1
|
Zhang Y, Liu Z, Wang F, Liu J, Zhang Y, Cao J, Huang G, Ma L. ent-8(14),15-Pimaradiene-2β,19-diol, a diterpene from Aleuritopteris albofusca, inhibits growth and induces protective autophagy in hepatocellular carcinoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6867-6878. [PMID: 38568289 DOI: 10.1007/s00210-024-03048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/10/2024] [Indexed: 09/25/2024]
Abstract
A new pimarane-type diterpene, ent-8(14),15-pimaradiene-2β,19-diol (JXE-23), was isolated from the fern plant Aleuritopteris albofusca by our previous work; however, the biological activity of this diterpene remains unclear. In the present study, the anti-cancer potential of JXE-23 in various cancer cells was investigated. Among MCF-7 breast cancer cells, A549 lung cancer cells, and HepG2 liver cancer cells, JXE-23 displayed significant cytotoxicity to HepG2 cells with an IC50 value of 17.20 ± 1.73 µM, while showing no obvious toxicity in normal hepatocytes HL7702. JXE-23 inhibited cell growth and colony formation in HepG2 cells. A cell cycle distribution analysis showed that JXE-23 caused G2/M cell cycle arrest. Besides, JXE-23 also suppressed the migration of HepG2 cells. Interestingly, an increase of light chain 3 II (LC3II) and Beclin 1 and a decrease of P62 have occurred in JXE-23-treated cells, as well as the formation of GFP-LC3 dots, indicative of autophagy induction by JXE-23. When combined with autophagy inhibitor 3-methyladenine and chloroquine, the cell viability was significantly reduced, suggesting that JXE-23 triggered protective autophagy in hepatoma cells. Further study showed that JXE-23 inactivated the CIP2A/p-AKT/c-Myc signaling axis in HepG2 cells. Our data provided evidence that JXE-23 inhibited cell growth, arrested cells at the G2/M phase, and induced protective autophagy in HepG2 hepatocellular carcinoma cells. JXE-23 may be a potential lead compound for anti-cancer drug development, and autophagy inhibitor treatment may provide an effective strategy for improving its anti-cancer effect.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Zi Liu
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Fuchun Wang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Jian Liu
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Yu Zhang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Jianguo Cao
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, 201418, People's Republic of China
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China.
| | - Liang Ma
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China.
| |
Collapse
|
2
|
Varghese S, Jisha M, Rajeshkumar K, Gajbhiye V, Alrefaei AF, Jeewon R. Endophytic fungi: A future prospect for breast cancer therapeutics and drug development. Heliyon 2024; 10:e33995. [PMID: 39091955 PMCID: PMC11292557 DOI: 10.1016/j.heliyon.2024.e33995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Globally, breast cancer is a primary contributor to cancer-related fatalities and illnesses among women. Consequently, there is a pressing need for safe and effective treatments for breast cancer. Bioactive compounds from endophytic fungi that live in symbiosis with medicinal plants have garnered significant interest in pharmaceutical research due to their extensive chemical composition and prospective medicinal attributes. This review underscores the potentiality of fungal endophytes as a promising resource for the development of innovative anticancer agents specifically tailored for breast cancer therapy. The diversity of endophytic fungi residing in medicinal plants, success stories of key endophytic bioactive metabolites tested against breast cancer and the current progress with regards to in vivo studies and clinical trials on endophytic fungal metabolites in breast cancer research forms the underlying theme of this article. A thorough compilation of putative anticancer compounds sourced from endophytic fungi that have demonstrated therapeutic potential against breast cancer, spanning the period from 1990 to 2022, has been presented. This review article also outlines the latest trends in endophyte-based drug discovery, including the use of artificial intelligence, machine learning, multi-omics approaches, and high-throughput strategies. The challenges and future prospects associated with fungal endophytes as substitutive sources for developing anticancer drugs targeting breast cancer are also being highlighted.
Collapse
Affiliation(s)
- Sherin Varghese
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - M.S. Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - K.C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Gr., Agharkar Research Institute, G.G. Agharkar Road, Pune, 411 004, Maharashtra, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, G.G. Agharkar Road, Pune, 411 004, Maharashtra, India
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rajesh Jeewon
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| |
Collapse
|
3
|
Ingels A, Scott R, Hooper AR, van der Westhuyzen AE, Wagh SB, de Meester J, Maddau L, Marko D, Aichinger G, Berger W, Vermeersch M, Pérez-Morga D, Maslivetc VA, Evidente A, van Otterlo WAL, Kornienko A, Mathieu V. New hemisynthetic derivatives of sphaeropsidin phytotoxins triggering severe endoplasmic reticulum swelling in cancer cells. Sci Rep 2024; 14:14674. [PMID: 38918539 PMCID: PMC11199504 DOI: 10.1038/s41598-024-65335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Sphaeropsidins are iso-pimarane diterpenes produced by phytopathogenic fungi that display promising anticancer activities. Sphaeropsidin A, in particular, has been shown to counteract regulatory volume increase, a process used by cancer cells to avoid apoptosis. This study reports the hemi-synthesis of new lipophilic derivatives obtained by modifications of the C15,C16-alkene moiety. Several of these compounds triggered severe ER swelling associated with strong proteasomal inhibition and consequently cell death, a feature that was not observed with respect to mode of action of the natural product. Significantly, an analysis from the National Cancer Institute sixty cell line testing did not reveal any correlations between the most potent derivative and any other compound in the database, except at high concentrations (LC50). This study led to the discovery of a new set of sphaeropsidin derivatives that may be exploited as potential anti-cancer agents, notably due to their maintained activity towards multidrug resistant models.
Collapse
Affiliation(s)
- Aude Ingels
- Department of Pharmacotherapy and Pharmaceutics, Chemistry and Biochemistry, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
- ULB Cancer Research Center, U-CRC, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Scott
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Annie R Hooper
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Aletta E van der Westhuyzen
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Sachin B Wagh
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Joséphine de Meester
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Lucia Maddau
- Department of Agriculture, Section of Plant Pathology and Entomology, University of Sassari, Sassari, Italy
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Georg Aichinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Walter Berger
- Medical University of Vienna Center for Cancer Research, Vienna, Austria
| | - Marjorie Vermeersch
- Electron Microscopy Laboratory, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Pérez-Morga
- Electron Microscopy Laboratory, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Vladimir A Maslivetc
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Antonio Evidente
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA.
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Chemistry and Biochemistry, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium.
- ULB Cancer Research Center, U-CRC, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
4
|
Dangar BV, Chavada P, Bhatt PJ, Raviya R. Reviewing bryophyte-microorganism association: insights into environmental optimization. Front Microbiol 2024; 15:1407391. [PMID: 38946907 PMCID: PMC11211263 DOI: 10.3389/fmicb.2024.1407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Bryophytes, the second-largest group of plants, play a crucial role as early colonizers of land and are a prolific source of naturally occurring substances with significant economic potential. Microorganisms, particularly bacteria, cyanobacteria, fungi form intricate associations with plants, notably bryophytes, contributing to the ecological functioning of terrestrial ecosystems and sometimes it gives negative impact also. This review elucidates the pivotal role of endophytic bacteria in promoting plant growth, facilitating nutrient cycling, and enhancing environmental health. It comprehensively explores the diversity and ecological significance of fungal and bacterial endophytes across various ecosystems. Furthermore, it highlights the moss nitrogen dynamics observed in select moss species. Throughout the review, emphasis is placed on the symbiotic interdependence between bryophytes and microorganisms, offering foundational insights for future research endeavors. By shedding light on the intricate bryophyte-microorganism associations, this study advances our understanding of the complex interplay between plants, microbes, and their environment, paving the way for further research and applications in environmental and biotechnological realms.
Collapse
Affiliation(s)
| | | | | | - Rajesh Raviya
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Junagadh, Gujarat, India
| |
Collapse
|
5
|
Xie CL, Wu TZ, Wang Y, Capon RJ, Xu R, Yang XW. Genome Mining of a Deep-Sea-Derived Penicillium allii-sativi Revealed Polyketide-Terpenoid Hybrids with Antiosteoporosis Activity. Org Lett 2024; 26:3889-3895. [PMID: 38668739 DOI: 10.1021/acs.orglett.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Two novel meroterpenoids, alliisativins A and B (1, 2) were discovered through a genome-based exploration of the biosynthetic gene clusters of the deep-sea-derived fungus Penicillium allii-sativi MCCC entry 3A00580. Extensive spectroscopic analysis, quantum calculations, chemical derivatization, and biogenetic considerations were utilized to establish their structures. Alliisativins A and B (1, 2) possess a unique carbon skeleton featuring a drimane sesquiterpene with a highly oxidized polyketide. Noteworthily, alliisativin A (1) showed dual activity in promoting osteogenesis and inhibiting osteoclast, indicating an antiosteoporosis potential.
