1
|
Yi JS, Kim JM, Ban YH, Yoon YJ. Modular polyketide synthase-derived insecticidal agents: from biosynthesis and metabolic engineering to combinatorial biosynthesis for their production. Nat Prod Rep 2023; 40:972-987. [PMID: 36691749 DOI: 10.1039/d2np00078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Covering: up to 2022Polyketides derived from actinomycetes are a valuable source of eco-friendly biochemical insecticides. The development of new insecticides is urgently required, as the number of insects resistant to more than one drug is rapidly increasing. Moreover, significant enhancement of the production of such biochemical insecticides is required for economical production. There has been considerable improvement in polyketide insecticidal agent production and development of new insecticides. However, most commercially important biochemical insecticides are synthesized by modular type I polyketide synthases (PKSs), and their structural complexities make chemical modification challenging. A detailed understanding of the biosynthetic mechanisms of potent polyketide insecticides and the structure-activity relationships of their analogs will provide insight into the comprehensive design of new insecticides with improved efficacies. Further metabolic engineering and combinatorial biosynthesis efforts, reinvigorated by synthetic biology, can eventually produce designed analogs in large quantities. This highlight reviews the biosynthesis of representative insecticides produced by modular type I PKSs, such as avermectin, spinosyn, and spectinabilin, and their insecticidal properties. Metabolic engineering and combinatorial biosynthetic strategies for the development of high-yield strains and analogs with insecticidal activities are emphasized, proposing a way to develop a next-generation insecticide.
Collapse
Affiliation(s)
- Jeong Sang Yi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jung Min Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yeon Hee Ban
- College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Galanie S, Entwistle D, Lalonde J. Engineering biosynthetic enzymes for industrial natural product synthesis. Nat Prod Rep 2021; 37:1122-1143. [PMID: 32364202 DOI: 10.1039/c9np00071b] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2000 to 2020 Natural products and their derivatives are commercially important medicines, agrochemicals, flavors, fragrances, and food ingredients. Industrial strategies to produce these structurally complex molecules encompass varied combinations of chemical synthesis, biocatalysis, and extraction from natural sources. Interest in engineering natural product biosynthesis began with the advent of genetic tools for pathway discovery. Genes and strains can now readily be synthesized, mutated, recombined, and sequenced. Enzyme engineering has succeeded commercially due to the development of genetic methods, analytical technologies, and machine learning algorithms. Today, engineered biosynthetic enzymes from organisms spanning the tree of life are used industrially to produce diverse molecules. These biocatalytic processes include single enzymatic steps, multienzyme cascades, and engineered native and heterologous microbial strains. This review will describe how biosynthetic enzymes have been engineered to enable commercial and near-commercial syntheses of natural products and their analogs.
Collapse
Affiliation(s)
- Stephanie Galanie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | - David Entwistle
- Process Chemistry, Codexis, Inc., Redwood City, California, USA
| | - James Lalonde
- Microbial Digital Genome Engineering, Inscripta, Inc., Pleasanton, California, USA
| |
Collapse
|
3
|
Sparks TC, Crouse GD, Benko Z, Demeter D, Giampietro NC, Lambert W, Brown AV. The spinosyns, spinosad, spinetoram, and synthetic spinosyn mimics - discovery, exploration, and evolution of a natural product chemistry and the impact of computational tools. PEST MANAGEMENT SCIENCE 2021; 77:3637-3649. [PMID: 32893433 DOI: 10.1002/ps.6073] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/16/2020] [Accepted: 09/07/2020] [Indexed: 05/28/2023]
Abstract
Natural products (NPs) have long been a source of insecticidal crop protection products. Like many macrolide NPs, the spinosyns originated from a soil inhibiting microorganism (Saccharopolyspora spinosa). More than 20 years after initial registration, the spinosyns remain a unique class of NP-based insect control products that presently encompass two insecticidal active ingredients, spinosad, a naturally occurring mixture of spinosyns, and spinetoram, a semi-synthetic spinosyn product. The exploration and exploitation of the spinosyns has, unusually, been tied to an array of computational tools including artificial intelligence (AI)-based quantitative structure activity relationship (QSAR) and most recently computer-aided modeling and design (CAMD). The AI-based QSAR directly lead to the discovery of spinetoram, while the CAMD studies have recently resulted in the discovery and building of a series of synthetic spinosyn mimics. The most recent of these synthetic spinosyn mimics show promise as insecticides targeting lepidopteran insect pests as demonstrated by field studies wherein the efficacy has been shown to be comparable to spinosad and spinetoram. These and a range of other aspects related to the exploration of the spinosyns over the past 30 years are reviewed herein. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Gary D Crouse
- Corteva Agriscience, Discovery Research, Indianapolis, IN, USA
| | - Zoltan Benko
- Corteva Agriscience, Discovery Research, Indianapolis, IN, USA
| | - David Demeter
- Corteva Agriscience, Discovery Research, Indianapolis, IN, USA
| | | | - William Lambert
- Corteva Agriscience, Discovery Research, Indianapolis, IN, USA
| | - Annette V Brown
- Corteva Agriscience, Discovery Research, Indianapolis, IN, USA
| |
Collapse
|
4
|
Li S, Yang B, Tan GY, Ouyang LM, Qiu S, Wang W, Xiang W, Zhang L. Polyketide pesticides from actinomycetes. Curr Opin Biotechnol 2021; 69:299-307. [PMID: 34102376 DOI: 10.1016/j.copbio.2021.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022]
Abstract
