1
|
Mehjabin JJ, Phan CS, Okino T. Noducyclamides A1-A4, B1, and B2 from the Cyanobacterium Nodularia sp. NIES-3585. JOURNAL OF NATURAL PRODUCTS 2024; 87:984-993. [PMID: 38587271 DOI: 10.1021/acs.jnatprod.3c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A chemical investigation of the hydrophilic fraction of a cultured Nodularia sp. (NIES-3585) afforded six new cyclic lipopeptides, noducyclamides A1-A4 (1-4) containing 10 amino acid residues and dodecapeptides noducyclamides B1 and B2 (5 and 6). The planar structures of these lipopeptides were elucidated based on the combination of HRMS and 1D and 2D NMR spectroscopic data analyses. These peptides are structurally analogous to laxaphycins and contain the nonproteinogenic amino acids 3-hydroxyvaline and 3-hydroxyleucine and a β-amino decanoic acid residue. The absolute configurations of the noducyclamides (1-6) were determined by acid hydrolysis, followed by advanced Marfey's analysis. Noducyclamide B1 (5) showed cytotoxic activities against MCF7 breast cancer cell lines with an IC50 value of 3.0 μg/mL (2.2 μM).
Collapse
|
2
|
Akmukhanova NR, Leong YK, Seiilbek SN, Konysbay A, Zayadan BK, Sadvakasova AK, Sarsekeyeva FK, Bauenova MO, Bolatkhan K, Alharby HF, Chang JS, Allakhverdiev SI. Eco-friendly biopesticides derived from CO 2-Fixing cyanobacteria. ENVIRONMENTAL RESEARCH 2023; 239:117419. [PMID: 37852466 DOI: 10.1016/j.envres.2023.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
There is currently an escalating global demand for the utilization of plant and natural extracts as pesticides due to their minimal health risks. Cyanobacteria are highly valuable organisms with significant potential in agriculture and are of great interest for the development of agrochemical agents as biopesticides. The flexibility and adaptability of Cyanobacteria to various environmental conditions are facilitated by the presence of specialized enzymes involved in the production of biologically active diverse secondary metabolites, including alkaloids, lipopolysaccharides, non-protein amino acids, non-ribosomal peptides, polyketides, terpenoids, and others. This review focuses on the metabolites synthesized from cyanobacteria that have demonstrated effectiveness as antibacterial, antiviral, antifungal agents, insecticides, herbicides, and more. The potential role of cyanobacteria as an alternative to chemical pesticides for environmental conservation is discussed.
Collapse
Affiliation(s)
- Nurziya R Akmukhanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan
| | - Sandugash N Seiilbek
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Aigerim Konysbay
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Bolatkhan K Zayadan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Assemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Fariza K Sarsekeyeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Kenzhegul Bolatkhan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
3
|
Wang W, Gu L, Wang J, Hu X, Wei B, Zhang H, Wang H, Chen J. Recent Advances in Polypeptide Antibiotics Derived from Marine Microorganisms. Mar Drugs 2023; 21:547. [PMID: 37888482 PMCID: PMC10608164 DOI: 10.3390/md21100547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
In the post-antibiotic era, the rapid development of antibiotic resistance and the shortage of available antibiotics are triggering a new health-care crisis. The discovery of novel and potent antibiotics to extend the antibiotic pipeline is urgent. Small-molecule antimicrobial peptides have a wide variety of antimicrobial spectra and multiple innovative antimicrobial mechanisms due to their rich structural diversity. Consequently, they have become a new research hotspot and are considered to be promising candidates for next-generation antibiotics. Therefore, we have compiled a collection of small-molecule antimicrobial peptides derived from marine microorganisms from the last fifteen years to show the recent advances in this field. We categorize these compounds into three classes-cyclic oligopeptides, cyclic depsipeptides, and cyclic lipopeptides-according to their structural features, and present their sources, structures, and antimicrobial spectrums, with a discussion of the structure activity relationships and mechanisms of action of some compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianwei Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Cock IE, Cheesman MJ. A Review of the Antimicrobial Properties of Cyanobacterial Natural Products. Molecules 2023; 28:7127. [PMID: 37894609 PMCID: PMC10608859 DOI: 10.3390/molecules28207127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The development of multiple-drug-resistant pathogens has prompted medical research toward the development of new and effective antimicrobial therapies. Much research into novel antibiotics has focused on bacterial and fungal compounds, and on chemical modification of existing compounds to increase their efficacy or reactivate their antimicrobial properties. In contrast, cyanobacteria have been relatively overlooked for antibiotic discovery, and much more work is required. This may be because some cyanobacterial species produce environmental toxins, leading to concerns about the safety of cyanobacterial compounds in therapy. Despite this, several cyanobacterial-derived compounds have been identified with noteworthy inhibitory activity against bacterial, fungal and protozoal growth, as well as viral replication. Additionally, many of these compounds have relatively low toxicity and are therefore relevant targets for drug development. Of particular note, several linear and heterocyclic peptides and depsipeptides with potent activity and good safety indexes have been identified and are undergoing development as antimicrobial chemotherapies. However, substantial further studies are required to identify and screen the myriad other cyanobacterial-derived compounds to evaluate their therapeutic potential. This study reviews the known phytochemistry of cyanobacteria, and where relevant, the effects of those compounds against bacterial, fungal, protozoal and viral pathogens, with the aim of highlighting gaps in the literature and focusing future studies in this field.
