 10.1063/5.0179985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
We developed a spectroscopic method for directly obtaining the spectra of electromagnetic (EM) enhancement of plasmonic hotspots (HSs). The method was applied to one-dimensional (1D) HSs generated between silver nanowire (NW) dimers. The EM enhancement spectra were derived by dividing the spectra of surface-enhanced fluorescence (SEF) from single NW dimers with SEF obtained from large nanoparticle aggregates, where aggregate-by-aggregate variations in the SEF spectra were averaged out. Some NW dimers were found to exhibit EM enhancement spectra that deviated from the plasmon resonance Rayleigh scattering spectra, indicating that their EM enhancement was not generated by superradiant plasmons. These experimental results were examined by numerical calculation based on the EM mechanism by varying the morphology of NW dimers. The calculations reproduced the spectral deviations as the NW diameter dependence of EM enhancement. Phase analysis of the enhanced EM near-fields along the 1D HSs revealed that the dipole-quadrupole coupled plasmon, which is a subradiant mode, mainly generates EM enhancement for dimers with NW diameters larger than ∼80 nm, which was consistent with scanning electron microscopic measurements.
Collapse
Affiliation(s)
- Tamitake Itoh
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Yuko S Yamamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
4
|
Zhu Z, Tang R, Li C, An X, He L. Promises of Plasmonic Antenna-Reactor Systems in Gas-Phase CO 2 Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302568. [PMID: 37338243 PMCID: PMC10460874 DOI: 10.1002/advs.202302568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Sunlight-driven photocatalytic CO2 reduction provides intriguing opportunities for addressing the energy and environmental crises faced by humans. The rational combination of plasmonic antennas and active transition metal-based catalysts, known as "antenna-reactor" (AR) nanostructures, allows the simultaneous optimization of optical and catalytic performances of photocatalysts, and thus holds great promise for CO2 photocatalysis. Such design combines the favorable absorption, radiative, and photochemical properties of the plasmonic components with the great catalytic potentials and conductivities of the reactor components. In this review, recent developments of photocatalysts based on plasmonic AR systems for various gas-phase CO2 reduction reactions with emphasis on the electronic structure of plasmonic and catalytic metals, plasmon-driven catalytic pathways, and the role of AR complex in photocatalytic processes are summarized. Perspectives in terms of challenges and future research in this area are also highlighted.
Collapse
Affiliation(s)
- Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Rui Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
5
|
Cai YY, Choi YC, Kagan CR. Chemical and Physical Properties of Photonic Noble-Metal Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2108104. [PMID: 34897837 DOI: 10.1002/adma.202108104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Colloidal noble metal nanoparticles (NPs) are composed of metal cores and organic or inorganic ligand shells. These NPs support size- and shape-dependent plasmonic resonances. They can be assembled from dispersions into artificial metamolecules which have collective plasmonic resonances originating from coupled bright and dark optical electric and magnetic modes that form depending on the size and shape of the constituent NPs and their number, arrangement, and interparticle distance. NPs can also be assembled into extended 2D and 3D metamaterials that are glassy thin films or ordered thin films or crystals, also known as superlattices and supercrystals. The metamaterials have tunable optical properties that depend on the size, shape, and composition of the NPs, and on the number of NP layers and their interparticle distance. Interestingly, strong light-matter interactions in superlattices form plasmon polaritons. Tunable interparticle distances allow designer materials with dielectric functions tailorable from that characteristic of an insulator to that of a metal, and serve as strong optical absorbers or scatterers, respectively. In combination with lithography techniques, these extended assemblies can be patterned to create subwavelength NP superstructures and form large-area 2D and 3D metamaterials that manipulate the amplitude, phase, and polarization of transmitted or reflected light.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Itoh T, Yamamoto YS. Correlated Polarization Dependences between Surface-Enhanced Resonant Raman Scattering and Plasmon Resonance Elastic Scattering Showing Spectral Uncorrelation to Each Other. J Phys Chem B 2023; 127:4666-4675. [PMID: 37192137 DOI: 10.1021/acs.jpcb.3c01878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We investigated the origin of the identical polarization angle dependence between surface-enhanced resonant Raman scattering (SERRS) and plasmon resonance elastic scattering (PRES) for two types of single silver nanoparticle aggregates. The first type (Type I), in which the SERRS spectral envelopes are similar to the PRES spectra, shows the identical polarization dependence between the SERRS and PRES. The second type (Type II), in which the SERRS envelopes largely deviate from the PRES spectra, also exhibits identical polarization dependence. Scanning electron microscopy observations indicated that the aggregates were dimers. This unintuitive result was examined by calculating the electromagnetic enhancement by changing the morphology of the dimers. The calculations revealed that the Type I dimer generates SERRS directly by superradiant plasmons. The Type II dimer generates SERRS indirectly via subradiant plasmons, which receive light energy from superradiant plasmons. This indirect SERRS process clarifies that the interaction between the superradiant and subradiant plasmons results in an identical polarization dependence between SERRS and PRES for Type II dimers.
Collapse
Affiliation(s)
- Tamitake Itoh
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Yuko S Yamamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
7
|
Itoh T, Procházka M, Dong ZC, Ji W, Yamamoto YS, Zhang Y, Ozaki Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem Rev 2023; 123:1552-1634. [PMID: 36745738 PMCID: PMC9952515 DOI: 10.1021/acs.chemrev.2c00316] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 02/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) have opened a variety of exciting research fields. However, although a vast number of applications have been proposed since the two techniques were first reported, none has been applied to real practical use. This calls for an update in the recent fundamental and application studies of SERS and TERS. Thus, the goals and scope of this review are to report new directions and perspectives of SERS and TERS, mainly from the viewpoint of combining their mechanism and application studies. Regarding the recent progress in SERS and TERS, this review discusses four main topics: (1) nanometer to subnanometer plasmonic hotspots for SERS; (2) Ångström resolved TERS; (3) chemical mechanisms, i.e., charge-transfer mechanism of SERS and semiconductor-enhanced Raman scattering; and (4) the creation of a strong bridge between the mechanism studies and applications.
Collapse
Affiliation(s)
- Tamitake Itoh
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, 761-0395Kagawa, Japan
| | - Marek Procházka
- Faculty
of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16Prague 2, Czech Republic
| | - Zhen-Chao Dong
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Wei Ji
- College
of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin145040, China
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology (JAIST), Nomi, 923-1292Ishikawa, Japan
| | - Yao Zhang
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Yukihiro Ozaki
- School of
Biological and Environmental Sciences, Kwansei
Gakuin University, 2-1,
Gakuen, Sanda, 669-1330Hyogo, Japan
- Toyota
Physical and Chemical Research Institute, Nagakute, 480-1192Aichi, Japan
| |
Collapse
|
8
|
Hu Z, Cui X, Li Y, Han X, Hu H. Multiband tunable exciton-induced transparencies: Exploiting both strong and intermediate coupling in a nanocube-hexagonal-nanoplate heterodimer J-aggregates hybrid. OPTICS EXPRESS 2022; 30:43371-43383. [PMID: 36523036 DOI: 10.1364/oe.476456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Understanding and mastering the light-light and light-matter interactions in coupled structures have become significant subjects, as they provide versatile tools for manipulating light in both classical and quantum regimes. Mimicking quantum interference effects in pure photonic nanostructures, from weak Fano dip to intense electromagnetically induced transparency, usually requires strong asymmetries in complex geometries and larger interactions between resonances, i.e., in the intermediate coupling regime. Here, we numerically demonstrate a simple and chemically feasible plasmonic nanocube-hexagonal-nanoplate heterodimer with a strong, tunable self-induced transparency window created by the intermediate coupling between the near-degenerate dark and bright hybridized modes. Further assisted by the strong coupling introduced by the J-aggregate excitons covering the heterodimer, three evident exciton-induced transparency windows were observed. These multiband transparencies in a single-particle-level subwavelength configuration, could on one hand enrich the toolbox of multi-frequency light filtering, slowing and switching beyond the diffraction limit, and on the other hand, work as a fundamental testbed for investigating multiscale light-matter interactions at the nanoscale.
