1
|
Musaimi OA. Lasso Peptides Realm: Insights and Applications. Peptides 2024:171317. [PMID: 39489300 DOI: 10.1016/j.peptides.2024.171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Lasso peptides exhibit a range of bioactivities, including antiviral effects, inhibition of the glucagon receptor, blockade of the endothelin type B receptor, inhibition of myosin light chain kinase, and modulation of the atrial natriuretic factor, as well as notable antimicrobial properties. Intriguingly, lasso peptides exhibit remarkable proteolytic and thermal stability, addressing one of the key challenges that traditional peptides often face. The challenge in producing those valuable peptides remains the main hurdle in the way of producing larger quantities or even modifying them with more potent analogues. Genome mining and heterologous expression approaches have greatly facilitated the production of lasso peptides, moving beyond mere isolation techniques. This advancement not only allows for larger quantities but also enables the creation of additional analogues with improved stability and potency.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, UK NE1 7RU, UK; Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
2
|
Reyna-Campos AO, Ruiz-Villafan B, Macías-Rubalcava ML, Langley E, Rodríguez-Sanoja R, Sánchez S. Heterologous expression of lasso peptides with apparent participation in the morphological development in Streptomyces. AMB Express 2024; 14:97. [PMID: 39225916 PMCID: PMC11371967 DOI: 10.1186/s13568-024-01761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Lasso peptides, ribosomally synthesized and post-translationally modified peptides, are primarily produced by bacteria and some archaea. Streptomyces lasso peptides have been known for their antimicrobial, anticancer, and antiviral properties. However, understanding their role in the morphology and production of secondary metabolites remains limited. We identified a previously unknown lasso peptide gene cluster in the genome of Streptomyces sp. L06. This gene cluster (LASS) produces two distinct lasso peptides, morphosin-1 and - 2. Notably, morphosin-2 is a member of a new subfamily of lasso peptides, with BGCs exhibiting a similar structure. When LASS was expressed in different Streptomyces hosts, it led to exciting phenotypic changes, including the absence of spores and damage in aerial mycelium development. In one of the hosts, LASS even triggered antibiotic formation. These findings open up a world of possibilities, suggesting the potential role of morphosins in shaping Streptomyces' morphological and biochemical development.
Collapse
Affiliation(s)
- Alma Ofelia Reyna-Campos
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, CdMx, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, UNAM. , CdMx, 04510, Mexico
| | - Beatriz Ruiz-Villafan
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, CdMx, Mexico
| | | | - Elizabeth Langley
- Departmento de Investigación Básica, Instituto Nacional de Cancerología, CdMx, 14080, Mexico
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, CdMx, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, CdMx, Mexico.
| |
Collapse
|
3
|
Pulliam C, Xue D, Campbell A, Older E, Li J. Discovery and Heterologous Expression of Trilenodin, an Antimicrobial Lasso Peptide with a Unique Tri-Isoleucine Motif. Chembiochem 2024:e202400586. [PMID: 39225753 DOI: 10.1002/cbic.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Lasso peptides are an increasingly relevant class of peptide natural products with diverse biological activities, intriguing physical properties, and unique chemical structures. Most characterized lasso peptides have been from Actinobacteria and Proteobacteria, despite bioinformatic analyses suggesting that other bacterial taxa, particularly those from Firmicutes, are rich in biosynthetic gene clusters (BGCs) encoding lasso peptides. Herein, we report the bioinformatic identification of a lasso peptide BGC from Paenibacillus taiwanensis DSM18679 which we termed pats. We used a bioinformatics-guided isolation approach and high-resolution tandem mass spectrometry (HRMS/MS) to isolate and subsequently characterize a new lasso peptide produced from the pats BGC, which we named trilenodin, after the tri-isoleucine motif present in its primary sequence. This tri-isoleucine motif is unique among currently characterized lasso peptides. We confirmed the connection between the pats BGC and trilenodin production by establishing the first Bacillus subtilis 168-based heterologous expression system for expressing Firmicutes lasso peptides. We finally determined that trilenodin exhibits potent antimicrobial activity against B. subtilis and Klebsiella pneumoniae, making trilenodin the first characterized biologically active lasso peptide from Firmicutes. Collectively, we demonstrate that bacteria from Firmicutes can serve as high-potential sources of chemically and biologically diverse lasso peptides.
Collapse
Affiliation(s)
- Conor Pulliam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, United States
| | - Dan Xue
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, United States
| | - Andrew Campbell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, United States
| | - Ethan Older
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, United States
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, United States
| |
Collapse
|
4
|
Barrett SE, Mitchell DA. Advances in lasso peptide discovery, biosynthesis, and function. Trends Genet 2024:S0168-9525(24)00179-3. [PMID: 39218755 DOI: 10.1016/j.tig.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Lasso peptides are a large and sequence-diverse class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products characterized by their slip knot-like shape. These unique, highly stable peptides are produced by bacteria for various purposes. Their stability and sequence diversity make them a potentially useful scaffold for biomedically relevant folded peptides. However, many questions remain about lasso peptide biosynthesis, ecological function, and diversification potential for biomedical and agricultural applications. This review discusses new insights and open questions about lasso peptide biosynthesis and biological function. The role that genome mining has played in the development of new methodologies for discovering and diversifying lasso peptides is also discussed.
Collapse
Affiliation(s)
- Susanna E Barrett
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Douglas A Mitchell
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Pfeiffer IPM, Schröder MP, Mordhorst S. Opportunities and challenges of RiPP-based therapeutics. Nat Prod Rep 2024; 41:990-1019. [PMID: 38411278 DOI: 10.1039/d3np00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: up to 2024Ribosomally synthesised and post-translationally modified peptides (RiPPs) comprise a substantial group of peptide natural products exhibiting noteworthy bioactivities ranging from antiinfective to anticancer and analgesic effects. Furthermore, RiPP biosynthetic pathways represent promising production routes for complex peptide drugs, and the RiPP technology is well-suited for peptide engineering to produce derivatives with specific functions. Thus, RiPP natural products possess features that render them potentially ideal candidates for drug discovery and development. Nonetheless, only a small number of RiPP-derived compounds have successfully reached the market thus far. This review initially outlines the therapeutic opportunities that RiPP-based compounds can offer, whilst subsequently discussing the limitations that require resolution in order to fully exploit the potential of RiPPs towards the development of innovative drugs.
Collapse
Affiliation(s)
- Isabel P-M Pfeiffer
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Maria-Paula Schröder
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Silja Mordhorst
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
6
|
da Hora GCA, Oh M, Nguyen JDM, Swanson JMJ. One Descriptor to Fold Them All: Harnessing Intuition and Machine Learning to Identify Transferable Lasso Peptide Reaction Coordinates. J Phys Chem B 2024; 128:4063-4075. [PMID: 38568862 PMCID: PMC11282586 DOI: 10.1021/acs.jpcb.3c08492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Identifying optimal reaction coordinates for complex conformational changes and protein folding remains an outstanding challenge. This study combines collective variable (CV) discovery based on chemical intuition and machine learning with enhanced sampling to converge the folding free energy landscape of lasso peptides, a unique class of natural products with knot-like tertiary structures. This knotted scaffold imparts remarkable stability, making lasso peptides resistant to proteolytic degradation, thermal denaturation, and extreme pH conditions. Although their direct synthesis would enable therapeutic design, it has not yet been possible due to the improbable occurrence of spontaneous lasso folding. Thus, simulations characterizing the folding propensity are needed to identify strategies for increasing access to the lasso architecture by stabilizing the pre-lasso ensemble before isopeptide bond formation. Herein, harmonic linear discriminant analysis (HLDA) is combined with metadynamics-enhanced sampling to discover CVs capable of distinguishing the pre-lasso fold and converging the folding propensity. Intuitive CVs are compared to iterative rounds of HLDA to identify CVs that not only accomplish these goals for one lasso peptide but also seem to be transferable to others, establishing a protocol for the identification of folding reaction coordinates for lasso peptides.
Collapse
Affiliation(s)
- Gabriel C A da Hora
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Myongin Oh
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - John D M Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
8
|
Zada S, Khan M, Su Z, Sajjad W, Rafiq M. Cryosphere: a frozen home of microbes and a potential source for drug discovery. Arch Microbiol 2024; 206:196. [PMID: 38546887 DOI: 10.1007/s00203-024-03899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 04/02/2024]
Abstract
The world is concerned about the emergence of pathogens and the occurrence and spread of antibiotic resistance among pathogens. Drug development requires time to combat these issues. Consequently, drug development from natural sources is unavoidable. Cryosphere represents a gigantic source of microbes that could be the bioprospecting source of natural products with unique scaffolds as molecules or drug templates. This review focuses on the novel source of drug discovery and cryospheric environments as a potential source for microbial metabolites having potential medicinal applications. Furthermore, the problems encountered in discovering metabolites from cold-adapted microbes and their resolutions are discussed. By adopting modern practical approaches, the discovery of bioactive compounds might fulfill the demand for new drug development.