Collapse
Affiliation(s)
- Chun-Lan Xie
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, China
| | - Tai-Zong Wu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, China
| | - Xian-Wen Yang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| |
Collapse
|
6
|
Dembitsky VM. Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application. Biomedicines 2024; 12:1021. [PMID: 38790983 PMCID: PMC11117879 DOI: 10.3390/biomedicines12051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The main focus of this review is to introduce readers to the fascinating class of lipid molecules known as norsteroids, exploring their distribution across various biotopes and their biological activities. The review provides an in-depth analysis of various modified steroids, including A, B, C, and D-norsteroids, each characterized by distinct structural alterations. These modifications, which range from the removal of specific methyl groups to changes in the steroid core, result in unique molecular architectures that significantly impact their biological activity and therapeutic potential. The discussion on A, B, C, and D-norsteroids sheds light on their unique configurations and how these structural modifications influence their pharmacological properties. The review also presents examples from natural sources that produce a diverse array of steroids with distinct structures, including the aforementioned A, B, C, and D-nor variants. These compounds are sourced from marine organisms like sponges, soft corals, and starfish, as well as terrestrial entities such as plants, fungi, and bacteria. The exploration of these steroids encompasses their biosynthesis, ecological significance, and potential medical applications, highlighting a crucial area of interest in pharmacology and natural product chemistry. The review emphasizes the importance of researching these steroids for drug development, particularly in addressing diseases where conventional medications are inadequate or for conditions lacking sufficient therapeutic options. Examples of norsteroid synthesis are provided to illustrate the practical applications of this research.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
7
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Evidente A. The incredible story of ophiobolin A and sphaeropsidin A: two fungal terpenes from wilt-inducing phytotoxins to promising anticancer compounds. Nat Prod Rep 2024; 41:434-468. [PMID: 38131643 DOI: 10.1039/d3np00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Covering: 2000 to 2023This review presents the exceptional story of ophiobolin A (OphA) and sphaeropsidin A (SphA), a sesterterpene and a diterpene, respectively, which were initially isolated as fungal phytotoxins and subsequently shown to possess other interesting biological activities, including promising anticancer activities. Ophiobolin A is a phytotoxin produced by different fungal pathogens, all belonging to the Bipolaris genus. Initially, it was only known as a very dangerous phytotoxin produced by fungi attacking essential cereals, such as rice and barley. However, extensive and interesting studies were carried out to define its original carbon skeleton, which is characterized by a typical 5 : 8 : 5 ring system and shared with fusicoccins and cotylenins, and its phytotoxic activity on host and non-host plants. The biosynthesis of OphA was also defined by describing the different steps starting from mevalonate and through the rearrangement of the acyclic C-25 precursor lead the toxin is obtained. OphA was also produced as a bioherbicide from Drechslera gigantea and proposed for the biocontrol of the widespread and dangerous weed Digitaria sanguinaria. To date, more than sixty ophiobolins have been isolated from different fungi and their biological activities and structure-activity relationship investigated, which were also described using their hemisynthetic derivatives. In the last two decades, thorough studies have been performed on the potential anticancer activity of OphA and its original mode of action, attracting great interest from scientists. Sphaeropsidin A has a similar story. It was isolated as the main phytotoxin from Diplodia cupressi, the causal agent of Italian cypress canker disease, resulting in the loss of millions of plants in a few years in the Mediterranean basin. The damage to the forest, environment and ornamental heritage are noteworthy and economic losses are also suffered by tree nurseries and the wood industry. Six natural analogues of SphA were isolated and several interesting hemisynthetic derivatives were prepared to study its structure-activity relationship. Surprisingly, sphaeropsidin A showed other interesting biological activities, including antibiotic, antifungal, and antiviral. In the last decade, extensive studies have focused on the anticancer activity and original mode of action of SphA. Furthermore, specific hemisynthetic studies enable the preparation of derivatives of SphA, preserving its chromophore, which showed a noteworthy increase in anticancer activity. It has been demonstrated that ophiobolin A and sphaeropsidin A are promising natural products showing potent activity against some malignant cancers, such as brain glioblastoma and different melanomas.
Collapse
Affiliation(s)
- Antonio Evidente
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy.
| |
Collapse
|
9
|
Zeng N, Zhang Q, Yao Q, Fu G, Su W, Wang W, Li B. A Comprehensive Review of the Classification, Sources, Phytochemistry, and Pharmacology of Norditerpenes. Molecules 2023; 29:60. [PMID: 38202643 PMCID: PMC10780140 DOI: 10.3390/molecules29010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Norditerpenes are considered to be a common and widely studied class of bioactive compounds in plants, exhibiting a wide array of complex and diverse structural types and originating from various sources. Based on the number of carbons, norditerpenes can be categorized into C19, C18, C17, and C16 compounds. Up to now, 557 norditerpenes and their derivatives have been found in studies published between 2010 and 2023, distributed in 51 families and 132 species, with the largest number in Lamiaceae, Euphorbiaceae, and Cephalotaxaceae. These norditerpenes display versatile biological activities, including anti-tumor, anti-inflammatory, antimicrobial, and antioxidant properties, as well as inhibitory effects against HIV and α-glucosidase, and can be considered as an important source of treatment for a variety of diseases that had a high commercial value. This review provides a comprehensive summary of the plant sources, chemical structures, and biological activities of norditerpenes derived from natural sources, serving as a valuable reference for further research development and application in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (N.Z.); (Q.Z.); (Q.Y.); (G.F.); (W.S.)
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (N.Z.); (Q.Z.); (Q.Y.); (G.F.); (W.S.)
| |
Collapse
|
10
|
Stelmasiewicz M, Świątek Ł, Gibbons S, Ludwiczuk A. Bioactive Compounds Produced by Endophytic Microorganisms Associated with Bryophytes—The “Bryendophytes”. Molecules 2023; 28:molecules28073246. [PMID: 37050009 PMCID: PMC10096483 DOI: 10.3390/molecules28073246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
The mutualistic coexistence between the host and endophyte is diverse and complex, including host growth regulation, the exchange of substances like nutrients or biostimulants, and protection from microbial or herbivore attack. The latter is commonly associated with the production by endophytes of bioactive natural products, which also possess multiple activities, including antibacterial, insecticidal, antioxidant, antitumor, and antidiabetic properties, making them interesting and valuable model substances for future development into drugs. The endophytes of higher plants have been extensively studied, but there is a dearth of information on the biodiversity of endophytic microorganisms associated with bryophytes and, more importantly, their bioactive metabolites. For the first time, we name bryophyte endophytes “bryendophytes” to elaborate on this important and productive source of biota. In this review, we summarize the current knowledge on the diversity of compounds produced by endophytes, emphasizing bioactive molecules from bryendophytes. Moreover, the isolation methods and biodiversity of bryendophytes from mosses, liverworts, and hornworts are described.
Collapse
Affiliation(s)
- Mateusz Stelmasiewicz
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| | - Simon Gibbons
- Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
11
|
Wen J, Okyere SK, Wang S, Wang J, Xie L, Ran Y, Hu Y. Endophytic Fungi: An Effective Alternative Source of Plant-Derived Bioactive Compounds for Pharmacological Studies. J Fungi (Basel) 2022; 8:205. [PMID: 35205959 PMCID: PMC8877053 DOI: 10.3390/jof8020205] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Plant-associated fungi (endophytic fungi) are a biodiversity-rich group of microorganisms that are normally found asymptomatically within plant tissues or in the intercellular spaces. Endophytic fungi promote the growth of host plants by directly producing secondary metabolites, which enhances the plant's resistance to biotic and abiotic stresses. Additionally, they are capable of biosynthesizing medically important "phytochemicals" that were initially thought to be produced only by the host plant. In this review, we summarized some compounds from endophyte fungi with novel structures and diverse biological activities published between 2011 and 2021, with a focus on the origin of endophytic fungi, the structural and biological activity of the compounds they produce, and special attention paid to the exploration of pharmacological activities and mechanisms of action of certain compounds. This review revealed that endophytic fungi had high potential to be harnessed as an alternative source of secondary metabolites for pharmacological studies.