Collapse
Affiliation(s)
- Ian E. Cock
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, QLD 4111, Australia
| | - Matthew J. Cheesman
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4222, Australia;
| |
Collapse
|
5
|
Mandhata CP, Bishoyi AK, Sahoo CR, Maharana S, Padhy RN. Insight to biotechnological utility of phycochemicals from cyanobacterium Anabaena sp.: An overview. Fitoterapia 2023; 169:105594. [PMID: 37343687 DOI: 10.1016/j.fitote.2023.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Cyanobacteria (blue-green algae) are well-known for the ability to excrete extra-cellular products, as a variety of cyanochemicals (phycocompounds) of curio with several extensive therapeutic applications. Among these phycocompound, the cyanotoxins from certain water-bloom forming taxa are toxic to biota, including crocodiles. Failure of current non-renewable source compounds in producing sustainable and non-toxic therapeutics led the urgency of discovering products from natural sources. Particularly, compounds of the filamentous N2-fixing Anabaena sp. have effective antibacterial, antifungal, antioxidant, and anticancer properties. Today, such newer compounds are the potential targets for the possible novel chemical scaffolds, suitable for mainstream-drug development cascades. Bioactive compounds of Anabaena sp. such as, anatoxins, hassallidins and phycobiliproteins have proven their inherent antibacterial, antifungal, and antineoplastic activities, respectively. Herein, the available details of the biomass production and the inherent phyco-constituents namely, alkaloids, lipids, phenols, peptides, proteins, polysaccharides, terpenoids and cyanotoxins are considered, along with geographical distributions and morphological characteristics of the cyanobacterium. The acquisitions of cyanochemicals in recent years have newly addressed several pharmaceutical aliments, and the understanding of the associated molecular interactions of phycochemicals have been considered, for plausible use in drug developments in future.
Collapse
Affiliation(s)
- Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| | | | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
6
|
Helmy NM, Parang K. Cyclic Peptides with Antifungal Properties Derived from Bacteria, Fungi, Plants, and Synthetic Sources. Pharmaceuticals (Basel) 2023; 16:892. [PMID: 37375840 DOI: 10.3390/ph16060892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Fungal infections remain a significant concern for human health. The emergence of microbial resistance, the improper use of antimicrobial drugs, and the need for fewer toxic antifungal treatments in immunocompromised patients have sparked substantial interest in antifungal research. Cyclic peptides, classified as antifungal peptides, have been in development as potential antifungal agents since 1948. In recent years, there has been growing attention from the scientific community to explore cyclic peptides as a promising strategy for combating antifungal infections caused by pathogenic fungi. The identification of antifungal cyclic peptides from various sources has been possible due to the widespread interest in peptide research in recent decades. It is increasingly important to evaluate narrow- to broad-spectrum antifungal activity and the mode of action of synthetic and natural cyclic peptides for both synthesized and extracted peptides. This short review aims to highlight some of the antifungal cyclic peptides isolated from bacteria, fungi, and plants. This brief review is not intended to present an exhaustive catalog of all known antifungal cyclic peptides but rather seeks to showcase selected cyclic peptides with antifungal properties that have been isolated from bacteria, fungi, plants, and synthetic sources. The addition of commercially available cyclic antifungal peptides serves to corroborate the notion that cyclic peptides can serve as a valuable source for the development of antifungal drugs. Additionally, this review discusses the potential future of utilizing combinations of antifungal peptides from different sources. The review underscores the need for the further exploration of the novel antifungal therapeutic applications of these abundant and diverse cyclic peptides.