Collapse
Affiliation(s)
- Sahib Zada
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Mohsin Khan
- Department of Biological Sciences, Ohio University Athens, Athens, OH, USA
| | - Zheng Su
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, 87650, Pakistan.
| |
Collapse
|
9
|
Baquero F, Beis K, Craik DJ, Li Y, Link AJ, Rebuffat S, Salomón R, Severinov K, Zirah S, Hegemann JD. The pearl jubilee of microcin J25: thirty years of research on an exceptional lasso peptide. Nat Prod Rep 2024; 41:469-511. [PMID: 38164764 DOI: 10.1039/d3np00046j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covering: 1992 up to 2023Since their discovery, lasso peptides went from peculiarities to be recognized as a major family of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that were shown to be spread throughout the bacterial kingdom. Microcin J25 was first described in 1992, making it one of the earliest known lasso peptides. No other lasso peptide has since then been studied to such an extent as microcin J25, yet, previous review articles merely skimmed over all the research done on this exceptional lasso peptide. Therefore, to commemorate the 30th anniversary of its first report, we give a comprehensive overview of all literature related to microcin J25. This review article spans the early work towards the discovery of microcin J25, its biosynthetic gene cluster, and the elucidation of its three-dimensional, threaded lasso structure. Furthermore, the current knowledge about the biosynthesis of microcin J25 and lasso peptides in general is summarized and a detailed overview is given on the biological activities associated with microcin J25, including means of self-immunity, uptake into target bacteria, inhibition of the Gram-negative RNA polymerase, and the effects of microcin J25 on mitochondria. The in vitro and in vivo models used to study the potential utility of microcin J25 in a (veterinary) medicine context are discussed and the efforts that went into employing the microcin J25 scaffold in bioengineering contexts are summed up.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Network Center for Research in Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, 4072 Brisbane, Queensland, Australia
| | - Yanyan Li
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - A James Link
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sylvie Rebuffat
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Raúl Salomón
- Instituto de Química Biológica "Dr Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Séverine Zirah
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Chen S, Zhang K, Zou J, Yu Z, Gai C, Chai X, Zhao Q, Zou Y. Further structural optimization and SAR study of sungsanpin derivatives as cell-invasion inhibitors. Bioorg Med Chem Lett 2024; 99:129627. [PMID: 38272189 DOI: 10.1016/j.bmcl.2024.129627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Metastasis is one of the major causes of death in patients with cancer, and cell invasion plays a fundamental part in this process. Because of the absence of efficacious treatments, caring for these patients is challenging. Recently, we optimized the structure of the naturally occurring lasso peptide sungsanpin. We identified two peptides, octapeptide S3 and cyclic peptide S4, which inhibited invasion into A549 cells effectively. We undertook an alanine scan of S3 to explore the structure-activity relationship. The linear octapeptide S3-4 and cyclic peptide S4-1 exhibited improved inhibition of invasion into A549 cells. We modified S3-4 to obtain S3-4K, which displayed much higher inhibitory activity against invasion into A549 cells than S3-4. Of all peptides tested, S4-1 upregulated significantly mRNA of tissue inhibitor matrix metalloproteinase TIMP-1 and TIMP-2.
Collapse
Affiliation(s)
- Shuai Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Kai Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Jihua Zou
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province 350122, PR China
| | - Zhou Yu
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Conghao Gai
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Xiaoyun Chai
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Qingjie Zhao
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China.
| | - Yan Zou
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
11
|
Digal L, Samson SC, Stevens MA, Ghorai A, Kim H, Mifflin MC, Carney KR, Williamson DL, Um S, Nagy G, Oh DC, Mendoza MC, Roberts AG. Nonthreaded Isomers of Sungsanpin and Ulleungdin Lasso Peptides Inhibit H1299 Cancer Cell Migration. ACS Chem Biol 2024; 19:81-88. [PMID: 38109560 DOI: 10.1021/acschembio.3c00525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Lasso peptides are a structurally distinct class of biologically active natural products defined by their short sequences with impressively interlocked tertiary structures. Their characteristic peptide [1]rotaxane motif confers marked proteolytic and thermal resiliency, and reports on their diverse biological functions have been credited to their exceptional sequence variability. Because of these unique properties, taken together with improved technologies for their biosynthetic production, lasso peptides are emerging as a designable scaffold for peptide-based therapeutic discovery and development. Although the defined structure of lasso peptides is recognized for its remarkable properties, the role of the motif in imparting bioactivity is less understood. For example, sungsanpin and ulleungdin are natural lasso peptides that similarly exhibit encouraging cell migration inhibitory activities in A549 lung carcinoma epithelial cells, despite sharing only one-third of the sequence homology. We hypothesized that the shape of the lasso motif is beneficial for the preorganization of the conserved residues, which might be partially retained in variants lacking the threaded structure. Herein, we describe solid-phase peptide synthesis strategies to prepare acyclic, head-to-side chain (branched), and head-to-tail (macrocyclic) cyclic variants based on the sungsanpin (Sun) and ulleungdin (Uln) sequences. Proliferation assays and time-lapse cell motility imaging studies were used to evaluate the cell inhibitory properties of natural Sun compared with the synthetic Sun and Uln isomers. These studies demonstrate that the lasso motif is not a required feature to slow cancer cell migration and more generally show that these nonthreaded isomers can retain similar activity to the natural lasso peptide despite the differences in their overall structures.
Collapse
Affiliation(s)
- Lori Digal
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shiela C Samson
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah 84112, United States
| | - Mark A Stevens
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Abhijit Ghorai
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Hyungyu Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Marcus C Mifflin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Keith R Carney
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah 84112, United States
| | - David L Williamson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Soohyun Um
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah 84112, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
An JS, Lee H, Kim H, Woo S, Nam H, Lee J, Lee JY, Nam SJ, Lee SK, Oh KB, Kim S, Oh DC. Discovery and Biosynthesis of Cihunamides, Macrocyclic Antibacterial RiPPs with a Unique C-N Linkage Formed by CYP450 Catalysis. Angew Chem Int Ed Engl 2023; 62:e202300998. [PMID: 37114290 DOI: 10.1002/anie.202300998] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Abstract
Cihunamides A-D (1-4), novel antibacterial RiPPs, were isolated from volcanic-island-derived Streptomyces sp. The structures of 1-4 were elucidated by 1 H, 13 C, and 15 N NMR, MS, and chemical derivatization; they contain a tetrapeptide core composed of WNIW, cyclized by a unique C-N linkage between two Trp units. Genome mining of the producer strain revealed two biosynthetic genes encoding a cytochrome P450 enzyme and a precursor peptide. Heterologous co-expression of the core genes demonstrated the biosynthesis of cihunamides through P450-mediated oxidative Trp-Trp cross-linking. Further bioinformatic analysis uncovered 252 homologous gene clusters, including that of tryptorubins, which possess a distinct Trp-Trp linkage. Cihunamides do not display the non-canonical atropisomerism shown in tryptorubins, which are the founding members of the "atropitide" family. Therefore, we propose to use a new RiPP family name, "bitryptides", for cihunamides, tryptorubins, and their congeners, wherein the Trp-Trp linkages define the structural class rather than non-canonical atropisomerism.
Collapse
Affiliation(s)
- Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Hyunbin Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Hyungyu Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Seungyeon Woo
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Hyunsung Nam
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Jayho Lee
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Ji Yun Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 (Republic of, Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Ki-Bong Oh
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Seokhee Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| |
Collapse
|
13
|
Li A, Zou J, Zhuo X, Chen S, Chai X, Gai C, Li X, Zhao Q, Zou Y. Rational Optimizations of the Marine-Derived Peptide Sungsanpin as Novel Inhibitors of Cell Invasion. Chem Biodivers 2023; 20:e202201221. [PMID: 36651671 DOI: 10.1002/cbdv.202201221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Cancer metastasis, including cell invasion, is a major cause of poor clinical outcomes and death in numerous cancer patients. In recent years, many efforts have been made to develop potent therapeutic molecules from naturally derived peptides. Sungsanpin is a naturally derived lasso peptide that inhibits A549 cell invasion. We aimed to evaluate the potential of sungsanpin derivatives as candidates for anti-invasion drugs. We synthesized an analog of sungsanpin (Sun A) using a solid-phase peptide synthesis strategy (SPPS) and further modified its structure to improve its anti-invasion activity. All peptides were tested for their proliferative inhibition and anti-invasion activities in the A549 cell lines. Octapeptide S3 and cyclooctapeptide S4 upregulated the expression of TIMP-1 and TIMP-2 mRNA effectively and thus improved the inhibitory effect on the invasion of A549 cells. The two peptides can inhibit the invasion of A549 cells by up to 60 %, suggesting that they have potential as lead molecules for the development of peptide inhibitors.
