1
|
Karimi S, Bakhshali R, Bolandi S, Zahed Z, Mojtaba Zadeh SS, Kaveh Zenjanab M, Jahanban Esfahlan R. For and against tumor microenvironment: Nanoparticle-based strategies for active cancer therapy. Mater Today Bio 2025; 31:101626. [PMID: 40124335 PMCID: PMC11926801 DOI: 10.1016/j.mtbio.2025.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer treatment is challenged by the tumor microenvironment (TME), which promotes drug resistance and cancer cell growth. This review offers a comprehensive and innovative perspective on how nanomedicine can modify the TME to enhance therapy. Strategies include using nanoparticles to improve oxygenation, adjust acidity, and alter the extracellular matrix, making treatments more effective. Additionally, nanoparticles can enhance immune responses by activating immune cells and reducing suppression within tumors. By integrating these approaches with existing therapies, such as chemotherapy and radiotherapy, nanoparticles show promise in overcoming traditional treatment barriers. The review discusses how changes in the TME can enhance the effectiveness of nanomedicine itself, creating a reciprocal relationship that boosts overall efficacy. We also highlight novel strategies aimed at exploiting and overcoming the TME, leveraging nanoparticle-based approaches for targeted cancer therapy through precise TME modulation.
Collapse
Affiliation(s)
- Soroush Karimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Zahra Zahed
- Department of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Masoumeh Kaveh Zenjanab
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Almeida MB, Galdiano CMR, Silva Benvenuto FSRD, Carrilho E, Brazaca LC. Strategies Employed to Design Biocompatible Metal Nanoparticles for Medical Science and Biotechnology Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67054-67072. [PMID: 38688024 DOI: 10.1021/acsami.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The applicability of nanomaterials has evolved in biomedical domains thanks to advances in biocompatibility strategies and the mitigation of cytotoxic effects, allowing diagnostics, imaging, and therapeutic approaches. The application of nanoparticles (NP), particularly metal nanoparticles (mNPs), such as gold (Au) and silver (Ag), includes inherent challenges related to the material characteristics, surface modification, and bioconjugation techniques. By tailoring the surface properties through appropriate coating with biocompatible molecules or functionalization with active biomolecules, researchers can reach a harmonious interaction with biological systems or samples (mostly fluids or tissues). Thus, this review highlights the mechanisms associated with the obtention of biocompatible mNP and presents a comprehensive overview of methods that facilitate safe and efficient production. Therefore, we consider this review to be a valuable resource for all researchers navigating this dynamic field.
Collapse
Affiliation(s)
- Mariana Bortholazzi Almeida
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | | | - Filipe Sampaio Reis da Silva Benvenuto
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
3
|
Pallod S, Fuller G, Chowdhury T, Rege K. Gold nanobipyramids-based laser-activated sealants for effective skin sealing and repair. Int J Hyperthermia 2024; 41:2301035. [PMID: 38318887 DOI: 10.1080/02656736.2023.2301035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
Anisotropic gold nanostructures have gained increased attention for biomedical applications because of their remarkable optical properties. An emerging type of gold nanostructure-gold nanobipyramids (AuNBP)-has been shown to exhibit superior absorption properties compared to conventionally used gold nanoparticles, which makes them attractive for photothermal applications. We generated a high-shape-purity dispersion of AuNBP using a seed-mediated method and embedded them as photothermal conversion agents in a silk fibroin matrix to investigate their efficacy in photothermal sealing of incisional wounds in immunocompetent mice. These AuNBP-doped laser-activated sealants, or AuNBP-LASE were able to absorb near-infrared laser energy and convert it to heat, thereby inducing transient hyperthermia in the wound and the surrounding tissue. This photothermal conversion facilitated rapid sealing of the skin tissue by the AuNBP-LASE, which resulted in faster functional recovery of skin barrier function compared to nylon sutures at the early stages of repair. Further, the biomechanical properties of the healing skin closed with AuNBP-LASE those of intact skin more rapidly compared to incisions approximated with sutures. Histology studies indicated higher penetration of the LASE within the volume of the incision in skin tissue, lower scab formation, and a similar epidermal gap compared to conventional suturing. These results demonstrate that AuNBP-LASEs can be effective as wound approximation devices for photothermal sealing.
Collapse
Affiliation(s)
- Shubham Pallod
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Gareth Fuller
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Trishita Chowdhury
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
4
|
Xu Y, Zou M, Wang H, Zhang L, Xing M, He M, Jiang H, Zhang Q, Kauppinen EI, Xin F, Tian Y. Upconversion nanoparticles@single-walled carbon nanotubes composites as efficient self-monitored photo-thermal agents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123173. [PMID: 37499470 DOI: 10.1016/j.saa.2023.123173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Conventional photothermal therapy (PTT) usually relies on a macroscopic heat source to raise the temperature of tissues to 41-45 °C, which not only kills the pathological cells but causes severe side effects on nearby normal tissues, thus reducing the accuracy of PTT. Here we successfully fabricated nanocomposites of NaYF4:Yb3+,Tm3+@NaYF4:Yb3+@SiO2-SWCNTs, in which the upconversion nanoparticles (UCNPs) serve as real-time temperature-feedback moiety and the single-walled carbon nanotubes (SWCNTs) serve as efficient nano-heaters. The sample displays an excellent photothermal conversion capacity, i.e., the temperature of the aqueous dispersion increases from 23.3 °C up to 60.1 °C under 980 nm excitation due to the intense absorption and highly efficient heat generation of SWCNTs. Meanwhile, the temperature of the nanocomposites is monitored in real time based on the fluorescent intensity ratio of UCNPs. The in-vitro experiments demonstrate that the temperature of the nanocomposites at tissue injection of 1 mm can reach PTT temperature of 42.2 °C with a facile surrounding temperature of 36.2 °C under moderate laser power (980 nm, 2.0 W cm-2). These results provide a novel design for multifunctional nanocomposites that enable safe and controlled PTT.
Collapse
Affiliation(s)
- Yang Xu
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Mengke Zou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hong Wang
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Lili Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Mingming Xing
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Maoshuai He
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hua Jiang
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 00076 AALTO, Finland
| | - Qiang Zhang
- Honda Research Institute, Inc. 70 Rio Robles, San Jose, CA 95134, USA
| | - Esko I Kauppinen
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 00076 AALTO, Finland
| | - Fangyun Xin
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Ying Tian
- School of Science, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
5
|
Singh P, Haloi P, Singh K, Roy S, Sarkar A, B SL, Choudhary R, Mohite C, Chawla S, Konkimalla VB, Sanpui P, Jaiswal A. Palladium Nanocapsules for Photothermal Therapy in the Near-Infrared II Biological Window. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39081-39098. [PMID: 37566573 DOI: 10.1021/acsami.3c06186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Recent developments in nanomaterials with programmable optical responses and their capacity to modulate the photothermal effect induced by an extrinsic source of light have elevated plasmonic photothermal therapy (PPTT) to the status of a favored treatment for a variety of malignancies. However, the low penetration depth of near-infrared-I (NIR-I) lights and the need to expose the human body to a high laser power density in PPTT have restricted its clinical translation for cancer therapy. Most nanostructures reported to date exhibit limited performance due to (i) activity only in the NIR-I region, (ii) the use of intense laser, (iii) need of large concentration of nanomaterials, or (iv) prolonged exposure times to achieve the optimal hyperthermia state for cancer phototherapy. To overcome these shortcomings in plasmonic nanomaterials, we report a bimetallic palladium nanocapsule (Pd Ncap)─with a solid gold bead as its core and a thin, perforated palladium shell─with extinction both in the NIR-I as well as the NIR-II region for PPTT applications toward cancer therapy. The Pd Ncap demonstrated exceptional photothermal stability with a photothermal conversion efficiency of ∼49% at the NIR-II (1064 nm) wavelength region at a very low laser power density of 0.5 W/cm2. The nanocapsules were further surface-functionalized with Herceptin (Pd Ncap-Her) to target the breast cancer cell line SK-BR-3 and exploited for in vitro PPTT applications using NIR-II light. Pd Ncap-Her caused more than 98% cell death at a concentration of just 50 μg/mL and a laser power density of 0.5 W/cm2 with an output power of only 100 mW. Flow cytometric and microscopic analyses revealed that Pd Ncap-Her-induced apoptosis in the treated cancer cells during PPTT. Additionally, Pd Ncaps were found to have reactive oxygen species (ROS) scavenging ability, which can potentially reduce the damage to cells or tissues from ROS produced during PPTT. Also, Pd Ncap demonstrated excellent in vivo biocompatibility and was highly efficient in photothermally ablating tumors in mice. With a high photothermal conversion and killing efficiency at very low nanoparticle concentrations and laser power densities, the current nanostructure can operate as an effective phototherapeutic agent for the treatment of different cancers with ROS-protecting ability.