Collapse
|
9
|
Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem 2022; 6:681-704. [PMID: 37117494 DOI: 10.1038/s41570-022-00423-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Molecular junctions are building blocks for constructing future nanoelectronic devices that enable the investigation of a broad range of electronic transport properties within nanoscale regions. Crossing both the nanoscopic and mesoscopic length scales, plasmonics lies at the intersection of the macroscopic photonics and nanoelectronics, owing to their capability of confining light to dimensions far below the diffraction limit. Research activities on plasmonic phenomena in molecular electronics started around 2010, and feedback between plasmons and molecular junctions has increased over the past years. These efforts can provide new insights into the near-field interaction and the corresponding tunability in properties, as well as resultant plasmon-based molecular devices. This Review presents the latest advancements of plasmonic resonances in molecular junctions and details the progress in plasmon excitation and plasmon coupling. We also highlight emerging experimental approaches to unravel the mechanisms behind the various types of light-matter interactions at molecular length scales, where quantum effects come into play. Finally, we discuss the potential of these plasmonic-electronic hybrid systems across various future applications, including sensing, photocatalysis, molecular trapping and active control of molecular switches.
Collapse
|
10
|
Abstract
Self-assembly of DNA-labeled nanoparticles is an effective strategy to fabricate new nanocomposite materials and nanoscale devices from the bottom-up. To tailor the properties of the resulting material or device, one requires access to a wide range of nanoparticle sizes and shapes, as well as control over the number (valency) of DNA molecules on the nanoparticle surface. Currently, nanoparticles with a defined DNA valency can only be obtained in a narrow range of sizes, and in small quantities, limiting the properties of the resulting composite structures and their applications. Here, we leverage the digital information encoded in the number and sequence of short DNA barcodes to generate preparatory amounts of nanoparticles bearing a specific number of DNA molecules, irrespective of the identity of the nanocomponent. We show that this DNA valency sorting chromatography, which is driven by the selective affinity of Watson-Crick base pairs, is applicable to arbitrary DNA sequences and a broad range of nanoparticle sizes, shapes, and material compositions. To further demonstrate this fact, we use valency-sorted large gold nanospheres directly in self-assembly schemes to create, in one synthesis step, large amounts of several previously inaccessible molecule-like dimer and trimer nanostructures with unique optical properties. We anticipate that the expanded scope of DNA valency-defined nanoparticle reagents, and the increased scale at which they can be produced, will open new avenues for the molecularly precise manipulation of nanoscale matter.
Collapse
Affiliation(s)
- Nyssa T Emerson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Carvalho DF, Martins MA, Fernandes PA, Correia MRP. Coupling of plasmonic nanoparticles on a semiconductor substrate via a modified discrete dipole approximation method. Phys Chem Chem Phys 2022; 24:19705-19715. [PMID: 35811566 DOI: 10.1039/d2cp02446b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the plasmonic coupling between a set of metallic nanoparticles (NPs) in a 2D array, and how a substrate affects such coupling, is fundamental for the development of optimized optoelectronic structures. Here, a simple semi-analytical procedure based on discrete dipole approximation (DDA) is reported to simulate the far-field and near-field properties of arrays of NPs, considering the coupling between particles, and the effect of the presence of a semiconductor substrate based on the image dipole approach. The method is validated for Ag NP dimers and single Ag NPs on a gallium nitride (GaN) substrate, a semiconductor widely used in optical devices, by comparison with the results obtained by the finite element method (FEM), indicating a good agreement in the weak coupling regime. Next, the method is applied to square and random arrays of Ag NPs on a GaN substrate. The increase in the surface density of NPs on a GaN substrate mainly results in a redshift of the dipolar resonance frequency and an increase in the near-field enhancement. This model, based on a single dipole approach, grants very low computational times, representing an advantage to predict the optical properties of large NP arrays on a semiconductor substrate for different applications.
Collapse
Affiliation(s)
- Diogo F Carvalho
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Manuel A Martins
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo A Fernandes
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal. .,INL - International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.,CIETI, Department of Physics, ISEP - Porto School of Engineering, 4200-072, Portugal
| | - M Rosário P Correia
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Nanoengineering of conductively coupled metallic nanoparticles towards selective resonance modes within the near-infrared regime. Sci Rep 2022; 12:7829. [PMID: 35550525 PMCID: PMC9098514 DOI: 10.1038/s41598-022-11539-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/08/2022] [Indexed: 11/08/2022] Open
Abstract
In this work, the mode transition effect of different plasmonic resonances in linked dimers by a conductive junction is numerically investigated.Without the junction, the dimer supports a single dipolar bonding plasmon mode, while two new resonance modes, a screened bonding dipolar mode and a low energy charge transfer plasmon mode, emerge when two nanoparticles are linked via a bridge. Such effect is proved to be unrelated to the shape of the nanoparticles, whether sphere, core-shell or nanoegg. However, it was found that the status of each specific resonance mode is profoundly influenced by the shape of nanoparticles. Furthermore, a detailed discussion of mechanisms of controlling plasmon modes, specially charge transfer mode, and tuning their corresponding spectra in bridged nanoparticles as functions of nanoparticle parameters and junction conductance is presented. These results show that the optical response of the dimer is highly sensitive to changes in the inter-particle gap. While the capacitive dimer provides a strong hotstop, the conductive dimer leads to highly controllable low energy plasmon mode at the mid-infrared region appropriate for novel applications. These findings may serve as an important guide for optical properties of linked nanoparticles as well as understanding the transition between the capacitive and conductive coupling.
Collapse
|
13
|
Shu Z, Chen Y, Feng Z, Liang H, Li W, Liu Y, Duan H. Asymmetric Nanofractures Determined the Nonreciprocal Peeling for Self-Aligned Heterostructure Nanogaps and Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1718-1726. [PMID: 34978176 DOI: 10.1021/acsami.1c19776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Planar heterostructures composed of two or more adjacent structures with different materials are a kind of building blocks for various applications in surface plasmon resonance sensors, rectifiers, photovoltaic devices, and ambipolar devices, but their reliable fabrication with controllable shape, size, and positioning accuracy remains challenging. In this work, we propose a concept for fabricating planar heterostructures via directional stripping and controlled nanofractures of metallic films, with which self-aligned, multimaterial, multiscale heterostructures with arbitrary geometries and sub-20 nm gaps can be obtained. By using a split ring as the template, the asymmetric nanofracture of the deposited film at the split position results in nonreciprocal peeling of the film in the split ring. Compared to the conventional processes, the final heterostructures are defined only by their outlines, thus providing the ability to fabricate complex heterostructures with higher resolutions. We demonstrate that this method can be used to fabricate heterodimers, multimaterial oligomers, and multiscale asymmetrical electrodes. An Ag-MoS2-Au photodiode with a strong rectification effect is fabricated based on the nanogap heterostructures prepared by this method. This technology provides a unique and reliable approach to define nanogap heterostructures, which are supposed to have potential applications in nanoelectronics, nanoplasmonics, nano-optoelectronics, and electrochemistry.
Collapse
Affiliation(s)
- Zhiwen Shu
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Yiqin Chen
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Zhanyong Feng
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Huikang Liang
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Wanying Li
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| |
Collapse
|
14
|
Qiu J, Nguyen QN, Lyu Z, Wang Q, Xia Y. Bimetallic Janus Nanocrystals: Syntheses and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102591. [PMID: 34648198 DOI: 10.1002/adma.202102591] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/15/2021] [Indexed: 05/28/2023]
Abstract
Bimetallic Janus nanocrystals have received considerable interest in recent years owing to their unique properties and niche applications. The side-by-side distribution of two distinct metals provides a flexible platform for tailoring the optical and catalytic properties of nanocrystals. First, a brief introduction to the structural features of bimetallic Janus nanocrystals, followed by an extensive discussion of the synthetic approaches, is given. The strategies and experimental controls for achieving the Janus structure, as well as the mechanistic understandings, are specifically discussed. Then, a number of intriguing properties and applications enabled by the Janus nanocrystals are highlighted. Finally, this article is concluded with future directions and outlooks with respect to both syntheses and applications of this new class of functional nanomaterials.