Collapse
Affiliation(s)
- Anpeng Li
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jihua Zou
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province 350122, China
| | - Xiaobin Zhuo
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Shuai Chen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiaoyun Chai
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Conghao Gai
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qingjie Zhao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yan Zou
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
14
|
Pattnaik S, Imchen M, Kumavath R, Prasad R, Busi S. Bioactive Microbial Metabolites in Cancer Therapeutics: Mining, Repurposing, and Their Molecular Targets. Curr Microbiol 2022; 79:300. [PMID: 36002695 DOI: 10.1007/s00284-022-02990-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
The persistence and resurgence of cancer, characterized by abnormal cell growth and differentiation, continues to be a serious public health concern critically affecting public health, social life, and the global economy. Hundreds of putative drug molecules of synthetic and natural origin were approved for anticancer therapy in the last few decades. Although conventional anticancer treatment strategies have promising aspects, several factors such as their limitations, drug resistance, and side effects associated with them demand more effort in repositioning or developing novel therapeutic regimens. The rich heritage of microbial bioactive components remains instrumental in providing novel avenues for cancer therapeutics. Actinobacteria, Firmicutes, and fungi have a plethora of bioactive compounds, which received attention for their efficacy in cancer treatment targeting different pathways responsible for abnormal cell growth and differentiation. Yet the full potential remains underexplored to date, and novel compounds from such microbes are reported regularly. In addition, the advent of computational tools has further augmented the mining of microbial secondary metabolites and identifying their molecular targets in cancer cells. Furthermore, the drug-repurposing strategy has facilitated the use of approved drugs of microbial origin in regulating cancer cell growth and progression. The wide diversity of microbial compounds, different mining approaches, and multiple modes of action warrant further investigations on the current status of microbial metabolites in cancer therapeutics. Hence, in this review, we have critically discussed the untapped potential of microbial products in mitigating cancer progression. The review also summarizes the impact of drug repurposing in cancer therapy and discusses the novel avenues for future therapeutic drug development against cancer.
Collapse
Affiliation(s)
- Subhaswaraj Pattnaik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.,Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha, 768019, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.,Department of Genomic Science, School of Biological Sciences, Central University of Kerela, Kasaragod, Kerela, 671316, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerela, Kasaragod, Kerela, 671316, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
15
|
Qiu Z, Wu Y, Lan K, Wang S, Yu H, Wang Y, Wang C, Cao S. Cytotoxic compounds from marine actinomycetes: Sources, Structures and Bioactivity. ACTA MATERIA MEDICA 2022; 1:445-475. [PMID: 36588746 PMCID: PMC9802659 DOI: 10.15212/amm-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Marine actinomycetes produce a substantial number of natural products with cytotoxic activity. The strains of actinomycetes were isolated from different sources like fishes, coral, sponges, seaweeds, mangroves, sediments etc. These cytotoxic compounds can be categorized briefly into four classes: polyketides, non-ribosomal peptides and hybrids, isoprenoids and hybrids, and others, among which majority are polyketides (146). Twenty two out of the 254 compounds showed potent cytotoxicity with IC50 values at ng/mL or nM level. This review highlights the sources, structures and antitumor activity of 254 natural products isolated from marine actinomycetes, which were new when they were reported from 1989 to 2020.
Collapse
Affiliation(s)
- Ziyan Qiu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yinshuang Wu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Kunyan Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Shiyi Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Huilin Yu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yufei Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China,Correspondence: (C.W.); (S.C.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA,Correspondence: (C.W.); (S.C.)
| |
Collapse
|
16
|
Liu T, Ma X, Yu J, Yang W, Wang G, Wang Z, Ge Y, Song J, Han H, Zhang W, Yang D, Liu X, Ma M. Rational generation of lasso peptides based on biosynthetic gene mutations and site-selective chemical modifications. Chem Sci 2021; 12:12353-12364. [PMID: 34603665 PMCID: PMC8480316 DOI: 10.1039/d1sc02695j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Lasso peptides are a unique family of natural products whose structures feature a specific threaded fold, which confers these peptides the resistance to thermal and proteolytic degradation. This stability gives lasso peptides excellent pharmacokinetic properties, which together with their diverse reported bioactivities have garnered extensive attention because of their drug development potential. Notably, the threaded fold has proven quite inaccessible by chemical synthesis, which has hindered efficient generation of structurally diverse lasso peptides. We herein report the discovery of a new lasso peptide stlassin (1) by gene activation based on a Streptomyces heterologous expression system. Site-directed mutagenesis on the precursor peptide-encoding gene is carried out systematically, generating 17 stlassin derivatives (2–17 and 21) with residue-replacements at specific positions of 1. The solution NMR structures of 1, 3, 4, 14 and 16 are determined, supporting structural comparisons that ultimately enabled the rational production of disulfide bond-containing derivatives 18 and 19, whose structures do not belong to any of the four classes currently used to classify lasso peptides. Several site-selective chemical modifications are first applied on 16 and 21, efficiently generating new derivatives (20, 22–27) whose structures bear various decorations beyond the peptidyl monotonicity. The high production yields of these stlassin derivatives facilitate biological assays, which show that 1, 4, 16, 20, 21 and 24 possess antagonistic activities against the binding of lipopolysaccharides to toll-like receptor 4 (TLR4). These results demonstrate proof-of-concept for the combined mutational/chemical generation of lasso peptide libraries to support drug lead development. A new class II lasso peptide stlassin (1) was discovered and stlassin derivatives (2–27) were rationally generated by biosynthetic gene mutations and site-selective chemical modifications, expanding the structural diversity of lasso peptides.![]()
Collapse
Affiliation(s)
- Tan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaojie Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Jiahui Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Wensheng Yang
- School of Medicine, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Guiyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Zhengdong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yuanjie Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Juan Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Hua Han
- School of Medicine, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Wen Zhang
- School of Medicine, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xuehui Liu
- CAS Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences 15 Datun Road, Chao-yang District Beijing 100101 China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| |
Collapse
|
17
|
Stariha LM, McCafferty DG. Discovery of the Class I Antimicrobial Lasso Peptide Arcumycin. Chembiochem 2021; 22:2632-2640. [PMID: 34133845 DOI: 10.1002/cbic.202100132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/27/2021] [Indexed: 12/13/2022]
Abstract
Lasso peptides are a structurally diverse superfamily of conformationally constrained peptide natural products, of which a subset exhibits broad antimicrobial activity. Although advances in bioinformatics have increased our knowledge of strains harboring the biosynthetic machinery for lasso peptide production, relating peptide sequence to bioactivity remains a continuous challenge. To this end, genome mining investigation of Actinobacteria-produced antimicrobial lasso peptides was performed to correlate predicted structure with antibiotic activity. Bioinformatic evaluation revealed eight putative novel class I lasso peptide sequences. Fermentation of one of these hits, Streptomyces NRRL F-5639, resulted in the production of a novel class I lasso peptide, arcumycin. Arcumycin exhibited antibiotic activity against Gram-positive bacteria including Bacillus subtilis (4 μg/mL), Staphylococcus aureus (8 μg/mL), and Micrococcus luteus (8 μg/mL). Arcumycin treatment of B. subtilis liaI-β-gal promoter fusion reporter strain resulted in upregulation of the liaRS system by the promoter liaI, indicating arcumycin interferes with lipid II biosynthesis. Cumulatively, the results illustrate the relationship between phylogenetically related lasso peptides and their bioactivity as validated through the isolation, structural determination, and evaluation of bioactivity of the novel class I antimicrobial lasso peptide arcumycin.
Collapse
Affiliation(s)
- Lydia M Stariha
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | | |
Collapse
|
18
|
CESA-LUNA CATHERINE, ALATORRE-CRUZ JULIAMARÍA, CARREÑO-LÓPEZ RICARDO, QUINTERO-HERNÁNDEZ VERÓNICA, BAEZ ANTONINO. Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Pol J Microbiol 2021; 70:143-159. [PMID: 34349808 PMCID: PMC8326989 DOI: 10.33073/pjm-2021-020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
The use of bacteriocins holds great promise in different areas such as health, food, nutrition, veterinary, nanotechnology, among others. Many research groups worldwide continue to advance the knowledge to unravel a novel range of therapeutic agents and food preservatives. This review addresses the advances of bacteriocins and their producer organisms as biocontrol agents for applications in the medical industry and agriculture. Furthermore, the bacteriocin mechanism of action and structural characteristics will be reviewed. Finally, the potential role of bacteriocins to modulate the signaling in host-associated microbial communities will be discussed.
Collapse
Affiliation(s)
- CATHERINE CESA-LUNA
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | | | - RICARDO CARREÑO-LÓPEZ
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | | | - ANTONINO BAEZ
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| |
Collapse
|
19
|
Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci 2021; 22:3973. [PMID: 33921480 PMCID: PMC8068844 DOI: 10.3390/ijms22083973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclopeptides or cyclic peptides are polypeptides formed by ring closing of terminal amino acids. A large number of natural cyclopeptides have been reported to be highly effective against different cancer cells, some of which are renowned for their clinical uses. Compared to linear peptides, cyclopeptides have absolute advantages of structural rigidity, biochemical stability, binding affinity as well as membrane permeability, which contribute greatly to their anticancer potency. Therefore, the discovery and development of natural cyclopeptides as anticancer agents remains attractive to academic researchers and pharmaceutical companies. Herein, we provide an overview of anticancer cyclopeptides that were discovered in the past 20 years. The present review mainly focuses on the anticancer efficacies, mechanisms of action and chemical structures of cyclopeptides with natural origins. Additionally, studies of the structure-activity relationship, total synthetic strategies as well as bioactivities of natural cyclopeptides are also included in this article. In conclusion, due to their characteristic structural features, natural cyclopeptides have great potential to be developed as anticancer agents. Indeed, they can also serve as excellent scaffolds for the synthesis of novel derivatives for combating cancerous pathologies.