Natural product derived pesticides have increased in popularity worldwide because of their high efficacy, eco-friendly nature and favorable safety profile. The development of polyketide pesticides from actinomycetes reflects this increase in popularity in the past decades. These pesticides, which include avermectins, spinosyns, polynactins, tetramycin and their analogues, have been successfully applied in crop protection. Moreover, the advance of biotechnology has led to continuous improvement in the discovery and production processes. In this review, we summarize these polyketide pesticides, their activities and provide insight into their development. We also discuss engineering strategies and the current status of industrial production for these pesticides. Given that actinomycetes are known to produce a wide range of bioactive secondary metabolites, the description of pesticide development and high yield strain improvement presented herein will facilitate further development of these valuable polyketide pesticides from actinomycetes.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bowen Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shiwen Qiu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Weishan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Song C, Luan J, Li R, Jiang C, Hou Y, Cui Q, Cui T, Tan L, Ma Z, Tang YJ, Stewart AF, Fu J, Zhang Y, Wang H. RedEx: a method for seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters. Nucleic Acids Res 2021; 48:e130. [PMID: 33119745 PMCID: PMC7736807 DOI: 10.1093/nar/gkaa956] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022] Open
Abstract
Biosynthesis reprograming is an important way to diversify chemical structures. The large repetitive DNA sequences existing in polyketide synthase genes make seamless DNA manipulation of the polyketide biosynthetic gene clusters extremely challenging. In this study, to replace the ethyl group attached to the C-21 of the macrolide insecticide spinosad with a butenyl group by refactoring the 79-kb gene cluster, we developed a RedEx method by combining Redαβ mediated linear-circular homologous recombination, ccdB counterselection and exonuclease mediated in vitro annealing to insert an exogenous extension module in the polyketide synthase gene without any extra sequence. RedEx was also applied for seamless deletion of the rhamnose 3′-O-methyltransferase gene in the spinosad gene cluster to produce rhamnosyl-3′-desmethyl derivatives. The advantages of RedEx in seamless mutagenesis will facilitate rational design of complex DNA sequences for diverse purposes.
Collapse
Affiliation(s)
- Chaoyi Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ruijuan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yu Hou
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Qingwen Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Tianqi Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Long Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Zaichao Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - A Francis Stewart
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
6
|
Sparks TC, Wessels FJ, Lorsbach BA, Nugent BM, Watson GB. The new age of insecticide discovery-the crop protection industry and the impact of natural products. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:12-22. [PMID: 31685191 DOI: 10.1016/j.pestbp.2019.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Improvements in food production and disease vector control, to feed and protect an expanding global population, require new options and approaches for insect control. A changing and an increasingly stringent regulatory landscape, shifts in pest spectrum due to changes in agronomic practices, and insect resistance to existing insecticides, all contribute to the challenges of, and need for, developing new insect control agents. The nature of insecticides emanating from discovery R&D-based companies in the European Union, Japan, and the United States have evolved from a concentration on a few classes of insecticides and modes of action (MoA), to a far more diversified collection of insecticidal molecules that embody many new, or under-utilized MoAs. Since 1990 there has arguably been a new age of insecticide discovery, with more new classes of insecticides introduced, with greater economic impact, than the prior 50 years combined. Although there has been an on-going evolution and consolidation in the size and shape of the crop protection industry, for the past two decades the output of new insecticides has remained relatively constant. The diversity of approaches employed in the insecticide discovery process (competitor inspired, bioactive hypothesis and natural products) has contributed to the discovery of these new classes of insecticides. Insecticide discovery is today a global enterprise, that armed with new tools and capabilities, will continue to build and provide the future insect control products to meet global grower and consumer demands.
Collapse
Affiliation(s)
| | - Frank J Wessels
- Corteva Agriscience, Indianapolis, IN 46268, United States of America
| | - Beth A Lorsbach
- Corteva Agriscience, Indianapolis, IN 46268, United States of America
| | - Benjamin M Nugent
- Corteva Agriscience, Indianapolis, IN 46268, United States of America
| | - Gerald B Watson
- Corteva Agriscience, Indianapolis, IN 46268, United States of America
| |
Collapse
|
7
|
Lorsbach BA, Sparks TC, Cicchillo RM, Garizi NV, Hahn DR, Meyer KG. Natural products: a strategic lead generation approach in crop protection discovery. PEST MANAGEMENT SCIENCE 2019; 75:2301-2309. [PMID: 30672097 DOI: 10.1002/ps.5350] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 05/14/2023]
Abstract
With the anticipated population growth in the coming decades, the changing regulatory environment, and the continued emergence of resistance to commercial pesticides, there is a constant need to discover new lead chemistries with novel modes of action. We have established a portfolio of approaches to accelerate lead generation. One of these approaches capitalizes on the rich bioactivity of natural products (NPs), highlighted by the numerous examples of NP-based crop protection compounds. Within Corteva Agriscience and the affiliated preceding companies, NPs have been a fruitful approach, for nearly three decades, to identifying and bringing to the market crop protection products inspired by or originating from NPs, . Included in these NP-based crop protection products are the spinosyns family of insecticides, and those from more recent areas of NP-based fungicidal chemistry, as highlighted in this perspective. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Beth A Lorsbach
