1
|
Huo Y, Li K, Yang S, Yi B, Chai Z, Fan L, Shu L, Gao B, Li H, Cai W. A Systematic Methodology for the Identification of the Chemical Composition of the Mongolian Drug Erdun-Uril Compound Utilizing UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules 2024; 29:4349. [PMID: 39339344 PMCID: PMC11434484 DOI: 10.3390/molecules29184349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The traditional Mongolian medicine Erdun-Uril is a conventional combination of 29 herbs commonly used for the treatment of cerebrovascular ailments. It has the effects of reducing inflammation, counteracting oxidative stress, and averting strokes caused by persistent cerebral hypoperfusion. Prior research on Erdun-Uril has predominantly concentrated on its pharmacodynamics and mechanism of action; however, there has been a lack of systematic and comprehensive investigation into its chemical constituents. Therefore, it is crucial to establish an efficient and rapid method for evaluating the chemical constituents of Erdun-Uril. In this study, Erdun-Uril was investigated using UHPLC-Q-Exactive Orbitrap MS combined with parallel reaction monitoring for the first time. Eventually, a total of 237 compounds, including 76 flavonoids, 68 phenolic compounds, 19 alkaloids, 7 amino acids, etc., were identified based on the chromatographic retention time, bibliography data, MS/MS2 information, neutral loss fragments (NLFs), and diagnostic fragment ions (DFIs). And of these, 225 were reported for the first time in this study. This new discovery of these complex components would provide a reliable theoretical basis for the development of pharmacodynamics and quality standards of the Mongolian medicine Erdun-Uril.
Collapse
Affiliation(s)
- Yanghui Huo
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, China
| | - Suyu Yang
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Bo Yi
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Zhihua Chai
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Lingxuan Fan
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Liangyin Shu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, China
| | - Bowen Gao
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Huanting Li
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
2
|
Zong YH, Cao JF, Zhao Y, Gao M, Chen WL, Wu M, Xu X, Xu ZY, Zhang XQ, Tang JZ, Liu Y, Hu XS, Wang SQ, Zhang X. Mechanism of Lian Hua Qing Wen capsules regulates the inflammatory response caused by M 1 macrophage based on cellular experiments and computer simulations. Acta Trop 2024; 257:107320. [PMID: 39002739 DOI: 10.1016/j.actatropica.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE The polarization of macrophages with the resulting inflammatory response play a crucial part in tissue and organ damage due to inflammatory. Study has proved Lian Hua Qing Wen capsules (LHQW) can reduce activation of inflammatory response and damage of tissue derived from the inflammatory reactions. However, the mechanism of LHQW regulates the macrophage-induced inflammatory response is unclear. Therefore, we investigated the mechanism of LHQW regulated the inflammatory response of M1 macrophages by cellular experiments and computer simulations. METHODS This study has analysed the targets and mechanisms of macrophage regulating inflammatory response at gene and protein levels through bioinformatics. The monomeric components of LHQW were analyzed by High Performance Liquid Chromatography (HPLC). We established the in vitro cell model by M1 macrophages (Induction of THP-1 cells into M1 macrophages). RT-qPCR and immunofluorescence were used to detect changes in gene and protein levels of key targets after LHQW treatment. Computer simulations were utilized to verify the binding stability of monomeric components and protein targets. RESULTS Macrophages had 140,690 gene targets, inflammatory response had 12,192 gene targets, intersection gene targets were 11,772. Key monomeric components (including: Pinocembrin, Fargesone-A, Nodakenin and Bowdichione) of LHQW were screened by HPLC. The results of cellular experiments indicated that LHQW could significantly reduce the mRNA expression of CCR5, CSF2, IFNG and TNF, thereby alleviating the inflammatory response caused by M1 macrophage. The computer simulations further validated the binding stability and conformation of key monomeric components and key protein targets, and IFNG/Nodakenin was able to form the most stable binding conformation for its action. CONCLUSION In this study, the mechanism of LHQW inhibits the polarization of macrophages and the resulting inflammatory response was investigated by computer simulations and cellular experiments. We found that LHQW may not only reduce cell damage and death by acting on TNF and CCR5, but also inhibit the immune recognition process and inflammatory response by regulating CSF2 and IFNG to prevent polarization of macrophages. Therefore, these results suggested that LHQW may act through multiple targets to inhibit the polarization of macrophages and the resulting inflammatory response.