Collapse
Affiliation(s)
| | | | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China; (J.-N.Z.); (Y.-X.X.)
| |
Collapse
|
20
|
Si Y, Kretsch AM, Daigh LM, Burk MJ, Mitchell DA. Cell-Free Biosynthesis to Evaluate Lasso Peptide Formation and Enzyme-Substrate Tolerance. J Am Chem Soc 2021; 143:5917-5927. [PMID: 33823110 DOI: 10.1021/jacs.1c01452] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lasso peptides are ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that display a unique lariat-like, threaded conformation. Owing to a locked three-dimensional structure, lasso peptides can be unusually stable toward heat and proteolytic degradation. Some lasso peptides have been shown to bind human cell-surface receptors and exhibit anticancer properties, while others display antibacterial or antiviral activities. All known lasso peptides are produced by bacteria and genome-mining studies indicate that lasso peptides are a relatively prevalent class of RiPPs; however, the discovery, isolation, and characterization of lasso peptides are constrained by the lack of an efficient production system. In this study, we employ a cell-free biosynthesis (CFB) strategy to address longstanding challenges associated with lasso peptide production. We report the successful use of CFB for the formation of an array of sequence-diverse lasso peptides that include known examples as well as a new predicted lasso peptide from Thermobifida halotolerans. We further demonstrate the utility of CFB to rapidly generate and characterize multisite precursor peptide variants to evaluate the substrate tolerance of the biosynthetic pathway. By evaluating more than 1000 randomly chosen variants, we show that the lasso-forming cyclase from the fusilassin pathway is capable of producing millions of sequence-diverse lasso peptides via CFB. These data lay a firm foundation for the creation of large lasso peptide libraries using CFB to identify new variants with unique properties.
Collapse
Affiliation(s)
- Yuanyuan Si
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Ashley M Kretsch
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Laura M Daigh
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Mark J Burk
- Lassogen, Inc., San Diego, California 92121, United States of America
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| |
Collapse
|
21
|
Jose PA, Maharshi A, Jha B. Actinobacteria in natural products research: Progress and prospects. Microbiol Res 2021; 246:126708. [PMID: 33529791 DOI: 10.1016/j.micres.2021.126708] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
Actinobacteria are well-recognised biosynthetic factories that produce an extensive spectrum of secondary metabolites. Recent genomic insights seem to impact the exploitation of these metabolically versatile bacteria in several aspects. Notably, from the isolation of novel taxa to the discovery of new compounds, different approaches evolve at a steady pace. Here, we systematically discuss the enduring importance of Actinobacteria in the field of drug discovery, the current focus of isolation efforts targeting bioactive Actinobacteria from diverse sources, recent discoveries of novel compounds with different bioactivities, and the relative employment of different strategies in the search for novel compounds. Ultimately, we highlight notable progress that will have profound impacts on future quests for secondary metabolites of Actinobacteria.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India.
| | - Anjisha Maharshi
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, India.
| |
Collapse
|
22
|
Jiang T, Pu H, Duan Y, Yan X, Huang Y. New Natural Products of Streptomyces Sourced from Deep-Sea, Desert, Volcanic, and Polar Regions from 2009 to 2020. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Guerrero-Garzón JF, Madland E, Zehl M, Singh M, Rezaei S, Aachmann FL, Courtade G, Urban E, Rückert C, Busche T, Kalinowski J, Cao YR, Jiang Y, Jiang CL, Selivanova G, Zotchev SB. Class IV Lasso Peptides Synergistically Induce Proliferation of Cancer Cells and Sensitize Them to Doxorubicin. iScience 2020; 23:101785. [PMID: 33294793 PMCID: PMC7689547 DOI: 10.1016/j.isci.2020.101785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/16/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
Heterologous expression of a biosynthesis gene cluster from Amycolatopsis sp. resulted in the discovery of two unique class IV lasso peptides, felipeptins A1 and A2. A mixture of felipeptins stimulated proliferation of cancer cells, while having no such effect on the normal cells. Detailed investigation revealed, that pre-treatment of cancer cells with a mixture of felipeptins resulted in downregulation of the tumor suppressor Rb, making the cancer cells to proliferate faster. Pre-treatment with felipeptins made cancer cells considerably more sensitive to the anticancer agent doxorubicin and re-sensitized doxorubicin-resistant cells to this drug. Structural characterization and binding experiments showed an interaction between felipeptins resulting in complex formation, which explains their synergistic effect. This discovery may open an alternative avenue in cancer treatment, helping to eliminate quiescent cells that often lead to cancer relapse.
Collapse
Affiliation(s)
| | - Eva Madland
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Shiva Rezaei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden.,Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Gaston Courtade
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Yan-Ru Cao
- Yunnan Institute of Microbiology, Yunnan University, 650091 Kunming, P.R.China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, 650091 Kunming, P.R.China
| | - Cheng-Lin Jiang
- Yunnan Institute of Microbiology, Yunnan University, 650091 Kunming, P.R.China
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
24
|
How to harness biosynthetic gene clusters of lasso peptides. ACTA ACUST UNITED AC 2020; 47:703-714. [DOI: 10.1007/s10295-020-02292-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Abstract
Lasso peptides produced by bacteria have a very unique cyclic structure (“lasso” structure) and are resistant to protease. To date, a number of lasso peptides have been isolated from proteobacteria and actinobacteria. Many lasso peptides exhibit various biological activities, such as antibacterial activity, and are expected to have various applications. Based on study of genome mining, large numbers of biosynthetic gene cluster of lasso peptides are revealed to distribute over genomes of proteobacteria and actinobacteria. However, the biosynthetic gene clusters are cryptic in most cases. Therefore, the combination of genome mining and heterologous production is efficient method for the production of lasso peptides. To utilize lasso peptide as fine chemical, there have been several attempts to add new function to lasso peptide by genetic engineering. Currently, a more efficient lasso peptide production system is being developed to harness cryptic biosynthetic gene clusters of lasso peptide. In this review, the overview of lasso peptide study is discussed.
Collapse
|
25
|
Cheng C, Hua ZC. Lasso Peptides: Heterologous Production and Potential Medical Application. Front Bioeng Biotechnol 2020; 8:571165. [PMID: 33117783 PMCID: PMC7549694 DOI: 10.3389/fbioe.2020.571165] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Lasso peptides are natural products found in bacteria. They belong to a specific family of ribosomally-synthesized and posttranslationally-modified peptides with an unusual lasso structure. Lasso peptides possess remarkable thermal and proteolytic stability and various biological activities, such as antimicrobial activity, enzyme inhibition, receptor blocking, anticancer properties and HIV antagonism. They have promising potential therapeutic effects on gastrointestinal diseases, tuberculosis, Alzheimer’s disease, cardiovascular disease, fungal infections and cancer. Lasso peptides with high stability have been shown to be good carriers for other bioactive peptides. These make them attractive candidates for pharmaceutical research. This review aimed to describe the strategies used for the heterologous production of lasso peptides. Also, it indicated their therapeutical potential and their capacity to use as an efficient scaffold for epitope grafting.
Collapse
Affiliation(s)
- Cheng Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China.,Changzhou High-Tech Research Institute of Nanjing University, Changzhou, China.,Jiangsu Target Pharma Laboratories Inc., Changzhou, China
| |
Collapse
|
26
|
Cutting the Gordian knot: early and complete amino acid sequence confirmation of class II lasso peptides by HCD fragmentation. J Antibiot (Tokyo) 2020; 73:772-779. [DOI: 10.1038/s41429-020-00369-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
|
27
|
Waliczek M, Wierzbicka M, Arkuszewski M, Kijewska M, Jaremko Ł, Rajagopal P, Szczepski K, Sroczyńska A, Jaremko M, Stefanowicz P. Attempting to synthesize lasso peptides using high pressure. PLoS One 2020; 15:e0234901. [PMID: 32579565 PMCID: PMC7314030 DOI: 10.1371/journal.pone.0234901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Lasso peptides are unique in that the tail of the lasso peptide threads through its macrolactam ring. The unusual structure and biological activity of lasso peptides have generated increased interest from the scientific community in recent years. Because of this, many new types of lasso peptides have been discovered. These peptides can be synthesized by microorganisms efficiently, and yet, their chemical assembly is challenging. Herein, we investigated the possibility of high pressure inducing the cyclization of linear precursors of lasso peptides. Unlike other molecules like rotaxanes which mechanically interlock at high pressure, the threaded lasso peptides did not form, even at pressures the high pressure up to 14 000 kbar.