Collapse
Affiliation(s)
- Juan Wen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianchen Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Xie
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinan Ran
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- New Ruipeng Pet Healthcare Group Co., Ltd., Shenzhen 518000, China
| |
Collapse
|
12
|
Hridoy M, Gorapi MZH, Noor S, Chowdhury NS, Rahman MM, Muscari I, Masia F, Adorisio S, Delfino DV, Mazid MA. Putative Anticancer Compounds from Plant-Derived Endophytic Fungi: A Review. Molecules 2022; 27:296. [PMID: 35011527 PMCID: PMC8746379 DOI: 10.3390/molecules27010296] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Endophytic fungi are microorganisms that exist almost ubiquitously inside the various tissues of living plants where they act as an important reservoir of diverse bioactive compounds. Recently, endophytic fungi have drawn tremendous attention from researchers; their isolation, culture, purification, and characterization have revealed the presence of around 200 important and diverse compounds including anticancer agents, antibiotics, antifungals, antivirals, immunosuppressants, and antimycotics. Many of these anticancer compounds, such as paclitaxel, camptothecin, vinblastine, vincristine, podophyllotoxin, and their derivatives, are currently being used clinically for the treatment of various cancers (e.g., ovarian, breast, prostate, lung cancers, and leukemias). By increasing the yield of specific compounds with genetic engineering and other biotechnologies, endophytic fungi could be a promising, prolific source of anticancer drugs. In the future, compounds derived from endophytic fungi could increase treatment availability and cost effectiveness. This comprehensive review includes the putative anticancer compounds from plant-derived endophytic fungi discovered from 1990 to 2020 with their source endophytic fungi and host plants as well as their antitumor activity against various cell lines.
Collapse
Affiliation(s)
- Md. Hridoy
- Department of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| | | | - Sadia Noor
- Department of Pharmacy, University of Asia Pacific, Dhaka 1215, Bangladesh; (M.Z.H.G.); (S.N.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | - Isabella Muscari
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.M.); (F.M.)
| | - Francesco Masia
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.M.); (F.M.)
| | - Sabrina Adorisio
- Department of Medicine and Surgery, Foligno Nursing School and Section of Pharmacology, University of Perugia, Piazzale Severi, S. Andrea delle Fratte, 06129 Perugia, Italy;
| | - Domenico V. Delfino
- Department of Medicine and Surgery, Foligno Nursing School and Section of Pharmacology, University of Perugia, Piazzale Severi, S. Andrea delle Fratte, 06129 Perugia, Italy;
| | - Md. Abdul Mazid
- Department of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
13
|
Zhang BW, Jiang L, Li Z, Gao XH, Cao F, Lu XH, Shen WB, Zhang XX, Kong FD, Luo DQ. Carotane sesquiterpenoids A–G from the desert endophytic fungus Fusarium sp. HM 166. RSC Adv 2022; 12:24590-24595. [PMID: 36128376 PMCID: PMC9428550 DOI: 10.1039/d2ra02762c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Seven undescribed carotane sesquiterpenoids named fusanoids A–G (1–7), along with one known analog (8) and two known sesterterpenes (9 and 10), were isolated from the fermentation broth of the desert endophytic fungi Fusarium sp. HM166. The structures of the compounds, including their absolute configurations, were determined by spectroscopic data, single-crystal X-ray diffraction analysis, and ECD calculations. Compound 10 showed cytotoxic activities against human hepatoma carcinoma cell line (Huh-7) and human breast cell lines (MCF-7 and MDA-MB-231), and compound 2 showed cytotoxic activity against MCF-7, while compounds 4–9 were inactive against all the tested cell lines. Compounds 4 and 10 showed potent inhibitory activities against the IDH1R132h mutant. Seven undescribed carotane sesquiterpenoids were isolated from the endophytic fungi Fusarium sp. HM166. Single-crystal X-ray diffraction and ECD defined absolute configurations. Cytotoxicity for Huh-7, MCF-7, and MDA-MB-231 cancer cell lines and IDH1R132h mutant were studied.![]()
Collapse
Affiliation(s)
- Bing-Wen Zhang
- College of Life Science, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Li Jiang
- College of Life Science, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Zhuang Li
- College of Life Science, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Xue-Hui Gao
- College of Life Science, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Fei Cao
- College of Life Science, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Xin-hua Lu
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, Shijiazhuang 052165, Hebei, China
| | - Wen-Bin Shen
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, Shijiazhuang 052165, Hebei, China
| | - Xue-Xia Zhang
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, Shijiazhuang 052165, Hebei, China
| | - Fan-Dong Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Republic of China
| | - Du-Qiang Luo
- College of Life Science, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| |
Collapse
|
14
|
Masi M, Evidente A. Sphaeropsidin A: A Pimarane Diterpene with Interesting Biological Activities and Promising Practical Applications. Chembiochem 2021; 22:3263-3269. [PMID: 34241944 PMCID: PMC9292566 DOI: 10.1002/cbic.202100283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Indexed: 11/11/2022]
Abstract
Sphaeropsidin A (SphA) is a tetracyclic pimarane diterpene, first isolated as the main phytotoxin produced by Diplodia cupressi the causal agent of a severe canker disease of Italian cypress (Cupressus sempervirens L.). It was also produced, together with several analogues, by different pathogenic Diplodia species and other fungi and showed a broad array of biological activities suggesting its promising application in agriculture and medicine. The anticancer activity of SphA is very potent and cell specific. Recent studies have revealed its unique mode of action. This minireview reports the structures of SphA and its family of natural analogues, their biosynthetic origins, their fungal sources, and biological activities. The preparation of various SphA derivatives is also described as well as the results of structure-activity relationship (SAR) studies and on their potential practical applications.
Collapse
Affiliation(s)
- Marco Masi
- Department of Chemical SciencesUniversity of Naples Federico IIComplesso Universitario Monte S. AngeloVia Cintia 480126NaplesItaly
| | - Antonio Evidente
- Department of Chemical SciencesUniversity of Naples Federico IIComplesso Universitario Monte S. AngeloVia Cintia 480126NaplesItaly
| |
Collapse
|
15
|
Péter B, Boldizsár I, Kovács GM, Erdei A, Bajtay Z, Vörös A, Ramsden JJ, Szabó I, Bősze S, Horvath R. Natural Compounds as Target Biomolecules in Cellular Adhesion and Migration: From Biomolecular Stimulation to Label-Free Discovery and Bioactivity-Based Isolation. Biomedicines 2021; 9:1781. [PMID: 34944597 PMCID: PMC8698624 DOI: 10.3390/biomedicines9121781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Plants and fungi can be used for medical applications because of their accumulation of special bioactive metabolites. These substances might be beneficial to human health, exerting also anti-inflammatory and anticancer (antiproliferative) effects. We propose that they are mediated by influencing cellular adhesion and migration via various signaling pathways and by directly inactivating key cell adhesion surface receptor sites. The evidence for this proposition is reviewed (by summarizing the natural metabolites and their effects influencing cellular adhesion and migration), along with the classical measuring techniques used to gain such evidence. We systematize existing knowledge concerning the mechanisms of how natural metabolites affect adhesion and movement, and their role in gene expression as well. We conclude by highlighting the possibilities to screen natural compounds faster and more easily by applying new label-free methods, which also enable a far greater degree of quantification than the conventional methods used hitherto. We have systematically classified recent studies regarding the effects of natural compounds on cellular adhesion and movement, characterizing the active substances according to their organismal origin (plants, animals or fungi). Finally, we also summarize the results of recent studies and experiments on SARS-CoV-2 treatments by natural extracts affecting mainly the adhesion and entry of the virus.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| | - Imre Boldizsár
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (I.B.); (G.M.K.)
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (I.B.); (G.M.K.)
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022 Budapest, Hungary
| | - Anna Erdei
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.E.); (Z.B.)
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zsuzsa Bajtay
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.E.); (Z.B.)
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary
| | - Alexandra Vörös
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| | - Jeremy J. Ramsden
- Clore Laboratory, University of Buckingham, Buckingham MK18 1EG, UK;
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (I.S.); (S.B.)
- National Public Health Center, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (I.S.); (S.B.)