Collapse
Affiliation(s)
- Prem Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Prakash Haloi
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Khushal Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Shounak Roy
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Ankita Sarkar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Siva Lokesh B
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rajat Choudhary
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Chandrasen Mohite
- Department of Biotechnology, Birla Institute of Technology and Science Pilani, Dubai Campus, Dubai International Academic City, Dubai 345055, United Arab Emirates
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Pallab Sanpui
- Department of Biotechnology, Birla Institute of Technology and Science Pilani, Dubai Campus, Dubai International Academic City, Dubai 345055, United Arab Emirates
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
6
|
John S, Hester S, Basij M, Paul A, Xavierselvan M, Mehrmohammadi M, Mallidi S. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. PHOTOACOUSTICS 2023; 32:100533. [PMID: 37636547 PMCID: PMC10448345 DOI: 10.1016/j.pacs.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
In the past decade, photoacoustic (PA) imaging has attracted a great deal of popularity as an emergent diagnostic technology owing to its successful demonstration in both preclinical and clinical arenas by various academic and industrial research groups. Such steady growth of PA imaging can mainly be attributed to its salient features, including being non-ionizing, cost-effective, easily deployable, and having sufficient axial, lateral, and temporal resolutions for resolving various tissue characteristics and assessing the therapeutic efficacy. In addition, PA imaging can easily be integrated with the ultrasound imaging systems, the combination of which confers the ability to co-register and cross-reference various features in the structural, functional, and molecular imaging regimes. PA imaging relies on either an endogenous source of contrast (e.g., hemoglobin) or those of an exogenous nature such as nano-sized tunable optical absorbers or dyes that may boost imaging contrast beyond that provided by the endogenous sources. In this review, we discuss the applications of PA imaging with endogenous contrast as they pertain to clinically relevant niches, including tissue characterization, cancer diagnostics/therapies (termed as theranostics), cardiovascular applications, and surgical applications. We believe that PA imaging's role as a facile indicator of several disease-relevant states will continue to expand and evolve as it is adopted by an increasing number of research laboratories and clinics worldwide.
Collapse
Affiliation(s)
- Samuel John
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Scott Hester
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Avijit Paul
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Mohammad Mehrmohammadi
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, Rochester, NY, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
7
|
Boregowda G, Mariappan P. 3D modeling of vector/edge finite element method for multi-ablation technique for large tumor-computational approach. PLoS One 2023; 18:e0289262. [PMID: 37506084 PMCID: PMC10381062 DOI: 10.1371/journal.pone.0289262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Microwave ablation (MWA) is a cancer thermal ablation treatment that uses electromagnetic waves to generate heat within the tissue. The goal of this treatment is to eliminate tumor cells while leaving healthy cells unharmed. During MWA, excess heat generation can kill healthy cells. Hence, mathematical models and numerical techniques are required to analyze the heat distribution in the tissue before the treatment. The aim of this research is to explain the implementation of the 3D vector finite element method in a wave propagation model that simulates the specific absorption rate in the liver. The 3D Nedelec elements from H(curl; Ω) space are used to discretize the wave propagation model, and this implementation is helpful in solving many real-world problems that involve electromagnetic propagation with perfect conducting and absorbing boundary conditions. One of the difficulties in ablation treatment is creating a large ablation zone for a large tumor (diameter greater than 3 cm) in a short period of time with minimum damage to the surrounding tissue. This article addresses the aforementioned issue by introducing four antennas into the different places of the tumor sequentially and producing heat uniformly over the tumor. The results demonstrated that 95.5% of the tumor cells were killed with minimal damage to the healthy cells when the heating time was increased to 4 minutes at each position. Subsequently, we studied the temperature distribution and localised tissue contraction in the tissue using the three-dimensional bio-heat equation and temperature-time dependent model, respectively. The local tissue contraction is measured at arbitrary points in the domain and is more noticeable at temperatures higher than 102°C. The thermal damage in the liver during MWA treatment is investigated using the three-state cell death model. The system of partial differential equations is solved numerically due to the complex geometry of the domain, and the results are compared with experimental data to validate the models and parameters.
Collapse
Affiliation(s)
- Gangadhara Boregowda
- Department of Mathematics and Statistics, Indian Institute of Technology Tirupati, Andhra Pradesh, India
| | - Panchatcharam Mariappan
- Department of Mathematics and Statistics, Indian Institute of Technology Tirupati, Andhra Pradesh, India
| |
Collapse
|
8
|
Zhang X, Zhang Y, Wang N, Shen Y, Chen Q, Han L, Hu B. Photothermal Nanoheaters-Modified Spores for Safe and Controllable Antitumor Therapy. Int J Nanomedicine 2022; 17:6399-6412. [PMID: 36545219 PMCID: PMC9762999 DOI: 10.2147/ijn.s385269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction To present a safer tumor therapy based on bacteria and identify in detail how the activation and infection behavior of spores can be controlled remotely by near-infrared light (NIR-irradiation) based on nanoheaters' modification. Methods Spores bring a better tolerance to surface modification. Transitive gold-nanorods-allied-nanoclusters-modified spores (Spore@NRs/NCs) were constructed by covalent glutaraldehyde crosslink. The photothermal properties of nanoheaters before and after attachment to spores were studied by recording temperature-irradiation time curves. The controlled viability and infection behavior of Spore@NRs/NCs were investigated by NIR-irradiation. Results In this work, a controllable sterilizing effect to activated vegetative bacteria was obtained obviously. When met with a suitable growth-environment, Spore@NRs/NCs could germinate, activate into vegetative bacteria and continue to reproduce. Without NIR-irradiation, nanoheaters could not affect the activity of both spores and vegetative bacterial cells. However, with NIR-irradiation after incubating in growth medium, nanoheaters on spores could control the spores' germination and affect the growth curve as well as the viability of the vegetative bacterial cells. For Spore@NRs/NCs (Spore:NCs:NRs=1:1:4, 67.5 μg mL-1), a ~98% killing rate of vegetative bacterial cells was obtained with NIR-irradiation (2.8 W cm-2, 20 min) after 2 h-incubation. In addition, these nanoheaters modified on spores could be taken not only to the vegetative bacteria cells, but also to the first-generation bacteria cells with their excellent photothermal and bactericidal performance, as well as synergetic anticancer effect. NIR-irradiation after 2 h-incubation could also trigger Spore@NRs/NCs (1:1:4, 6 μL) to synergistically reduce the viability of HCT116 cells to 15.63±2.90%. Conclusion By using NIR-irradiation, the "transitive" nanoheaters can remotely control the activity of both bacteria (germinated from spore) and cancer cells. This discovery provides basis and a feasible plan for controllable safer treatment of bacteria therapy, especially anaerobes with spores in hypoxic areas of the malignant solid tumors.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Yang Zhang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People’s Republic of China
| | - Ning Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Yetong Shen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Qing Chen
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People’s Republic of China
| | - Lu Han
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China,Correspondence: Bo Hu, Email ;
| |
Collapse
|
9
|
Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH. Polymers (Basel) 2022; 14:polym14153151. [PMID: 35956664 PMCID: PMC9371108 DOI: 10.3390/polym14153151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 ± 2 nm, which is maintained in the pH range of 4.2–10; while the zeta potential is significantly affected, decreasing from 20 ± 2 mV to −5 ± 1 mV at the same pH range. The temperature profiles of PPN suspensions were obtained using a NIR laser beam (1.5 W centered at 808 nm). These results were analyzed with a three-dimensional predictive unsteady-state heat transfer model that considers heat conduction, photothermal heating from laser irradiation, and heat generation due to the water absorption. The temperature profiles of PPN under laser irradiation are concentration-dependent, while the pH increase only induces a slight reduction in the temperature profiles. The model predicts a value of photothermal transduction efficiency (η) of 0.68 for the PPN. Furthermore, a linear dependency was found for the overall heat transfer coefficient (U) and η with the suspension temperature and pH, respectively. Finally, the model developed in this work could help identify the exposure time and concentration doses for different tissues and cells (pH-dependent) in photothermal applications.
Collapse
|
10
|
Wang Z, Cheng H, Sheng Y, Chen Z, Zhu X, Ren J, Zhang X, Lv L, Zhang H, Zhou J, Ding Y. Biofunctionalized graphene oxide nanosheet for amplifying antitumor therapy: Multimodal high drug encapsulation, prolonged hyperthermal window, and deep-site burst drug release. Biomaterials 2022; 287:121629. [PMID: 35724541 DOI: 10.1016/j.biomaterials.2022.121629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022]
Abstract
Biofunctional surface-modification surpassed critical limitation of graphene oxide (GO) in biocompatibility and drug delivery efficiency, contributing to versatile biomedical applications. Here, a protein corona-bridged GO nanoplatform with high drug loading, longstanding hyperthermia, and controllable drug release, was engineered for amplified tumor therapeutic benefits. Structurally, GO surface was installed with phenylboronic acid (PBA) layer, on which iRGD conjugated apolipoprotein A-I (iRGD-apoA-I) was coordinated via boron electron-deficiency, to form the sandwich-like GO nanosheet (iAPG). The GO camouflaging by iRGD-apoA-I corona provided multimodal high doxorubicin (DOX) loading by π-π stacking and coordination, and generated a higher photothermal transformation efficiency simultaneously. In vitro studies demonstrated that iAPG significantly improved drug penetration and internalization, then achieved tumor-targeted DOX release through near-infrared (NIR) controlled endo/lysosome disruption. Moreover, iAPG mediated site-specific drug shuttling to produce a 3.53-fold enhancement of tumor drug-accumulation compared to the free DOX in vivo, and induced deep tumor penetration dramatically. Primary tumor ablation and spontaneous metastasis inhibition were further demonstrated with negligible side effects under optimal NIR. Taken together, our work provided multifunctional protein corona strategy to inorganic nanomaterials toward advantageous biomedical applications.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hao Cheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yu Sheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Zongkai Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xiaohong Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jianye Ren
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xiangze Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lingyu Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
11
|
Gold Nanorod-Assisted Photothermal Therapy and Improvement Strategies. Bioengineering (Basel) 2022; 9:bioengineering9050200. [PMID: 35621478 PMCID: PMC9138169 DOI: 10.3390/bioengineering9050200] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Noble metal nanoparticles have been sought after in cancer nanomedicine during the past two decades, owing to the unique localized surface plasmon resonance that induces strong absorption and scattering properties of the nanoparticles. A popular application of noble metal nanoparticles is photothermal therapy, which destroys cancer cells by heat generated by laser irradiation of the nanoparticles. Gold nanorods have stood out as one of the major types of noble metal nanoparticles for photothermal therapy due to the facile tuning of their optical properties in the tissue penetrative near infrared region, strong photothermal conversion efficiency, and long blood circulation half-life after surface modification with stealthy polymers. In this review, we will summarize the optical properties of gold nanorods and their applications in photothermal therapy. We will also discuss the recent strategies to improve gold nanorod-assisted photothermal therapy through combination with chemotherapy and photodynamic therapy.