Collapse
Affiliation(s)
- Naiera M Helmy
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Giza 3751134, Egypt
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
7
|
do Amaral SC, Xavier LP, Vasconcelos V, Santos AV. Cyanobacteria: A Promising Source of Antifungal Metabolites. Mar Drugs 2023; 21:359. [PMID: 37367684 PMCID: PMC10300848 DOI: 10.3390/md21060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites, and they have received a great deal of attention due to their applicability in different industrial sectors. Some of these substances are known for their notorious ability to inhibit fungal growth. Such metabolites are very chemically and biologically diverse. They can belong to different chemical classes, including peptides, fatty acids, alkaloids, polyketides, and macrolides. Moreover, they can also target different cell components. Filamentous cyanobacteria have been the main source of these compounds. This review aims to identify the key features of these antifungal agents, as well as the sources from which they are obtained, their major targets, and the environmental factors involved when they are being produced. For the preparation of this work, a total of 642 documents dating from 1980 to 2022 were consulted, including patents, original research, review articles, and theses.
Collapse
Affiliation(s)
- Samuel Cavalcante do Amaral
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
8
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
9
|
Freitas S, Castelo-Branco R, Wenzel-Storjohann A, Vasconcelos VM, Tasdemir D, Leão PN. Structure and Biosynthesis of Desmamides A-C, Lipoglycopeptides from the Endophytic Cyanobacterium Desmonostoc muscorum LEGE 12446. JOURNAL OF NATURAL PRODUCTS 2022; 85:1704-1714. [PMID: 35793792 PMCID: PMC9315949 DOI: 10.1021/acs.jnatprod.2c00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Certain cyanobacteria of the secondary metabolite-rich order Nostocales can establish permanent symbioses with a large number of cycads, by accumulating in their coralloid roots and shifting their metabolism to dinitrogen fixation. Here, we report the discovery of two new lipoglycopeptides, desmamides A (1) and B (2), together with their aglycone desmamide C (3), from the nostocalean cyanobacterium Desmonostoc muscorum LEGE 12446 isolated from a cycad (Cycas revoluta) coralloid root. The chemical structures of the compounds were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The desmamides are decapeptides featuring O-glycosylation of tyrosine (in 1 and 2) and an unusual 3,5-dihydroxy-2-methyldecanoic acid residue. The biosynthesis of the desmamides was studied by substrate incubation experiments and bioinformatics. We describe herein the dsm biosynthetic gene cluster and propose it to be associated with desmamide production. The discovery of this class of very abundant (>1.5% d.w.) bacterial lipoglycopeptides paves the way for exploration of their potential role in root endosymbiosis.
Collapse
Affiliation(s)
- Sara Freitas
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department
of Biology, Faculty of Sciences, University
of Porto Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Raquel Castelo-Branco
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Arlette Wenzel-Storjohann
- GEOMAR
Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz
Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106 Kiel, Germany
| | - Vitor M. Vasconcelos
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department
of Biology, Faculty of Sciences, University
of Porto Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Deniz Tasdemir
- GEOMAR
Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz
Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106 Kiel, Germany
- Kiel
University, Christian-Albrechts-Platz
4, 24118 Kiel, Germany
| | - Pedro N. Leão
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
10
|
Bishoyi AK, Sahoo CR, Padhy RN. Recent progression of cyanobacteria and their pharmaceutical utility: an update. J Biomol Struct Dyn 2022; 41:4219-4252. [PMID: 35412441 DOI: 10.1080/07391102.2022.2062051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyanobacteria (blue-green algae) are Gram-negative photosynthetic eubacteria that are found everywhere. This largest group of photosynthetic prokaryotes is rich in structurally novel and biologically active compounds; several of which have been utilized as prospective drugs against cancer and other ailments, as well. Consequently, the integument of nanoparticles-synthetic approaches in cyanobacterial extracts should increase pharmacological activity. Moreover, silver nanoparticles (AgNPs) are small materials with diameters below 100 nm that are classified into different classes based on their forms, sizes, and characteristics. Indeed, the biosynthesized AgNPs are generated with a variety of organisms, algae, plants, bacteria, and a few others, for the medicinal purposes, as the bioactive compounds of curio and some proteins from cyanobacteria have the potentiality in the treatment of a wide range of infectious diseases. The critical focus of this review is on the antimicrobial, antioxidant, and anticancer properties of cyanobacteria. This would be useful in the pharmaceutical industries in the future drug development cascades.