Collapse
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Quynh N Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Qiuxiang Wang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
15
|
Song X, Wang Y, Hao Y, Zhu Q, Li Y, Song L, Deng Z. Sub-1.5 nm-gapped heterodimeric plasmonic nanomolecules. Chem Sci 2022; 13:4788-4793. [PMID: 35655881 PMCID: PMC9067581 DOI: 10.1039/d2sc01171a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
A whole set of plasmonic nanodimers with prescribed binary compositions are constructed in solution to enable symmetry-broken strong plasmonic coupling.
Collapse
Affiliation(s)
- Xiaojun Song
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueliang Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Yan Hao
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingqing Zhu
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanjuan Li
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Song
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Heterodimers of metal nanoparticles: synthesis, properties, and biological applications. Mikrochim Acta 2021; 188:345. [PMID: 34537870 DOI: 10.1007/s00604-021-05002-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Heterodimers of metal nanoparticles consist of two metals, come in many sizes and adopt various shapes. They offer unique properties due to the presence of two metals and have the extraordinary flexibility needed to serve as a multipurpose platform for diverse applications in areas including photonics, sensing, and catalysis. Heterodimer nanoparticles contain different metals that contribute to extraordinary surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), and catalytic properties. These properties make them versatile molecules that can be used in intracellular imaging, as antibacterial agents, as photocatalytic and biological macromolecules and for the detection of chemical substances. Moreover, heterodimer nanoparticles are composed of the two metals within larger molecules that provide more choices for modification and application. In this review, we briefly summarize the lesser-known aspects of heterodimers, including some of their properties, and present concrete examples of recent progress in synthesis and applications. This review provides a perspective on achievements and suggests a framework for future research with a focus on the synthesis and application of heterodimers. We also explore the possible applications of heterodimer nanoparticles based on their unique properties.
Collapse
|
17
|
Giannone G, Śmiga S, D'Agostino S, Fabiano E, Della Sala F. Plasmon Couplings from Subsystem Time-Dependent Density Functional Theory. J Phys Chem A 2021; 125:7246-7259. [PMID: 34403247 DOI: 10.1021/acs.jpca.1c05384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many applications in plasmonics are related to the coupling between metallic nanoparticles (MNPs) or between an emitter and a MNP. The theoretical analysis of such a coupling is thus of fundamental importance to analyze the plasmonic behavior and to design new systems. While classical methods neglect quantum and spill-out effects, time-dependent density functional theory (TD-DFT) considers all of them and with Kohn-Sham orbitals delocalized over the whole system. Thus, within TD-DFT, no definite separation of the subsystems (the single MNP or the emitter) and their couplings is directly available. This important feature is obtained here using the subsystem formulation of TD-DFT, which has been originally developed in the context of weakly interacting organic molecules. In subsystem TD-DFT, interacting MNPs are treated independently, thus allowing us to compute the plasmon couplings directly from the subsystem TD-DFT transition densities. We show that subsystem TD-DFT, as well as a simplified version of it in which kinetic contributions are neglected, can reproduce the reference TD-DFT calculations for gap distances greater than about 6 Å or even smaller in the case of hybrid plasmonic systems (i.e., molecules interacting with MNPs). We also show that the subsystem TD-DFT can be also used as a tool to analyze the impact of charge-transfer effects.
Collapse
Affiliation(s)
- Giulia Giannone
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano (LE) 73010, Italy.,Department of Mathematics and Physics "E. De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy
| | - Szymon Śmiga
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5, Toruń 87-100, Poland
| | - Stefania D'Agostino
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano (LE) 73010, Italy.,Department of Mathematics and Physics "E. De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy.,Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce 73100, Italy
| | - Eduardo Fabiano
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano (LE) 73010, Italy.,Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, Lecce 73100, Italy
| | - Fabio Della Sala
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano (LE) 73010, Italy.,Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, Lecce 73100, Italy
| |
Collapse
|
18
|
Li Y, Zhou M, Song Y, Higaki T, Wang H, Jin R. Double-helical assembly of heterodimeric nanoclusters into supercrystals. Nature 2021; 594:380-384. [PMID: 34135522 DOI: 10.1038/s41586-021-03564-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/19/2021] [Indexed: 01/21/2023]
Abstract
DNA has long been used as a template for the construction of helical assemblies of inorganic nanoparticles1-5. For example, gold nanoparticles decorated with DNA (or with peptides) can create helical assemblies6-9. But without such biological ligands, helices are difficult to achieve and their mechanism of formation is challenging to understand10,11. Atomically precise nanoclusters that are protected by ligands such as thiolate12,13 have demonstrated hierarchical structural complexity in their assembly at the interparticle and intraparticle levels, similar to biomolecules and their assemblies14. Furthermore, carrier dynamics can be controlled by engineering the structure of the nanoclusters15. But these nanoclusters usually have isotropic structures16,17 and often assemble into commonly found supercrystals18. Here we report the synthesis of homodimeric and heterodimeric gold nanoclusters and their self-assembly into superstructures. While the homodimeric nanoclusters form layer-by-layer superstructures, the heterodimeric nanoclusters self-assemble into double- and quadruple-helical superstructures. These complex arrangements are the result of two different motif pairs, one pair per monomer, where each motif bonds with its paired motif on a neighbouring heterodimer. This motif pairing is reminiscent of the paired interactions of nucleobases in DNA helices. Meanwhile, the surrounding ligands on the clusters show doubly or triply paired steric interactions. The helical assembly is driven by van der Waals interactions through particle rotation and conformational matching. Furthermore, the heterodimeric clusters have a carrier lifetime that is roughly 65 times longer than that of the homodimeric clusters. Our findings suggest new approaches for increasing complexity in the structural design and engineering of precision in supercrystals.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Meng Zhou
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - Yongbo Song
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui, China
| | - Tatsuya Higaki
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - He Wang
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Abou-Hamdan L, Li C, Haidar R, Krachmalnicoff V, Bouchon P, De Wilde Y. Hybrid modes in a single thermally excited asymmetric dimer antenna. OPTICS LETTERS 2021; 46:981-984. [PMID: 33649637 DOI: 10.1364/ol.413382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The study of hybrid modes in a single dimer of neighboring antennas is an essential step to optimize the far-field electromagnetic (EM) response of large-scale metasurfaces or any complex antenna structure made up of subwavelength building blocks. Here we present far-field infrared spatial modulation spectroscopy (IR-SMS) measurements of a single thermally excited asymmetric dimer of square metal-insulator-metal (MIM) antennas separated by a nanometric gap. Through thermal fluctuations, all the EM modes of the antennas are excited, and hybrid bonding and anti-bonding modes can be observed simultaneously. We study the latter within a plasmon hybridization model, and analyze their effect on the far-field response.