Collapse
Affiliation(s)
| | - Jun-Feng Cao
- College of Medicine, Southwest Jiaotong University, Chengdu, PR China
| | | | - Miao Gao
- Chengdu Medical College, Chengdu, PR China
| | | | - Mei Wu
- Chengdu Medical College, Chengdu, PR China
| | - Xiang Xu
- Chengdu Medical College, Chengdu, PR China
| | | | | | | | - Yulin Liu
- Chengdu Medical College, Chengdu, PR China
| | | | | | - Xiao Zhang
- Chengdu Medical College, Chengdu, PR China.
| |
Collapse
|
3
|
Gerometta E, Garayev E, Herbette G, Marvilliers A, Di Giorgio C, Clerc P, Frederich M, Baghdikian B, Grondin I, Gauvin-Bialecki A. Chemical and biological investigation of Indigofera ammoxylum (DC.) Polhill. red and white phenotypes through feature-based molecular networking. PHYTOCHEMISTRY 2024; 220:114005. [PMID: 38309451 DOI: 10.1016/j.phytochem.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Chemical investigation of ethyl acetate bark extracts of Indigofera ammoxylum red and white phenotypes led to the bio-guided isolation of four previously undescribed flavonoids, named (2S,3R)-3',7-dihydroxy-4',6-dimethoxyflavanol (1), (2S,3R)-6-methoxy-7-hydroxyflavanol (2), 2',3',7-trihydroxy-4',6-dimethoxyisoflavone (7) and 2',5' -dimethoxy-4',5,7-trihydroxyisoflavanone (8), along with 14 known compounds (3-6 and 9-18). The previously undescribed structures were characterized based on NMR, HRESIMS, UV and IR data. Published spectroscopic data were used to deduce the structure of the known compounds. Eleven of the 18 isolated metabolites were evaluated for anti-inflammatory activity and cytotoxic activity against human liver carcinoma cells and human colon and colorectal adenocarcinoma cells. All tested compounds showed an anti-inflammatory activity (IC50 NO < 25 μg/mL), and compounds 2 and 3 were more selective than the positive control dexamethasone. Afromorsin (6) showed promising cytotoxic properties against both cancer cell lines (IC50 18.9 and 11.4 μg/mL). Feature-based molecular networking approach applied to bark and leaves extracts of the two phenotypes allowed to detect bioactive analogues, belonging to the families of flavones, isoflavones, flavanones, flavanols and flavonols, and to explore the chemodiversity of the species. The red and white phenotypes have a similar composition, whereas bark and leaves contain specific chemical entities. Finally, this approach highlighted a cluster of potentially bioactive and undescribed metabolites.
Collapse
Affiliation(s)
- Elise Gerometta
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, St Denis, La Réunion, France.
| | - Elnur Garayev
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France, Faculty of Pharmacy, Service of Pharmacognosy, Marseille, France.
| | - Gaëtan Herbette
- Aix-Marseille Université, CNRS, Centrale Marseille, FSCM, Spectropole, Campus de St Jérôme - Service 511, Marseille, France.
| | - Arnaud Marvilliers
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, St Denis, La Réunion, France.
| | - Carole Di Giorgio
- Aix-Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France, Faculty of Pharmacy, Service of Environmental Mutagenesis, Marseille, France.
| | - Patricia Clerc
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, St Denis, La Réunion, France.
| | - Michel Frederich
- Université de Liège, Département de Pharmacie, Centre Interfacultaire de Recherche sur le Médicament (CIRM), Laboratoire de Pharmacognosie, Campus Du Sart-Tilman, Quartier Hôpital, Liège, Belgium.