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
11
|
Zhao Y, Li H, Zhang Z, Ren Z, Yang F. Extraction, preparative monomer separation and antibacterial activity of total polyphenols from Perilla frutescens. Food Funct 2022; 13:880-890. [PMID: 34994359 DOI: 10.1039/d1fo02282b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polyphenols exhibit potential functional activities, especially rosmarinic acid (RosA) and caffeic acid (CafA). In this study, two different methods, ultrasonic-assisted ethanol extraction (60%) and ultrasound-assisted cellulase (≥15 000 Ug-1, 2%) hydrolysis, were used for the extraction of the total phenolics from 44 species of Perilla frutescens. The Folin-Ciocalteu method of detection showed that the content of the total phenolics extracted by cellulase hydrolysis was the highest and attained up to 28.00 mgGAE per gextracts for ZB1. Continuously, the extracts were purified using XDA-8 macroporous resin and medium-pressure liquid chromatography (MPLC), and the content of the total phenolics improved to 66.62 mgGAE per gextract. A high-performance liquid chromatography (HPLC) assay showed that the total polyphenols were mainly composed of gallic acid, caffeic acid, rosmarinic acid, luteolin and apigenin. Besides, a sequential XDA-8 macroporous resin combined with high-speed counter-current chromatography (HSCCC)/MPLC system was established for the simultaneous isolation and preparation of RosA (purity 98.29%) and CafA (purity 97.01%) from the extracts. Furthermore, the antibacterial activities of the total polyphenols were evaluated by the disc diffusion method and scanning electron microscopy (SEM) observation. The results verified that the total polyphenols had effective antibacterial activity on three kinds of bacteria including E. coli, S. aureus, and B. subtilis in a concentration-dependent manner. All of these results demonstrated that the ultrasound-assisted cellulase hydrolysis extraction of the total polyphenols and the proposed three-step separation of RosA and CafA gave high yields and good purity, and they exhibited effective antibacterial ability.
Collapse
Affiliation(s)
- Yana Zhao
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China.
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China.
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China.
| | - Zhiqing Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China.
| | - Fuhan Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
12
|
Abstract
Cyanobacteria constitute an interesting group of photosynthetic microorganisms due to their morphological and genetic diversity that is related to their extremely long evolution process, which created the need for them to adapt to immensely heterogeneous environmental conditions. Cyanobacteria grow in salt and fresh waters as well as on the surface of soils and rocks. The diverse cell structure is characterized by the fact that they occur in many morphological forms, from small single cells through to larger ones as well as branches, threads, or spirals. Taking into account the presence of cyanobacteria in virtually all possible conditions and places on Earth, cyanobacteria represent an unexplored potential that is worth investigating. This review presents the possibilities of using algae in chosen areas of biotechnology: e.g., as biocatalysts or in industries such as the pharmaceutical industry. It covers the characteristics of secondary metabolites along with their division and the potential of using them as sources of effective drugs for many diseases. It presents an overview of the possibilities of using cyanobacteria in biotransformation processes. These processes are of great importance in the case of, for example, the neutralization of municipal, industrial, or chemical waste, the amount of which is constantly growing every year, and they are also an easier and cheaper path to obtain chemical compounds.