Collapse
|
20
|
Höller RPM, Jahn IJ, Cialla-May D, Chanana M, Popp J, Fery A, Kuttner C. Biomacromolecular-Assembled Nanoclusters: Key Aspects for Robust Colloidal SERS Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57302-57313. [PMID: 33306362 DOI: 10.1021/acsami.0c16398] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Superstructures of gold nanospheres offer augmented surface-enhanced Raman scattering (SERS) activities beyond the limits of their individual building blocks. However, for application as reliable and quantitative colloidal SERS probes, some key aspects need to be considered to combine efficiency and robustness with respect to hotspot excitation, analyte adsorption, signal stability, and colloidal stability. For this purpose, we studied core/satellite superstructures with spherical cores as a simple optically isotropic model system. Superstructures of different core sizes were assembled using bovine serum albumin (BSA), which serves as a non-specific biomacromolecular linker and provides electrosteric stabilization. We show that the "noisy" spectral footprint of the protein coating may serve as an internal standard, which allows accurate monitoring of the adsorption kinetics of analytes. The SERS activity was quantified using 4-mercaptobenzoic acid (MBA) as an aromatic low-molecular-weight model analyte. The molar SERS efficiency was studied by variation of the particle (Au0) and analyte concentrations with a limit of detection of 10-7 M MBA. The practical importance of colloidal stability for robust measurement conditions was demonstrated by comparing the superstructures with their citrate-stabilized or protein-coated building blocks. We explain the theoretical background of hotspot formation by a leader/follower relationship of asymmetric control between the core and the satellites and give practical guidelines for robust colloidal SERS sensing probes.
Collapse
Affiliation(s)
- Roland P M Höller
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| | - Izabella J Jahn
- Leibniz Institute of Photonics Technology (IPHT), Member of the Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonics Technology (IPHT), Member of the Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Munish Chanana
- Swiss Wood Solutions AG, Überlandstr. 129, 8600 Dübendorf, Switzerland
| | - Jürgen Popp
- Leibniz Institute of Photonics Technology (IPHT), Member of the Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Kuttner
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
21
|
Ray D, Raziman TV, Santschi C, Etezadi D, Altug H, Martin OJF. Hybrid Metal-Dielectric Metasurfaces for Refractive Index Sensing. NANO LETTERS 2020; 20:8752-8759. [PMID: 33206533 DOI: 10.1021/acs.nanolett.0c03613] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybrid metal-dielectric nanostructures have recently gained prominence because they combine strong field enhancement of plasmonic metals and the several low-loss radiation channels of dielectric resonators, which are qualities pertaining to the best of both worlds. In this work, an array of such hybrid nanoantennas is successfully fabricated over a large area and utilized for bulk refractive index sensing with a sensitivity of 208 nm/RIU. Each nanoantenna combines a Si cylinder with an Al disk, separated by a SiO2 spacer. Its optical response is analyzed in detail using the multipoles supported by its subparts and their mutual coupling. The nanoantenna is further modified experimentally with an undercut in the SiO2 region to increase the interaction of the electric field with the background medium, which augments the sensitivity to 245 nm/RIU. A detailed multipole analysis of the hybrid nanoantenna supports our experimental findings.
Collapse
Affiliation(s)
- Debdatta Ray
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - T V Raziman
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Christian Santschi
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Dordaneh Etezadi
- Bionanophotonic Systems Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hatice Altug
- Bionanophotonic Systems Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Olivier J F Martin
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Abnormal Fano Profile in Graphene-Wrapped Dielectric Particle Dimer. PHOTONICS 2020. [DOI: 10.3390/photonics7040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We give a theoretical study on the near field enhancement and far field spectrum of an adjacent graphene-wrapped sphere dimer with different radii. The Fano profile is found in the near field enhancement spectrum of such a symmetry-broken dimer system, which is, however, hidden in the far field spectrum. We demonstrate that this kind of Fano profile is rising from the coupling of dimer’s plasmon hybridization modes by analyzing the dipole moments of each sphere. Moreover, different orientation of incident wave polarization will lead to the different plasmon hybridization coupling, thus giving rise to a different Fano profile. By changing the Fermi energy level, we could achieve tunable Fano profile in near field enhancement.
Collapse
|
23
|
High sensitive refractive index sensor based on spatial symmetry breaking Fano metamaterials fabricated by ion beam irradiation. MICRO AND NANO ENGINEERING 2020. [DOI: 10.1016/j.mne.2020.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Csete M, Szenes A, Vass D, Bánhelyi B, Dombi P. Few-cycle localized plasmon oscillations. Sci Rep 2020; 10:12986. [PMID: 32737359 PMCID: PMC7395087 DOI: 10.1038/s41598-020-69761-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/17/2020] [Indexed: 11/09/2022] Open
Abstract
The generation of few-cycle laser pulses proved to be a key enabling technology in strong-field physics and ultrafast science. The question naturally arises whether one can induce few-cycle localized plasmon oscillations in optical near-fields. Here, we perform a comparative study of different plasmonic nanoresonators illuminated by few-cycle pulses. We analyze the number of cycles (NOC) of the plasmonic field, the near-field enhancement (NFE) as well as the figure of merit NFE/NOC. The pulse length dependence of these quantities is also investigated. Throughout the inspected pulse-length interval silica-gold and silica-silver core-shell monomers have the potential to preserve the NOC of the incoming pulse, silver bow-ties result in the highest NFE, whereas gold core-shell dimers have the highest NFE/NOC. Based on the analysis, silver bow-ties, gold core-shell and silver nanorod dimers proved to be the most suitable for few-cycle near-field amplification.
Collapse
Affiliation(s)
- Mária Csete
- Department of Optics and Quantum Electronics, University of Szeged, 6720, Szeged, Hungary.
| | - András Szenes
- Department of Optics and Quantum Electronics, University of Szeged, 6720, Szeged, Hungary
| | - Dávid Vass
- Department of Optics and Quantum Electronics, University of Szeged, 6720, Szeged, Hungary
| | - Balázs Bánhelyi
- Department of Computational Optimization, University of Szeged, 6720, Szeged, Hungary
| | - Péter Dombi
- Wigner Research Centre for Physics, 1120, Budapest, Hungary.,ELI-ALPS Research Institute, 6728, Szeged, Hungary
| |
Collapse
|
25
|
Dey S, Garboczi EJ, Hassan AM. Electromagnetic resonance analysis of asymmetric carbon nanotube dimers for sensing applications. NANOTECHNOLOGY 2020; 31:425501. [PMID: 32590375 DOI: 10.1088/1361-6528/aba058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we study the electromagnetic scattering characteristics of asymmetric carbon nanotube (CNT) dimers with rigorous computational experiments. We show that the configurational asymmetry in the CNT dimer assembly creates a unique field distribution in the vicinity of the dimer, which in turn generates two distinct resonances representing the bonding and anti-bonding modes. The sensitivity of these two modes towards CNT lengths, orientations, and shapes, is studied. We also show the ability of asymmetric CNT dimer for the contactless detection of nanoparticles (NP). The presence of a NP in the vicinity of the CNT dimer perturbs the dimer's field distribution and causes unequal shifts in the bonding and anti-bonding resonances depending on the NP location, material, size and shape. By studying the differences in these resonance shifts, we show that the relative location and orientation of the NP can be reconstructed. The computational experiments performed in this work have the potential to guide the use of asymmetric CNT dimers for novel sensing applications.
Collapse
Affiliation(s)
- Sumitra Dey
- Department of Computer Science and Electrical Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, United States of America
| | | | | |
Collapse
|
26
|
Chen Z, Zhang S, Chen Y, Liu Y, Li P, Wang Z, Zhu X, Bi K, Duan H. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling. NANOSCALE 2020; 12:9776-9785. [PMID: 32324182 DOI: 10.1039/d0nr00461h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fano resonance can be achieved by the destructive interference between a superradiant bright mode and a subradiant dark mode. A variety of artificial plasmonic oligomers have been fabricated to generate Fano resonance for its extensive applications. However, the Fano resonance in plasmonic oligomer systems comes from the interaction of all metal particles, which greatly limits the tunability of the Fano resonance. Besides, only a single Fano resonance is supported by many existing plasmonic oligomers, while multiple Fano resonances mostly occur in complex and multilayer structures, whose fabrication is greatly challenging. Here, a simple asymmetric plasmonic molecule consisting of a central metal disk and two side-coupled parallel metal rods is demonstrated. The simulation and experimental results clearly show that double Fano resonances appear in the transmission spectrum. In addition, the two Fano peaks can be independently tuned and single/double Fano peak switching can be achieved by changing one rod length or the gap distances between the rods and the disk. The modulation method is simple and effective, which greatly increases the tunability of the structure. The proposed asymmetric artificial plasmonic molecule can have applications in multi-channel optical switches, filters and biosensors. Moreover, the controllable plasmonic field intensity in the gap between the disk and rods also provides a new control means for plasmon-induced photocatalytic reactions and biosynthesis.