- National Public Health Center, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| |
Collapse
|
16
|
Høyer AK, Hodkinson TR. Hidden Fungi: Combining Culture-Dependent and -Independent DNA Barcoding Reveals Inter-Plant Variation in Species Richness of Endophytic Root Fungi in Elymus repens. J Fungi (Basel) 2021; 7:jof7060466. [PMID: 34207673 PMCID: PMC8226481 DOI: 10.3390/jof7060466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
The root endophyte community of the grass species Elymus repens was investigated using both a culture-dependent approach and a direct amplicon sequencing method across five sites and from individual plants. There was much heterogeneity across the five sites and among individual plants. Focusing on one site, 349 OTUs were identified by direct amplicon sequencing but only 66 OTUs were cultured. The two approaches shared ten OTUs and the majority of cultured endophytes do not overlap with the amplicon dataset. Media influenced the cultured species richness and without the inclusion of 2% MEA and full-strength MEA, approximately half of the unique OTUs would not have been isolated using only PDA. Combining both culture-dependent and -independent methods for the most accurate determination of root fungal species richness is therefore recommended. High inter-plant variation in fungal species richness was demonstrated, which highlights the need to rethink the scale at which we describe endophyte communities.
Collapse
|
17
|
Wang NN, Liu CY, Wang T, Li YL, Xu K, Lou HX. Two New Quinazoline Derivatives from the Moss Endophytic Fungus Aspergillus sp. and Their Anti-inflammatory Activity. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:105-110. [PMID: 33219498 PMCID: PMC7933300 DOI: 10.1007/s13659-020-00287-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Two new quinazoline derivatives versicomides E (1) and F (2), and 10 known compounds (3-12) were isolated from the moss endophytic fungus Aspergillus sp. Their structures were determined on the basis of extensive spectroscopic data analysis and ECD calculations. Among them, the compound 7 (6-hydroxy-3-methoxyviridicatin) was first reported as a natural product. Inhibition on LPS-induced NO production in RAW 264.7 murine macrophages found that compounds 5, 7 and 8 showed significant inhibitory effects on NO production, with IC50 values of 49.85, 22.14 and 46.02 μM respectively.
Collapse
Affiliation(s)
- Ning-Ning Wang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Chun-Yu Liu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Tian Wang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yue-Lan Li
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ke Xu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
18
|
Abed RM. Exploring Fungal Biodiversity of Genus Epicoccum and Their Biotechnological Potential. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
New terpenoids and triketides from culture of the fungus Botrysphaeria laricina. Fitoterapia 2020; 147:104758. [DOI: 10.1016/j.fitote.2020.104758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022]
|
20
|
van der Westhuyzen AE, Ingels A, Rosière R, Amighi K, Oberer L, Gustafson KR, Wang D, Evidente A, Maddau L, Masi M, de Villiers A, Green IR, Berger W, Kornienko A, Mathieu V, van Otterlo WAL. Deciphering the chemical instability of sphaeropsidin A under physiological conditions - degradation studies and structural elucidation of the major metabolite. Org Biomol Chem 2020; 18:8147-8160. [PMID: 33016969 PMCID: PMC7881364 DOI: 10.1039/d0ob01586e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fungal metabolite sphaeropsidin A (SphA) has been recognised for its promising cytotoxicity, particularly towards apoptosis- and multidrug-resistant cancers. Owing to its intriguing activity, the development of SphA as a potential anticancer agent has been pursued. However, this endeavour is compromised since SphA exhibits poor physicochemical stability under physiological conditions. Herein, SphA's instability in biological media was explored utilizing LC-MS. Notably, the degradation tendency was found to be markedly enhanced in the presence of amino acids in the cell medium utilized. Furthermore, the study investigated the presence of degradation adducts, including the identification, isolation and structural elucidation of a major degradation metabolite, (4R)-4,4',4'-trimethyl-3'-oxo-4-vinyl-4',5',6',7'-tetrahydro-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2-ene-2-carboxylic acid. Considering the reduced cytotoxic potency of aged SphA solutions, as well as that of the isolated degradation metabolite, the reported antiproliferative activity has been attributed primarily to the parent compound (SphA) and not its degradation species. The fact that SphA continues to exhibit remarkable bioactivity, despite being susceptible to degradation, motivates future research efforts to address the challenges associated with this instability impediment.
Collapse
Affiliation(s)
- Alet E van der Westhuyzen
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, 7600, Stellenbosch, Western Cape, South Africa.
| | - Aude Ingels
- Department of Pharmacotherapy and Pharmaceutics, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Accès 2, 1050 Ixelles, Belgium. and ULB Cancer Research Center, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| | - Rémi Rosière
- Department of Pharmacotherapy and Pharmaceutics, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Accès 2, 1050 Ixelles, Belgium.
| | - Karim Amighi
- Department of Pharmacotherapy and Pharmaceutics, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Accès 2, 1050 Ixelles, Belgium.
| | - Lukas Oberer
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, Basel, Switzerland
| | - Kirk R Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Lucia Maddau
- Department of Agriculture, Section of Plant Pathology and Entomology, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - André de Villiers
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, 7600, Stellenbosch, Western Cape, South Africa.
| | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, 7600, Stellenbosch, Western Cape, South Africa.
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Veronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Accès 2, 1050 Ixelles, Belgium. and ULB Cancer Research Center, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, 7600, Stellenbosch, Western Cape, South Africa.
| |
Collapse
|
21
|
Novel secondary metabolites from the endobryophytic fungus Botrysphaeria laricina and their biological activity. Fitoterapia 2020; 143:104599. [PMID: 32330576 DOI: 10.1016/j.fitote.2020.104599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 11/22/2022]
Abstract
One novel polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) hybrid metabolite, laricinin A (1), two new meroterpenoids, tricycloalternarenes X and Y (2 and 3), one new coumarin, 3,4,7-trihydroxy-6-methylcoumarin (4), together with the known ethyl acetylorsellinate (5), diorcinol K (6), and tricycloalternarenes C and D (7 and 8) were obtained from culture of the fungus Botrysphaeria laricina isolated from the moss Rhodobryum umgiganteum. The structures of the new compounds were elucidated based on extensive spectroscopic techniques including HRMS and 1D and 2D NMR measurements. The absolute configuration of compound 1 was determined by ECD calculation and it was the first example of a novel group of PKS-NRPS hybrids possessing an unprecedented methyldihydropyran-isobutylpyrrolidinone skeleton. Compounds 2, 7, and 8 showed significant quinone reductase inducing activity in Hepa 1c1c7 cells.