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Crop Protection Discovery, Dow AgroSciences, Indianapolis, IN, USA
| | - Thomas C Sparks
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Crop Protection Discovery, Dow AgroSciences, Indianapolis, IN, USA
| | - Robert M Cicchillo
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Crop Protection Discovery, Dow AgroSciences, Indianapolis, IN, USA
| | - Negar V Garizi
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Crop Protection Discovery, Dow AgroSciences, Indianapolis, IN, USA
| | - Donald R Hahn
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Crop Protection Discovery, Dow AgroSciences, Indianapolis, IN, USA
| | - Kevin G Meyer
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Crop Protection Discovery, Dow AgroSciences, Indianapolis, IN, USA
| |
Collapse
|
8
|
Dhakal D, Sohng JK, Pandey RP. Engineering actinomycetes for biosynthesis of macrolactone polyketides. Microb Cell Fact 2019; 18:137. [PMID: 31409353 PMCID: PMC6693128 DOI: 10.1186/s12934-019-1184-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Actinobacteria are characterized as the most prominent producer of natural products (NPs) with pharmaceutical importance. The production of NPs from these actinobacteria is associated with particular biosynthetic gene clusters (BGCs) in these microorganisms. The majority of these BGCs include polyketide synthase (PKS) or non-ribosomal peptide synthase (NRPS) or a combination of both PKS and NRPS. Macrolides compounds contain a core macro-lactone ring (aglycone) decorated with diverse functional groups in their chemical structures. The aglycon is generated by megaenzyme polyketide synthases (PKSs) from diverse acyl-CoA as precursor substrates. Further, post-PKS enzymes are responsible for allocating the structural diversity and functional characteristics for their biological activities. Macrolides are biologically important for their uses in therapeutics as antibiotics, anti-tumor agents, immunosuppressants, anti-parasites and many more. Thus, precise genetic/metabolic engineering of actinobacteria along with the application of various chemical/biological approaches have made it plausible for production of macrolides in industrial scale or generation of their novel derivatives with more effective biological properties. In this review, we have discussed versatile approaches for generating a wide range of macrolide structures by engineering the PKS and post-PKS cascades at either enzyme or cellular level in actinobacteria species, either the native or heterologous producer strains.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| |
Collapse
|
9
|
Sparks TC, Crouse GD, Demeter DA, Samaritoni G, McLeod CL. Discovery of highly insecticidal synthetic spinosyn mimics - CAMD enabled de novo design simplifying a complex natural product. PEST MANAGEMENT SCIENCE 2019; 75:309-313. [PMID: 30242953 DOI: 10.1002/ps.5217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Simplifying complex natural products: Computer modeling-based design leads to highly insecticidal, chemically simpler synthetic mimics of the spinosyn natural products that are active in the field. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thomas C Sparks
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Dow AgroSciences, Discovery Research, Indianapolis, IN, USA
| | - Gary D Crouse
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Dow AgroSciences, Discovery Research, Indianapolis, IN, USA
| | - David A Demeter
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Dow AgroSciences, Discovery Research, Indianapolis, IN, USA
| | - Geno Samaritoni
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Dow AgroSciences, Discovery Research, Indianapolis, IN, USA
| | - Casandra L McLeod
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Dow AgroSciences, Discovery Research, Indianapolis, IN, USA
| |
Collapse
|
10
|
Zhang K, Li J, Liu H, Wang H, A L. Semi-synthesis and insecticidal activity of spinetoram J and its D-forosamine replacement analogues. Beilstein J Org Chem 2018; 14:2321-2330. [PMID: 30254696 PMCID: PMC6142758 DOI: 10.3762/bjoc.14.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022] Open
Abstract
Spinetoram, a mixture of spinetoram J (XDE-175-J, major component) and spinetoram L (XDE-175-L), is a new kind of fermentation-derived insecticide with a broad range of action against many insect pests, especially Cydia pomonella, Leaf miner and Thrips. Similar to spinosad, spinetoram is friendly to the environment, and non-toxic to animals and human beings. Therefore, spinetoram has been widely applied in pest control and grain storage. In a previous study, we had reported a semi-synthesis of spinetoram J. However, in that synthesis, there were more experimental steps, and the operations were troublesome. So an improved synthesis based on a self-protection strategy was designed and discussed. In this work, 3-O-ethyl-2,4-di-O-methylrhamnose was used as both the reaction substrate of C9-OH and the protecting group of C17-OH. The number of synthetic steps and costs were significantly reduced. In addition, a variety of D-forosamine replacement analogues of spinetoram J were synthesized based on the improved semi-synthesis, and their insecticidal activities were evaluated against third-instar larvae of Plutella xylostella. Although none of the analogues were as potent as spinetoram, a few of the analogues have only a 20-40 times lower activity than spinetoram. In particular, one of these analogues was approximately as active as spinosad. This study highlights the possibility of developing new insecticidal chemistries by replacing sugars on natural products with other groups, and the improved semi-synthesis will be helpful for further researches on spinetoram.