Collapse
|
12
|
Computational modeling of poroelastic brain tumor therapy during heat transfer carrying temperature-dependent blood perfusion. Med Eng Phys 2022; 103:103792. [DOI: 10.1016/j.medengphy.2022.103792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022]
|
13
|
Pang S, Kapur A, Zhou K, Anastasiadis P, Ballirano N, Kim AJ, Winkles JA, Woodworth GF, Huang H. Nanoparticle-assisted, image-guided laser interstitial thermal therapy for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1826. [PMID: 35735205 PMCID: PMC9540339 DOI: 10.1002/wnan.1826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
Laser interstitial thermal therapy (LITT) guided by magnetic resonance imaging (MRI) is a new treatment option for patients with brain and non-central nervous system (non-CNS) tumors. MRI guidance allows for precise placement of optical fiber in the tumor, while MR thermometry provides real-time monitoring and assessment of thermal doses during the procedure. Despite promising clinical results, LITT complications relating to brain tumor procedures, such as hemorrhage, edema, seizures, and thermal injury to nearby healthy tissues, remain a significant concern. To address these complications, nanoparticles offer unique prospects for precise interstitial hyperthermia applications that increase heat transport within the tumor while reducing thermal impacts on neighboring healthy tissues. Furthermore, nanoparticles permit the co-delivery of therapeutic compounds that not only synergize with LITT, but can also improve overall effectiveness and safety. In addition, efficient heat-generating nanoparticles with unique optical properties can enhance LITT treatments through improved real-time imaging and thermal sensing. This review will focus on (1) types of inorganic and organic nanoparticles for LITT; (2) in vitro, in silico, and ex vivo studies that investigate nanoparticles' effect on light-tissue interactions; and (3) the role of nanoparticle formulations in advancing clinically relevant image-guided technologies for LITT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Sumiao Pang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anshika Kapur
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Keri Zhou
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Pavlos Anastasiadis
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Nicholas Ballirano
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anthony J. Kim
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Jeffrey A. Winkles
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Graeme F. Woodworth
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Huang‐Chiao Huang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| |
Collapse
|
14
|
Zhang X, Wang N, Shen Y, Zhang Y, Han L, Hu B. NIR-responsive sandwich drug loading system for tumor targeting and multiple combined treatment. J Mater Chem B 2022; 10:8996-9007. [DOI: 10.1039/d2tb01707e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A novel drug loading system, Au@Si–NN–Si@SiO2, is constructed by a layer-by-layer assembly approach.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Ning Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Yetong Shen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Yang Zhang
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Lu Han
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
15
|
Khurana D, Shaw AK, Soni S. Polydopamine coated gold nano blackbodies for tumor-selective spatial thermal damage during plasmonic photothermal cancer therapy. IEEE Trans Nanobioscience 2021; 21:482-489. [PMID: 34623274 DOI: 10.1109/tnb.2021.3118895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plasmonic photothermal therapy (PPTT), which involves nanoparticles and near-infrared radiation (NIR) to generate confined heat, is a potential technique for selective thermal damage of cancerous tissue. Herein, tumor-selective spatial damage characteristics during polydopamine (PDA) coated gold nano blackbodies (AuNBs) mediated PPTT is investigated through a tumortissue mimicking phantom. The spatial temperatures during PPTT were measured within the phantom mimicking the optical scattering of superficial invasive ductal carcinoma (injected with AuNBs) surrounded by a region without AuNBs. The phantom was irradiated using broadband NIR radiation (754-816 nm), and spatial temperatures were measured using thermocouples and an infrared thermal camera. The obtained results demonstrate that the tumor region's temperature was elevated to >50°C in about 2.5 minutes and was maintained thereafter for about 6 minutes, which is well sufficient for the thermal ablation of the tumor. While for the region surrounding the tumor, a temperature of about 40-44°C was attained, which is within safe limits for the said exposure duration. Overall, this study demonstrates that for the considered experimental parameters and tumor dimensions, heat-based thermal damage could be confined to the nanoparticle embedded tumor region while maintaining the safe temperature levels for the surrounding region, i.e., 2 mm beyond the tumor boundary.
Collapse
|
16
|
Liu Z, Xie F, Xie J, Chen J, Li Y, Lin Q, Luo F, Yan J. New-generation photosensitizer-anchored gold nanorods for a single near-infrared light-triggered targeted photodynamic-photothermal therapy. Drug Deliv 2021; 28:1769-1784. [PMID: 34470548 PMCID: PMC8425697 DOI: 10.1080/10717544.2021.1960923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Traditional combined photodynamic and photothermal therapy (PDT/PTT) was limited in clinical treatment of cancer due to the exceptionally low drug delivery efficiency to tumor sites and the activation by laser excitation with different wavelengths. We have accidentally discovered that our synthesized chlorin e6-C-15-ethyl ester (HB, a new type of photosensitizer) be activated by a laser with an excitation wavelength of 660 nm. Herein, we utilized Au nanorods (AuNRs) as 660 nm-activated PTT carriers to be successively surface-functionalized with HB and tumor-targeting peptide cyclic RGD (cRGD) to develop HB-AuNRs@cRGD for single NIR laser-induced targeted PDT/PTT. The HB-AuNRs@cRGD could be preferentially accumulated within tumor sites and rapidly internalized by cancer cells. Thereby, the HB-AuNRs@cRGD could exhibit amplified therapeutic effects by producing both significant reactive oxygen species (ROS) and hyperthermia simultaneously under the guidance of fluorescence imaging. The tumor inhibition rate on ECA109 esophageal cancer model was approximately 77.04%, and the negligible systematic toxicity was observed. This study proposed that HB-AuNRs@cRGD might be a promising strategy for single NIR laser-induced and imaging-guided targeted bimodal phototherapy.
Collapse
Affiliation(s)
- Zongjunlin Liu
- School of Medicine, Anti-Cancer Center, Xiamen University, Xiamen, China
| | - Fang Xie
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jun Xie
- School of Medicine, Anti-Cancer Center, Xiamen University, Xiamen, China
| | - Jianhao Chen
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yang Li
- Xiamen Institute of Rare Earth Materials, Institute of Haixi, Chinese Academy of Sciences, Xiamen, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Fanghong Luo
- School of Medicine, Anti-Cancer Center, Xiamen University, Xiamen, China
| | - Jianghua Yan
- School of Medicine, Anti-Cancer Center, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Nam K, Jeong CB, Kim H, Ahn M, Ahn S, Hur H, Kim DU, Jang J, Gwon H, Lim Y, Cho D, Lee K, Bae JY, Chang KS. Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early-Stage Breast Cancer Therapy Using Gold Nanorods. Adv Healthc Mater 2021; 10:e2100636. [PMID: 34235891 PMCID: PMC11468621 DOI: 10.1002/adhm.202100636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/18/2021] [Indexed: 11/12/2022]
Abstract
Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heating methods and tissue temperature measurement techniques, leading to unreliable and inaccurate treatments. Because the photothermal properties of AuNPs vary with laser power, particle optical density, and tissue depth, the accurate prediction of heat generation is indispensable for clinical treatment. In this report, bioprinted 3D complex tissue constructs comprising processed gel obtained from porcine skin and human decellularized adipose tissue are presented for characterization of the photothermal properties of gold nanorods (AuNRs) having an aspect ratio of 3.7 irradiated by a near-infrared laser. Moreover, an analytical function is suggested for achieving PPTT that can cause thermal damage selectively on early-stage human breast cancer by regulating the heat generation of the AuNRs in the tissue.
Collapse
Affiliation(s)
- Ki‐Hwan Nam
- Center for Scientific InstrumentationDivision of Scientific Instrumentation and ManagementKorea Basic Science Institute (KBSI)Daejeon34133Republic of Korea
| | - Chan Bae Jeong
- Center for Scientific InstrumentationDivision of Scientific Instrumentation and ManagementKorea Basic Science Institute (KBSI)Daejeon34133Republic of Korea
| | - HyeMi Kim
- Center for Scientific InstrumentationDivision of Scientific Instrumentation and ManagementKorea Basic Science Institute (KBSI)Daejeon34133Republic of Korea
| | - Minjun Ahn
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)PohangKyungbuk37673Republic of Korea
| | - Sung‐Jun Ahn
- Research Division for Industry and EnvironmentKorea Atomic Energy Research Institute (KAERI)JeongeupJeollabuk‐do56212Republic of Korea
| | - Hwan Hur
- Center for Scientific InstrumentationDivision of Scientific Instrumentation and ManagementKorea Basic Science Institute (KBSI)Daejeon34133Republic of Korea
| | - Dong Uk Kim
- Center for Scientific InstrumentationDivision of Scientific Instrumentation and ManagementKorea Basic Science Institute (KBSI)Daejeon34133Republic of Korea
| | - Jinah Jang
- Department of Creative IT EngineeringSchool of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology (POSTECH)PohangKyungbuk37673Republic of Korea
| | - Hui‐Jeong Gwon
- Research Division for Industry and EnvironmentKorea Atomic Energy Research Institute (KAERI)JeongeupJeollabuk‐do56212Republic of Korea
| | - Youn‐Mook Lim
- Research Division for Industry and EnvironmentKorea Atomic Energy Research Institute (KAERI)JeongeupJeollabuk‐do56212Republic of Korea
| | - Dong‐Woo Cho
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)PohangKyungbuk37673Republic of Korea
| | - Kye‐Sung Lee
- Center for Scientific InstrumentationDivision of Scientific Instrumentation and ManagementKorea Basic Science Institute (KBSI)Daejeon34133Republic of Korea
| | - Ji Yong Bae
- Center for Scientific InstrumentationDivision of Scientific Instrumentation and ManagementKorea Basic Science Institute (KBSI)Daejeon34133Republic of Korea
| | - Ki Soo Chang
- Center for Scientific InstrumentationDivision of Scientific Instrumentation and ManagementKorea Basic Science Institute (KBSI)Daejeon34133Republic of Korea
| |
Collapse
|
18
|
Khan NU, Lin J, Younas MR, Liu X, Shen L. Synthesis of gold nanorods and their performance in the field of cancer cell imaging and photothermal therapy. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00092-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractCancer is one of the most common incident in the world, with malignant tumors having a death rate of up to 19%. A new method of treating cancer cells effectively with minimal cytotoxicity is needed. In the field of biomedicine with unique shape-dependent optical properties, gold nanorods (GNRs) have attracted worldwide interest. These nanorods have two distinct plasmon bands. One is transverse plasmon band in the area of visible light, and the other is longitudinal band of plasmons in near infrared region. These specific characters provide promise for the design of new optically active reagents that simultaneously perform light-mediated imaging and photothermal cancer treatment. We begin our review by summarizing the latest developments in gold nanorods synthesis with a focus on seed-mediated growth method. Nanorods spontaneous self-assembly, polymer-based alignment and its applications as a novel agent for simultaneous bioimaging and photothermal cancer therapy are listed in particular.