Collapse
|
22
|
Hou X, Xu Y, Zhu S, Zhang Y, Guo L, Qiu F, Che Y. Sarcosenones A–C, highly oxygenated pimarane diterpenoids from an endolichenic fungus Sarcosomataceae sp. RSC Adv 2020; 10:15622-15628. [PMID: 35495431 PMCID: PMC9052384 DOI: 10.1039/d0ra02485f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/03/2022] Open
Abstract
Three new highly oxygenated pimarane diterpenoids, sarcosenones A–C (1–3), and the known 9α-hydroxy-1,8(14),15-isopimaratrien-3,7,11-trione (4), were isolated from cultures of an endolichenic fungus Sarcosomataceae sp. Their structures were elucidated based on NMR spectroscopic data and electronic circular dichroism (ECD) calculations. Compound 1 showed moderate cytotoxicity against a small panel of four human tumor cell lines, with IC50 values of 7.5–26.4 μM. The new highly oxygenated pimarane diterpenoids sarcosenones A–C (1–3) were isolated from an endolichenic fungus Sarcosomataceae sp. Compound 1 showed moderate cytotoxicity towards human tumor cells.![]()
Collapse
Affiliation(s)
- Xintong Hou
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- People's Republic of China
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Yang Xu
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Shuaiming Zhu
- State Key Laboratory of Toxicology & Medical Countermeasures
- Beijing Institute of Pharmacology & Toxicology
- Beijing 100850
- People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Toxicology & Medical Countermeasures
- Beijing Institute of Pharmacology & Toxicology
- Beijing 100850
- People's Republic of China
| | - Liangdong Guo
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing 100101
- People's Republic of China
| | - Feng Qiu
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- People's Republic of China
| | - Yongsheng Che
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- People's Republic of China
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences & Peking Union Medical College
| |
Collapse
|
23
|
Liu XY, Wang XL, Shen T, Ren DM, Lou HX, Wang XN. Two new triterpenoids from the fungus Diplodia cupressi. Nat Prod Res 2019; 34:2179-2185. [PMID: 30835548 DOI: 10.1080/14786419.2019.1578762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
One new pentanortriterpenoid, 23,24,25,26,27-pentanorlanost-7,9(11)-dien-3β,22-diol (1), one new triterpenoid, lanost-8-en-3β,22S,23S-triol (2), together with the known triterpenoid, 23,24,25,26,27-pentanorlanost-8-en-3β,22-diol (3), were obtained from culture of the fungus Diplodia cupressi associated with the moss Polytrichum commune. The structures of the new compounds were elucidated by extensive spectroscopic techniques including HR-ESIMS and 1 D and 2 D NMR experiments. The cytotoxicity of these compounds against human cancer cell lines (A549, Hep G2, Hepa 1c1c7, and Hela) was evaluated and compound 2 exhibited weak inhibitory activity with IC50 value of 35.0 ± 2.3 μM against the proliferation of the Hepa 1c1c7 cells.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Key Laboratory of Chemical Biology (Ministry of Education) Department of Natural Product Chemistry School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Xiao-Ling Wang
- The Second Hospital of Shandong University, Jinan, P. R. China
| | - Tao Shen
- Key Laboratory of Chemical Biology (Ministry of Education) Department of Natural Product Chemistry School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Dong-Mei Ren
- Key Laboratory of Chemical Biology (Ministry of Education) Department of Natural Product Chemistry School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology (Ministry of Education) Department of Natural Product Chemistry School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Xiao-Ning Wang
- Key Laboratory of Chemical Biology (Ministry of Education) Department of Natural Product Chemistry School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| |
Collapse
|
24
|
Reveglia P, Cimmino A, Masi M, Nocera P, Berova N, Ellestad G, Evidente A. Pimarane diterpenes: Natural source, stereochemical configuration, and biological activity. Chirality 2018; 30:1115-1134. [DOI: 10.1002/chir.23009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Pierluigi Reveglia
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Paola Nocera
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Nina Berova
- Department of Chemistry; Columbia University; New York NY USA
| | - George Ellestad
- Department of Chemistry; Columbia University; New York NY USA
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| |
Collapse
|
25
|
Vollár M, Gyovai A, Szűcs P, Zupkó I, Marschall M, Csupor-Löffler B, Bérdi P, Vecsernyés A, Csorba A, Liktor-Busa E, Urbán E, Csupor D. Antiproliferative and Antimicrobial Activities of Selected Bryophytes. Molecules 2018; 23:E1520. [PMID: 29937511 PMCID: PMC6099959 DOI: 10.3390/molecules23071520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
One-hundred and sixty-eight aqueous and organic extracts of 42 selected bryophyte species were screened in vitro for antiproliferative activity on a panel of human gynecological cancer cell lines containing HeLa (cervix epithelial adenocarcinoma), A2780 (ovarian carcinoma), and T47D (invasive ductal breast carcinoma) cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and for antibacterial activity on 11 strains using the disc-diffusion method. A total of 99 extracts derived from 41 species exerted ≥25% inhibition of proliferation of at least one of the cancer cell lines at 10 μg/mL. In the cases of Brachythecium rutabulum, Encalypta streptocarpa, Climacium dendroides, Neckera besseri, Pleurozium schreberi, and Pseudoleskeella nervosa, more than one extract was active in the antiproliferative assay, whereas the highest activity was observed in the case of Paraleucobryum longifolium. From the tested families, Brachytheciaceae and Amblystegiaceae provided the highest number of antiproliferative extracts. Only 19 samples of 15 taxa showed moderate antibacterial activity, including the most active Plagiomnium cuspidatum, being active on 8 tested strains. Methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus were the most susceptible to the assayed species. This is the first report on the bioactivities of these 14 species.
Collapse
Affiliation(s)
- Martin Vollár
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
- Interdisciplinary Centre for Natural Products, University of Szeged, H-6720 Szeged, Hungary.
| | - András Gyovai
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| | - Péter Szűcs
- Department of Botany and Plant Physiology, Institute of Biology, Eszterházy Károly University, H-3300 Eger, Hungary.
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| | - Marianna Marschall
- Department of Botany and Plant Physiology, Institute of Biology, Eszterházy Károly University, H-3300 Eger, Hungary.
| | - Boglárka Csupor-Löffler
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
- Interdisciplinary Centre for Natural Products, University of Szeged, H-6720 Szeged, Hungary.
| | - Péter Bérdi
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| | - Anikó Vecsernyés
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| | - Attila Csorba
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| | - Erika Liktor-Busa
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| | - Edit Urbán
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary.
| | - Dezső Csupor
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
- Interdisciplinary Centre for Natural Products, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
26
|
Li Y, Scott R, Hooper AR, Bartholomeusz GA, Kornienko A, Bills GF. Aspergillus candidus is a newly recognized source of sphaeropsidin A: Isolation, semi-synthetic derivatization and anticancer evaluation. Bioorg Med Chem Lett 2017; 27:5436-5440. [DOI: 10.1016/j.bmcl.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
27
|
Joy M, Chakraborty K. An unprecedented antioxidative isopimarane norditerpenoid from bivalve clam, Paphia malabarica with anti-cyclooxygenase and lipoxygenase potential. PHARMACEUTICAL BIOLOGY 2017; 55:819-824. [PMID: 28116944 PMCID: PMC6130755 DOI: 10.1080/13880209.2017.1280061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/17/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT The yellow-foot bivalve clam, Paphia malabarica Chemnitz (Veneridae) is distributed in the southwest coastal regions of India. The ethyl acetate-methanol extract of this species exhibited significant antioxidant and anti-inflammatory activities. OBJECTIVES To purify and characterize the bioactive compound from P. malabarica along with in vitro assays. MATERIALS AND METHODS The edible portion of P. malabarica was freeze dried (1.20 kg, yield 20.0%) and extracted with ethyl acetate and methanol (1:1 v/v, 500 mL ×3) by sonication (8 h). The antioxidant activity against DPPH/ABTS+ and anti-inflammatory potential against cyclooxygenase-1,2 (COX-1, 2)/5-lipoxygenase (5-LOX) enzymes were carried out with varying concentrations (0.25-2.00 mg/mL) to determine the IC50 values. The crude extract was chromatographically fractionated and the fraction showing greater potential was further fractionated to yield the pure compound, which was characterized by extensive NMR, IR and mass spectroscopic analyses. RESULTS AND DISCUSSION The fractionation of crude extract of P. malabarica was followed by structural characterization of the new rearranged isopimarane derivative, 18 (4 → 14), 19 (4 → 8)-bis-abeo C19 norditerpenoid. The isopimarane derivative displayed comparable antioxidant activity with α-tocopherol (IC50 DPPH scavenging activity ∼0.6 mg/mL), whereas anti-inflammatory (anti-5-LOX) effect of the title compound was significantly greater (IC50 0.75 mg/mL) than ibuprofen (IC50 0.93 mg/mL). In addition, the greater selectivity index (anti-COX-1IC50/anti-COX-2IC50 0.85) explained the lesser side effects of the isopimarane norditerpenoid than the nonsteroidal anti-inflammatory drug-based therapies. CONCLUSIONS The isopimarane derivative isolated from P. malabrica can be a natural substitute to commercial drugs in future.
Collapse
Affiliation(s)
- Minju Joy
- Central Marine Fisheries Research Institute, Cochin, India
| | | |
Collapse
|
28
|
Zhang PL, Han Y, Zhang LT, Wang XL, Shen T, Ren D, Lou H, Wang XN. Botrysphones A-C and Botrysphins A-F, Triketides and Diterpenoids from the Fungus Botrysphaeria laricina. JOURNAL OF NATURAL PRODUCTS 2017; 80:1791-1797. [PMID: 28609099 DOI: 10.1021/acs.jnatprod.6b01196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Three new triketides, botrysphones A-C (1-3) and six new isopimarane-type diterpenoids, botrysphins A-F (4-9), together with the known triketides sphaeropsidone (10) and chlorosphaeropsidone (11) and diterpenoids sphaeropsidins A and B (12 and 13), were obtained from culture of the fungus Botrysphaeria laricina associated with the moss Rhodobryum umgiganteum. The structures of the new compounds were established on the basis of extensive spectroscopic techniques including HRMS and 1D and 2D NMR data. Compounds 7 and 12 showed significant quinone reductase inducing activity in Hepa 1c1c7 cells.