Collapse
Affiliation(s)
| | | | | | - Monika Kijewska
- Faculty of Chemistry, University of Wrocław, Wroclaw, Poland
| | - Łukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Priyadharshni Rajagopal
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kacper Szczepski
- Faculty of Chemistry, University of Wrocław, Wroclaw, Poland
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | |
Collapse
|
28
|
Dahiya R, Dahiya S, Fuloria NK, Kumar S, Mourya R, Chennupati SV, Jankie S, Gautam H, Singh S, Karan SK, Maharaj S, Fuloria S, Shrivastava J, Agarwal A, Singh S, Kishor A, Jadon G, Sharma A. Natural Bioactive Thiazole-Based Peptides from Marine Resources: Structural and Pharmacological Aspects. Mar Drugs 2020; 18:md18060329. [PMID: 32599909 PMCID: PMC7345825 DOI: 10.3390/md18060329] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Peptides are distinctive biomacromolecules that demonstrate potential cytotoxicity and diversified bioactivities against a variety of microorganisms including bacteria, mycobacteria, and fungi via their unique mechanisms of action. Among broad-ranging pharmacologically active peptides, natural marine-originated thiazole-based oligopeptides possess peculiar structural features along with a wide spectrum of exceptional and potent bioproperties. Because of their complex nature and size divergence, thiazole-based peptides (TBPs) bestow a pivotal chemical platform in drug discovery processes to generate competent scaffolds for regulating allosteric binding sites and peptide–peptide interactions. The present study dissertates on the natural reservoirs and exclusive structural components of marine-originated TBPs, with a special focus on their most pertinent pharmacological profiles, which may impart vital resources for the development of novel peptide-based therapeutic agents.
Collapse
Affiliation(s)
- Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; (S.J.); (S.M.); (S.S.)
- Correspondence: (R.D.); (S.D.); Tel.: +1-868-493-5655 (R.D.); +1-787-758-2525 (ext. 5413) (S.D.)
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
- Correspondence: (R.D.); (S.D.); Tel.: +1-868-493-5655 (R.D.); +1-787-758-2525 (ext. 5413) (S.D.)
| | - Neeraj Kumar Fuloria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia; (N.K.F.); (S.F.)
| | - Suresh Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, Haryana, India;
| | - Rita Mourya
- School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, P.O. Box 196, Gondar 6200, Ethiopia;
| | - Suresh V. Chennupati
- Department of Pharmacy, College of Medical and Health Sciences, Wollega University, P.O. Box 395, Nekemte, Ethiopia;
| | - Satish Jankie
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; (S.J.); (S.M.); (S.S.)
| | - Hemendra Gautam
- Arya College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, Nawabganj, Bareilly 243407, Uttar Pardesh, India;
| | - Sunil Singh
- Department of Pharmaceutical Chemistry, Ideal Institute of Pharmacy, Wada, Palghar 421303, Maharashtra, India;
| | - Sanjay Kumar Karan
- Department of Pharmaceutical Chemistry, Seemanta Institute of Pharmaceutical Sciences, Jharpokharia, Mayurbhanj 757086, Orissa, India;
| | - Sandeep Maharaj
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; (S.J.); (S.M.); (S.S.)
| | - Shivkanya Fuloria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia; (N.K.F.); (S.F.)
| | - Jyoti Shrivastava
- Department of Pharmaceutical Chemistry, The Oxford College of Pharmacy, Hongasandra, Bangalore 560068, Karnataka, India;
| | - Alka Agarwal
- Department of Pharmaceutical Chemistry, U.S. Ostwal Institute of Pharmacy, Mangalwad, Chittorgarh 313603, Rajasthan, India;
| | - Shamjeet Singh
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; (S.J.); (S.M.); (S.S.)
| | - Awadh Kishor
- Department of Pharmaceutical Biotechnology, Shrinathji Institute of Pharmacy, Nathdwara 313301, Rajsamand, Rajasthan, India;
| | - Gunjan Jadon
- Department of Pharmaceutical Chemistry, Shrinathji Institute of Pharmacy, Nathdwara 313301, Rajsamand, Rajasthan, India;
| | - Ajay Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India;
| |
Collapse
|
29
|
Identification, Cloning and Heterologous Expression of the Gene Cluster Directing RES-701-3, -4 Lasso Peptides Biosynthesis from a Marine Streptomyces Strain. Mar Drugs 2020; 18:md18050238. [PMID: 32370018 PMCID: PMC7280977 DOI: 10.3390/md18050238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 01/09/2023] Open
Abstract
RES-701-3 and RES-701-4 are two class II lasso peptides originally identified in the fermentation broth of Streptomyces sp. RE-896, which have been described as selective endothelin type B receptor antagonists. These two lasso peptides only differ in the identity of the C-terminal residue (tryptophan in RES-701-3, 7-hydroxy-tryptophan in RES-701-4), thus raising an intriguing question about the mechanism behind the modification of the tryptophan residue. In this study, we describe the identification of their biosynthetic gene cluster through the genome mining of the marine actinomycete Streptomyces caniferus CA-271066, its cloning and heterologous expression, and show that the seven open reading frames (ORFs) encoded within the gene cluster are sufficient for the biosynthesis of both lasso peptides. We propose that ResE, a protein lacking known putatively conserved domains, is likely to play a key role in the post-translational modification of the C-terminal tryptophan of RES-701-3 that affords RES-701-4. A BLASTP search with the ResE amino acid sequence shows the presence of homologues of this protein in the genomes of eight other Streptomyces strains, which also harbour the genes encoding the RES-701-3, -4 precursor peptide, split-B proteins and ATP-dependent lactam synthetase required for the biosynthesis of these compounds.
Collapse
|
30
|
Heterologous Expression of a Cryptic Gene Cluster from Streptomyces leeuwenhoekii C34 T Yields a Novel Lasso Peptide, Leepeptin. Appl Environ Microbiol 2019; 85:AEM.01752-19. [PMID: 31562169 PMCID: PMC6856326 DOI: 10.1128/aem.01752-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Recent developments in genome sequencing combined with bioinformatic analysis have revealed that actinomycetes contain a plethora of unexpected BGCs and thus have the potential to produce many more natural products than previously thought. This reflects the inability to detect the production of these compounds under laboratory conditions, perhaps through the use of inappropriate growth media or the absence of the environmental cues required to elicit expression of the corresponding BGCs. One approach to overcoming this problem is to circumvent the regulatory mechanisms that control expression of the BGC in its natural host by deploying heterologous expression. The generally compact nature of lasso peptide BGCs makes them particularly amenable to this approach, and, in the example given here, analysis revealed a new member of the lasso peptide family of RiPPs. This approach should be readily applicable to other cryptic lasso peptide gene clusters and would also facilitate the design and production of nonnatural variants by changing the sequence encoding the core peptide, as has been achieved with other classes of RiPPs. Analysis of the genome sequence of Streptomyces leeuwenhoekii C34T identified biosynthetic gene clusters (BGCs) for three different lasso peptides (Lp1, Lp2, and Lp3) which were not known to be made by the strain. Lasso peptides represent relatively new members of the RiPP (ribosomally synthesized and posttranslationally modified peptides) family of natural products and have not been extensively studied. Lp3, whose production could be detected in culture supernatants from S. leeuwenhoekii C34T and after heterologous expression of its BGC in Streptomyces coelicolor, is identical to the previously characterized chaxapeptin. Lp1, whose production could not be detected or achieved heterologously, appears to be identical to a recently identified member of the citrulassin family of lasso peptides. Since production of Lp2 by S. leeuwenhoekii C34T was not observed, its BGC was also expressed in S. coelicolor. The lasso peptide was isolated and its structure confirmed by mass spectrometry and nuclear magnetic resonance analyses, revealing a novel structure that appears to represent a new family of lasso peptides. IMPORTANCE Recent developments in genome sequencing combined with bioinformatic analysis have revealed that actinomycetes contain a plethora of unexpected BGCs and thus have the potential to produce many more natural products than previously thought. This reflects the inability to detect the production of these compounds under laboratory conditions, perhaps through the use of inappropriate growth media or the absence of the environmental cues required to elicit expression of the corresponding BGCs. One approach to overcoming this problem is to circumvent the regulatory mechanisms that control expression of the BGC in its natural host by deploying heterologous expression. The generally compact nature of lasso peptide BGCs makes them particularly amenable to this approach, and, in the example given here, analysis revealed a new member of the lasso peptide family of RiPPs. This approach should be readily applicable to other cryptic lasso peptide gene clusters and would also facilitate the design and production of nonnatural variants by changing the sequence encoding the core peptide, as has been achieved with other classes of RiPPs.
Collapse
|
31
|
Tan S, Moore G, Nodwell J. Put a Bow on It: Knotted Antibiotics Take Center Stage. Antibiotics (Basel) 2019; 8:antibiotics8030117. [PMID: 31405236 PMCID: PMC6784204 DOI: 10.3390/antibiotics8030117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 01/15/2023] Open
Abstract
Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large class of natural products produced across all domains of life. The lasso peptides, a subclass of RiPPs with a lasso-like structure, are structurally and functionally unique compared to other known peptide antibiotics in that the linear peptide is literally "tied in a knot" during its post-translational maturation. This underexplored class of peptides brings chemical diversity and unique modes of action to the antibiotic space. To date, eight different lasso peptides have been shown to target three known molecular machines: RNA polymerase, the lipid II precursor in peptidoglycan biosynthesis, and the ClpC1 subunit of the Clp protease involved in protein homeostasis. Here, we discuss the current knowledge on lasso peptide biosynthesis as well as their antibiotic activity, molecular targets, and mechanisms of action.