Collapse
Affiliation(s)
- Zhiquan Chen
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China. and School of Mathematics and Statistics, Hunan University of Technology and Business, Changsha 410205, People's Republic of China
| | - Shi Zhang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Yiqin Chen
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Ping Li
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Zhaolong Wang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Xupeng Zhu
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Kaixi Bi
- Science and Technology on Electronic Test and Measurement Laboratory, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Huigao Duan
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China.
| |
Collapse
|
27
|
Abstract
Imaging of single to a few molecules has received much recent interest. While superresolution microscopies access subdiffraction resolution, they do not work for plasmonic hot spots due to the loss of positional information that results from plasmonic coupling. Here, we show how to reconstruct the spatial locations of molecules within a plasmonic hot spot with 1-nm precision. We use a plasmonic nanoball lens to demonstrate that plasmonic nanocavities can be used simultaneously as a nanoscopic and spectroscopic tool. This work opens up possibilities for studying the behavior of a few to single molecules in plasmonic nanoresonators, while simultaneously tracking their movements and spectral features. Our plasmonic nanolens is useful for nanosensing, nanochemistry, and biofunctional imaging. Plasmonics now delivers sensors capable of detecting single molecules. The emission enhancements and nanometer-scale optical confinement achieved by these metallic nanostructures vastly increase spectroscopic sensitivity, enabling real-time tracking. However, the interaction of light with such nanostructures typically loses all information about the spatial location of molecules within a plasmonic hot spot. Here, we show that ultrathin plasmonic nanogaps support complete mode sets which strongly influence the far-field emission patterns of embedded emitters and allow the reconstruction of dipole positions with 1-nm precision. Emitters in different locations radiate spots, rings, and askew halo images, arising from interference of 2 radiating antenna modes differently coupling light out of the nanogap, highlighting the imaging potential of these plasmonic “crystal balls.” Emitters at the center are now found to live indefinitely, because they radiate so rapidly.
Collapse
|
28
|
Pal SK, Chatterjee H, Ghosh SK. Manipulating the confinement of electromagnetic field in size-specific gold nanoparticles dimers and trimers. RSC Adv 2019; 9:42145-42154. [PMID: 35542872 PMCID: PMC9076545 DOI: 10.1039/c9ra07346a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022] Open
Abstract
The intriguing light-matter interactions can be governed by controlling the particle size and shape, electromagnetic interactions and dielectric properties and local environment of the metal nanostructures. Amongst the different approaches that have been engendered to manipulate light at the nanoscale, the self-assembly of metallic nanostructures with controllable interparticle distances and angular orientations, which strongly impact their optical attributes, is one of the viable avenues to exploit their utility in a diverse range of niche applications. The simplest geometrical architectures that enable such modulations are dimers with changeable interparticle distances and trimers with an additional degree of angular orientation to correlate the plasmonic observables with the observed spectral characteristics. Wet chemical approaches have been adopted in this study for the synthesis of size-selective gold nanoparticles, and appropriate organic linkers have judiciously been employed to induce plasmonic interactions amongst the gold nanoparticles in close proximity to each other. The combination of experimental observations and electromagnetic simulations adopted to probe the plasmonic interactions revealed that the electrodynamic coupling effect was very sensitive to particle size, interparticle distances and angular orientations in these simple nanoassemblies. The capability to precisely manipulate the electric field at the junctions between these plasmon-coupled nanoparticles could pave the way for the application of these nanoassemblies in surface-enhanced spectroscopies and sensing applications.
Collapse
Affiliation(s)
- Sudip Kumar Pal
- Department of Chemistry, Assam University Silchar-788011 Assam India +91-3842-270848
| | - Hirak Chatterjee
- Department of Chemistry, Assam University Silchar-788011 Assam India +91-3842-270848
| | - Sujit Kumar Ghosh
- Department of Chemistry, Assam University Silchar-788011 Assam India +91-3842-270848
| |
Collapse
|
29
|
Ha M, Kim JH, You M, Li Q, Fan C, Nam JM. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem Rev 2019; 119:12208-12278. [PMID: 31794202 DOI: 10.1021/acs.chemrev.9b00234] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmonic nanostructures possessing unique and versatile optoelectronic properties have been vastly investigated over the past decade. However, the full potential of plasmonic nanostructure has not yet been fully exploited, particularly with single-component homogeneous structures with monotonic properties, and the addition of new components for making multicomponent nanoparticles may lead to new-yet-unexpected or improved properties. Here we define the term "multi-component nanoparticles" as hybrid structures composed of two or more condensed nanoscale domains with distinctive material compositions, shapes, or sizes. We reviewed and discussed the designing principles and synthetic strategies to efficiently combine multiple components to form hybrid nanoparticles with a new or improved plasmonic functionality. In particular, it has been quite challenging to precisely synthesize widely diverse multicomponent plasmonic structures, limiting realization of the full potential of plasmonic heterostructures. To address this challenge, several synthetic approaches have been reported to form a variety of different multicomponent plasmonic nanoparticles, mainly based on heterogeneous nucleation, atomic replacements, adsorption on supports, and biomolecule-mediated assemblies. In addition, the unique and synergistic features of multicomponent plasmonic nanoparticles, such as combination of pristine material properties, finely tuned plasmon resonance and coupling, enhanced light-matter interactions, geometry-induced polarization, and plasmon-induced energy and charge transfer across the heterointerface, were reported. In this review, we comprehensively summarize the latest advances on state-of-art synthetic strategies, unique properties, and promising applications of multicomponent plasmonic nanoparticles. These plasmonic nanoparticles including heterostructured nanoparticles and composite nanostructures are prepared by direct synthesis and physical force- or biomolecule-mediated assembly, which hold tremendous potential for plasmon-mediated energy transfer, magnetic plasmonics, metamolecules, and nanobiotechnology.
Collapse
Affiliation(s)
- Minji Ha
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jae-Ho Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Myunghwa You
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
30
|
Chai RH, Zou WJ, Qian J, Chen J, Sun Q, Xu JJ. Plasmonic optical trapping of nanoparticles with precise angular selectivity. OPTICS EXPRESS 2019; 27:32556-32566. [PMID: 31684465 DOI: 10.1364/oe.27.032556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a plasmonic trapping scheme including a polystyrene nanoparticle with gold cap and a metal tip tweezers was proposed. We numerically investigated the optical trapping behavior of the metal tip to this asymmetric particle. The results show that the metal tip can capture the particle at the position of the gold cap due to the strong plasmonic interaction, while other positions of the particle cannot be captured by metal tip. Furthermore, the trapping angle of the nanoparticle can be adjusted by changing the incident wavelength. Precisely controlling the trapping angle of the nanoparticles in our study has important potential applications of optical tweezers, such as in single molecule manipulation.
Collapse
|
31
|
Kim M, Kwon H, Lee S, Yoon S. Effect of Nanogap Morphology on Plasmon Coupling. ACS NANO 2019; 13:12100-12108. [PMID: 31584259 DOI: 10.1021/acsnano.9b06492] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plasmon coupling is the fundamental principle by which the optical resonances in nanoparticle assemblies are tuned. Interactions of plasmons among nanoparticles in close proximity create plasmon coupling modes whose energies are sensitive to the nanogap parameters. Whereas many studies have focused on the gap distances, we herein probe the effect of gap morphology on plasmon coupling. Dimers that are prepared by adsorbing perfectly round ultrauniform Au nanospheres (AuNSs) onto the faces, edges, and vertices of Au nanocubes (AuNCs) present distinctly different nanogap morphologies. Dark-field single-particle scattering spectroscopy reveals that the longitudinal plasmon coupling mode shifts to lower energies as the AuNS forms a nanogap with parts of the AuNC with higher curvature. Simulation spectra are also consistent with this observation. Our calculations indicate that the much larger charge density at the vertex or edge of a AuNC lowers the plasmon coupling energy through the contribution of the Coulomb interaction when the AuNC combines with the AuNS. In comparison, the plasmon energies or anisotropic polarizability along the face, edge, and vertex directions of a AuNC differ only slightly and thus do not cause a shift in the plasmon coupling mode.