Collapse
Affiliation(s)
- Peng-Liang Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University , 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Yang Han
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University , 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Long-Teng Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University , 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Xiao-Ling Wang
- The Second Hospital of Shandong University , 247 Bei-Yuan Street, Jinan 250033, People's Republic of China
| | - Tao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University , 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University , 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Hongxiang Lou
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University , 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Xiao-Ning Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University , 44 West Wenhua Road, Jinan 250012, People's Republic of China
| |
Collapse
|
29
|
Computed determination of the in vitro optimal chemocombinations of sphaeropsidin A with chemotherapeutic agents to combat melanomas. Cancer Chemother Pharmacol 2017; 79:971-983. [DOI: 10.1007/s00280-017-3293-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022]
|
30
|
Bashyal BP, Kithsiri Wijeratne EM, Tillotson J, Arnold AE, Chapman E, Leslie Gunatilaka AA. Chlorinated Dehydrocurvularins and Alterperylenepoxide A from Alternaria sp. AST0039, a Fungal Endophyte of Astragalus lentiginosus. JOURNAL OF NATURAL PRODUCTS 2017; 80:427-433. [PMID: 28139929 PMCID: PMC5504521 DOI: 10.1021/acs.jnatprod.6b00960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Investigation of Alternaria sp. AST0039, an endophytic fungus obtained from the leaf tissue of Astragalus lentiginosus, led to the isolation of (-)-(10E,15S)-4,6-dichloro-10(11)-dehydrocurvularin (1), (-)-(10E,15S)-6-chloro-10(11)-dehydrocurvularin (2), (-)-(10E,15S)-10(11)-dehydrocurvularin (3), and alterperylenepoxide A (4) together with scytalone and α-acetylorcinol. Structures of 1 and 4 were established from their spectroscopic data, and the relative configuration of 4 was determined with the help of nuclear Overhauser effect difference data. All metabolites were evaluated for their cytotoxic activity and ability to induce heat-shock and unfolded protein responses. Compounds 2 and 3 exhibited cytotoxicity to all five cancer cell lines tested and increased the level of the pro-apoptotic transcription factor CHOP, but only 3 induced the heat-shock response and caused a strong unfolded protein response.
Collapse
Affiliation(s)
- Bharat P. Bashyal
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - E. M. Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Joseph Tillotson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - A. Elizabeth Arnold
- School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - A. A. Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
31
|
|
32
|
Li X, Li XD, Li XM, Xu GM, Liu Y, Wang BG. Wentinoids A–F, six new isopimarane diterpenoids from Aspergillus wentii SD-310, a deep-sea sediment derived fungus. RSC Adv 2017. [DOI: 10.1039/c6ra27209f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Wentinoids A–F (1–6), presented as the first examples of isopimarane analogues from the fungus Aspergillus wentii, were isolated and identified.
Collapse
Affiliation(s)
- Xin Li
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
| | - Xiao-Dong Li
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
| | - Xiao-Ming Li
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
| | - Gang-Ming Xu
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
| | - Yang Liu
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
| | - Bin-Gui Wang
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
| |
Collapse
|
33
|
Crystal structure and absolute configuration of sphaeropsidin A and its 6-O-p-bromobenzoate. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Cimmino A, Maddau L, Masi M, Evidente M, Linaldeddu BT, Evidente A. Further secondary metabolites produced by Diplodia corticola, a fungal pathogen involved in cork oak decline. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Li XD, Li XM, Li X, Xu GM, Liu Y, Wang BG. Aspewentins D-H, 20-Nor-isopimarane Derivatives from the Deep Sea Sediment-Derived Fungus Aspergillus wentii SD-310. JOURNAL OF NATURAL PRODUCTS 2016; 79:1347-1353. [PMID: 27148955 DOI: 10.1021/acs.jnatprod.5b01153] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Five new 20-nor-isopimarane diterpenoids, aspewentins D-H (1-5), along with a related known congener, aspewentin A (6), were isolated from the culture extract of Aspergillus wentii SD-310, a fungal strain obtained from a deep-sea sediment sample. The structures of these compounds were established on the basis of spectroscopic interpretation, and the absolute configurations of compounds 1-5 were determined by X-ray crystallographic analysis and TDDFT-ECD calculations. The isolated compounds were evaluated for antimicrobial activity against nine human and aquatic pathogenic bacteria and four plant pathogenic fungi as well as for lethality against brine shrimp (Artemia salina). 20-Nor-isopimarane derivatives rarely occur in fungi, and only three (aspewentins A-C) have previously been reported from a marine-derived fungus.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences , Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Xiao-Ming Li
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Xin Li
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences , Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Gang-Ming Xu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Yang Liu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences , Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Bin-Gui Wang
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Nanhai Road 7, Qingdao 266071, People's Republic of China
| |
Collapse
|
36
|
Masi M, Maddau L, Linaldeddu BT, Cimmino A, D'Amico W, Scanu B, Evidente M, Tuzi A, Evidente A. Bioactive Secondary Metabolites Produced by the Oak Pathogen Diplodia corticola. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:217-225. [PMID: 26671545 DOI: 10.1021/acs.jafc.5b05170] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Three new lactones and a new fatty acid ester, named sapinofuranones C and D, diplopyrone B, and diplobifuranylone C, respectively, were isolated from Diplodia corticola, together with sphaeropsidins A and C, diplopyrone, diplobifuranylones A and B, diplofuranone A, and the (S,S)-enantiomer of sapinofuranone B. Sapinofuranones C and D, diplopyrone B, and diplobifuranylone C were characterized as (5S)-5-((1,S-1,6-dihydroxyhexa-2,4-dienyl)-dihydrofuran-2-one, 4,5-dihydroxy-deca-6,8-dienoic acid methyl ester, (5S)-5-hydroxy-6-(penta-1,3-dienyl)-5,6-dihydro-pyran-2-one, and 5'-((1R)-1-hydroxyethyl)-2',5'-dihydro-2H-[2,2']bifuranyl-5-one by spectroscopic and chemical methods, respectively. The relative configuration of sapinofuranone C was assigned by X-ray diffraction analysis, whereas its absolute configuration was determined by applying the advanced Mosher's method to its 11-O-p-bromobenzoyl derivative. The same method was used to assign the absolute configuration to C-5 of diplopyrone B and to that of the hydroxyethyl of the side chain of diplobifuranylone C, respectively. The metabolites isolated were tested at 1 mg/mL on leaves of cork oak, grapevine cv. 'Cannonau', and tomato using the leaf puncture assay. They were also tested on tomato cuttings at 0.2, 0.1, and 0.05 mg/mL. Each compound was tested for zootoxic activity on Artemia salina L. larvae. The efficacy of sapinofuranone C and diplopyrone B on three plant pathogens, namely, Athelia rolfsii, Fusarium avenaceum, and Phytophthora nicotianae was also evaluated. In all phytotoxic assays only diplopyrone B was found to be active. It also showed strong inhibition on the vegetative growth of A. rolfsii and P. nicotianae. All metabolites were inactive in the assay performed for the zootoxic activity (A. salina) even at the highest concentration used (200 μg/mL). Diplopyrone B showed a promising antioomycete activity for the control of Phytophthora spp. also taking into account the absence of zootoxic activity.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Lucia Maddau
- Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia, Università degli Studi di Sassari , Viale Italia 39, 07100 Sassari, Italy
| | - Benedetto Teodoro Linaldeddu
- Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia, Università degli Studi di Sassari , Viale Italia 39, 07100 Sassari, Italy
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Wanda D'Amico
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Bruno Scanu
- Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia, Università degli Studi di Sassari , Viale Italia 39, 07100 Sassari, Italy
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
37
|
Deng H, Cao W, Zhang Z, Liu B. Asymmetric synthesis and absolute stereochemistry of a labdane-type diterpenoid isolated from the rhizomes of Isodan yuennanensis. Org Biomol Chem 2016; 14:6225-30. [DOI: 10.1039/c6ob00750c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric synthesis of the title natural diterpenoid was achieved from (+)-sclareolide and its absolute configuration was determined accordingly. The synthesis includes inversion of chirality at C-8, remote functionalization directed by 8-OH, and oxidative lactonization.
Collapse
Affiliation(s)
- Heping Deng
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Wei Cao
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Zhijiang Zhang
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| |
Collapse
|
38
|
Cimmino A, Masi M, Evidente M, Evidente A. Fungal Phytotoxins with Potential Herbicidal Activity to Control Chenopodium album. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review deals with the isolation and chemical and biological characterization of phytotoxins produced by Ascochyta caulina and Phoma chenopodiicola proposed as mycoherbicides for the biological control of Chenopodium album, a worldwide spread weed which causes serious problems to some agrarian crops, including sugar beet and maize. Studies on the structure activity relationships and on the modes of actions of toxins isolated are also described, as well as the optimization of analytical methods focused on selection of the best fungal toxin producers. The attempts to scale up production of these phytotoxins aimed to obtain sufficient amounts for their application in greenhouse and field trials are also reported.