Collapse
|
19
|
Yang C, Zhu Y, Li D, Liu Y, Guan C, Man X, Zhang S, Zhang L, Yang D, Xu Y. Red Phosphorus Decorated TiO 2 Nanorod Mediated Photodynamic and Photothermal Therapy for Renal Cell Carcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101837. [PMID: 34145768 DOI: 10.1002/smll.202101837] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a serious and tenacious disease. Photodynamic therapy (PDT) and photothermal therapy (PTT) are effective means of cancer treatment. However, PDT combined with PTT has been rarely reported in ccRCC treatment. In the present study, by developing the core-shell structured TiO2 @red phosphorus nanorods (TiO2 @RP NRs) as a photosensitizer, the feasibility and effectiveness of synchronous PDT and PTT treatments for ccRCC are demonstrated. The core-shell structured TiO2 @RP NRs are synthesized to drive the PDT and PTT for ccRCC, in which the RP shell is the sensitizer even in the near-infrared (NIR) region. The optimized TiO2 @RP NRs can respond to NIR and produce local heat under irradiation. The NRs are estimated in ccRCC treatments via cell counting kit-8 assay, propidium iodide staining, qRT-PCR, and reactive oxygen species (ROS) probes in vitro, while terminal deoxynucleotidyl transferase dUTP nick-end labeling is conducted in vivo. After NIR irradiation, TiO2 @RP NRs can efficiently kill ccRCC cells by producing local heat and ROS and cause low injury to normal kidney cells. Furthermore, treatment with TiO2 @RP NRs and NIR can kill significant numbers of deep-tissue ccRCC cells in vivo. This work highlights a promising photo-driven therapy for kidney cancer.
Collapse
Affiliation(s)
- Chengyu Yang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yukun Zhu
- State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering & College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering & College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yiming Liu
- Shanxi Key Laboratory of Advanced Magnesium-based Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Chen Guan
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaofei Man
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shuchao Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lixue Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering & College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Dongjiang Yang
- State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering & College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
20
|
Ma Y, Chen L, Li X, Hu A, Wang H, Zhou H, Tian B, Dong J. Rationally integrating peptide-induced targeting and multimodal therapies in a dual-shell theranostic platform for orthotopic metastatic spinal tumors. Biomaterials 2021; 275:120917. [PMID: 34182327 DOI: 10.1016/j.biomaterials.2021.120917] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Metastatic tumors present great challenges in diagnosis and treatment. Herein, a proof-of-concept theranostic nanoplatform composed of an Au nanoparticle core and a double-shell of metal-organic framework (MOF) and mesoporous silica (MS) is developed for combating spinal metastasis of lung cancer in an orthotopic model. Two drugs, Alpelisib (BYL719) as an inhibitor and cisplatin as a chemotherapeutic drug, are separately loaded into the double-shell with high loading content. A targeting peptide called dYNH and indocyanine green (ICG) are conjugated onto the outmost MS layer for specifically targeting metastatic tumor cells and enhancing photothermal effect. The resultant Au@MOF@MS-ICG -dYNH-PAA (AMMD) shows enhanced cellular uptake on tumor cells and accumulation at metastatic spinal tumors, as evidenced by fluorescent and photoacoustic imaging. Benefiting from this ultra-high affinity to tumor cells and the photothermal effect of ICG, the dual-drug-loaded AMMD (BCAMMD) modified with ICG exhibits superior therapeutic efficacy on spinal tumors. More importantly, bone destruction, which frequently occurs in bone-related tumors, is effectively suppressed by BYL719 in BCAMMD. Hence, by rationally integrating multiple functions, including excellent targeting ability, dual-drug loading, photothermal therapy, and photoacoustic imaging, the developed all-in-one theranostic nanoplatform provides a useful paradigm of employing nanomedicine to treat metastatic spinal tumors efficiently.
Collapse
Affiliation(s)
- Yiqun Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Xilei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Huiren Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Hao Zhou
- Department of Orthopaedic Surgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, PR China
| | - Bo Tian
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Department of Orthopaedic Surgery, Shanghai Baoshan District Wusong Central Hospital, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, 200940, PR China.
| |
Collapse
|
21
|
Salazar S, Yutronic N, Kogan MJ, Jara P. Cyclodextrin Nanosponges Inclusion Compounds Associated with Gold Nanoparticles for Potential Application in the Photothermal Release of Melphalan and Cytoxan. Int J Mol Sci 2021; 22:6446. [PMID: 34208594 PMCID: PMC8234497 DOI: 10.3390/ijms22126446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
This article describes the synthesis and characterization of β-cyclodextrin-based nano-sponges (NS) inclusion compounds (IC) with the anti-tumor drugs melphalan (MPH) and cytoxan (CYT), and the addition of gold nanoparticles (AuNPs) onto both systems, for the potential release of the drugs by means of laser irradiation. The NS-MPH and NS-CYT inclusion compounds were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), UV-Vis, and proton nuclear magnetic resonance (1H-NMR). Thus, the inclusion of MPH and CYT inside the cavities of NSs was confirmed. The association of AuNPs with the ICs was confirmed by SEM, EDS, TEM, and UV-Vis. Drug release studies using NSs synthesized with different molar ratios of β-cyclodextrin and diphenylcarbonate (1:4 and 1:8) demonstrated that the ability of NSs to entrap and release the drug molecules depends on the crosslinking between the cyclodextrin monomers. Finally, irradiation assays using a continuous laser of 532 nm showed that photothermal drug release of both MPH and CYT from the cavities of NSs via plasmonic heating of AuNPs is possible.
Collapse
Affiliation(s)
- Sebastián Salazar
- Departmento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
- Departamento de Química, Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Nicolás Yutronic
- Departmento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Marcelo J. Kogan
- Departamento de Química, Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Paul Jara
- Departmento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| |
Collapse
|
22
|
Gupta N, Malviya R. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188532. [PMID: 33667572 DOI: 10.1016/j.bbcan.2021.188532] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
The present communication summarizes the importance, understanding and advancement in the photothermal therapy of cancer using gold nanoparticles. Photothermal therapy was used earlier as a single line therapy, but using a combination of photothermal therapy with other therapies like immunotherapy, chemotherapy, photodynamic therapy; efficient therapy management can be achieved. As it was discussed in many studies that gold nanoparticles are treated as idyllic photothermal transducers due to their structural dimensions, which enables them to strongly absorb near infrared light. Gold nanoparticles which are mediated for photothermal therapy can warn cancer cells to chemotherapy, regulate genes and immunotherapy by enhancing the cell permeability and intracellular delivery. The necrosis process and apoptosis depend on the power of laser and temperature within the cancerous tissues which are reached during irradiation. Cells death mechanism is also important because the cells which died through the process of necrosis can endorse secondary tumor growth while the cells which died through apoptosis may provoke the immune response to inhibit the development of secondary tumor growth. To decrease the in vivo barriers, gold nanostructures are again modified with targeting ligand and bio-responsive linker. The manuscript summarizes that the use of gold nanoparticles is capable of inhibiting the growth of cancerous cells by using photothermal therapy which has lesser adverse effects compared to other line therapies.
Collapse
Affiliation(s)
- Nandan Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
23
|
Asadi S, Bianchi L, De Landro M, Korganbayev S, Schena E, Saccomandi P. Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application. JOURNAL OF BIOPHOTONICS 2021; 14:e202000161. [PMID: 32761778 DOI: 10.1002/jbio.202000161] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Gold nanoparticles (GNPs)-based photothermal therapy (PTT) is a promising minimally invasive thermal therapy for the treatment of focal malignancies. Although GNPs-based PTT has been known for over two decades and GNPs possess unique properties as therapeutic agents, the delivery of a safe and effective therapy is still an open question. This review aims at providing relevant and recent information on the usage of GNPs in combination with the laser to treat cancers, pointing out the practical aspects that bear on the therapy outcome. Emphasis is given to the assessment of the GNPs' properties and the physical mechanisms underlying the laser-induced heat generation in GNPs-loaded tissues. The main techniques available for temperature measurement and the current theoretical simulation approaches predicting the therapeutic outcome are reviewed. Topical challenges in delivering safe thermal dosage are also presented with the aim to discuss the state-of-the-art and the future perspective in the field of GNPs-mediated PTT.