Collapse
Affiliation(s)
- Stephanie Tan
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Gaelen Moore
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Justin Nodwell
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
32
|
Sumida T, Dubiley S, Wilcox B, Severinov K, Tagami S. Structural Basis of Leader Peptide Recognition in Lasso Peptide Biosynthesis Pathway. ACS Chem Biol 2019; 14:1619-1627. [PMID: 31188556 DOI: 10.1021/acschembio.9b00348] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) with a unique 3D-interlocked structure, in which an N-terminal macrolactam ring is threaded by a linear C-terminal part. The unique structure of lasso peptides is introduced into ribosomally translated precursor peptides by lasso peptide synthetase encompassing proteins B and C or B1, B2, and C when the B enzyme is split into two distinct proteins. The B1 protein recognizes the leader sequence of the precursor peptide, and then the B2 protein cleaves it. The C protein catalyzes the formation of the macrolactam ring. However, the detailed mechanism of lasso peptide maturation has remained elusive, due to the lack of structural information about the responsible proteins. Here we report the crystal structure of the B1 protein from the thermophilic actinobacteria, Thermobifida fusca (TfuB1), complexed with the leader peptide (TfuA-Leader), which revealed the detailed mechanism of leader peptide recognition. The structure of TfuB1 consists of an N-terminal β-sheet and three C-terminal helices. The leader peptide is docked on one edge of the N-terminal β-sheet of TfuB1, as an additional β strand. Three conserved amino acid residues of the leader peptide (TfuA Tyr-17, Pro-14, and Leu-12) fit well on the hydrophobic cleft between the β-sheet and adjacent helices. Biochemical analysis demonstrated that these conserved residues are essential for affinity between TfuB1 and the TfuA-Leader. Furthermore, we found that TfuB1 and the leader peptide jointly form a hydrophobic patch on the β-sheet, which includes the highly conserved TfuA Phe-6 and TfuB1 Tyr33. Homology modeling and mutational analysis of the B1 protein from a firmicute, Bacillus pseudomycoides (PsmB1), revealed that the hydrophobic patch is conserved in a wide range of species and involved in the cleavage activity of the B2 protein, indicating it forms the interaction surface for the B2 protein or the core part of the precursor peptide.
Collapse
Affiliation(s)
- Tomomi Sumida
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Svetlana Dubiley
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
- Institute of Gene Biology, Russian Academy of Science, Moscow 119334, Russia
| | - Brendan Wilcox
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
| | - Konstantin Severinov
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
- Institute of Gene Biology, Russian Academy of Science, Moscow 119334, Russia
- Waksman Institute for Microbiology, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
33
|
Extreme Environment Streptomyces: Potential Sources for New Antibacterial and Anticancer Drug Leads? Int J Microbiol 2019; 2019:5283948. [PMID: 31354829 PMCID: PMC6636559 DOI: 10.1155/2019/5283948] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 01/20/2023] Open
Abstract
Antimicrobial resistance (AR) is recognized as one of the greatest threats to public health and in global concern. Consequently, the increased morbidity and mortality, which are associated with multidrug resistance bacteria, urgently require the discovery of novel and more efficient drugs. Conversely, cancer is a growing complex human disease that demands new drugs with no or fewer side effects. Most of the drugs currently used in the health care systems were of Streptomyces origin or their synthetic forms. Natural product researches from Streptomyces have been genuinely spectacular over the recent years from extreme environments. It is because of technical advances in isolation, fermentation, spectroscopy, and genomic studies which led to the efficient recovering of Streptomyces and their new chemical compounds with distinct activities. Expanding the use of the last line of antibiotics and demand for new drugs will continue to play an essential role for the potent Streptomyces from previously unexplored environmental sources. In this context, deep-sea, desert, cryo, and volcanic environments have proven to be a unique habitat of more extreme, and of their adaptation to extreme living, environments attribute to novel antibiotics. Extreme Streptomyces have been an excellent source of a new class of compounds which include alkaloids, angucycline, macrolide, and peptides. This review covers novel drug leads with antibacterial and cytotoxic activities isolated from deep-sea, desert, cryo, and volcanic environment Streptomyces from 2009 to 2019. The structure and chemical classes of the compounds, their relevant bioactivities, and the sources of organisms are presented.
Collapse
|
34
|
Martin-Gómez H, Albericio F, Tulla-Puche J. A Lasso-Inspired Bicyclic Peptide: Synthesis, Structure and Properties. Chemistry 2018; 24:19250-19257. [PMID: 30255960 DOI: 10.1002/chem.201803899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Indexed: 11/05/2022]
Abstract
The chemical synthesis of a bicycle inspired by the natural lasso peptide sungsanpin using a combination of solid-phase and in-solution chemistries is described. The bicyclic-derived topoisomer was designed by introducing a covalent linkage between the ring and the loop, which allowed the tying of these two parts of the peptide, rendering the bicyclic structure. Several structural techniques, such as MS fragmentation, ion-mobility and NMR spectroscopic analysis were used to characterize the bicycle. Ion-mobility spectroscopy studies revealed that it showed lasso-like behavior. Its 3D structure was predicted on the basis of the NMR restraints. In addition, the high proteolytic and thermal stability of the bicycle potentially make it a suitable scaffold for epitope grafting.
Collapse
Affiliation(s)
- Helena Martin-Gómez
- Institute for Research in Biomedicine, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Fernando Albericio
- Department of Inorganic and Organic Chemistry, Organic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Baldiri Reixac 10, 08028, Barcelona, Spain.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Judit Tulla-Puche
- Department of Inorganic and Organic Chemistry, Organic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Baldiri Reixac 10, 08028, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| |
Collapse
|
35
|
Kaweewan I, Hemmi H, Komaki H, Harada S, Kodani S. Isolation and structure determination of a new lasso peptide specialicin based on genome mining. Bioorg Med Chem 2018; 26:6050-6055. [PMID: 30448257 DOI: 10.1016/j.bmc.2018.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
Abstract
Based on genome mining, a new lasso peptide specialicin was isolated from the extract of Streptomyces specialis. The structure of specialicin was established by ESI-MS and NMR analyses to be a lasso peptide with the length of 21 amino acids, containing an isopeptide bond and two disulfide bonds in the molecule. The stereochemistries of the constituent amino acids except for Trp were determined to be L and the stereochemistry of Trp at C-terminus was determined to be D. Three dimensional structure of specialicin was determined based on NOE experimental data, which indicated that specialicin possessed the similar conformational structure with siamycin I. Specialicin showed the antibacterial activity against Micrococcus luteus and the moderate anti-HIV activity against HIV-1 NL4-3. The biosynthetic gene cluster of specialicin was proposed from the genome sequence data of S. specialis.
Collapse
Affiliation(s)
- Issara Kaweewan
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432-8561 Shizuoka, Japan
| | - Hikaru Hemmi
- Food Research Institute, NARO, 2-1-12 Kan-nondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Hisayuki Komaki
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shinya Kodani
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432-8561 Shizuoka, Japan; Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 Japan.
| |
Collapse
|
36
|
Son S, Jang M, Lee B, Hong YS, Ko SK, Jang JH, Ahn JS. Ulleungdin, a Lasso Peptide with Cancer Cell Migration Inhibitory Activity Discovered by the Genome Mining Approach. JOURNAL OF NATURAL PRODUCTS 2018; 81:2205-2211. [PMID: 30251851 DOI: 10.1021/acs.jnatprod.8b00449] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The advances of genomic sequence analyses and genome mining tools have enabled the exploration of untapped microbial natural products. Through genome mining studies to discover cryptic natural products, we found biosynthetic genes encoding a new lasso peptide in the genome sequence of a soil bacterium, Streptomyces sp. KCB13F003 isolated from Ulleung Island (a small volcanic island), Korea. The production and purification of the encoded peptide, named ulleungdin, were achieved by optimizing the culture conditions followed by LC-MS-targeted isolation. Structure elucidation was performed by NMR spectroscopic and MS spectrometric analyses and chemical means (Marfey's and GITC derivatizations), proving ulleungdin to be a new 15-mer class II lasso peptide with a threaded structure. Biological evaluation with the cell invasion assay and time-lapse cell tracking analysis revealed that ulleungdin has significant inhibitory activities against cancer cell invasion and migration.