Collapse
Affiliation(s)
- Minkyu Kim
- Department of Chemistry , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Korea
| | - Hyuksang Kwon
- Korea Research Institute of Standards and Science , 267 Gajeong-ro , Yuseong-gu, Daejeon 34113 , Korea
| | - Sungwoon Lee
- Department of Chemistry , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Korea
| | - Sangwoon Yoon
- Department of Chemistry , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Korea
| |
Collapse
|
32
|
Dipole states and coherent interaction in surface-acoustic-wave coupled phononic resonators. Nat Commun 2019; 10:4583. [PMID: 31594937 PMCID: PMC6783409 DOI: 10.1038/s41467-019-12492-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/03/2019] [Indexed: 11/08/2022] Open
Abstract
Manipulation of mechanical motion at the micro-scale has been attracting continuous attention, leading to the successful implementation of various strategies with potential impact on classical and quantum information processing. We propose an approach based on the interplay between a pair of localised mechanical resonators and travelling surface acoustic waves (SAW). We demonstrate the existence of a two-sided interaction, allowing the use of SAW to trigger and control the resonator oscillation, and to manipulate the elastic energy distribution on the substrate through resonator coupling. Observation of the vectorial structure of the resonator motion reveals the existence of two coupling regimes, a dipole-dipole-like interaction at small separation distance versus a surface-mediated mechanical coupling at larger separation. These results illustrate the potential of this platform for coherent control of mechanical vibration at a resonator level, and reciprocally for manipulating SAW propagation using sub-wavelength elements.
Collapse
|
33
|
Kuttner C, Höller RPM, Quintanilla M, Schnepf MJ, Dulle M, Fery A, Liz-Marzán LM. SERS and plasmonic heating efficiency from anisotropic core/satellite superstructures. NANOSCALE 2019; 11:17655-17663. [PMID: 31535119 DOI: 10.1039/c9nr06102a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The optical properties of nanoparticle assemblies can be tailored via hybridization of plasmon modes. Isotropic core/satellite superstructures made of spherical nanoparticles are known to exhibit coupled modes with a strongly scattering (radiative) character, and provide hot spots yielding high activity in surface-enhanced Raman scattering (SERS). However, to complement this functionality with plasmonic heating, additional absorbing (non-radiative) modes are required. We introduce herein anisotropic superstructures formed by decorating a central nanorod with spherical satellite nanoparticles, which feature two coupled modes that allow application for both SERS and heating. On the basis of diffuse reflectance spectroscopy, small-angle X-ray scattering (SAXS), and electromagnetic simulations, the origin of the coupled modes is disclosed and thus serves as a basis toward alternative designs of functional superstructures. This work represents a proof-of-principle for the combination of high SERS efficiency with efficient plasmonic heating by near-infrared irradiation.
Collapse
Affiliation(s)
- Christian Kuttner
- CIC biomaGUNE, BioNanoPlasmonics Laboratory, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Qiu J, Xie M, Lyu Z, Gilroy KD, Liu H, Xia Y. General Approach to the Synthesis of Heterodimers of Metal Nanoparticles through Site-Selected Protection and Growth. NANO LETTERS 2019; 19:6703-6708. [PMID: 31449753 DOI: 10.1021/acs.nanolett.9b03167] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Heterodimers of metal nanoparticles are widely sought for applications in photonics, sensing, and catalysis. In this work, we demonstrate a general approach to the fabrication of heterodimers of metal nanoparticles by leveraging the concept of site-selected growth under the protection of an inert material. When styrene is polymerized in the presence of Au nanoparticles, the resultant polystyrene (PS) can be controlled to grow from only one portion of the surface of a nanoparticle. Free of PS, the remaining portion can serve as an active site for the heterogeneous nucleation and growth of the second metal. After dissolving the PS component, we obtain heterodimers of metal nanoparticles with tunable elemental compositions and controllable physical dimensions. The contact area between the two metals can also be maneuvered by adjusting the concentration of divinylbenzene used for copolymerization with styrene. Using this method, we have prepared Au-Ag, Au-Pd, and Au-Pt heterodimers and further investigated their plasmonic properties. The capability of this approach should be extendible to the fabrication of heterodimers with a broader range of compositions and properties.
Collapse
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , Shandong 250100 , P. R. China
| | - Minghao Xie
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Kyle D Gilroy
- The Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States
| | - Hong Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , Shandong 250100 , P. R. China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
35
|
Li J, Deng TS, Liu X, Dolan JA, Scherer NF, Nealey PF. Hierarchical Assembly of Plasmonic Nanoparticle Heterodimer Arrays with Tunable Sub-5 nm Nanogaps. NANO LETTERS 2019; 19:4314-4320. [PMID: 31184897 DOI: 10.1021/acs.nanolett.9b00792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoparticle assemblies have generated intense interest because of their novel optical, electronic, and magnetic properties that open up numerous opportunities in fundamental and applied nanophotonics, -electronics, and -magnetics. However, despite the great scientific and technological potential of these structures, it remains an outstanding challenge to reliably fabricate such assemblies with both nanometer-level structural control and precise spatial arrangements on a macroscopic scale. It is the combination of these two features that is key to realizing nanoparticle assemblies' potential, particular for device applications. To address this challenge, we propose a hierarchical assembly approach consisting of both template-particle and particle-particle interactions, whereby the former ensures precise addressability of assemblies on a surface and the latter provides nanometer-level structural control. Template-particle interactions are harnessed via chemical-pattern-directed assembly, and the particle-particle interactions are controlled using DNA-directed self-assembly. To demonstrate the potential of this hierarchical assembly approach, we demonstrate the fabrication of a particularly fascinating assembly: the nanoparticle heterodimer, which possesses a surprisingly rich set of plasmonic properties and is a promising candidate to enable a variety of imaging and sensing applications. Each heterodimer is placed on the surface at predetermined locations, and the precise control of the nanogaps is confirmed by far-field scattering measurements of individual dimers. We further demonstrate that the gap size can be effectively tuned by varying the DNA length. By correlating measured spectra with finite-difference time-domain (FDTD) simulations, we determine the gap sizes to be 4.2 and 5.0 nm-with subnm deviation-for the two DNA lengths investigated. This is one of the best gap uniformities ever demonstrated for surface-bound nanoparticle assemblies. The estimated surface-enhanced Raman scattering (SERS) enhancement factor of these heterodimers is on the order of 105-106 with high reproducibility and predictable polarization-dependence. This hierarchical fabrication technique-employing both template-particle and particle-particle interactions-constitutes a novel platform for the realization of functional nanoparticle assemblies on surfaces and thereby creates new opportunities to implement these structures in a variety of applications.