Collapse
Affiliation(s)
- Somayeh Asadi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Martina De Landro
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | | | - Emiliano Schena
- Laboratory of Measurement and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
24
|
Nanoparticle-Mediated Heating: A Theoretical Study for Photothermal Treatment and Photo Immunotherapy. Bioanalysis 2021. [DOI: 10.1007/978-3-030-78338-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
25
|
Shan C, Huang Y, Wei J, Chen M, Wu L. Ultra-high thermally stable gold nanorods/radial mesoporous silica and their application in enhanced chemo-photothermal therapy. RSC Adv 2021; 11:10416-10424. [PMID: 35423593 PMCID: PMC8695621 DOI: 10.1039/d1ra00213a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/01/2022] Open
Abstract
In this work, gold nanorods embedded in ultra-thick silica shells with radial mesopores (AuNR/R-SiO2) were successfully synthesized in an ethanol/water solution. By optimizing the concentration of CTAB and the volume of ethanol, a shell thickness up to 83 nm was realized. Taking advantage of the ultra-thick silica shell, AuNR/R-SiO2 exhibited ultra-high thermal stability—could retain the integrity and photothermal effects even after 800 °C thermal annealing, providing inspiring sights into the application under some extreme conditions. After continuous irradiation for twenty times, the photothermal effects of AuNRs coated with R-SiO2 still remained perfect without performance degradation and shape change. Besides, abundant mesopores could effectively improve the photothermal conversion efficiency of AuNRs. AuNR/R-SiO2 exhibited an outstanding loading capacity up to 2178 mg g−1 with doxorubicin (DOX) as the model drug, and the release behaviors could be nicely controlled by acidity and near-infrared (NIR) laser to achieve the “On-demand” mode. In vitro experiments showed that AuNR/R-SiO2 were biocompatible and easy to be internalized by HeLa cells. In addition, due to the ultra-thick silica shell, the effect of the combined chemo-photothermal therapy using AuNR/R-SiO2/DOX was significantly enhanced, showing a higher therapeutic efficiency than single chem- or photothermal therapy. It was worth noting that AuNR/R-SiO2 are effective and promising for drug delivery and tumor therapy. AuNRs coated with ultra-thick SiO2 shells exhibited ultra-high thermal stability (800 °C), excellent photothermal conversion efficiency (70%) and outstanding loading capacity. The drug release could be nicely controlled by acidity and NIR laser to achieve the “On-demand” mode.![]()
Collapse
Affiliation(s)
- Chun Shan
- Department of Materials Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| | - Yuting Huang
- Department of Materials Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| | - Junhao Wei
- School of Life Sciences and Technology
- Tongji University
- Shanghai
- China
| | - Min Chen
- Department of Materials Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| | - Limin Wu
- Department of Materials Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| |
Collapse
|
26
|
Tehrani MHH, Soltani M, Kashkooli FM, Raahemifar K. Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-A computational approach. PLoS One 2020; 15:e0233219. [PMID: 32542034 PMCID: PMC7295236 DOI: 10.1371/journal.pone.0233219] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Microwave Ablation (MWA) is one of the most recent developments in the field of thermal therapy. This approach is an effective method for thermal tumor ablation by increasing the temperature above the normal physiological threshold to kill cancer cells with minimum side effects to surrounding organs due to rapid heat dispersive tissues. In the present study, the effects of the shape and size of the tumor on MWA are investigated. To obtain the temperature gradient, coupled bio-heat and electromagnetic equations are solved using a three-dimensional finite element method (FEM). To extract cellular response at different temperatures and times, the three-state mathematical model was employed to achieve the ablation zone size. Results show that treatment of larger tumors is more difficult than that of smaller ones. By doubling the diameter of the tumor, the percentage of dead cancer cells is reduced by 20%. For a spherical tumor smaller than 2 cm, applying 50 W input power compared to 25 W has no significant effects on treatment efficiency and only increases the risk of damage to adjacent tissues. However, for tumors larger than 2 cm, it can increase the ablation zone up to 21%. In the spherical and oblate tumors, the mean percentage of dead cells at 6 GHz is nearly 30% higher than that at 2.45GHz, but for prolate tumors, treatment efficacy is reduced by 10% at a higher frequency. Moreover, the distance between two slots in the coaxial double slot antenna is modified based on the best treatment of prolate tumors. The findings of this study can be used to choose the optimum frequency and the best antenna design according to the shape and size of the tumor.
Collapse
Affiliation(s)
- Masoud H. H. Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kaamran Raahemifar
- Electrical and Computer Engineering Department, Sultan Qaboos University, Muscat, Sultanate of Oman
- Chemical Engineering Department, University of Waterloo, Waterloo, ON, Canada
- College of Information Sciences and Technology (IST), Data Science and Artificial Intelligence Program, Penn State University, State College, Pennsylvania, PA, United States of America
| |
Collapse
|
27
|
Zhang X, Liu W, Wang H, Zhao X, Zhang Z, Nienhaus GU, Shang L, Su Z. Self-assembled thermosensitive luminescent nanoparticles with peptide-Au conjugates for cellular imaging and drug delivery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Al Faruque H, Choi ES, Lee HR, Kim JH, Park S, Kim E. Targeted removal of leukemia cells from the circulating system by whole-body magnetic hyperthermia in mice. NANOSCALE 2020; 12:2773-2786. [PMID: 31957767 DOI: 10.1039/c9nr06730b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Until now, magnetic hyperthermia was used to remove solid tumors by targeting magnetic nanoparticles (MNPs) to tumor sites. In this study, leukemia cells in the bloodstream were directly removed by whole-body hyperthermia, using leukemia cell-specific MNPs. An epithelial cellular adhesion molecule (EpCAM) antibody was immobilized on the surface of MNPs (EpCAM-MNPs) to introduce the specificity of MNPs to leukemia cells. The viability of THP1 cells (human monocytic leukemia cells) was decreased to 40.8% of that in control samples by hyperthermia using EpCAM-MNPs. In AKR mice, an animal model of lymphoblastic leukemia, the number of leukemia cells was measured following the intravenous injection of EpCAM-MNPs and subsequent whole-body hyperthermia treatment. The result showed that the leukemia cell number was also decreased to 43.8% of that without the treatment of hyperthermia, determined by Leishman staining of leukemia cells. To support the results, simulation analysis of heat transfer from MNPs to leukemia cells was performed using COMSOL Multiphysics simulation software. The surface temperature of leukemia cells adhered to EpCAM-MNPs was predicted to be increased to 82 °C, whereas the temperature of free cells without adhered MNPs was predicted to be 38 °C. Taken together, leukemia cells were selectively removed by magnetic hyperthermia from the bloodstream, because EpCAM-modified magnetic particles were specifically attached to leukemia cell surfaces. This approach has the potential to remove metastatic cancer cells, and pathogenic bacteria and viruses floating in the bloodstream.
Collapse
Affiliation(s)
- Hasan Al Faruque
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Eun-Sook Choi
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Hyo-Ryong Lee
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Jung-Hee Kim
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Sukho Park
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Eunjoo Kim
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
29
|
Qi S, Liu G, Tan L, Chen J, Lou Y, Zhao Y. Top-down fabrication of colloidal plasmonic MoO3−x nanocrystals via solution chemistry hydrogenation. Chem Commun (Camb) 2020; 56:4816-4819. [DOI: 10.1039/d0cc01015d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The top-town fabrication of colloidal α-MoO3−x nanocrystals via the synergistic effect of oleic acid and oleylamine is proposed in this study.
Collapse
Affiliation(s)
- Shaopeng Qi
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Southeast University
- Nanjing
| | - Guoning Liu
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Southeast University
- Nanjing
| | - Lu Tan
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Southeast University
- Nanjing
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Southeast University
- Nanjing
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Southeast University
- Nanjing
| | - Yixin Zhao
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
30
|
Ashikbayeva Z, Tosi D, Balmassov D, Schena E, Saccomandi P, Inglezakis V. Application of Nanoparticles and Nanomaterials in Thermal Ablation Therapy of Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1195. [PMID: 31450616 PMCID: PMC6780818 DOI: 10.3390/nano9091195] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/21/2023]
Abstract
Cancer is one of the major health issues with increasing incidence worldwide. In spite of the existing conventional cancer treatment techniques, the cases of cancer diagnosis and death rates are rising year by year. Thus, new approaches are required to advance the traditional ways of cancer therapy. Currently, nanomedicine, employing nanoparticles and nanocomposites, offers great promise and new opportunities to increase the efficacy of cancer treatment in combination with thermal therapy. Nanomaterials can generate and specifically enhance the heating capacity at the tumor region due to optical and magnetic properties. The mentioned unique properties of nanomaterials allow inducing the heat and destroying the cancerous cells. This paper provides an overview of the utilization of nanoparticles and nanomaterials such as magnetic iron oxide nanoparticles, nanorods, nanoshells, nanocomposites, carbon nanotubes, and other nanoparticles in the thermal ablation of tumors, demonstrating their advantages over the conventional heating methods.
Collapse
Affiliation(s)
- Zhannat Ashikbayeva
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Daniele Tosi
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
- PI National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Damir Balmassov
- Department of Pedagogical Sciences, Astana International University, 8 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Emiliano Schena
- Measurements and Biomedical Instrumentation Lab, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milano, Italy
| | - Vassilis Inglezakis
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan.