Collapse
Affiliation(s)
- Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
39
|
|
40
|
Mathieu V, Chantôme A, Lefranc F, Cimmino A, Miklos W, Paulitschke V, Mohr T, Maddau L, Kornienko A, Berger W, Vandier C, Evidente A, Delpire E, Kiss R. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase. Cell Mol Life Sci 2015; 72:3731-46. [PMID: 25868554 DOI: 10.1007/s00018-015-1902-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 03/10/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
Despite the recent advances in the treatment of tumors with intrinsic chemotherapy resistance, such as melanoma and renal cancers, their prognosis remains poor and new chemical agents with promising activity against these cancers are urgently needed. Sphaeropsidin A, a fungal metabolite whose anticancer potential had previously received little attention, was isolated from Diplodia cupressi and found to display specific anticancer activity in vitro against melanoma and kidney cancer subpanels in the National Cancer Institute (NCI) 60-cell line screen. The NCI data revealed a mean LC50 of ca. 10 µM and a cellular sensitivity profile that did not match that of any other agent in the 765,000 compound database. Subsequent mechanistic studies in melanoma and other multidrug-resistant in vitro cancer models showed that sphaeropsidin A can overcome apoptosis as well as multidrug resistance by inducing a marked and rapid cellular shrinkage related to the loss of intracellular Cl(-) and the decreased HCO3 (-) concentration in the culture supernatant. These changes in ion homeostasis and the absence of effects on the plasma membrane potential were attributed to the sphaeropsidin A-induced impairment of regulatory volume increase (RVI). Preliminary results also indicate that depending on the type of cancer, the sphaeropsidin A effects on RVI could be related to Na-K-2Cl electroneutral cotransporter or Cl(-)/HCO3 (-) anion exchanger(s) targeting. This study underscores the modulation of ion-transporter activity as a promising therapeutic strategy to combat drug-resistant cancers and identifies the fungal metabolite, sphaeropsidin A, as a lead to develop anticancer agents targeting RVI in cancer cells.
Collapse
Affiliation(s)
- Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, 1050, Brussels, Belgium.
| | - Aurélie Chantôme
- Inserm UMR 1069, Université François Rabelais and network "Ion channels and cancer - Canceropole Grand Ouest", Tours, France
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Walter Miklos
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Verena Paulitschke
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lucia Maddau
- Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christophe Vandier
- Inserm UMR 1069, Université François Rabelais and network "Ion channels and cancer - Canceropole Grand Ouest", Tours, France
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN, USA
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, 1050, Brussels, Belgium
| |
Collapse
|
41
|
Xia X, Qi J, Liu Y, Jia A, Zhang Y, Liu C, Gao C, She Z. Bioactive isopimarane diterpenes from the fungus, Epicoccum sp. HS-1, associated with Apostichopus japonicus. Mar Drugs 2015; 13:1124-32. [PMID: 25738327 PMCID: PMC4377976 DOI: 10.3390/md13031124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/08/2015] [Accepted: 02/13/2015] [Indexed: 11/24/2022] Open
Abstract
One new isopimarane diterpene (1), together with two known compounds, 11-deoxydiaporthein A (2) and iso-pimara-8(14),15-diene (3) were isolated from the culture of Epicoccum sp., which was associated with Apostichopus japonicus. Their structures were determined by the analysis of 1D and 2D NMR, as well as mass spectroscopic data. The absolute configuration of Compound 1 was deduced by a single-crystal X-ray diffraction experiment using CuKα radiation. In the bioactivity assay, both Compounds 1 and 2 exhibited α-glucosidase inhibitory activity with IC50 values of 4.6 ± 0.1 and 11.9 ± 0.4 μM, respectively. This was the first report on isopimarane diterpenes with α-glucosidase inhibitory activity.
Collapse
Affiliation(s)
- Xuekui Xia
- Key Laboratory for Applied Microbiology of Shandong Province, Biotechnology Center of Shandong Academy of Sciences, Jinan 250014, China; E-Mails: (X.X.); (J.Q.); (A.J.); (Y.Z.)
| | - Jun Qi
- Key Laboratory for Applied Microbiology of Shandong Province, Biotechnology Center of Shandong Academy of Sciences, Jinan 250014, China; E-Mails: (X.X.); (J.Q.); (A.J.); (Y.Z.)
| | - Yayue Liu
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China; E-Mail:
| | - Airong Jia
- Key Laboratory for Applied Microbiology of Shandong Province, Biotechnology Center of Shandong Academy of Sciences, Jinan 250014, China; E-Mails: (X.X.); (J.Q.); (A.J.); (Y.Z.)
| | - Yonggang Zhang
- Key Laboratory for Applied Microbiology of Shandong Province, Biotechnology Center of Shandong Academy of Sciences, Jinan 250014, China; E-Mails: (X.X.); (J.Q.); (A.J.); (Y.Z.)
| | - Changheng Liu
- Key Laboratory for Applied Microbiology of Shandong Province, Biotechnology Center of Shandong Academy of Sciences, Jinan 250014, China; E-Mails: (X.X.); (J.Q.); (A.J.); (Y.Z.)
- Authors to whom correspondence should be addressed; E-Mails: (C.L.); (C.G.); (Z.S.); Tel.: +86-531-8260-5335 (C.L.); +86-531-8970-1987 (C.G.); +86-020-8403-4096 (Z.S.)
| | - Cuiling Gao
- Shandong Provincial Key Laboratory of Test Technology for Material Chemical Safety, Jinan 250014, China
- Authors to whom correspondence should be addressed; E-Mails: (C.L.); (C.G.); (Z.S.); Tel.: +86-531-8260-5335 (C.L.); +86-531-8970-1987 (C.G.); +86-020-8403-4096 (Z.S.)
| | - Zhigang She
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.L.); (C.G.); (Z.S.); Tel.: +86-531-8260-5335 (C.L.); +86-531-8970-1987 (C.G.); +86-020-8403-4096 (Z.S.)
| |
Collapse
|
42
|
Andolfi A, Maddau L, Basso S, Linaldeddu BT, Cimmino A, Scanu B, Deidda A, Tuzi A, Evidente A. Diplopimarane, a 20-nor-ent-pimarane produced by the oak pathogen Diplodia quercivora. JOURNAL OF NATURAL PRODUCTS 2014; 77:2352-2360. [PMID: 25365236 DOI: 10.1021/np500258r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study a new 20-nor-ent-pimarane, named diplopimarane, was isolated together with sphaeropsidins A (9) and C (10), and (+)-epiepoformin (11) from organic crude extracts of Diplodia quercivora, a recently described oak pathogen originally found on declining Quercus canariensis trees in Tunisia. Diplopimarane was characterized as (1S,2R)-2,8,8-trimethyl-2-vinyl-1,2,3,4,5,6,7,8-octahydrophenanthrene-1,9,10-triol by spectroscopic, X-ray, optical, and chemical methods. It exhibited a wide range of activities including remarkable phytotoxicity on nonhost plants such as tomato cuttings, moderate antifungal activity against important plant pathogens, and moderate zootoxicity against Artemia salina. Its derivatives (2-4 and 6) were also tested for their phytotoxic and zootoxic activities. All these derivatives proved to be active against A. salina at 200 μg/mL, while 2 and 6 were also active on tomato cuttings. The other secondary metabolites (9, 10, and 11) herein reported for D. quercivora exhibited phytotoxic, antifungal, and zootoxic activity. This is the first report on the secondary metabolites secreted in vitro by this oak pathogen that could be key components of its adaptative strategies.