| | - Béatrice Baghdikian
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France, Faculty of Pharmacy, Service of Pharmacognosy, Marseille, France.
| | - Isabelle Grondin
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, St Denis, La Réunion, France.
| | - Anne Gauvin-Bialecki
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, St Denis, La Réunion, France.
| |
Collapse
|
4
|
Rong J, Fu F, Han C, Wu Y, Xia Q, Du D. Tectorigenin: A Review of Its Sources, Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2023; 28:5904. [PMID: 37570873 PMCID: PMC10421414 DOI: 10.3390/molecules28155904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Tectorigenin is a well-known natural flavonoid aglycone and an active component that exists in numerous plants. Growing evidence suggests that tectorigenin has multiple pharmacological effects, such as anticancer, antidiabetic, hepatoprotective, anti-inflammatory, antioxidative, antimicrobial, cardioprotective, and neuroprotective. These pharmacological properties provide the basis for the treatment of many kinds of illnesses, including several types of cancer, diabetes, hepatic fibrosis, osteoarthritis, Alzheimer's disease, etc. The purpose of this paper is to provide a comprehensive summary and review of the sources, extraction and synthesis, pharmacological effects, toxicity, pharmacokinetics, and delivery strategy aspects of tectorigenin. Tectorigenin may exert certain cytotoxicity, which is related to the administration time and concentration. Pharmacokinetic studies have demonstrated that the main metabolic pathways in rats for tectorigenin are glucuronidation, sulfation, demethylation and methoxylation, but that it exhibits poor bioavailability. From our perspective, further research on tectorigenin should cover: exploring the pharmacological targets and mechanisms of action; finding an appropriate concentration to balance pharmacological effects and toxicity; attempting diversified delivery strategies to improve the bioavailability; and structural modification to obtain tectorigenin derivatives with higher pharmacological activity.
Collapse
Affiliation(s)
- Juan Rong
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Dan Du
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
- Proteomics-Metabolomics Platform, Research Core Facility, West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Zwirchmayr J, Schachner D, Grienke U, Rudžionytė I, de Martin R, Dirsch VM, Rollinger JM. Biochemometry identifies suppressors of pro-inflammatory gene expression in Pterocarpus santalinus heartwood. PHYTOCHEMISTRY 2023; 212:113709. [PMID: 37150433 DOI: 10.1016/j.phytochem.2023.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
The heartwood extract of the Ayurvedic medicinal plant Pterocarpus santalinus L. f. has previously been shown to significantly suppress the expression of CX3CL1 and other pro-inflammatory molecules in IL-1-stimulated human endothelial cells. Here, we identify the pigment-depleted extract PSD as the most promising yet still complex source of metabolites acting as an inhibitor of CX3CL1 gene expression. For the target-oriented identification of the constituents contributing to the observed in vitro anti-inflammatory effect of PSD, the biochemometric approach ELINA (Eliciting Nature's Activities) was applied. ELINA relies on the deconvolution of complex mixtures by generating microfractions with quantitative variances of constituents over several consecutive fractions. Therefore, PSD was separated into 35 microfractions by means of flash chromatography. Their 1H NMR data and bioactivity data were correlated by heterocovariance analysis. Complemented by LC-MS-ELSD data, ELINA differentiated between constituents with positive and detrimental effects towards activity and allowed for the prioritization of compounds to be isolated in the early steps of phytochemical investigation. A hyphenated high-performance counter-current chromatographic device (HPCCC+) was employed for efficient and targeted isolation of bioactive constituents. A total of 15 metabolites were isolated, including four previously unreported constituents and nine that have never been described before from red sandalwood. Nine isolates were probed for their inhibitory effects on CX3CL1 gene expression, of which four isoflavonoids, namely pterosonin A (1), santal (6), 7,3'-dimethylorobol (12) and the previously unreported compound pterosantalin A (2), were identified as pronounced inhibitors of CX3CL1 gene expression in vitro.