Collapse
|
13
|
Fewer DP, Jokela J, Heinilä L, Aesoy R, Sivonen K, Galica T, Hrouzek P, Herfindal L. Chemical diversity and cellular effects of antifungal cyclic lipopeptides from cyanobacteria. PHYSIOLOGIA PLANTARUM 2021; 173:639-650. [PMID: 34145585 DOI: 10.1111/ppl.13484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 05/11/2023]
Abstract
Cyanobacteria produce a variety of chemically diverse cyclic lipopeptides with potent antifungal activities. These cyclic lipopeptides have an amphipathic structure comprised of a polar peptide cycle and hydrophobic fatty acid side chain. Many have antibiotic activity against a range of human and plant fungal pathogens. This review article aims to summarize the present knowledge on the chemical diversity and cellular effects of cyanobacterial cyclic lipopeptides that display antifungal activity. Cyclic antifungal lipopeptides from cyanobacteria commonly fall into four structural classes; hassallidins, puwainaphycins, laxaphycins, and anabaenolysins. Many of these antifungal cyclic lipopeptides act through cholesterol and ergosterol-dependent disruption of membranes. In many cases, the cyclic lipopeptides also exert cytotoxicity in human cells, and a more extensive examination of their biological activity and structure-activity relationship is warranted. The hassallidin, puwainaphycin, laxaphycin, and anabaenolysin structural classes are unified through shared complex biosynthetic pathways that encode a variety of unusual lipoinitiation mechanisms and branched biosynthesis that promote their chemical diversity. However, the biosynthetic origins of some cyanobacterial cyclic lipopeptides and the mechanisms, which drive their structural diversification in general, remain poorly understood. The strong functional convergence of differently organized chemical structures suggests that the production of lipopeptide confers benefits for their producer. Whether these benefits originate from their antifungal activity or some other physiological function remains to be answered in the future. However, it is clear that cyanobacteria encode a wealth of new cyclic lipopeptides with novel biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- David P Fewer
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Lassi Heinilä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Reidun Aesoy
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Tomáš Galica
- Academy of Science of the Czech Republic, Institute of Microbiology, Centre Algatech, Třeboň, Czech Republic
| | - Pavel Hrouzek
- Academy of Science of the Czech Republic, Institute of Microbiology, Centre Algatech, Třeboň, Czech Republic
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
Dang J, Ma J, Du Y, Dawa Y, Wang Q, Chen C, Wang Q, Tao Y, Ji T. Large-scale preparative isolation of bergenin standard substance from Saxifraga atrata using polyamide coupled with MCI GEL® CHP20P as stationary phases in medium pressure chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1170:122617. [PMID: 33713947 DOI: 10.1016/j.jchromb.2021.122617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/09/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
In this study, polyamide and MCI GEL® CHP20P were employed as stationary phases in medium pressure chromatography (MPC) for the efficient preparative separation of bergenin from Saxifraga atrata. Ethanol-water, methanol-water, and acetonitrile-water mobile phases all showed good enrichment capacity for bergenin fraction when polyamide was used as a stationary phase. After 5 cycles of polyamide MPC using acetonitrile/water, 1.2 g of bergenin fraction was isolated from 180 g Saxifraga atrata herb. Further purification of this fraction was conducted using MCI GEL® CHP20P styrene-divinylbenzene beads. The bergenin fraction was separated into two fractions, and after three runs of MPC, 714.2 mg of bergenin with purity above 99% was obtained. The results demonstrate that the combination of polyamide and styrene-divinylbenzene MPC can be utilized for preparative isolation of compounds from natural products with high yield and purity.
Collapse
Affiliation(s)
- Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
| | - Jianbin Ma
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, Qinghai, China
| | - Yurong Du
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, Qinghai, China
| | - YangZom Dawa
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, Qinghai, China
| | - Qi Wang
- College of Pharmacy, Qinghai Nationalities University, Xining 810007, Qinghai, China
| | - Chengbiao Chen
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, Qinghai, China
| | - Qilan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
| | - Yanduo Tao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China.
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
15
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. The use of cyanobacterial metabolites as natural medical and biotechnological tools: review article. J Biomol Struct Dyn 2020; 40:2828-2850. [PMID: 33164673 DOI: 10.1080/07391102.2020.1838948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are photosynthetic, Gram-negative bacteria that are considered one of the most morphologically diverse groups of prokaryotes with a chief role in the global nutrient cycle as they fixed gaseous carbon dioxide and nitrogen to organic materials. Cyanobacteria have significant adaptability to survive in harsh conditions due to they have different metabolic pathways with unique compounds, effective defensive mechanisms, and wide distribution in different habitats. Besides, they are successfully used to face different challenges in several fields, including industry, aquaculture, agriculture, food, dairy products, pollution control, bioenergy, and pharmaceutics. Analysis of 680 publications revealed that nearly 1630 cyanobacterial molecules belong to different families have a wide range of applications in several fields, including cosmetology, agriculture, pharmacology (immunosuppressant, anticancer, antibacterial, antiprotozoal, antifungal, anti-inflammatory, antimalarial, anticoagulant, anti-tuberculosis, antitumor, and antiviral activities) and food industry. In this review, we nearly mentioned 92 examples of cyanobacterial molecules that are considered the most relevant effects related to anti-inflammatory, antioxidant, antimicrobial, antiviral, and anticancer activities as well as their roles that can be used in various biotechnological fields. These cyanobacterial products might be promising candidates for fighting various diseases and can be used in managing viral and microbial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt.,Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
16
|
Götze S, Stallforth P. Structure elucidation of bacterial nonribosomal lipopeptides. Org Biomol Chem 2020; 18:1710-1727. [DOI: 10.1039/c9ob02539a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We provide a summary of the tools, which allow elucidate the structures of nonribosomal lipopetides.