Collapse
Affiliation(s)
- Sangkeun Son
- Anticancer Agent Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Cheongju 28116 , Korea
| | - Mina Jang
- Anticancer Agent Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Cheongju 28116 , Korea
- Department of Biomolecular Science, KRIBB School of Bioscience , Korea University of Science and Technology (UST) , Daejeon 34141 , Korea
| | - Byeongsan Lee
- Anticancer Agent Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Cheongju 28116 , Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Cheongju 28116 , Korea
- Department of Biomolecular Science, KRIBB School of Bioscience , Korea University of Science and Technology (UST) , Daejeon 34141 , Korea
| | - Sung-Kyun Ko
- Anticancer Agent Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Cheongju 28116 , Korea
- Department of Biomolecular Science, KRIBB School of Bioscience , Korea University of Science and Technology (UST) , Daejeon 34141 , Korea
| | - Jae-Hyuk Jang
- Anticancer Agent Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Cheongju 28116 , Korea
- Department of Biomolecular Science, KRIBB School of Bioscience , Korea University of Science and Technology (UST) , Daejeon 34141 , Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Cheongju 28116 , Korea
- Department of Biomolecular Science, KRIBB School of Bioscience , Korea University of Science and Technology (UST) , Daejeon 34141 , Korea
| |
Collapse
|
37
|
Martin-Gómez H, Linne U, Albericio F, Tulla-Puche J, Hegemann JD. Investigation of the Biosynthesis of the Lasso Peptide Chaxapeptin Using an E. coli-Based Production System. JOURNAL OF NATURAL PRODUCTS 2018; 81:2050-2056. [PMID: 30178995 DOI: 10.1021/acs.jnatprod.8b00392] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lasso peptides are natural products belonging to the family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) and are defined by their unique topology. Even though lasso peptide biosynthetic gene clusters are found in many different kinds of bacteria, most of the hitherto studied lasso peptides were of proteobacterial or actinobacterial origin. Despite this, no E. coli-based production system has been reported for actinobacterial lasso peptides, while there are numerous examples of this for proteobacterial lasso peptides. Here, a heterologous production system of the lasso peptide chaxapeptin was established in E. coli. Chaxapeptin, originally isolated from Streptomyces leeuwenhoekii strain C58, is closely related to the lasso peptide sungsanpin (produced by a marine Streptomyces sp.) and shares its inhibitory activity against cell invasion by the human lung cancer cell line A549. Our production system not only allowed isolation of the mature lasso peptide outside of the native producer with a yield of 0.1 mg/L (compared to 0.7 mg/L from S. leeuwenhoekii) but also was used for a mutational study to identify residues in the precursor peptide that are important for biosynthesis. In addition to these experiments, the stability of chaxapeptin against thermal denaturation and proteases was assessed.
Collapse
Affiliation(s)
- Helena Martin-Gómez
- Institute for Research in Biomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain
- Department of Chemistry , Philipps-University Marburg , Hans-Meerwein-Strasse 4 , 35032 Marburg , Germany
| | - Uwe Linne
- Department of Chemistry , Philipps-University Marburg , Hans-Meerwein-Strasse 4 , 35032 Marburg , Germany
| | - Fernando Albericio
- Department of Inorganic and Organic Chemistry-Organic Chemistry Section , University of Barcelona , Martí i Franquès 1-11 , 08028 Barcelona , Spain
- CIBER-BBN, Networking Centre on Bioengineering , Biomaterials and Nanomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain
- School of Chemistry and Physics , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Judit Tulla-Puche
- Department of Inorganic and Organic Chemistry-Organic Chemistry Section , University of Barcelona , Martí i Franquès 1-11 , 08028 Barcelona , Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) , 08028 Barcelona , Spain
| | - Julian D Hegemann
- Department of Chemistry , Philipps-University Marburg , Hans-Meerwein-Strasse 4 , 35032 Marburg , Germany
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
38
|
Mevaere J, Goulard C, Schneider O, Sekurova ON, Ma H, Zirah S, Afonso C, Rebuffat S, Zotchev SB, Li Y. An orthogonal system for heterologous expression of actinobacterial lasso peptides in Streptomyces hosts. Sci Rep 2018; 8:8232. [PMID: 29844351 PMCID: PMC5974421 DOI: 10.1038/s41598-018-26620-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/15/2018] [Indexed: 12/05/2022] Open
Abstract
Lasso peptides are ribosomally synthesized and post-translationally modified peptides produced by bacteria. They are characterized by an unusual lariat-knot structure. Targeted genome scanning revealed a wide diversity of lasso peptides encoded in actinobacterial genomes, but cloning and heterologous expression of these clusters turned out to be problematic. To circumvent this, we developed an orthogonal expression system for heterologous production of actinobacterial lasso peptides in Streptomyces hosts based on a newly-identified regulatory circuit from Actinoalloteichus fjordicus. Six lasso peptide gene clusters, mainly originating from marine Actinobacteria, were chosen for proof-of-concept studies. By varying the Streptomyces expression hosts and a small set of culture conditions, three new lasso peptides were successfully produced and characterized by tandem MS. The newly developed expression system thus sets the stage to uncover and bioengineer the chemo-diversity of actinobacterial lasso peptides. Moreover, our data provide some considerations for future bioprospecting efforts for such peptides.
Collapse
Affiliation(s)
- Jimmy Mevaere
- Laboratory « Molecules of Communication and Adaptation of Microorganisms » (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Christophe Goulard
- Laboratory « Molecules of Communication and Adaptation of Microorganisms » (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Olha Schneider
- Department of Biotechnology, Norwegian University of Science and Technology NTNU, N-7491, Trondheim, Norway
| | - Olga N Sekurova
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Haiyan Ma
- Laboratory « Molecules of Communication and Adaptation of Microorganisms » (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, 75005, Paris, France.,Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Séverine Zirah
- Laboratory « Molecules of Communication and Adaptation of Microorganisms » (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Carlos Afonso
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA, Rouen, France
| | - Sylvie Rebuffat
- Laboratory « Molecules of Communication and Adaptation of Microorganisms » (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria.
| | - Yanyan Li
- Laboratory « Molecules of Communication and Adaptation of Microorganisms » (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
39
|
Bae M, Oh J, Bae ES, Oh J, Hur J, Suh YG, Lee SK, Shin J, Oh DC. WS9326H, an Antiangiogenic Pyrazolone-Bearing Peptide from an Intertidal Mudflat Actinomycete. Org Lett 2018; 20:1999-2002. [DOI: 10.1021/acs.orglett.8b00546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Munhyung Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jedo Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Joonseong Hur
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy, CHA University, Gyeonggi-do 11160, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
40
|
Natural product diversity of actinobacteria in the Atacama Desert. Antonie van Leeuwenhoek 2018; 111:1467-1477. [DOI: 10.1007/s10482-018-1030-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/25/2018] [Indexed: 11/26/2022]
|
41
|
Jeanne Dit Fouque K, Lavanant H, Zirah S, Hegemann JD, Fage CD, Marahiel MA, Rebuffat S, Afonso C. General rules of fragmentation evidencing lasso structures in CID and ETD. Analyst 2018; 143:1157-1170. [DOI: 10.1039/c7an02052j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lasso peptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by a mechanically interlocked structure in which the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring.
Collapse
Affiliation(s)
| | | | - S. Zirah
- Muséum National d'Histoire Naturelle
- Sorbonne Universités
- Centre national de la Recherche scientifique
- Laboratoire Molécules de Communication et Adaptation des Microorganismes
- UMR 7245 CNRS-MNHN
| | - J. D. Hegemann
- Roger Adams Laboratory
- Department of Chemistry
- University of Illinois at Urbana–Champaign
- Urbana
- USA
| | - C. D. Fage
- Department of Chemistry
- Biochemistry; LOEWE Center for Synthetic Microbiology
- Philipps-University Marburg
- Marburg
- Germany
| | - M. A. Marahiel
- Department of Chemistry
- Biochemistry; LOEWE Center for Synthetic Microbiology
- Philipps-University Marburg
- Marburg
- Germany
| | - S. Rebuffat
- Muséum National d'Histoire Naturelle
- Sorbonne Universités
- Centre national de la Recherche scientifique
- Laboratoire Molécules de Communication et Adaptation des Microorganismes
- UMR 7245 CNRS-MNHN
| | - C. Afonso
- Normandie Univ
- UNIROUEN
- INSA Rouen
- CNRS
- COBRA
| |
Collapse
|
42
|
Kamjam M, Sivalingam P, Deng Z, Hong K. Deep Sea Actinomycetes and Their Secondary Metabolites. Front Microbiol 2017; 8:760. [PMID: 28507537 PMCID: PMC5410581 DOI: 10.3389/fmicb.2017.00760] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/12/2017] [Indexed: 12/28/2022] Open
Abstract
Deep sea is a unique and extreme environment. It is a hot spot for hunting marine actinomycetes resources and secondary metabolites. The novel deep sea actinomycete species reported from 2006 to 2016 including 21 species under 13 genera with the maximum number from Microbacterium, followed by Dermacoccus, Streptomyces and Verrucosispora, and one novel species for the other 9 genera. Eight genera of actinomycetes were reported to produce secondary metabolites, among which Streptomyces is the richest producer. Most of the compounds produced by the deep sea actinomycetes presented antimicrobial and anti-cancer cell activities. Gene clusters related to biosynthesis of desotamide, heronamide, and lobophorin have been identified from the deep sea derived Streptomyces.