Collapse
Affiliation(s)
- Julia Zwirchmayr
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Daniel Schachner
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Ulrike Grienke
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Ieva Rudžionytė
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Judith M Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| |
Collapse
|
6
|
Chen C, Li X, Kano Y, Yuan D, Qu J. Oriental traditional herbal Medicine--Puerariae Flos: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116089. [PMID: 36621660 DOI: 10.1016/j.jep.2022.116089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria Flos (PF), a traditional herbal medicine, is botanically from the dried flowers of Pueraria lobate (Willd.) Ohwi. (Chinese: ) or Pueraria thomsonii Benth. (Chinese: ). It has a long history of thousands of years in China for awakening the spleen, clearing the lungs, relieving alcohol. AIM OF THE REVIEW This review aims to report the up-to-date research progress in ethnopharmacology, phytochemistry, pharmacology and toxicology, metabolism and therapeutic application of PF, so as to provide a strong basis for future clinical treatment and scientific research. MATERIALS AND METHODS Relevant information on PF was collected from scientific literature databases including PubMed, CNKI and other literature sources (Ph.D. and M.Sc. dissertations and Chinese herbal classic books) by using the keyword "Puerariae". RESULTS Briefly, phytochemical research report has isolated 39 flavonoids, 19 saponins and 25 volatile oils from PF. Flavonoids and saponins are the most important bioactive compounds, and most of the quality control studies focus on these two types of compounds. Modern pharmacological studies have revealed their significant biological activities in relieving alcoholism, hepatoprotective, anti-tumor, anti-inflammatory, and anti-oxidation, which provides theoretical support for the traditional use. CONCLUSIONS Comprehensive analysis showed that pharmacological activity of most purified compounds from PF had not been reported. Kakkalide, tectoridin and their deglycosylated metabolites (irisolidone and tectorigenin) has been focused on excessively due to their higher content and better activities. This leads to low development and resources waste. Interestingly, PF made a breakthrough in the field of food. Many kinds of fat-lowering foods such as PILLBOX Onaka have been popular in Japan market, which received extensive attention. Therefore, we suggest that future research can be paid attention on the development of the plant's function in the field of food and medicine, as well as the transformation from experimental to clinical.
Collapse
Affiliation(s)
- Cai Chen
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Xiaojie Li
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Yoshihiro Kano
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Dan Yuan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
7
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
8
|
Yang YF, Liu TT, Li GX, Chen XQ, Li RT, Zhang ZJ. Flavonoids from the Roots of Sophora flavescens and Their Potential Anti-Inflammatory and Antiproliferative Activities. Molecules 2023; 28:molecules28052048. [PMID: 36903293 PMCID: PMC10004487 DOI: 10.3390/molecules28052048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
The phytochemical investigation of the roots of the traditional Chinese medicinal plant Sophora flavescens led to the isolation of two novel prenylflavonoids with an unusual cyclohexyl substituent instead of the common aromatic ring B, named 4',4'-dimethoxy-sophvein (17) and sophvein-4'-one (18), and 34 known compounds (1-16, 19-36). The structures of these chemical compounds were determined by spectroscopic techniques, including 1D-, 2D-NMR, and HRESIMS data. Furthermore, evaluations of nitric oxide (NO) production inhibitory activity against lipopolysaccharide (LPS)-treated RAW264.7 cells indicated that some compounds exhibited obvious inhibition effects, with IC50 ranged from 4.6 ± 1.1 to 14.4 ± 0.4 μM. Moreover, additional research demonstrated that some compounds inhibited the growth of HepG2 cells, with an IC50 ranging from 0.46 ± 0.1 to 48.6 ± 0.8 μM. These results suggest that flavonoid derivatives from the roots of S. flavescens can be used as a latent source of antiproliferative or anti-inflammatory agents.