Collapse
Affiliation(s)
- Jiajing Li
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Tian-Song Deng
- The James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
| | - Xiaoying Liu
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - James A Dolan
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
- Material Science Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
- The Institute for Molecular Engineering , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Norbert F Scherer
- The James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
| | - Paul F Nealey
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
- Material Science Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
- The Institute for Molecular Engineering , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| |
Collapse
|
36
|
Szekrényes DP, Pothorszky S, Zámbó D, Deák A. Detecting spatial rearrangement of individual gold nanoparticle heterodimers. Phys Chem Chem Phys 2019; 21:10146-10151. [PMID: 31062803 DOI: 10.1039/c9cp01541h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of properly surface-modified gold nanorods and spherical gold nanoparticles in aqueous medium results in the formation of heterodimers, which show a unique optical scattering spectrum due to the plasmon coupling between the particles. While for the majority of the heterodimers, both particles are located at the substrate level, occasionally, some spherical particles are found to be located on top of the gold nanorods instead of the supporting substrate. Based on optical measurements on such individual heterodimers, it is shown that in contrast to the plain white-light scattering spectrum, the polarization-resolved spectra allow us to distinguish between the cases when the sphere is located on top or at the side of the nanorods. This finding is utilized to investigate the structure of heterodimers upon formation in situ in aqueous medium. It is demonstrated at the individual heterodimer level that both arrangements can be found upon assembly and that the nanosphere originally located on top of the rod right after assembly can indeed rearrange and move to substrate level during drying. The results underline the importance of low-level in situ characterization approaches in the field of nanoparticle self-assembly and can be utilized to assess the impact of different surface ligands, interfacial layers and liquid environments on the drying of nanoparticle-based systems.
Collapse
Affiliation(s)
- Dániel Péter Szekrényes
- Institute of Technical Physics and Materials Science, HAS Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary.
| | | | | | | |
Collapse
|
37
|
Goodarzi M, Pakizeh T. Directional optical absorption and scattering in conical plasmonic nanostructures. OPTICS LETTERS 2019; 44:2212-2215. [PMID: 31042186 DOI: 10.1364/ol.44.002212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Asymmetric plasmonic nanostructures can be exploited to realize directional optical absorption or scattering for oppositely propagating optical waves. Here we theoretically investigate the roles of asymmetry and interaction of nanoparticles in directional optical responses. It is shown that adding optical interaction to a single truncated nanocone by dividing it into interacting nanodisks without changing geometrical asymmetry causes significant enhancement of directionality. We achieve an increase of about six times in directional optical absorption by using four nanodisks arranged in conical form. This effect is obtained due to the constructive interference of the excited modes of each nanodisk.
Collapse
|
38
|
Multipole Radiations from Large Gold Nanospheres Excited by Evanescent Wave. NANOMATERIALS 2019; 9:nano9020175. [PMID: 30708976 PMCID: PMC6410218 DOI: 10.3390/nano9020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 11/17/2022]
Abstract
We proposed the use of the evanescent wave generated in a total internal reflection configuration to excite large gold nanospheres and investigated the radiations of the high-order plasmon modes supported in gold nanospheres. It was revealed that the evanescent wave excitation is equivalent to the excitation by using both the incident and reflected light, offering us the opportunity to control the orientation of the electric field used to excite nanoparticles. In addition, it was found that the scattering light intensity is greatly enhanced and the background noise is considerably suppressed, making it possible to detect the radiations from high-order plasmon modes. Moreover, the influence of the mirror images on the scattering induced by a metal substrate is eliminated as compared with the surface plasmon polariton excitation. By exciting a gold nanosphere with s-polarized light and detecting the scattering light with a p-polarized analyzer, we were able to reveal the radiation from the electric quadrupole mode of the gold nanosphere in both the spatial and the frequency domains. Our findings are important for characterizing the radiations from the high-order modes of large nanoparticles and useful for designing nanoscale photonic devices.
Collapse
|
39
|
Lee S, Kim M, Yoon S. Colour and SERS patterning using core-satellite nanoassemblies. Chem Commun (Camb) 2019; 55:1466-1469. [PMID: 30644479 DOI: 10.1039/c8cc09270b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We explore spatial control of the formation of core-satellite nanoassemblies on glass substrates. UV irradiation leads to the photooxidative desorption of thiol linkers from gold nanoparticles deposited on the substrates, thereby prohibiting further assembly in the irradiated region. The distribution of assemblies and monomers yields a pattern with stark contrasts in colour and Raman enhancement. Our findings can be utilised in the fabrication of microfluidic SERS sensors, colour displays, photonic devices, and metamaterials.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | | | | |
Collapse
|
40
|
Muhammed MM, Mokkath JH. Optical resonance coupling in compositionally different nanocube–nanosphere heterodimers. NEW J CHEM 2019. [DOI: 10.1039/c9nj00855a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plasmonic nanoparticle dimers with interparticle gap distances (d) in the nanometer scale are able to produce huge electromagnetic field enhancements in the gap region, useful for novel optical applications.
Collapse
Affiliation(s)
- Mufasila Mumthaz Muhammed
- Quantum Nanophotonics Simulations Lab
- Department of Physics
- Kuwait College of Science and Technology
- Kuwait
| | - Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab
- Department of Physics
- Kuwait College of Science and Technology
- Kuwait
| |
Collapse
|
41
|
Mokkath JH. A quantum mechanical study of optical excitations in nanodisk plasmonic oligomers. Phys Chem Chem Phys 2019; 21:26540-26548. [DOI: 10.1039/c9cp04566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using state-of-the-art quantum-mechanical calculations, we investigate the optical excitations in plasmonic nanodisk oligomers.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab
- Department of Physics
- Kuwait College of Science And Technology
- Kuwait
| |
Collapse
|
42
|
Li G, Hu H, Wu L. Tailoring Fano lineshapes using plasmonic nanobars for highly sensitive sensing and directional emission. Phys Chem Chem Phys 2018; 21:252-259. [PMID: 30519701 DOI: 10.1039/c8cp05779f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmonic oligomers are one class of the most promising nanoclusters for generating Fano resonances. This study reveals that a nanobar-based heptamer concurrently sustains triple polarization-dependent Fano resonances, in sharp contrast to traditional nanodisk or nanosphere-based counterparts. Benefiting from the enhanced near field and reduced spectral linewidth, the gold heptamer exhibits a high refractive index sensitivity (940 nm per RIU) together with a figure of merit (FoM) value as large as 20.9, which outperforms that of most other gold oligomers. On the other hand, it is found that the spectral positions of hybridized eigenmodes depend strongly on the spatial configurations of the constituent nanobars. As a proof of concept, we design a simple heterodimer comprising a nanocross and a nanobar, where plasmonic modes with opposite radiative decay characteristics are excellently overlapped both spectrally and spatially by elaborate tailoring. Double strong Fano resonances appear on opposite sides of the spectrum as expected. More interestingly, the radiation main lobes all point to one direction at these two Fano resonances due to the spatial charge distributions and mode interferences with the maximal directivity ratio (DR) as high as 22.4, in a similar manner to the radio frequency (RF) Yagi-Uda antenna. Furthermore, the emission directions can also be easily switched by adjusting the orientations of the individual nanobar in the heterodimer. Our study demonstrates that the nanobar-based oligomers with tailored Fano lineshapes could serve as versatile and delicate platforms for the label-free biochemical sensing and directional transmission of optical information at the nanometre scale.
Collapse
Affiliation(s)
- Guozhou Li
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
| | | | | |
Collapse
|
43
|
Zhang C, Tumkur T, Yang J, Lou M, Dong L, Zhou L, Nordlander P, Halas NJ. Optical-Force-Dominated Directional Reshaping of Au Nanodisks in Al-Au Heterodimers. NANO LETTERS 2018; 18:6509-6514. [PMID: 30180595 DOI: 10.1021/acs.nanolett.8b03033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The optical reshaping of metallic nanostructures typically requires intense laser pulses to first approach or achieve melting, followed by surface-tension-dominated reshaping, transforming the original nanostructures into more spherical morphologies. Here, we report the directional optical reshaping of the Au nanodisk of an Al-Au heterodimer in the illuminated junction of an atomic force microscope (AFM). Both the heightening and the repositioning of the Au nanodisk component are induced, reducing the gap between the two nanodisks. There are three contributors to this process: the photothermal softening of the Au lattice, the optical force applied to the Au nanodisk by the Al nanodisk, and the optical force from the nearby AFM tip. The asymmetric reshaping of the heterodimer is observable structurally, through electron microscopic imaging, and through changes in the heterodimer optical response. This optical-force-directed shape manipulation may have potential applications in nanofabrication, optically induced nanomanufacturing, sensing, and quality control.