Collapse
Affiliation(s)
- Sebastian Götze
- Department of Paleobiotechnology
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
17
|
Humisto A, Jokela J, Teigen K, Wahlsten M, Permi P, Sivonen K, Herfindal L. Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1510-1521. [DOI: 10.1016/j.bbamem.2019.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 02/15/2019] [Accepted: 03/15/2019] [Indexed: 01/30/2023]
|
18
|
Demay J, Bernard C, Reinhardt A, Marie B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar Drugs 2019; 17:E320. [PMID: 31151260 PMCID: PMC6627551 DOI: 10.3390/md17060320] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the diversity of natural products that they synthesize, support cyanobacterial success in colonization of their respective ecological niches. Although cyanobacteria are well-known for their toxin production and their relative deleterious consequences, they also produce a large variety of molecules that exhibit beneficial properties with high potential in various fields (e.g., a synthetic analog of dolastatin 10 is used against Hodgkin's lymphoma). The present review focuses on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, it appears that more than 90 genera of cyanobacteria have been observed to produce compounds with potentially beneficial activities in which most of them belong to the orders Oscillatoriales, Nostocales, Chroococcales, and Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The diverse cyanobacterial metabolites possessing beneficial bioactivities belong to 10 different chemical classes (alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relationship between the chemical class and the respective bioactivity of these molecules has been demonstrated. We further selected and specifically described 47 molecule families according to their respective bioactivities and their potential uses in pharmacology, cosmetology, agriculture, or other specific fields of interest. With this up-to-date review, we attempt to present new perspectives for the rational discovery of novel cyanobacterial metabolites with beneficial bioactivity.
Collapse
Affiliation(s)
- Justine Demay
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
- Thermes de Balaruc-les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France.
| | - Cécile Bernard
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
| | - Anita Reinhardt
- Thermes de Balaruc-les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France.
| | - Benjamin Marie
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
| |
Collapse
|
19
|
Xue Y, Zhao P, Quan C, Zhao Z, Gao W, Li J, Zu X, Fu D, Feng S, Bai X, Zuo Y, Li P. Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides 2018; 107:17-24. [PMID: 30077717 DOI: 10.1016/j.peptides.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022]
Abstract
Members of cyanobacteria, including Moorea spp., Okeania spp., Lyngbya spp., Schizothrix spp., Leptolyngbya spp., Microcystis spp., Symploca spp., Hassallia sp., Anabaena spp., Planktothrix sp., Tychonema spp., Oscillatoria spp., Tolypothrix sp., Nostoc sp., and Hapalosiphon sp. produce an enormously diverse range of peptide antibiotics with huge potential as pharmaceutical drugs and biocontrol agents following screening of structural analogues and analysis of structure-activity relationships (SAR). The need for novel antibiotic lead compounds is urgent, and this review summarizes 78 cyanobacteria-derived compounds reported since 2000, including 32 depsipeptides, 18 cyclic lipopeptides, 13 linear lipopeptides, 14 cyclamides, and one typical cyclic peptide. The current and potential therapeutic applications of these peptides are discussed, including for SAR, antituberculotic, antifungal, antibacterial, antiviral, and antiparasitic (anti-plasmodial, antitrypanosomal and antileishmanial) activities.
Collapse
Affiliation(s)
- Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China
| | - Zhanqin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Dongliao Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuxiao Feng
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuefei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yanjun Zuo
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ping Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
20
|
Shah SAA, Akhter N, Auckloo BN, Khan I, Lu Y, Wang K, Wu B, Guo YW. Structural Diversity, Biological Properties and Applications of Natural Products from Cyanobacteria. A Review. Mar Drugs 2017; 15:md15110354. [PMID: 29125580 PMCID: PMC5706043 DOI: 10.3390/md15110354] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022] Open
Abstract
Nowadays, various drugs on the market are becoming more and more resistant to numerous diseases, thus declining their efficacy for treatment purposes in human beings. Antibiotic resistance is one among the top listed threat around the world which eventually urged the discovery of new potent drugs followed by an increase in the number of deaths caused by cancer due to chemotherapy resistance as well. Accordingly, marine cyanobacteria, being the oldest prokaryotic microorganisms belonging to a monophyletic group, have proven themselves as being able to generate pharmaceutically important natural products. They have long been known to produce distinct and structurally complex secondary metabolites including peptides, polyketides, alkaloids, lipids, and terpenes with potent biological properties and applications. As such, this review will focus on recently published novel compounds isolated from marine cyanobacteria along with their potential bioactivities such as antibacterial, antifungal, anticancer, anti-tuberculosis, immunosuppressive and anti-inflammatory capacities. Moreover, various structural classes, as well as their technological uses will also be discussed.