Collapse
Affiliation(s)
- Kai Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancan Street, Haidian District, Beijing, P. R. China
| | - Jiarong Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancan Street, Haidian District, Beijing, P. R. China
| | - Honglin Liu
- Institute of Grassland Research of CAAS, No. 120 Wulanchabu East Street, Saihan District, Hohhot, P. R. China
| | - Haiyou Wang
- Institute of Grassland Research of CAAS, No. 120 Wulanchabu East Street, Saihan District, Hohhot, P. R. China
| | - Lamusi A
- Institute of Grassland Research of CAAS, No. 120 Wulanchabu East Street, Saihan District, Hohhot, P. R. China
| |
Collapse
|
11
|
Musiol-Kroll EM, Wohlleben W. Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics (Basel) 2018; 7:antibiotics7030062. [PMID: 30022008 PMCID: PMC6164871 DOI: 10.3390/antibiotics7030062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Polyketides belong to the most valuable natural products, including diverse bioactive compounds, such as antibiotics, anticancer drugs, antifungal agents, immunosuppressants and others. Their structures are assembled by polyketide synthases (PKSs). Modular PKSs are composed of modules, which involve sets of domains catalysing the stepwise polyketide biosynthesis. The acyltransferase (AT) domains and their “partners”, the acyl carrier proteins (ACPs), thereby play an essential role. The AT loads the building blocks onto the “substrate acceptor”, the ACP. Thus, the AT dictates which building blocks are incorporated into the polyketide structure. The precursor- and occasionally the ACP-specificity of the ATs differ across the polyketide pathways and therefore, the ATs contribute to the structural diversity within this group of complex natural products. Those features make the AT enzymes one of the most promising tools for manipulation of polyketide assembly lines and generation of new polyketide compounds. However, the AT-based PKS engineering is still not straightforward and thus, rational design of functional PKSs requires detailed understanding of the complex machineries. This review summarizes the attempts of PKS engineering by exploiting the AT attributes for the modification of polyketide structures. The article includes 253 references and covers the most relevant literature published until May 2018.
Collapse
Affiliation(s)
- Ewa Maria Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
12
|
Crouse GD, Demeter DA, Samaritoni G, McLeod CL, Sparks TC. De Novo Design of Potent, Insecticidal Synthetic Mimics of the Spinosyn Macrolide Natural Products. Sci Rep 2018; 8:4861. [PMID: 29559660 PMCID: PMC5861068 DOI: 10.1038/s41598-018-22894-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/01/2018] [Indexed: 11/22/2022] Open
Abstract
New insect pest control agents are needed to meet the demands to feed an expanding global population, to address the desire for more environmentally-friendly insecticide tools, and to fill the loss of control options in some crop-pest complexes due to development of insecticide resistance. The spinosyns are a highly effective class of naturally occurring, fermentation derived insecticides, possessing a very favorable environmental profile. Chemically, the spinosyns are composed of a large complex macrolide tetracycle coupled to two sugars. As a means to further exploit this novel class of natural product-based insecticides, molecular modeling studies coupled with bioactivity-directed chemical modifications were used to define a less complex, synthetically accessible replacement for the spinosyn tetracycle. These studies lead to the discovery of highly insecticidal analogs, possessing a simple tri-aryl ring system as a replacement for the complex macrolide tetracycle.
Collapse
Affiliation(s)
- Gary D Crouse
- Dow AgroSciences, Discovery Research, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.,5069 E 146th St Noblesville IN 46062, Indianapolis, IN, USA
| | - David A Demeter
- Dow AgroSciences, Discovery Research, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Geno Samaritoni
- Dow AgroSciences, Discovery Research, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.,Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN, 46202, USA
| | - Casandra L McLeod
- Dow AgroSciences, Discovery Research, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.,6034 Haverford Ave, Indianapolis, IN, 46220, USA
| | - Thomas C Sparks
- Dow AgroSciences, Discovery Research, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| |
Collapse
|
13
|
Barajas JF, Blake-Hedges JM, Bailey CB, Curran S, Keasling JD. Engineered polyketides: Synergy between protein and host level engineering. Synth Syst Biotechnol 2017; 2:147-166. [PMID: 29318196 PMCID: PMC5655351 DOI: 10.1016/j.synbio.2017.08.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/26/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic engineering efforts toward rewiring metabolism of cells to produce new compounds often require the utilization of non-native enzymatic machinery that is capable of producing a broad range of chemical functionalities. Polyketides encompass one of the largest classes of chemically diverse natural products. With thousands of known polyketides, modular polyketide synthases (PKSs) share a particularly attractive biosynthetic logic for generating chemical diversity. The engineering of modular PKSs could open access to the deliberate production of both existing and novel compounds. In this review, we discuss PKS engineering efforts applied at both the protein and cellular level for the generation of a diverse range of chemical structures, and we examine future applications of PKSs in the production of medicines, fuels and other industrially relevant chemicals.