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan.
| |
Collapse
|
31
|
|
32
|
Yu Y, Zhou M, Zhang W, Huang L, Miao D, Zhu H, Su G. Rattle-Type Gold Nanorods/Porous-SiO2 Nanocomposites as Near-Infrared Light-Activated Drug Delivery Systems for Cancer Combined Chemo–Photothermal Therapy. Mol Pharm 2019; 16:1929-1938. [DOI: 10.1021/acs.molpharmaceut.8b01298] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yanyan Yu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Min Zhou
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wei Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Lei Huang
- Phase I Clinical Laboratory of Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Dandan Miao
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Hongyan Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
33
|
Dimitriou NM, Pavlopoulou A, Tremi I, Kouloulias V, Tsigaridas G, Georgakilas AG. Prediction of Gold Nanoparticle and Microwave-Induced Hyperthermia Effects on Tumor Control via a Simulation Approach. NANOMATERIALS 2019; 9:nano9020167. [PMID: 30699996 PMCID: PMC6410344 DOI: 10.3390/nano9020167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/12/2022]
Abstract
Hyperthermia acts as a powerful adjuvant to radiation therapy and chemotherapy. Recent advances show that gold nanoparticles (Au-NPs) can mediate highly localized thermal effects upon interaction with laser radiation. The purpose of the present study was to investigate via in silico simulations the mechanisms of Au-NPs and microwave-induced hyperthermia, in correlation to predictions of tumor control (biological endpoints: tumor shrinkage and cell death) after hyperthermia treatment. We also study in detail the dependence of the size, shape and structure of the gold nanoparticles on their absorption efficiency, and provide general guidelines on how one could modify the absorption spectrum of the nanoparticles in order to meet the needs of specific applications. We calculated the hyperthermia effect using two types of Au-NPs and two types of spherical tumors (prostate and melanoma) with a radius of 3 mm. The plasmon peak for the 30 nm Si-core Au-coated NPs and the 20 nm Au-NPs was found at 590 nm and 540 nm, respectively. Considering the plasmon peaks and the distribution of NPs in the tumor tissue, the induced thermal profile was estimated for different intervals of time. Predictions of hyperthermic cell death were performed by adopting a three-state mathematical model, where “three-state” includes (i) alive, (ii) vulnerable, and (iii) dead states of the cell, and it was coupled with a tumor growth model. Our proposed methodology and preliminary results could be considered as a proof-of-principle for the significance of simulating accurately the hyperthermia-based tumor control involving the immune system. We also propose a method for the optimization of treatment by overcoming thermoresistance by biological means and specifically through the targeting of the heat shock protein 90 (HSP90), which plays a critical role in the thermotolerance of cells and tissues.
Collapse
Affiliation(s)
- Nikolaos M Dimitriou
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| | - Athanasia Pavlopoulou
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Turkey.
| | - Ioanna Tremi
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece.
| | - Georgios Tsigaridas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|
34
|
Assembled gold nanorods for the photothermal killing of bacteria. Colloids Surf B Biointerfaces 2018; 173:833-841. [PMID: 30551299 DOI: 10.1016/j.colsurfb.2018.10.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022]
Abstract
Titanium and its alloys are widely used in many clinical applications, but implant-associated infection may lead to implant failure. Because of the increasing concern about antibiotic resistant pathogen, photothermal therapy (PTT) as a new treatment strategy has received considerable attention. In this work, gold nanorods (GNRs) photoexcited by the near-infrared (NIR) light were immobilized on Ti surface by electrostatic surface self-assembly technique. Field emission scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to explore the morphology and composition of the GNRs-modified surface. The photothermal temperature of the immobilized GNRs was measured by an infrared thermal imaging system in real time. In vitro study reveal that the prepared GNRs-modified surface exhibits antibacterial activity against four kinds of bacterial strains including both Gram-negative bacilli (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive cocci (Staphylococcus aureus and Staphylococcus epidermidis) under the irradiation of 808 nm laser. Besides, the antibacterial efficiency of the GNRs-modified surface could keep stable after multiple laser exposure. It should be noted that the GNRs-modified surface shows better antibacterial effect against Gram-negative bacilli compared to Gram-positive cocci. Moreover, the GNRs-modified surface has no obvious adverse effect to the osteoblast precursor cells under NIR irradiation. These data demonstrate that the GNRs-modified surface with negligible cytotoxicity and recyclable antibacterial effect provides a favorable model for the translation of photothermal therapy to the clinical application.
Collapse
|
35
|
A paper-based photothermal array using Parafilm to analyze hyperthermia response of tumour cells under local gradient temperature. Biomed Microdevices 2018; 20:68. [PMID: 30094581 DOI: 10.1007/s10544-018-0311-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Temperature is a critical extrinsic physical parameter that determines cell fate. Hyperthermia therapy has become an efficient treatment for tumor ablation. To understand the response of tumor cells under thermal shocks, we present a paper-based photothermal array that can be conveniently coupled with commercial 96-well cell culture plates. This paper chip device was fabricated in one step using Parafilm® and Kimwipers® based on a heat lamination strategy. Liquid was completely adsorbed and confined within the cellulose fibres of hydrophilic regions. Then, Prussian blue nanoparticles (PB NPs) as the photothermal initiator were introduced into the loading wells, and thermal energy was generated via near infrared (NIR) laser irradiation. After assembling the paper device with a 96-well plate, the temperature of each well could be individually controlled by varying the loading amount of PB NPs and laser irradiation time. As a proof-of-concept study, the effects of local thermal shocks on HeLa cells were investigated using MTT cell viability assay and Live/Dead cell staining. The variation of cell viability could be monitored in situ with controllable temperature elevation. The proposed paper photothermal array loaded with thermal initiators represents an enabling tool for investigating the hyperthermia responses of biological cells. Moreover, the facile fabrication technique for paper patterning is advantageous for customizing high-throughput microfluidic paper-based analytical devices (μPADs) with extremely low cost.
Collapse
|
36
|
Hashemi M, Muralidharan B, Omidi M, Mohammadi J, Sefidbakht Y, Kima ES, Smyth HDC, Shalbaf M, Milner TE. Effect of size and chemical composition of graphene oxide nanoparticles on optical absorption cross-section. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 30156063 DOI: 10.1117/1.jbo.23.8.085007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Photothermal therapy with various nanoparticles, as photothermal transducers, is a widely researched technique. A continuous wave (CW) laser is employed during this procedure. The therapeutic setup is slightly modified to measure the optical absorption cross-section of the graphene oxide (GO), by mitigating the effects of heat diffusion and light scattering. With an 808-nm CW laser setup modulated by a waveform modulation setup, the effect of nanoparticle size and composition of GO in water on optical absorption cross section is characterized.
Collapse
Affiliation(s)
- Mohadeseh Hashemi
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
- University of Tehran, Faculty of new Science and Engineering, Tehran, Iran
- University of Texas at Austin, Division of Pharmaceutics, College of Pharmacy, Austin, Texas, United States
| | - Bharadwaj Muralidharan
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
- University of Texas at Austin, Department of Electrical and Computer Engineering, Austin, Texas, United States
| | - Meisam Omidi
- Shahid Beheshti University, G.C., Protein Research Center, Tehran, Iran
| | - Javad Mohammadi
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
- University of Tehran, Faculty of new Science and Engineering, Tehran, Iran
| | - Yahya Sefidbakht
- Shahid Beheshti University, G.C., Protein Research Center, Tehran, Iran
| | - Eun Song Kima
- University of Texas at Austin, Division of Pharmaceutics, College of Pharmacy, Austin, Texas, United States
| | - Hugh D C Smyth
- University of Texas at Austin, Division of Pharmaceutics, College of Pharmacy, Austin, Texas, United States
| | - Mohammad Shalbaf
- Shahid Beheshti University, G.C., Protein Research Center, Tehran, Iran
| | - Thomas E Milner
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| |
Collapse
|
37
|
Taheri RA, Akhtari Y, Tohidi Moghadam T, Ranjbar B. Assembly of Gold Nanorods on HSA Amyloid Fibrils to Develop a Conductive Nanoscaffold for Potential Biomedical and Biosensing Applications. Sci Rep 2018; 8:9333. [PMID: 29921839 PMCID: PMC6008323 DOI: 10.1038/s41598-018-26393-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022] Open
Abstract
Today, Gold Nanorods have promised variety of applications in conjugation with biomolecules of interest. Discovery of functional amyloids has also been highlighted with possible use in designing high performance materials. To exploit dual properties of both Nano and Bio counterparts in new functional materials, this effort has focused on synthesis of a potential hybrid system of Gold nanorods (GNRs) and HSA amyloid fibrils to develop a conductive nanoscaffold. UV-Vis spectroscopy, Thioflavin T (ThT) assay, Far-UV Circular Dichroism (CD) spectropolarimetry, fluorescence and Transmission Electron microscopy were used to characterize formation of the nanostructures and amyloid fibrils. Surface plasmon resonance of GNRs was also monitored upon interaction with HSA amyloid fibrils, showing that the plasmonic component of the hybrid system has maintained its characteristic rod morphology without any perturbations. Analysis of Nyquist plots for the hybrid nanoscaffold showed that the electronic behavior of the hybrid system has been enhanced due to the presence of the assembled GNRs. Results of this investigation highlight the possibility of fabricating hybrid nano-bioscaffolds as promising candidates in versatile biomedical and biosensing applications.