Collapse
|
9
|
Suntichaikamolkul N, Akashi T, Mahalapbutr P, Sanachai K, Rungrotmongkol T, Bassard JE, Schaller H, De-Eknamkul W, Vimolmangkang S, Yamazaki M, Sirikantaramas S. Daidzein Hydroxylation by CYP81E63 Is Involved in the Biosynthesis of Miroestrol in Pueraria mirifica. PLANT & CELL PHYSIOLOGY 2023; 64:64-79. [PMID: 36218384 DOI: 10.1093/pcp/pcac140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
White Kwao Krua (Pueraria candollei var. mirifica), a Thai medicinal plant, is a rich source of phytoestrogens, especially isoflavonoids and chromenes. These phytoestrogens are well known; however, their biosynthetic genes remain largely uncharacterized. Cytochrome P450 (P450) is a large protein family that plays a crucial role in the biosynthesis of various compounds in plants, including phytoestrogens. Thus, we focused on P450s involved in the isoflavone hydroxylation that potentially participates in the biosynthesis of miroestrol. Three candidate P450s were isolated from the transcriptome libraries by considering the phylogenetic and expression data of each tissue of P. mirifica. The candidate P450s were functionally characterized both in vitro and in planta. Accordingly, the yeast microsome harboring PmCYP81E63 regiospecifically exhibited either 2' or 3' daidzein hydroxylation and genistein hydroxylation. Based on in silico calculation, PmCYP81E63 had higher binding energy with daidzein than with genistein, which supported the in vitro result of the isoflavone specificity. To confirm in planta function, the candidate P450s were then transiently co-expressed with isoflavone-related genes in Nicotiana benthamiana. Despite no daidzein in the infiltrated N. benthamiana leaves, genistein and hydroxygenistein biosynthesis were detectable by liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Additionally, we demonstrated that PmCYP81E63 interacted with several enzymes related to isoflavone biosynthesis using bimolecular fluorescence complementation studies and a yeast two-hybrid analysis, suggesting a scheme of metabolon formation in the pathway. Our findings provide compelling evidence regarding the involvement of PmCYP81E63 in the early step of the proposed miroestrol biosynthesis in P. mirifica.
Collapse
Affiliation(s)
- Nithiwat Suntichaikamolkul
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Muang District, Khon Kaen 40002, Thailand
| | - Kamonpan Sanachai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, 123 Muang District, Khon Kaen 40002, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
| | - Jean-Etienne Bassard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, Strasbourg 67084, France
| | - Hubert Schaller
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, Strasbourg 67084, France
| | - Wanchai De-Eknamkul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
| | - Mami Yamazaki
- Laboratory of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku Chiba 260-8675, Japan
| | - Supaart Sirikantaramas
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Gupta A, Awasthi P, Sharma N, Parveen S, Vats RP, Singh N, Kumar Y, Goel A, Chandran D. Medicarpin confers powdery mildew resistance in Medicago truncatula and activates the salicylic acid signalling pathway. MOLECULAR PLANT PATHOLOGY 2022; 23:966-983. [PMID: 35263504 PMCID: PMC9190973 DOI: 10.1111/mpp.13202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 05/28/2023]
Abstract
Powdery mildew (PM) caused by the obligate biotrophic fungal pathogen Erysiphe pisi is an economically important disease of legumes. Legumes are rich in isoflavonoids, a class of secondary metabolites whose role in PM resistance is ambiguous. Here we show that the pterocarpan medicarpin accumulates at fungal infection sites, as analysed by fluorescein-tagged medicarpin, and provides penetration and post-penetration resistance against E. pisi in Medicago truncatula in part through the activation of the salicylic acid (SA) signalling pathway. Comparative gene expression and metabolite analyses revealed an early induction of isoflavonoid biosynthesis and accumulation of the defence phytohormones SA and jasmonic acid (JA) in the highly resistant M. truncatula genotype A17 but not in moderately susceptible R108 in response to PM infection. Pretreatment of R108 leaves with medicarpin increased SA levels, SA-associated gene expression, and accumulation of hydrogen peroxide at PM infection sites, and reduced fungal penetration and colony formation. Strong parallels in the levels of medicarpin and SA, but not JA, were observed on medicarpin/SA treatment pre- or post-PM infection. Collectively, our results suggest that medicarpin and SA may act in concert to restrict E. pisi growth, providing new insights into the metabolic and signalling pathways required for PM resistance in legumes.