Collapse
Key Words
- ACP, Acyl carrier protein
- AT, Acyltransferase
- CoL, CoA-Ligase
- Commodity chemical
- DE, Dimerization element
- DEBS, 6-deoxyerythronolide B synthase
- DH, Dehydratase
- ER, Enoylreductase
- FAS, Fatty acid synthases
- KR, Ketoreductase
- KS, Ketosynthase
- LM, Loading module
- LTTR, LysR-type transcriptional regulator
- Metabolic engineering
- Natural products
- PCC, Propionyl-CoA carboxylase
- PDB, Precursor directed biosynthesis
- PK, Polyketide
- PKS, Polyketide synthase
- Polyketide
- Polyketide synthase
- R, Reductase domain
- SARP, Streptomyces antibiotic regulatory protein
- SNAC, N-acetylcysteamine
- Synthetic biology
- TE, Thioesterase
- TKL, Triketide lactone
Collapse
Affiliation(s)
| | | | - Constance B. Bailey
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Samuel Curran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jay. D. Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- QB3 Institute, University of California, Berkeley, Emeryville, CA 94608, USA
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK2970 Horsholm, Denmark
| |
Collapse
|
14
|
Sparks TC, Hahn DR, Garizi NV. Natural products, their derivatives, mimics and synthetic equivalents: role in agrochemical discovery. PEST MANAGEMENT SCIENCE 2017; 73:700-715. [PMID: 27739147 DOI: 10.1002/ps.4458] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Natural products (NPs) have a long history as a source of, and inspiration for, novel agrochemicals. Many of the existing herbicides, fungicides, and insecticides have their origins in a wide range of NPs from a variety of sources. Owing to the changing needs of agriculture, shifts in pest spectrum, development of resistance, and evolving regulatory requirements, the need for new agrochemical tools remains as critical as ever. As such, NPs continue to be an important source of models and templates for the development of new agrochemicals, demonstrated by the fact that NP models exist for many of the pest control agents that were discovered by other means. Interestingly, there appear to be distinct differences in the success of different NP sources for different pesticide uses. Although a few microbial NPs have been important starting points in recent discoveries of some insecticidal agrochemicals, historically plant sources have contributed the most to the discovery of new insecticides. In contrast, fungi have been the most important NP sources for new fungicides. Like insecticides, plant-sourced NPs have made the largest contribution to herbicide discovery. Available data on 2014 global sales and numbers of compounds in each class of pesticides indicate that the overall impact of NPs to the discovery of herbicides has been relatively modest compared to the impact observed for fungicides and insecticides. However, as new sourcing and approaches to NP discovery evolve, the impact of NPs in all agrochemical arenas will continue to expand. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thomas C Sparks
- Dow AgroSciences, Discovery Research, Indianapolis, IN, 46268, USA
| | - Donald R Hahn
- Dow AgroSciences, Discovery Research, Indianapolis, IN, 46268, USA
| | - Negar V Garizi
- Dow AgroSciences, Discovery Research, Indianapolis, IN, 46268, USA
| |
Collapse
|
15
|
Natural product derived insecticides: discovery and development of spinetoram. ACTA ACUST UNITED AC 2016; 43:185-93. [DOI: 10.1007/s10295-015-1710-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022]
Abstract
Abstract
This review highlights the importance of natural product research and industrial microbiology for product development in the agricultural industry, based on examples from Dow AgroSciences. It provides an overview of the discovery and development of spinetoram, a semisynthetic insecticide derived by a combination of a genetic block in a specific O-methylation of the rhamnose moiety of spinosad coupled with neural network-based QSAR and synthetic chemistry. It also emphasizes the key role that new technologies and multidisciplinary approaches play in the development of current spinetoram production strains.
Collapse
|
16
|
Weissman KJ. Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat Prod Rep 2016; 33:203-30. [DOI: 10.1039/c5np00109a] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This reviews covers on-going efforts at engineering the gigantic modular polyketide synthases (PKSs), highlighting both notable successes and failures.
Collapse
Affiliation(s)
- Kira J. Weissman
- UMR 7365
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA)
- CNRS-Université de Lorraine
- Biopôle de l'Université de Lorraine
- 54505 Vandœuvre-lès-Nancy Cedex
| |
Collapse
|
17
|
Designed biosynthesis of 25-methyl and 25-ethyl ivermectin with enhanced insecticidal activity by domain swap of avermectin polyketide synthase. Microb Cell Fact 2015; 14:152. [PMID: 26400541 PMCID: PMC4581413 DOI: 10.1186/s12934-015-0337-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/10/2015] [Indexed: 11/25/2022] Open
Abstract
Background Avermectin and milbemycin are important 16-membered macrolides that have been widely used as pesticides in agriculture. However, the wide use of these pesticides inevitably causes serious drug resistance, it is therefore imperative to develop new avermectin and milbemycin analogs. The biosynthetic gene clusters of avermectin and milbemycin have been identified and the biosynthetic pathways have been elucidated. Combinatorial biosynthesis by domain swap provides an efficient strategy to generate chemical diversity according to the module polyketide synthase (PKS) assembly line. Results The substitution of aveDH2-KR2 located in avermectin biosynthetic gene cluster in the industrial avermectin-producing strain Streptomyces avermitilis NA-108 with the DNA regions milDH2-ER2-KR2 located in milbemycin biosynthetic gene cluster in Streptomyces bingchenggensis led to S. avermitilis AVE-T27, which produced ivermectin B1a with high yield of 3450 ± 65 μg/ml. The subsequent replacement of aveLAT-ACP encoding the loading module of avermectin