Collapse
Affiliation(s)
- Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yasin Akhtari
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Biomaterials Engineering, Faculty of High Technologies, Tarbiat Modares University, Tehran, Iran
| | - Tahereh Tohidi Moghadam
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bijan Ranjbar
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
38
|
Mesicek J, Kuca K. Summary of numerical analyses for therapeutic uses of laser-activated gold nanoparticles. Int J Hyperthermia 2018; 34:1255-1264. [DOI: 10.1080/02656736.2018.1440016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Jakub Mesicek
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
39
|
Fan HH, Le Q, Lan S, Liang JX, Tie SL, Xu JL. Modifying the mechanical properties of gold nanorods by copper doping and triggering their cytotoxicity with ultrasonic wave. Colloids Surf B Biointerfaces 2018; 163:47-54. [DOI: 10.1016/j.colsurfb.2017.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022]
|
40
|
Norouzi H, Khoshgard K, Akbarzadeh F. In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review. Lasers Med Sci 2018; 33:917-926. [PMID: 29492712 DOI: 10.1007/s10103-018-2467-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
Abstract
Hyperthermia is an anti-cancer treatment in which the temperature of the malignant tumor is increased more than other adjacent normal tissues. Microwave, ultrasound, laser, and radiofrequency sources have been used for hyperthermia of cancerous tissues. In the past decade, near-infrared (NIR) laser for cancer therapy, known as photo-thermal therapy (PTT), was expanded in which the photo-sensitizer agent converts the light photon energy to heat. The heat following PTT can destroy cancer cells. There are some photo-sensitizer agents which have been used for PTT; however, owing to recent advances in nanotechnology, noble metal nanoparticles like gold (Au) nanoparticles (GNPs) have been used successfully in PTT. GNPs have some desirable specifications, including simple and controlled synthesis, small size, high level of biocompatibility, and surface plasmon resonance (SPR). The SPR effect of the GNPs increases the radiative properties like absorption and scattering; therefore, they can be used in PTT. In this article, we reviewed recent in vitro studies of PTT using GNPs in literature. At first, we focus on the physical properties of GNPs, their interaction with infrared radiation, and physical parameters governing the interaction of infrared radiation with the GNPs. Then, we review the passive and active targeting of GNPs using the different coating to induce the thermal damage in cancer cells using low-level laser PPT. The GNPs' cellular internalization into cancer cells is a challenge which is consequently considered. In this review, we also summarize the results of synergistic cancer therapy studies on the combination of radiation therapy as a routine cancer treatment and PTT: in which significant improvement occurs in treatment efficacy.
Collapse
Affiliation(s)
- Hasan Norouzi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Karim Khoshgard
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Sorkheh-Lizhe Blvd, P.O. Box: 1568, Kermanshah, Iran.
| | - Fatemeh Akbarzadeh
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
41
|
Mushaben M, Urie R, Flake T, Jaffe M, Rege K, Heys J. Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites. Lasers Surg Med 2018; 50:143-152. [PMID: 28990678 PMCID: PMC5820132 DOI: 10.1002/lsm.22746] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Laser tissue soldering using photothermal solders is a technology that facilitates rapid sealing using heat-induced changes in the tissue and the solder material. The solder material is made of gold nanorods embedded in a protein matrix patch that can be placed over the tissue rupture site and heated with a laser. Although laser tissue soldering is an attractive approach for surgical repair, potential photothermal damage can limit the success of this approach. Development of predictive mathematical models of photothermal effects including cell death, can lead to more efficient approaches in laser-based tissue repair. METHODS We describe an experimental and modeling investigation into photothermal solder patches for sealing porcine and mouse cadaver intestine sections using near-infrared laser irradiation. Spatiotemporal changes in temperature were determined at the surface as well as various depths below the patch. A mathematical model, based on the finite element method, predicts the spatiotemporal temperature distribution in the patch and surrounding tissue, as well as concomitant cell death in the tissue is described. RESULTS For both the porcine and mouse intestine systems, the model predicts temperatures that are quantitatively similar to the experimental measurements with the model predictions of temperature increase often being within a just a few degrees of experimental measurements. CONCLUSION This mathematical model can be employed to identify optimal conditions for minimizing healthy cell death while still achieving a strong seal of the ruptured tissue using laser soldering. Lasers Surg. Med. 50:143-152, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Madaline Mushaben
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana
| | - Russell Urie
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona
| | - Tanner Flake
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona
| | - Michael Jaffe
- College of Veterinary Medicine, Midwestern University, Glendale, 85308, Arizona
| | - Kaushal Rege
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona
| | - Jeffrey Heys
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana
| |
Collapse
|
42
|
Gao C, Liang X, Mo S, Zhang N, Sun D, Dai Z. Near-Infrared Cyanine-Loaded Liposome-like Nanocapsules of Camptothecin-Floxuridine Conjugate for Enhanced Chemophotothermal Combination Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3219-3228. [PMID: 29299917 DOI: 10.1021/acsami.7b14125] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A dual-in-dual synergistic strategy was proposed based on the self-assembly of combinatorial nanocapsules (NCs) from Janus camptothecin-floxuridine (CF) conjugate and the near-infrared absorber of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) by introducing PEGylated phospholipid of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycerol)-2000] to increase the blood circulation time of NCs. Due to the use of amphiphilic CF and DiR themselves to form liposome-like nanocapsules, the obtained CF-DiR NCs owned a significantly high loading content, a stable co-delivery drug combinations, a no premature release, and an excellent photothermal conversion efficiency. The in vivo fluorescence imaging indicated that CF-DiR NCs could achieve a high tumor accumulation after an intravenous injection. The dual drugs of camptothecin and floxuridine could be coordinately released due to the hydrolysis of the ester bond by the esterase in tumor. The in vivo experiments showed that more cytotoxicity of the CF-DiR NCs-mediated chemo- and photothermal dual therapy to tumor cells could be clearly observed than the chemotherapy or photothermal therapy alone due to the synergistic effect, leading to no recurrence in the entire treatment. All of the results highlighted that CF-DiR NCs were highly effective theranostic agents that could be used for imaging-guided cancer chemophotothermal therapy to conquer an intrinsic resistance to chemotherapeutics.
Collapse
Affiliation(s)
- Chuang Gao
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital , Beijing 100191, China
| | - Shanyan Mo
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Nisi Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Desheng Sun
- Peking University Shenzhen Hospital , Shenzhen 518036, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
43
|
Tsai MF, Hsu C, Yeh CS, Hsiao YJ, Su CH, Wang LF. Tuning the Distance of Rattle-Shaped IONP@Shell-in-Shell Nanoparticles for Magnetically-Targeted Photothermal Therapy in the Second Near-Infrared Window. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1508-1519. [PMID: 29200260 DOI: 10.1021/acsami.7b14593] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Construction of multifunctional nanoparticles (NPs) with near-infrared (NIR) plasmonic responses is considered a versatile and multifaceted platform for several biomedical applications. Herein, a double layer of Au/Ag alloy on the surface of truncated octahedral iron oxide NPs (IONPs) was prepared and the distance between the layers was controlled to exhibit broad and strong NIR absorption. The rattle-shaped IONP@shell-in-shell nanostructure showed light-response to the NIR biological window from 650 to 1300 nm for photothermal therapy (PTT) and magnetic guidance for hyperthermia and magnetic resonance imaging (MRI) diagnosis. Exposing the aqueous solution of IONP@shell-in-shell to a 1064 nm diode laser, its heat conversion efficiency was ∼28.3%. The in vitro cell viability at a gold concentration of 100 ppm was ∼85%, and decreased to ∼16% when the cells were treated with the NIR irradiation and magnetic attraction. T2-weighted MRI images showed a clear accumulation of IONP@shell-in-shell at the tumor site with magnetic attraction. In vivo luminescence tumor images explained that the IONP@shell-in-shell could reduce the U87MG-luc2 cancer cell proliferation in mice with the NIR irradiation and magnetic attraction. These results indicate the IONP@shell-in-shell as a promising nanomedicine for PTT, magnetic targeting, and magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
| | | | - Chen-Sheng Yeh
- Department of Chemistry, Center for Micro/Nano Science and Technology, and Advanced Optoelectronic Technology Center, National Cheng Kung University , Tainan 701, Taiwan
| | - Yu-Jen Hsiao
- National Nano Device Laboratories, National Applied Research Laboratories , Tainan 701, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung 833, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University , Taipei 112, Taiwan
| | - Li-Fang Wang
- Department of Medical Research, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University , Kaohsiung 804, Taiwan
| |
Collapse
|
44
|
Zhou J, Cao Z, Panwar N, Hu R, Wang X, Qu J, Tjin SC, Xu G, Yong KT. Functionalized gold nanorods for nanomedicine: Past, present and future. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Hua H, Zhang N, Liu D, Song L, Liu T, Li S, Zhao Y. Multifunctional gold nanorods and docetaxel-encapsulated liposomes for combined thermo- and chemotherapy. Int J Nanomedicine 2017; 12:7869-7884. [PMID: 29123399 PMCID: PMC5661837 DOI: 10.2147/ijn.s143977] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Personalized and precise nanomedicines are highly demanded for today’s medical needs. Liposomes are ideal candidates for the construction of multifunctional drug delivery systems. In this study, a liposome was used to improve the clinical issues of docetaxel (Doc), a potent antimitotic chemotherapy for prostate cancer (PC). RLT, a low-density lipoprotein receptor (LDLR)-binding peptide, and PEG were conjugated to the liposomes, and gold nanorods (GNRs) were also incorporated into the liposomes. The GNRs/Doc-liposome-RLT (GNRs/DocL-R) was tested in PC-3 cells and in PC-3 tumor-bearing nude mice. Results showed that GNRs/DocL-R possessed a diameter approximately 163.15±1.83 nm and a zeta potential approximately −32.8±2.16 mV. GNRs/DocL-R showed enhanced intracellular entrance, increased accumulation in the implanted tumor region, and the highest tumor inhibition in vitro and in vivo. Therefore, the multifunctional GNRs/DocL-R was a potential cancer treatment via combined chemo- and thermotherapy.