Collapse
Affiliation(s)
- Manita Kamjam
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical SciencesWuhan, China
| | - Periyasamy Sivalingam
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical SciencesWuhan, China
| | - Zinxin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical SciencesWuhan, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical SciencesWuhan, China
| |
Collapse
|
43
|
Bae M, Park SH, Kwon Y, Lee SK, Shin J, Nam JW, Oh DC. QM-HiFSA-Aided Structure Determination of Succinilenes A-D, New Triene Polyols from a Marine-Derived Streptomyces sp. Mar Drugs 2017; 15:E38. [PMID: 28216577 PMCID: PMC5334618 DOI: 10.3390/md15020038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 02/01/2023] Open
Abstract
Based on profiles of secondary metabolites produced by marine bacteria obtained using LC/MS, succinilenes A-D (1-4), new triene polyols, were discovered from a culture of a Streptomyces strain SAK1, which was collected in the southern area of Jeju Island, Republic of Korea. The gross structures of 1-4 were primarily determined through analysis of NMR spectra. The double bond geometries of the succinilenes, which could not be established from conventional ¹H NMR spectra because of the highly overlapped olefinic signals, were successfully deciphered using the recently developed quantum-mechanics-driven ¹H iterative full spin analysis (QM-HiFSA). Succinilenes A-C (1-3) displayed inhibitory effects against lipopolysaccharide (LPS)-induced nitric oxide (NO) production, indicating their anti-inflammatory significance. These three compounds (1-3) commonly bear a succinic acid moiety, although succinilene D (4), which did not inhibit NO production, does not have this moiety in its structure. The absolute configurations of succinilenes A-D (1-4) were established through J-based configuration analysis, the modified Mosher's method following methanolysis, and CD spectral analysis.
Collapse
Affiliation(s)
- Munhyung Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - So Hyun Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Yun Kwon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
44
|
Kodani S, Inoue Y, Suzuki M, Dohra H, Suzuki T, Hemmi H, Ohnishi-Kameyama M. Sphaericin, a Lasso Peptide from the Rare ActinomycetePlanomonospora sphaerica. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601334] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shinya Kodani
- Academic Institute; Shizuoka University; 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
- Graduate School of Integrated Science and Technology; Shizuoka University; 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
| | - Yuto Inoue
- Graduate School of Integrated Science and Technology; Shizuoka University; 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
| | - Masahiro Suzuki
- Graduate School of Integrated Science and Technology; Shizuoka University; 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
| | - Hideo Dohra
- Graduate School of Integrated Science and Technology; Shizuoka University; 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
- Research Institute of Green Science and Technology; Shizuoka University; 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education; Utsunomiya University; Minemachi 350, Utsunomiya 321-8505 Tochigi Japan
| | - Hikaru Hemmi
- Food Research Institute; National Agriculture and Food Research Organization (NARO); 2-1-12 Kannondai, Tsukuba 305-8642 Ibaraki Japan
| | - Mayumi Ohnishi-Kameyama
- Food Research Institute; National Agriculture and Food Research Organization (NARO); 2-1-12 Kannondai, Tsukuba 305-8642 Ibaraki Japan
| |
Collapse
|
45
|
Ghosh S, Kuisiene N, Cheeptham N. The cave microbiome as a source for drug discovery: Reality or pipe dream? Biochem Pharmacol 2016; 134:18-34. [PMID: 27867014 DOI: 10.1016/j.bcp.2016.11.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/15/2016] [Indexed: 01/04/2023]
Abstract
This review highlights cave habitats, cave microbiomes and their potential for drug discovery. Such studies face many challenges, including access to remote and pristine caves, and sample collection and transport. Inappropriate physical and chemical growth conditions in the laboratory for the isolation and cultivation of cave microorganisms pose many complications including length of cultivation; some cave microorganisms can take weeks and even months to grow. Additionally, DNA extraction from cave environmental samples may be difficult due to the high concentration of various minerals that are natural DNA blocking agents. Once cave microorganisms are grown in the lab, other problems often arise, such as maintenance of pure culture, consistency of antimicrobial activity and fermentation conditions for antimicrobial production. In this review, we suggest that, although based on what has been done in the field, there is potential in using cave microorganisms to produce antimicrobial agents, one needs to be highly committed and prepared.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Vilnius University, Lithuania
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada.
| |
Collapse
|
46
|
Mudit M, El Sayed KA. Cancer control potential of marine natural product scaffolds through inhibition of tumor cell migration and invasion. Drug Discov Today 2016; 21:1745-1760. [DOI: 10.1016/j.drudis.2016.06.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/14/2023]
|
47
|
Hayes J, Thygesen H, Gregory W, Westhead DR, French PJ, Van Den Bent MJ, Lawler SE, Short SC. A validated microRNA profile with predictive potential in glioblastoma patients treated with bevacizumab. Mol Oncol 2016; 10:1296-304. [PMID: 27396951 PMCID: PMC5423205 DOI: 10.1016/j.molonc.2016.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/20/2016] [Accepted: 06/19/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE We investigated whether microRNA expression data from glioblastoma could be used to produce a profile that defines a bevacizumab responsive group of patients. PATIENTS AND METHODS TCGA microRNA expression data from tumors resected at first diagnosis of glioblastoma in patients treated with bevacizumab at any time during the course of their disease were randomly separated into training (n = 50) and test (n = 37) groups for model generation. MicroRNA-seq data for 51 patients whose treatment included bevacizumab in the BELOB trial were used as an independent validation cohort. RESULTS Using penalized regression we identified 8 microRNAs as potential predictors of overall survival in the training set. We dichotomized the response score based on the most prognostic minimum of a density plot of the response scores (log-rank HR = 0.16, p = 1.2e(-5)) and validated the profile in the test cohort (one-sided log-rank HR = 0.34, p = 0.026). Analysis of the profile using all samples in the TCGA glioblastoma dataset, regardless of treatment received, (n = 473) showed that the prediction of patient benefit was not significant (HR = 0.84, p = 0.083) suggesting the profile is specific to bevacizumab. Further independent validation of our microRNA profile in RNA-seq data from patients treated with bevacizumab (alone or in combination with CCNU) at glioblastoma recurrence in the BELOB trial confirmed that our microRNA profile predicted patient benefit from bevacizumab (HR = 0.59, p = 0.043). CONCLUSION We have identified and validated an 8-microRNA profile that predicts overall survival in patients with glioblastoma treated with bevacizumab. This may be useful for identifying patients who are likely to benefit from this agent.
Collapse
Affiliation(s)
- Josie Hayes
- Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds LS9 7TF, UK.
| | - Helene Thygesen
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Walter Gregory
- Clinical Trials Research Unit (CTRU), University of Leeds, 71-75 Clarendon Road, Leeds, West Yorkshire LS2 9JT, UK
| | - David R Westhead
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Martin J Van Den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susan C Short
- Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
48
|
Specific Anti-Leukemic Activity of the Peptide Warnericin RK and Analogues and Visualization of Their Effect on Cancer Cells by Chemical Raman Imaging. PLoS One 2016; 11:e0162007. [PMID: 27598770 PMCID: PMC5012605 DOI: 10.1371/journal.pone.0162007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial peptides can be used as therapeutic agents against cancer cells. Warnericin RK and derivatives (WarnG20D and WarnF14V) were tested on various, solid tumor or leukemia, cancer cells. These peptides appeared to be cytotoxic on all the cell types tested, cancerous as well healthy, but very interestingly displayed no deleterious effect on healthy mononuclear cells. The mode of action of the peptide was proposed to be membranolytic, using chemical Raman imaging. Addition of peptide induced a large disorganization of the membrane leading to the loss of the content of inner compartments of Jurkat cell, whereas no effect was observed on the healthy mononuclear cells. The less hemolytic peptides WarnG20D and WarnF14V could be good candidates for the leukemia treatment.
Collapse
|
49
|
Kaweewan I, Ohnishi-Kameyama M, Kodani S. Isolation of a new antibacterial peptide achromosin from Streptomyces achromogenes subsp. achromogenes based on genome mining. J Antibiot (Tokyo) 2016; 70:208-211. [DOI: 10.1038/ja.2016.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/03/2016] [Accepted: 07/30/2016] [Indexed: 11/10/2022]
|
50
|
Li XD, Li XM, Li X, Xu GM, Liu Y, Wang BG. Aspewentins D-H, 20-Nor-isopimarane Derivatives from the Deep Sea Sediment-Derived Fungus Aspergillus wentii SD-310. JOURNAL OF NATURAL PRODUCTS 2016; 79:1347-1353. [PMID: 27148955 DOI: 10.1021/acs.jnatprod.5b01153] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Five new 20-nor-isopimarane diterpenoids, aspewentins D-H (1-5), along with a related known congener, aspewentin A (6), were isolated from the culture extract of Aspergillus wentii SD-310, a fungal strain obtained from a deep-sea sediment sample. The structures of these compounds were established on the basis of spectroscopic interpretation, and the absolute configurations of compounds 1-5 were determined by X-ray crystallographic analysis and TDDFT-ECD calculations. The isolated compounds were evaluated for antimicrobial activity against nine human and aquatic pathogenic bacteria and four plant pathogenic fungi as well as for lethality against brine shrimp (Artemia salina). 20-Nor-isopimarane derivatives rarely occur in fungi, and only three (aspewentins A-C) have previously been reported from a marine-derived fungus.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences , Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Xiao-Ming Li
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Xin Li
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences , Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Gang-Ming Xu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Yang Liu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences , Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Bin-Gui Wang
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Nanhai Road 7, Qingdao 266071, People's Republic of China
| |
Collapse
|