PKS with milLAT-ACP encoding the loading module of milbemycin PKS led to strain S. avermitilis AVE-H39, which produced two new avermectin derivatives 25-ethyl and 25-methyl ivermectin (1 and 2) with yields of 951 ± 46 and 2093 ± 61 μg/ml, respectively. Compared to commercial insecticide ivermectin, the mixture of 25-methyl and 25-ethyl ivermectin (2:1 = 3:7) exhibited 4.6-fold increase in insecticidal activity against Caenorhabditis elegans. Moreover, the insecticidal activity of the mixture of 25-methyl and 25-ethyl ivermectin was 2.5-fold and 5.7-fold higher than that of milbemycin A3/A4 against C. elegans and the second-instar larva of Mythimna separate, respectively. Conclusions Two new avermectin derivatives 25-methyl and 25-ethyl ivermectin were generated by the domain swap of avermectin PKS. The enhanced insecticidal activity of 25-methyl and 25-ethyl ivermectin implied the potential use as insecticide in agriculture. Furthermore, the high yield and genetic stability of the engineered strains S. avermitilis AVE-T27 and AVE-H39 suggested the enormous potential in industrial production of the commercial insecticide ivermectin and 25-methyl/25-ethyl ivermectins, respectively. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0337-y) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Oliver MP, Crouse GD, Demeter DA, Sparks TC. Synthesis and Insecticidal Activity of Spinosyns with C9-O-Benzyl Bioisosteres in Place of the 2',3',4'-Tri-O-methyl Rhamnose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5571-5577. [PMID: 25993441 DOI: 10.1021/acs.jafc.5b01987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The spinosyns are fermentation-derived natural products active against a wide range of insect pests. They are structurally complex, consisting of two sugars (forosamine and rhamnose) coupled to a macrocyclic tetracycle. Removal of the rhamnose sugar results in a >100-fold reduction in insecticidal activity. C9-O-benzyl analogues of spinosyn D were synthesized to determine if the 2',3',4'-tri-O-methyl rhamnose moiety could be replaced with a simpler, synthetic bioisostere. Insecticidal activity was evaluated against larvae of Spodoptera exigua (beet armyworm) and Helicoverpa zea (corn earworm). Whereas most analogues were far less active than spinosyn D, a few of the C9-O-benzyl analogues, such as 4-CN, 4-Cl, 2-isopropyl, and 3,5-diOMe, were within 3-15 times the activity of spinosyn D for larvae of S. exigua and H. zea. Thus, although not yet quite as effective, synthetic bioisosteres can substitute for the naturally occurring 2',3',4'-tri-O-methyl rhamnose moiety.
Collapse
Affiliation(s)
- M Paige Oliver
- Dow AgroSciences, Discovery Research, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Gary D Crouse
- Dow AgroSciences, Discovery Research, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - David A Demeter
- Dow AgroSciences, Discovery Research, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Thomas C Sparks
- Dow AgroSciences, Discovery Research, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
19
|
Fuerst JA. Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl Microbiol Biotechnol 2014; 98:7331-47. [DOI: 10.1007/s00253-014-5861-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/13/2022]
|
20
|
Deoxysugar pathway interchange for erythromycin analogues heterologously produced through Escherichia coli. Metab Eng 2013; 20:92-100. [PMID: 24060454 DOI: 10.1016/j.ymben.2013.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/30/2013] [Accepted: 09/11/2013] [Indexed: 01/16/2023]
Abstract
The overall erythromycin biosynthetic pathway can be sub-divided into macrocyclic polyketide formation and polyketide tailoring to produce the final bioactive molecule. In this study, the native deoxysugar tailoring reactions were exchanged for the purpose of demonstrating the production of alternative final erythromycin compounds. Both the d-desosamine and l-mycarose deoxysugar pathways were replaced with the alternative d-mycaminose and d-olivose pathways to produce new erythromycin analogues through the Escherichia coli heterologous system. Both analogues exhibited bioactivity against multiple antibiotic-resistant Bacillus subtilis strains. Besides demonstrating an intrinsic flexibility for the biosynthetic system to accommodate alternative tailoring pathways, the results offer an initial attempt to leverage the E. coli platform for erythromycin analogue production.
Collapse
|
21
|
Busch B, Ueberschaar N, Behnken S, Sugimoto Y, Werneburg M, Traitcheva N, He J, Hertweck C. Multifactorial Control of Iteration Events in a Modular Polyketide Assembly Line. Angew Chem Int Ed Engl 2013; 52:5285-9. [DOI: 10.1002/anie.201301322] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 11/06/2022]
|
22
|
Busch B, Ueberschaar N, Behnken S, Sugimoto Y, Werneburg M, Traitcheva N, He J, Hertweck C. Multifactorial Control of Iteration Events in a Modular Polyketide Assembly Line. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Kendrew SG, Petkovic H, Gaisser S, Ready SJ, Gregory MA, Coates NJ, Nur-e-Alam M, Warneck T, Suthar D, Foster TA, McDonald L, Schlingman G, Koehn FE, Skotnicki JS, Carter GT, Moss SJ, Zhang MQ, Martin CJ, Sheridan RM, Wilkinson B. Recombinant strains for the enhanced production of bioengineered rapalogs. Metab Eng 2013; 15:167-73. [DOI: 10.1016/j.ymben.2012.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/16/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
|
24
|
Moss SJ, Stanley-Smith AE, Schell U, Coates NJ, Foster TA, Gaisser S, Gregory MA, Martin CJ, Nur-e-Alam M, Piraee M, Radzom M, Suthar D, Thexton DG, Warneck TD, Zhang MQ, Wilkinson B. Novel FK506 and FK520 analogues via mutasynthesis: mutasynthon scope and product characteristics. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20266b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel FK506 and FK520 analogues were generated via biosynthetic engineering in order to generate analogue compounds with equal potency but improved pharmacological profiles compared to FK506.