Collapse
Affiliation(s)
- Haiying Hua
- Academy of Medical and Pharmaceutical Sciences
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China
| | - Dan Liu
- Academy of Medical and Pharmaceutical Sciences
| | - Lili Song
- Academy of Medical and Pharmaceutical Sciences
| | - Tuanbing Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China
| | - Shasha Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China
| |
Collapse
|
46
|
Hashemi M, Omidi M, Muralidharan B, Smyth H, Mohagheghi MA, Mohammadi J, Milner TE. Evaluation of the Photothermal Properties of a Reduced Graphene Oxide/Arginine Nanostructure for Near-Infrared Absorption. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32607-32620. [PMID: 28841283 DOI: 10.1021/acsami.7b11291] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Strong near-infrared (NIR) absorption of reduced graphene oxide (rGO) make this material a candidate for photothermal therapy. The use of rGO has been limited by low stability in aqueous media due to the lack of surface hydrophilic groups. We report synthesis of a novel form of reduced graphene-arginine (rGO-Arg) as a nanoprobe. Introduction of Arg to the surface of rGO not only increases the stability in aqueous solutions but also increases cancer cell uptake. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) images are recorded to characterize the morphology of rGO-Arg. Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS), Raman, and UV-vis spectroscopy are utilized to analyze the physiochemical properties of rGO-Arg. Interaction of rGO-Arg with 808 nm laser light has been evaluated by measuring the absorption cross section in response to periodically modulated intensity to minimize artifacts arising from lateral thermal diffusion with a material scattering matched to a low scattering optical standard. Cell toxicity and cellular uptake by MD-MB-231 cell lines provide supporting data for the potential application of rGO-Arg for photothermal therapy. Absorption cross-section results suggest rGO-Arg is an excellent NIR absorber that is 3.2 times stronger in comparison to GO.
Collapse
Affiliation(s)
- Mohadeseh Hashemi
- Biomedical Engineering Department, Faculty of New Sciences and Technologies, The University of Tehran , Tehran 14395-1561, Iran
- Biomedical Engineering Department, The University of Texas at Austin , Austin, Texas 78712, United States
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Meisam Omidi
- Protein Research Centre, Shahid Beheshti University , GC, Velenjak, Tehran 1985717443, Iran
| | - Bharadwaj Muralidharan
- Biomedical Engineering Department, The University of Texas at Austin , Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Hugh Smyth
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Mohammad A Mohagheghi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences , Tehran 1419733141, Iran
| | - Javad Mohammadi
- Biomedical Engineering Department, Faculty of New Sciences and Technologies, The University of Tehran , Tehran 14395-1561, Iran
| | - Thomas E Milner
- Biomedical Engineering Department, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
47
|
Yang X, Su LJ, La Rosa FG, Smith EE, Schlaepfer IR, Cho SK, Kavanagh B, Park W, Flaig TW. The Antineoplastic Activity of Photothermal Ablative Therapy with Targeted Gold Nanorods in an Orthotopic Urinary Bladder Cancer Model. Bladder Cancer 2017; 3:201-210. [PMID: 28824948 PMCID: PMC5545915 DOI: 10.3233/blc-170096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Gold nanoparticles treated with near infrared (NIR) light can be heated preferentially, allowing for thermal ablation of targeted cells. The use of novel intravesical nanoparticle-directed therapy in conjunction with laser irradiation via a fiber optic cystoscope, represents a potential ablative treatment approach in patients with superficial bladder cancer. OBJECTIVE To examine the thermal ablative effect of epidermal growth factor receptor (EGFR)-directed gold nanorods irradiated with NIR light in an orthotopic urinary bladder cancer model. METHODS Gold nanorods linked to an anti-EGFR antibody (Conjugated gold NanoRods - CNR) were instilled into the bladder cavity of an orthotopic murine xenograft model with T24 bladder cancer cells expressing luciferase. NIR light was externally administered via an 808 nm diode laser. This treatment was repeated weekly for 4 weeks. The anti-cancer effect was monitored by an in vivo imaging system in a non-invasive manner, which was the primary outcome of our study. RESULTS The optimal approach for an individual treatment was 2.1 W/cm2 laser power for 30 seconds. Using this in vivo model, NIR light combined with CNR demonstrated a statistically significant reduction in tumor-associated bioluminescent activity (n = 16) compared to mice treated with laser alone (n = 14) at the end of the study (p = 0.035). Furthermore, the CNR+NIR light treatment significantly abrogated bioluminescence signals over a 6-week observation period, compared to pre-treatment levels (p = 0.045). CONCLUSIONS Photothermal tumor ablation with EGFR-directed gold nanorods and NIR light proved effective and well tolerated in a murine in vivo model of urinary bladder cancer.
Collapse
Affiliation(s)
- Xiaoping Yang
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA.,University of Colorado Cancer Center, Aurora, CO, USA
| | - Lih-Jen Su
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Francisco G La Rosa
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA.,University of Colorado Cancer Center, Aurora, CO, USA
| | - Elizabeth Erin Smith
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA.,University of Colorado Cancer Center, Aurora, CO, USA
| | - Isabel R Schlaepfer
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Suehyun K Cho
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO, USA
| | - Brian Kavanagh
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wounjhang Park
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO, USA
| | - Thomas W Flaig
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA.,University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
48
|
Lee SS, Roche PJ, Giannopoulos PN, Mitmaker EJ, Tamilia M, Paliouras M, Trifiro MA. Prostate-specific membrane antigen-directed nanoparticle targeting for extreme nearfield ablation of prostate cancer cells. Tumour Biol 2017; 39:1010428317695943. [PMID: 28351335 DOI: 10.1177/1010428317695943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Almost all biological therapeutic interventions cannot overcome neoplastic heterogeneity. Physical ablation therapy is immune to tumor heterogeneity, but nearby tissue damage is the limiting factor in delivering lethal doses. Multi-walled carbon nanotubes offer a number of unique properties: chemical stability, photonic properties including efficient light absorption, thermal conductivity, and extensive surface area availability for covalent chemical ligation. When combined together with a targeting moiety such as an antibody or small molecule, one can deliver highly localized temperature increases and cause extensive cellular damage. We have functionalized multi-walled carbon nanotubes by conjugating an antibody against prostate-specific membrane antigen. In our in vitro studies using prostate-specific membrane antigen-positive LNCaP prostate cancer cells, we have effectively demonstrated cell ablation of >80% with a single 30-s exposure to a 2.7-W, 532-nm laser for the first time without bulk heating. We also confirmed the specificity and selectivity of prostate-specific membrane antigen targeting by assessing prostate-specific membrane antigen-null PC3 cell lines under the same conditions (<10% cell ablation). This suggests that we can achieve an extreme nearfield cell ablation effect, thus restricting potential tissue damage when transferred to in vivo clinical applications. Developing this new platform will introduce novel approaches toward current therapeutic modalities and will usher in a new age of effective cancer treatment squarely addressing tumoral heterogeneity.
Collapse
Affiliation(s)
- Seung S Lee
- 1 Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- 2 Division of Experimental Medicine, Department of Medicine/Oncology, McGill University, Montreal, QC, Canada
| | - Philip Jr Roche
- 1 Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Paresa N Giannopoulos
- 1 Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Elliot J Mitmaker
- 1 Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- 3 Department of Surgery, McGill University, Montreal, QC, Canada
| | - Michael Tamilia
- 4 Division of Endocrinology, Jewish General Hospital, Montreal, QC, Canada
| | - Miltiadis Paliouras
- 1 Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- 2 Division of Experimental Medicine, Department of Medicine/Oncology, McGill University, Montreal, QC, Canada
| | - Mark A Trifiro
- 1 Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- 2 Division of Experimental Medicine, Department of Medicine/Oncology, McGill University, Montreal, QC, Canada
- 4 Division of Endocrinology, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
49
|
Lee C, Hwang HS, Lee S, Kim B, Kim JO, Oh KT, Lee ES, Choi HG, Youn YS. Rabies Virus-Inspired Silica-Coated Gold Nanorods as a Photothermal Therapeutic Platform for Treating Brain Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605563. [PMID: 28134459 DOI: 10.1002/adma.201605563] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/09/2016] [Indexed: 05/24/2023]
Abstract
Rabies virus-inspired silica-coated gold nanorods are fabricated by mimicking size, shape, surface glycoprotein property and in vivo behavior of the rabies virus. These nanorods not only resemble the appearance of the actual rabies virus but also travel into the brain through the neuronal pathway bypassing the blood-brain barrier, and moreover respond to near-infrared laser (808 nm) irradiation, emit heat, and effectively suppress brain tumors.
Collapse
Affiliation(s)
- Changkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ha Shin Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sungin Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Bomi Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyongsan, 38541, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
50
|
Liu K, Bu Y, Zheng Y, Jiang X, Yu A, Wang H. Seedless Synthesis of Monodispersed Gold Nanorods with Remarkably High Yield: Synergistic Effect of Template Modification and Growth Kinetics Regulation. Chemistry 2017; 23:3291-3299. [PMID: 28074502 DOI: 10.1002/chem.201605617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 11/07/2022]
Abstract
Gold nanorods (AuNRs) are versatile materials due to their broadly tunable optical properties associated with their anisotropic feature. Conventional seed-mediated synthesis is, however, not only limited by the operational complexity and over-sensitivity towards subtle changes of experimental conditions but also suffers from low yield (≈15 %). A facile seedless method is reported to overcome these challenges. Monodispersed AuNRs with high yield (≈100 %) and highly adjustable longitudinal surface plasmon resonance (LSPR) are reproducibly synthesized. The parameters that influence the AuNRs growth were thoroughly investigated in terms of growth kinetics and soft-template regulation, offering a better understanding of the template-based mechanism. The facile synthesis, broad tunability of LSRP, high reproducibility, high yield, and ease of scale-up make this method promising for the future mass production of monodispersed AuNRs for applications in catalysis, sensing, and biomedicine.
Collapse
Affiliation(s)
- Kang Liu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Yanru Bu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Yuanhui Zheng
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xuchuan Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Aibing Yu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|