Collapse
Affiliation(s)
- Anna Andolfi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo , Via Cintia 4, 80126, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang NN, Ma QY, Huang SZ, Dai HF, Guo ZK, Yu ZF, Zhao YX. Two Androstane Derivatives from the Cultures of Fungus Marasmiellus ramealis (Bull.) Singer. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.11.3224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Guo ZK, Wang R, Huang W, Li XN, Jiang R, Tan RX, Ge HM. Aspergiloid I, an unprecedented spirolactone norditerpenoid from the plant-derived endophytic fungus Aspergillus sp. YXf3. Beilstein J Org Chem 2014; 10:2677-82. [PMID: 25550731 PMCID: PMC4273245 DOI: 10.3762/bjoc.10.282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/04/2014] [Indexed: 11/29/2022] Open
Abstract
An unusual C18 norditerpenoid, aspergiloid I (1), was isolated from the culture broth of Aspergillus sp. YXf3, an endophytic fungus derived from Ginkgo biloba. Its structure was unambiguously established by analysis of HRMS–ESI and spectroscopic data, and the absolute configuration was determined by low-temperature (100 K) single crystal X-ray diffraction with Cu Kα radiation. This compound is structurally characterized by a new carbon skeleton with an unprecedented 6/5/6 tricyclic ring system bearing an α,β-unsaturated spirolactone moiety in ring B, and represents a new subclass of norditerpenoid, the skeleton of which is named aspergilane. The hypothetical biosynthetic pathway for 1 was also proposed. The cytotoxic, antimicrobial, anti-oxidant and enzyme inhibitory activities of 1 were evaluated.
Collapse
Affiliation(s)
- Zhi Kai Guo
- Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China
| | - Rong Wang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan 570203, People's Republic of China
| | - Wei Huang
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiao Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
| | - Rong Jiang
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ren Xiang Tan
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Hui Ming Ge
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
45
|
Chen L, Zhang QY, Jia M, Ming QL, Yue W, Rahman K, Qin LP, Han T. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds. Crit Rev Microbiol 2014; 42:454-73. [PMID: 25343583 DOI: 10.3109/1040841x.2014.959892] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plant endophytic fungi have been recognized as an important and novel resource of natural bioactive products, especially in anticancer application. This review mainly deals with the research progress on the production of anticancer compounds by endophytic fungi between 1990 and 2013. Anticancer activity is generally associated with the cytotoxicity of the compounds present in the endophytic fungi. All strains of endophytes producing antitumor chemicals were classified taxonomically and the genera of Pestalotiopsis and Aspergillus as well as the taxol producing endophytes were focused on. Classification of endophytic fungi producing antitumor compounds has received more attention from mycologists, and it can also lead to the discovery of novel compounds with antitumor activity due to phylogenetic relationships. In this review, the structures of the anticancer compounds isolated from the newly reported endophytes between 2010 and 2013 are discussed including strategies for the efficient production of the desired compounds. The purpose of this review is to provide new directions in endophytic fungi research including integrated information relating to its anticancer compounds.
Collapse
Affiliation(s)
- Ling Chen
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Qiao-Yan Zhang
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Min Jia
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Qian-Liang Ming
- b Department of Pharmacognosy , School of Pharmacy, Third Military Medical University , Chongqing , China and
| | - Wei Yue
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Khalid Rahman
- c Faculty of Science , School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Liverpool , UK
| | - Lu-Ping Qin
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Ting Han
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| |
Collapse
|
46
|
Abstract
Fungi (Ascomycota and Basidiomycota) are prolific producers of structurally diverse terpenoid compounds. Classes of terpenoids identified in fungi include the sesqui-, di- and triterpenoids. Biosynthetic pathways and enzymes to terpenoids from each of these classes have been described. These typically involve the scaffold generating terpene synthases and cyclases, and scaffold tailoring enzymes such as e.g. cytochrome P450 monoxygenases, NAD(P)+ and flavin dependent oxidoreductases, and various group transferases that generate the final bioactive structures. The biosynthesis of several sesquiterpenoid mycotoxins and bioactive diterpenoids has been well-studied in Ascomycota (e.g. filamentous fungi). Little is known about the terpenoid biosynthetic pathways in Basidiomycota (e.g. mushroom forming fungi), although they produce a huge diversity of terpenoid natural products. Specifically, many trans-humulyl cation derived sesquiterpenoid natural products with potent bioactivities have been isolated. Biosynthetic gene clusters responsible for the production of trans-humulyl cation derived protoilludanes, and other sesquiterpenoids, can be rapidly identified by genome sequencing and bioinformatic methods. Genome mining combined with heterologous biosynthetic pathway refactoring has the potential to facilitate discovery and production of pharmaceutically relevant fungal terpenoids.
Collapse
Affiliation(s)
- Maureen B Quin
- University of Minnesota, Dept. of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
47
|
Wijeratne EMK, Espinosa-Artiles P, Gruener R, Gunatilaka AAL. Thielavialides A-E, nor-spiro-azaphilones, and a bis-spiro-azaphilone from Thielavia sp. PA0001, an endophytic fungus isolated from aeroponically grown Physalis alkekengi. JOURNAL OF NATURAL PRODUCTS 2014; 77:1467-1472. [PMID: 24882589 PMCID: PMC4076029 DOI: 10.1021/np500237h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Four new nor-spiro-azaphilones, thielavialides A-D (1- 4), a new bis-spiro-azaphilone, thielavialide E (5), together with pestafolide A (6), were isolated from the endophytic fungal strain, Thielavia sp. PA0001, occurring in the healthy leaf tissue of aeroponically grown Physalis alkekengi. The structures and relative configurations of 1-5 were established on the basis of their MS and NMR data. Possible biosynthetic pathways to thielavialides A-E (1- 5) from pestafolide A (6), some involving a Favorskii-like rearrangement, are proposed.
Collapse
|
48
|
Mafezoli J, Oliveira MCF, Paiva JR, Sousa AH, Lima MAS, Júnior JNS, Barbosa FG, Wijeratne EMK, Gunatilaka AAL. Stereo and Regioselective Microbial Reduction of the Clerodane Diterpene 3,12-Dioxo-15,16-epoxy-4-hydroxycleroda-13(16),14-diene. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The biotransformation of the clerodane diterpene, 3,12-dioxo-15,16-epoxy-4-hydroxy-cleroda-13(16),14-diene (1), obtained from Croton micans var. argyroglossum (Baill.) Müll., was investigated for the first time. Whole cells of Cunninghamella echinulata and Rhizopus stolonifer were used as enzymatic systems, and with both fungi the only biotransformation product obtained was the new ent-neo-clerodane diterpene (3 R,4 S,5 S,8 S,9 R,10 S)-3,4-dihydroxy-15,16-epoxy-12-oxo-cleroda-13(16),14-diene (2a). The absolute stereochemistry of 2a was inferred by comparison of its optical rotation with those of the chemical reduction product of 1 and its quasienantiomer 2c.
Collapse
Affiliation(s)
- Jair Mafezoli
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455–970, Brazil
- SW Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706–6800, USA
| | - Maria C. F. Oliveira
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455–970, Brazil
- SW Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706–6800, USA
| | - José R. Paiva
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455–970, Brazil
| | - Antônio H. Sousa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455–970, Brazil
| | - Mary A. S. Lima
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455–970, Brazil
| | - José N. Silva Júnior
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455–970, Brazil
| | - Francisco G. Barbosa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455–970, Brazil
| | - E. M. Kithsiri Wijeratne
- SW Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706–6800, USA
| | - A. A. Leslie Gunatilaka
- SW Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706–6800, USA
| |
Collapse
|
49
|
Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R. Fungal metabolites with anticancer activity. Nat Prod Rep 2014; 31:617-27. [PMID: 24651312 DOI: 10.1039/c3np70078j] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 1964 to 2013. Natural products from bacteria and plants have played a leading role in cancer drug discovery resulting in a large number of clinically useful agents. In contrast, the investigations of fungal metabolites and their derivatives have not led to a clinical cancer drug in spite of significant research efforts revealing a large number of fungi-derived natural products with promising anticancer activity. Many of these natural products have displayed notable in vitro growth-inhibitory properties in human cancer cell lines and select compounds have been demonstrated to provide therapeutic benefits in mouse models of human cancer. Many of these compounds are expected to enter human clinical trials in the near future. The present review discusses the reported sources, structures and biochemical studies aimed at the elucidation of the anticancer potential of these promising fungal metabolites.
Collapse
Affiliation(s)
- Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Cimmino A, Andolfi A, Evidente A. Phytotoxic Terpenes Produced by Phytopathogenic Fungi and Allelopathic Plants. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This review is about the isolation as well as chemical and biological characterization of simple and complex mono-, sesqui-, di-, sester- and tri-terpenes produced by fungal pathogens of agrarian and forest plants and by some allelopathic plants. In several cases, the structure activity relationships are also discussed, as well as their potential application in agriculture as natural safe herbicides, fungicides and bactericides. Furthermore, the potential application of some fungal terpenes as anticancer compounds with a new mode of action is also discussed.
Collapse
Affiliation(s)
- Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Anna Andolfi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|