Collapse
|
25
|
Wang JB, Pan HX, Tang GL. Production of doramectin by rational engineering of the avermectin biosynthetic pathway. Bioorg Med Chem Lett 2011; 21:3320-3. [DOI: 10.1016/j.bmcl.2011.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/21/2011] [Accepted: 04/05/2011] [Indexed: 11/30/2022]
|
26
|
Lee HY, Harvey CJB, Cane DE, Khosla C. Improved precursor-directed biosynthesis in E. coli via directed evolution. J Antibiot (Tokyo) 2010; 64:59-64. [PMID: 21081955 PMCID: PMC3030684 DOI: 10.1038/ja.2010.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Erythromycin and related macrolide antibiotics are widely used polyketide natural products. We have evolved an engineered biosynthetic pathway in Escherichia coli that yields erythromycin analogs from simple synthetic precursors. Multiple rounds of mutagenesis and screening led to the identification of new mutant strains with improved efficiency for precursor directed biosynthesis. Genetic and biochemical analysis suggested that the phenotypically relevant alterations in these mutant strains were localized exclusively to the host-vector system, and not to the polyketide synthase. We also demonstrate the utility of this improved system through engineered biosynthesis of a novel alkynyl erythromycin derivative with comparable antibacterial activity to its natural counterpart. In addition to reinforcing the power of directed evolution for engineering macrolide biosynthesis, our studies have identified a new lead substance for investigating structure-function relationships in the bacterial ribosome.
Collapse
Affiliation(s)
- Ho Young Lee
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | | | | | |
Collapse
|
27
|
Werneburg M, Busch B, He J, Richter ME, Xiang L, Moore BS, Roth M, Dahse HM, Hertweck C. Exploiting enzymatic promiscuity to engineer a focused library of highly selective antifungal and antiproliferative aureothin analogues. J Am Chem Soc 2010; 132:10407-13. [PMID: 20662518 PMCID: PMC2925430 DOI: 10.1021/ja102751h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aureothin is a shikimate-polyketide hybrid metabolite from Streptomyces thioluteus with a rare nitroaryl moiety, a chiral tetrahydrofuran ring, and an O-methylated pyrone ring. The antimicrobial and antitumor activities of aureothin have caught our interest in modulating its structure as well as its bioactivity profile. In an integrated approach using mutasynthesis, biotransformation, and combinatorial biosynthesis, a defined library of aureothin analogues was generated. The promiscuity of the polyketide synthase assembly line toward different starter units and the plasticity of the pyrone and tetrahydrofuran ring formation were exploited. A selection of 15 new aureothin analogues with modifications at the aryl residue, the pyrone ring, and the oxygenated backbone was produced on a preparative scale and fully characterized. Remarkably, various new aureothin derivatives are less cytotoxic than aureothin but have improved antiproliferative activities. Furthermore, we found that the THF ring is crucial for the remarkably selective activity of aureothin analogues against certain pathogenic fungi.
Collapse
Affiliation(s)
- Martina Werneburg
- Leibniz Institute for Natural Product Research and Infection Biology,
HKI, Dept. of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany,
and the Friedrich Schiller University, Jena, Germany, and the Scripps
Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of California at San Diego, La Jolla, California,
92093-0204 U.S.A
| | - Benjamin Busch
- Leibniz Institute for Natural Product Research and Infection Biology,
HKI, Dept. of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany,
and the Friedrich Schiller University, Jena, Germany, and the Scripps
Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of California at San Diego, La Jolla, California,
92093-0204 U.S.A
| | - Jing He
- Leibniz Institute for Natural Product Research and Infection Biology,
HKI, Dept. of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany,
and the Friedrich Schiller University, Jena, Germany, and the Scripps
Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of California at San Diego, La Jolla, California,
92093-0204 U.S.A
| | - Martin E.A. Richter
- Leibniz Institute for Natural Product Research and Infection Biology,
HKI, Dept. of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany,
and the Friedrich Schiller University, Jena, Germany, and the Scripps
Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of California at San Diego, La Jolla, California,
92093-0204 U.S.A
| | - Longkuan Xiang
- Leibniz Institute for Natural Product Research and Infection Biology,
HKI, Dept. of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany,
and the Friedrich Schiller University, Jena, Germany, and the Scripps
Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of California at San Diego, La Jolla, California,
92093-0204 U.S.A
| | - Bradley S. Moore
- Leibniz Institute for Natural Product Research and Infection Biology,
HKI, Dept. of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany,
and the Friedrich Schiller University, Jena, Germany, and the Scripps
Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of California at San Diego, La Jolla, California,
92093-0204 U.S.A
| | - Martin Roth
- Leibniz Institute for Natural Product Research and Infection Biology,
HKI, Dept. of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany,
and the Friedrich Schiller University, Jena, Germany, and the Scripps
Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of California at San Diego, La Jolla, California,
92093-0204 U.S.A
| | - Hans-Martin Dahse
- Leibniz Institute for Natural Product Research and Infection Biology,
HKI, Dept. of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany,
and the Friedrich Schiller University, Jena, Germany, and the Scripps
Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of California at San Diego, La Jolla, California,
92093-0204 U.S.A
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology,
HKI, Dept. of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany,
and the Friedrich Schiller University, Jena, Germany, and the Scripps
Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of California at San Diego, La Jolla, California,
92093-0204 U.S.A
| |
Collapse
|
28
|
Abstract
Major advances in genomics, cloning and chemistry will re-stock the dwindling supply of effective antimicrobials and meet the threat of antibiotic resistance development.