Collapse
Affiliation(s)
| | - Najeeb Akhter
- Ocean College, Zhejiang University, Hangzhou 310058, China.
| | | | - Ishrat Khan
- Ocean College, Zhejiang University, Hangzhou 310058, China.
| | - Yanbin Lu
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Kuiwu Wang
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Bin Wu
- Ocean College, Zhejiang University, Hangzhou 310058, China.
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
21
|
Li J, Liu S, Jiang Z, Sun C. Catechol amide iron chelators produced by a mangrove-derived Bacillus subtilis. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Pancrace C, Jokela J, Sassoon N, Ganneau C, Desnos-Ollivier M, Wahlsten M, Humisto A, Calteau A, Bay S, Fewer DP, Sivonen K, Gugger M. Rearranged Biosynthetic Gene Cluster and Synthesis of Hassallidin E in Planktothrix serta PCC 8927. ACS Chem Biol 2017; 12:1796-1804. [PMID: 28489343 DOI: 10.1021/acschembio.7b00093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria produce a wide range of natural products with antifungal bioactivity. The cyclic glycosylated lipopeptides of the hassallidin family have potent antifungal activity and display a great degree of chemical diversity. Here, we report the discovery of a hassallidin biosynthetic gene cluster from the filamentous cyanobacterium Planktothrix serta PCC 8927. The hassallidin gene cluster showed heavy rearrangement and marks of genomic plasticity. Nucleotide bias, differences in GC content, and phylogenetic incongruence suggested the acquisition of the hassallidin biosynthetic gene cluster in Planktothrix serta PCC 8927 by horizontal gene transfer. Chemical analyses by liquid chromatography and mass spectrometry demonstrated that this strain produced hassallidin E, a new glycosylated hassallidin variant. Hassallidin E was the only structural variant produced by Planktothrix serta PCC 8927 in all tested conditions. Further evaluated on human pathogenic fungi, hassallidin E showed an antifungal bioactivity. Hassallidin production levels correlated with nitrogen availability, in the only nitrogen-fixing Planktothrix described so far. Our results provide insights into the distribution and chemical diversity of cyanobacterial antifungal compounds as well as raise questions on their ecological relevance.
Collapse
Affiliation(s)
- Claire Pancrace
- Institut Pasteur, Collection of Cyanobacteria, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06,
UPEC, UDD, CNRS, INRA, IRD, IEES-Paris, Paris, France
| | - Jouni Jokela
- Microbiology
and Biotechnology Division, Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | | | - Christelle Ganneau
- Institut Pasteur, Unit Chemistry of Biomolecules, Paris, France
- CNRS UMR 3523, Paris, France
| | - Marie Desnos-Ollivier
- Institut Pasteur/CNRS URA3012, National Refence Center
for Invasive Mycoses and Antifungals, Molecular Mycology Unit, Paris, France
| | - Matti Wahlsten
- Microbiology
and Biotechnology Division, Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Anu Humisto
- Microbiology
and Biotechnology Division, Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Alexandra Calteau
- Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA), Genoscope/CNRS,
UMR 8030, Laboratoire d’Analyse Bioinformatique en Génomique
et Métabolisme, Evry, France
| | - Sylvie Bay
- Institut Pasteur, Unit Chemistry of Biomolecules, Paris, France
- CNRS UMR 3523, Paris, France
| | - David P. Fewer
- Microbiology
and Biotechnology Division, Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Kaarina Sivonen
- Microbiology
and Biotechnology Division, Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Muriel Gugger
- Institut Pasteur, Collection of Cyanobacteria, Paris, France
| |
Collapse
|
23
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
24
|
Abstract
In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections.