Collapse
|
44
|
Zhu H, Fan Z, Yuan Y, Wilson MA, Hills-Kimball K, Wei Z, He J, Li R, Grünwald M, Chen O. Self-Assembly of Quantum Dot-Gold Heterodimer Nanocrystals with Orientational Order. NANO LETTERS 2018; 18:5049-5056. [PMID: 29989818 DOI: 10.1021/acs.nanolett.8b01860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The self-assembly of nanocrystals into ordered superlattices is a powerful strategy for the production of functional nanomaterials. The assembly of well-ordered target structures, however, requires control over the building blocks' size and shape as well as their interactions. While nanocrystals with homogeneous composition are now routinely synthesized with high precision and assembled into various ordered structures, high-quality multicomponent nanocrystals and their ordered assemblies are rarely reported. In this paper, we demonstrate the synthesis of quantum dot-gold (QD-Au) heterodimers. These heterodimers possess a uniform shape and narrow size distribution and are capped with oleylamine and dodecyltrimethylammonium bromide (DTAB). Assembly of the heterodimers results in a superlattice with long-range orientational alignment of dimers. Using synchrotron-based X-ray measurements, we characterize the complex superstructure formed from the dimers. Molecular dynamics simulations of a coarse-grained model suggest that anisotropic interactions between the quantum dot and gold components of the dimer drive superlattice formation. The high degree of orientational order demonstrated in this work is a potential route to nanomaterials with useful optoelectronic properties.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Zhaochuan Fan
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Yucheng Yuan
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Mitchell A Wilson
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Katie Hills-Kimball
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Zichao Wei
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Jie He
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Ruipeng Li
- National Synchrotron Light Source II , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Michael Grünwald
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Ou Chen
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
45
|
Mokkath JH. Optical properties of bimetallic compositional heterodimers. Phys Chem Chem Phys 2018; 20:19017-19022. [PMID: 29971305 DOI: 10.1039/c8cp03346c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many important applications of nanometer-sized metal objects arise from the light-induced interactions between their component structures. Here, we demonstrate through state-of-the-art quantum mechanical simulations, the optical response of bimetallic heterodimers (two closely adjacent nanoparticles) composed of Al and Na nanoparticles. We calculate the optical response using time-dependent density functional theory. We found that Al-Na bimetallic heterodimers show rich optical features, strongly depending on the size heterogeneity and interparticle gap distances. In particular, we observe remarkable optical field enhancements and creation of new low-energy absorption peaks with respect to the single Al and Na nanoparticles. We believe that our results may influence the design of future nanoparticle-based optical nanoantenna.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Department of Physics, Kuwait College of Science And Technology, 7th Ring Road, P.O. Box 27235, Doha Area, Kuwait.
| |
Collapse
|
46
|
Tang Y, Huang Y, Qv L, Fang Y. Electromagnetic Energy Redistribution in Coupled Chiral Particle Chain-Film System. NANOSCALE RESEARCH LETTERS 2018; 13:194. [PMID: 29978337 PMCID: PMC6033841 DOI: 10.1186/s11671-018-2600-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Metal nanoparticle-film system has been proved that it has the ability of focusing light in the gap between particle and film, which is useful for surface-enhanced Raman scattering and plasmon catalysis. The rapid developed plasmonic chirality can also be realized in such system. Here, we investigated an electromagnetic energy focusing effect and chiral near-field enhancement in a coupled chiral particle chain on gold film. It shows large electric field enhancement in the gap between particle and film, as well as chiral near field. The enhancement properties at resonant peaks for the system excited by left circularly polarized light and right circularly polarized light are obviously different. This difference resulted from the interaction of circularly polarized light and the chiral particle-film system is analyzed with plasmon hybridization. The enhanced optical activity can provide promising applications for the enhancement of chiral molecule sensor for this chiral particle chain-film system.
Collapse
Affiliation(s)
- Yuxia Tang
- Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing, 400044 China
- School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Yingzhou Huang
- Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing, 400044 China
| | - Linhong Qv
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024 China
| | - Yurui Fang
- Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing, 400044 China
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
47
|
Chakkarapani SK, Sun Y, Lee S, Fang N, Kang SH. Three-Dimensional Orientation of Anisotropic Plasmonic Aggregates at Intracellular Nuclear Indentation Sites by Integrated Light Sheet Super-Resolution Microscopy. ACS NANO 2018; 12:4156-4163. [PMID: 29578326 DOI: 10.1021/acsnano.8b00025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three-dimensional (3D) orientations of individual anisotropic plasmonic nanoparticles in aggregates were observed in real time by integrated light sheet super-resolution microscopy ( iLSRM). Asymmetric light scattering of a gold nanorod (AuNR) was used to trigger signals based on the polarizer angle. Controlled photoswitching was achieved by turning the polarizer and obtaining a series of images at different polarization directions. 3D subdiffraction-limited super-resolution images were obtained by superlocalization of scattering signals as a function of the anisotropic optical properties of AuNRs. Varying the polarizer angle allowed resolution of the orientation of individual AuNRs. 3D images of individual nanoparticles were resolved in aggregated regions, resulting in as low as 64 nm axial resolution and 28 nm spatial resolution. The proposed imaging setup and localization approach demonstrates a convenient method for imaging under a noisy environment where the majority of scattering noise comes from cellular components. This integrated 3D iLSRM and localization technique was shown to be reliable and useful in the field of 3D nonfluorescence super-resolution imaging.
Collapse
Affiliation(s)
- Suresh Kumar Chakkarapani
- Department of Chemistry, Graduate School , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| | - Yucheng Sun
- Department of Chemistry, Graduate School , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| | - Ning Fang
- Department of Chemistry , Georgia State University , Atlanta , Georgia 30303 , United States
| | - Seong Ho Kang
- Department of Chemistry, Graduate School , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
- Department of Applied Chemistry and Institute of Natural Sciences , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| |
Collapse
|
48
|
Haran G, Chuntonov L. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chem Rev 2018; 118:5539-5580. [DOI: 10.1021/acs.chemrev.7b00647] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gilad Haran
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 760001, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
49
|
Mokkath JH. Nanoparticle heterodimers: The role of size and interparticle gap distance on the optical response. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
Tumkur T, Yang X, Zhang C, Yang J, Zhang Y, Naik GV, Nordlander P, Halas NJ. Wavelength-Dependent Optical Force Imaging of Bimetallic Al-Au Heterodimers. NANO LETTERS 2018; 18:2040-2046. [PMID: 29436231 DOI: 10.1021/acs.nanolett.8b00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Many important applications of nanometer-scale metallic complexes arise from the light-induced, near-field interactions between their component structures. Here we examine the near-field interactions in bimetallic Al-Au plasmonic nanodisk heterodimers, where the coupling between the primitive plasmons of nanostructures composed of two different metals is studied. Understanding the correlations between nanoparticle morphology and near-field optical properties, particularly for nanostructures composed of two different metals, requires spectrally resolved near-field spatial information. An ideal tool for such investigations is the recently developed photoinduced force microscopy, where the electromagnetic forces between an optically excited plasmonic nanostructure and an adjacent scanning nanoscale tip are measured. Using this approach, we visualize the wavelength-dependent near-field interactions in these bimetallic heterodimers. This system provides a prime example of the diabatic, antenna-reactor picture of plasmon coupling where for a given wavelength the more resonant primitive "driving" plasmon induces a response, the "forced" plasmon, in the off-resonant component. We critically examine spectrally resolved tip-nanostructure forces, comparing experiment with theory, for tips and nanoscale structures of realistic dimensions relative to frequently used approximations for tip geometries. The contrasting effects of dielectric versus metallic tips on acquired spectral force profiles are also examined.
Collapse
|