Collapse
Affiliation(s)
- Julian Davies
- Department of Microbiology and Immunology, Life Science Institute 2350 Health Sciences Mall University of British Columbia Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
29
|
Kirst HA. The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot (Tokyo) 2010; 63:101-11. [DOI: 10.1038/ja.2010.5] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Tardibono LP, Patzner J, Cesario C, Miller MJ. Palladium-catalyzed decarboxylative rearrangements of allyl 2,2,2-trifluoroethyl malonates: direct access to homoallylic esters. Org Lett 2010; 11:4076-9. [PMID: 19694457 DOI: 10.1021/ol901518g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Homoallylic esters are obtained in a single transformation from allyl 2,2,2-trifluoroethyl malonates by using a Pd(0) catalyst. Facile decarboxylation of allyl 2,2,2-trifluoroethyl malonates is attributed to a decrease in pK(a) compared to allyl methyl malonates. Subsequent reduction of the homoallylic 2,2,2-trifluoroethyl ester provides a (hydroxyethyl)cyclopentenyl derivative that represents a key intermediate in the synthesis of carbocyclic nucleosides. A select allyl 2,2,2-trifluoroethyl malonate undergoes a decarboxylative Claisen rearrangement to provide a regioisomeric homoallylic ester.
Collapse
Affiliation(s)
- Lawrence P Tardibono
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
31
|
Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 2010; 27:571-616. [DOI: 10.1039/b911956f] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Lewer P, Hahn DR, Karr LL, Duebelbeis DO, Gilbert JR, Crouse GD, Worden T, Sparks TC, Edwards PMR, Graupner PR. Discovery of the butenyl-spinosyn insecticides: Novel macrolides from the new bacterial strain Saccharopolyspora pogona. Bioorg Med Chem 2009; 17:4185-96. [DOI: 10.1016/j.bmc.2009.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 02/11/2009] [Accepted: 02/18/2009] [Indexed: 11/24/2022]
|
33
|
Modification of the butenyl-spinosyns utilizing cross-metathesis. Bioorg Med Chem 2009; 17:4197-205. [DOI: 10.1016/j.bmc.2009.02.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 02/11/2009] [Accepted: 02/18/2009] [Indexed: 11/22/2022]
|
34
|
Huang KX, Xia L, Zhang Y, Ding X, Zahn JA. Recent advances in the biochemistry of spinosyns. Appl Microbiol Biotechnol 2009; 82:13-23. [DOI: 10.1007/s00253-008-1784-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 10/31/2008] [Accepted: 11/02/2008] [Indexed: 10/21/2022]
|
35
|
Zou Y, Yin J. Alkyne-functionalized chemical probes for assaying the substrate specificities of the adenylation domains in nonribosomal peptide synthetases. Chembiochem 2009; 9:2804-10. [PMID: 18988209 DOI: 10.1002/cbic.200800480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yekui Zou
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, GCIS E505A, Chicago, IL 60637, USA
| | | |
Collapse
|
36
|
Neural network-based QSAR and insecticide discovery: spinetoram. J Comput Aided Mol Des 2008; 22:393-401. [PMID: 18344004 DOI: 10.1007/s10822-008-9205-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Improvements in the efficacy and spectrum of the spinosyns, novel fermentation derived insecticide, has long been a goal within Dow AgroSciences. As large and complex fermentation products identifying specific modifications to the spinosyns likely to result in improved activity was a difficult process, since most modifications decreased the activity. A variety of approaches were investigated to identify new synthetic directions for the spinosyn chemistry including several explorations of the quantitative structure activity relationships (QSAR) of spinosyns, which initially were unsuccessful. However, application of artificial neural networks (ANN) to the spinosyn QSAR problem identified new directions for improved activity in the chemistry, which subsequent synthesis and testing confirmed. The ANN-based analogs coupled with other information on substitution effects resulting from spinosyn structure activity relationships lead to the discovery of spinetoram (XDE-175). Launched in late 2007, spinetoram provides both improved efficacy and an expanded spectrum while maintaining the exceptional environmental and toxicological profile already established for the spinosyn chemistry.
Collapse
|
37
|
Kirschning A, Taft F, Knobloch T. Total synthesis approaches to natural product derivatives based on the combination of chemical synthesis and metabolic engineering. Org Biomol Chem 2007; 5:3245-59. [PMID: 17912378 DOI: 10.1039/b709549j] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secondary metabolites are an extremely diverse and important group of natural products with industrial and biomedical implications. Advances in metabolic engineering of both native and heterologous secondary metabolite producing organisms have allowed the directed synthesis of desired novel products by exploiting their biosynthetic potentials. Metabolic engineering utilises knowledge of cellular metabolism to alter biosynthetic pathways. An important technique that combines chemical synthesis with metabolic engineering is mutasynthesis (mutational biosynthesis; MBS), which advanced from precursor-directed biosynthesis (PDB). Both techniques are based on the cellular uptake of modified biosynthetic intermediates and their incorporation into complex secondary metabolites. Mutasynthesis utilises genetically engineered organisms in conjunction with feeding of chemically modified intermediates. From a synthetic chemist's point of view the concept of mutasynthesis is highly attractive, as the method combines chemical expertise with Nature's synthetic machinery and thus can be exploited to rapidly create small libraries of secondary metabolites. However, in each case, the method has to be critically compared with semi- and total synthesis in terms of practicability and efficiency. Recent developments in metabolic engineering promise to further broaden the scope of outsourcing chemically demanding steps to biological systems.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, and Center of Biomolecular Drug Research (BMWZ), Schneiderberg 1b, 30167 Hannover, Germany.
| | | | | |
Collapse
|