Collapse
|
25
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
26
|
Preisitsch M, Niedermeyer THJ, Heiden SE, Neidhardt I, Kumpfmüller J, Wurster M, Harmrolfs K, Wiesner C, Enke H, Müller R, Mundt S. Cylindrofridins A-C, Linear Cylindrocyclophane-Related Alkylresorcinols from the Cyanobacterium Cylindrospermum stagnale. JOURNAL OF NATURAL PRODUCTS 2016; 79:106-115. [PMID: 26684177 DOI: 10.1021/acs.jnatprod.5b00768] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A rapid and exhaustive one-step biomass extraction as well as an enrichment and cleanup procedure has been developed for HPLC-UV detection and quantification of closely related [7.7]paracyclophanes and structural derivatives based on a two-phase solvent system. The procedure has been validated using the biomass of the carbamidocyclophane- and cylindrocyclophane-producing cyanobacterium Nostoc sp. CAVN2 and was utilized to perform a screening comprising 102 cyanobacterial strains. As a result, three new cylindrocyclophane-related alkylresorcinols, cylindrofridins A-C (1-3), and known cylindrocyclophanes (4-6) were detected and isolated from Cylindrospermum stagnale PCC 7417. Structures of 1-3 were elucidated by a combination of 1D and 2D NMR experiments, HRMS, and ECD spectroscopy. Cylindrofridin A (1) is the first naturally occurring [7.7]paracyclophane-related monomeric derivative. In contrast, cylindrofridins B (2) and C (3) represent dimers related to 1. Due to chlorination at the alkyl carbon atom in 1-3, the site of [7.7]paracyclophane macrocycle formation, the cylindrofridins represent linearized congeners of the cylindrocyclophanes. Compounds 1-3 were not toxic against nontumorigenic HaCaT cells (IC50 values >25 μM) compared to the respective cylindrocyclophanes, but 1 was the only cylindrofridin showing moderate activity against methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae with MIC values of 9 and 17 μM, respectively.
Collapse
Affiliation(s)
- Michael Preisitsch
- Institute of Pharmacy, Department of Pharmaceutical Biology, Ernst-Moritz-Arndt-University , Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| | - Timo H J Niedermeyer
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University , Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Centre for Infection Research (DZIF) , Partner Site Tübingen, Germany
- Cyano Biotech GmbH , Magnusstraße 11, 12489 Berlin, Germany
| | - Stefan E Heiden
- Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Ernst-Moritz-Arndt-University , Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany
| | - Inga Neidhardt
- Institute of Pharmacy, Department of Pharmaceutical Biology, Ernst-Moritz-Arndt-University , Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| | - Jana Kumpfmüller
- Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Ernst-Moritz-Arndt-University , Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany
| | - Martina Wurster
- Institute of Pharmacy, Department of Pharmaceutical Biology, Ernst-Moritz-Arndt-University , Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| | - Kirsten Harmrolfs
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University , Campus E8.1, 66123 Saarbrücken, Germany
| | | | - Heike Enke
- Cyano Biotech GmbH , Magnusstraße 11, 12489 Berlin, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University , Campus E8.1, 66123 Saarbrücken, Germany
| | - Sabine Mundt
- Institute of Pharmacy, Department of Pharmaceutical Biology, Ernst-Moritz-Arndt-University , Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| |
Collapse
|
27
|
Gribble GW. Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar Drugs 2015; 13:4044-136. [PMID: 26133553 PMCID: PMC4515607 DOI: 10.3390/md13074044] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 01/08/2023] Open
Abstract
This review presents the biological activity-antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity-of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
28
|
Shishido TK, Humisto A, Jokela J, Liu L, Wahlsten M, Tamrakar A, Fewer DP, Permi P, Andreote APD, Fiore MF, Sivonen K. Antifungal compounds from cyanobacteria. Mar Drugs 2015; 13:2124-40. [PMID: 25871291 PMCID: PMC4413203 DOI: 10.3390/md13042124] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/05/2022] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.
Collapse
Affiliation(s)
- Tânia K Shishido
- Department of Food and Environmental Sciences, Viikki Biocenter 1, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Anu Humisto
- Department of Food and Environmental Sciences, Viikki Biocenter 1, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Jouni Jokela
- Department of Food and Environmental Sciences, Viikki Biocenter 1, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Liwei Liu
- Department of Food and Environmental Sciences, Viikki Biocenter 1, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Matti Wahlsten
- Department of Food and Environmental Sciences, Viikki Biocenter 1, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Anisha Tamrakar
- Department of Food and Environmental Sciences, Viikki Biocenter 1, University of Helsinki, FI-00014, Helsinki, Finland.
| | - David P Fewer
- Department of Food and Environmental Sciences, Viikki Biocenter 1, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology/Nuclear Magnetic Resonance Laboratory, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Ana P D Andreote
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, 13400-970, São Paulo, Brazil.
| | - Marli F Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, 13400-970, São Paulo, Brazil.
| | - Kaarina Sivonen
- Department of Food and Environmental Sciences, Viikki Biocenter 1, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|