Collapse
Affiliation(s)
- Arunima Gupta
- Laboratory of Plant‐Microbe InteractionsRegional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
| | - Pallavi Awasthi
- Medicinal and Process ChemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Neha Sharma
- Advanced Technology Platform Centre, Regional Centre for BiotechnologyFaridabadHaryanaIndia
| | - Sajiya Parveen
- Medicinal and Process ChemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Ravi P. Vats
- Medicinal and Process ChemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Nirpendra Singh
- Advanced Technology Platform Centre, Regional Centre for BiotechnologyFaridabadHaryanaIndia
- Present address:
Institute of Stem Cell Science and Regenerative MedicineBangaloreKarnatakaIndia
| | - Yashwant Kumar
- Translational Health Science and Technology InstituteNCR Biotech Science ClusterFaridabadHaryanaIndia
| | - Atul Goel
- Medicinal and Process ChemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Divya Chandran
- Laboratory of Plant‐Microbe InteractionsRegional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
| |
Collapse
|
11
|
Arthan S, Posri P, Walunchapruk S, Senawong T, Yenjai C. Structural modification of olibergin A, an isoflavonoid, from Dalbergia stipulacea Roxb. and its cytotoxicity. RSC Adv 2022; 12:17837-17845. [PMID: 35765325 PMCID: PMC9201701 DOI: 10.1039/d2ra02865d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Fifteen derivatives were synthesized from olibergin A, a major isoflavonoid isolated from the stems of Dalbergia stipulacea Roxb. All compounds were evaluated for cytotoxicity against HCT-116, HT-29, MCF-7 and vero cell lines using MTT assay. Cytotoxicity results showed 5-hydroxy-7,2',4',5'-tetramethoxyisoflavone (5) was the most active with IC50 values of 19.03 ± 0.70, 10.83 ± 1.65, 12.53 ± 0.70 and 13.53 ± 0.84 μM against HCT-116, HT-29, MCF-7 and vero cell lines, respectively. It should be noted that 5-hydroxy-7,2',4',5'-tetramethoxyisoflavone (5) showed two times less toxicity against vero cells than the cisplatin standard (IC50 = 6.55 ± 0.81 μM) while 5 and cisplatin exhibited nearly equal cytotoxicity against the MCF-7 cell line. 5,7,2',4',5'-Pentamethoxyisoflavanone (10) showed an IC50 value of 30.34 ± 1.15 μM against the HCT-116 cell line and exhibited weak cytotoxicity against normal cells, the vero cell line. In addition, 5,7,4'-trihydroxy-2',5'-dimethoxyisoflavan oxime (13) demonstrated cytotoxicity against HT-29 cells with an IC50 value of 31.41 ± 1.38 μM and displayed weak activity toward the vero cell line. The information revealed that these compounds were suitable for development to anticancer agents against HCT-116, HT-29 and MCF-7 cell lines.
Collapse
Affiliation(s)
- Supakorn Arthan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Natural Products Research Unit, Khon Kaen University Khon Kaen 40002 Thailand +66-043-009700 ext. 42174 +66-043-009700 ext. 42175
| | - Priyapan Posri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Natural Products Research Unit, Khon Kaen University Khon Kaen 40002 Thailand +66-043-009700 ext. 42174 +66-043-009700 ext. 42175
| | - Sookkawath Walunchapruk
- Department of Biochemistry, Faculty of Science, Natural Products Research Unit, Khon Kaen University Khon Kaen 40002 Thailand
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Natural Products Research Unit, Khon Kaen University Khon Kaen 40002 Thailand
| | - Chavi Yenjai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Natural Products Research Unit, Khon Kaen University Khon Kaen 40002 Thailand +66-043-009700 ext. 42174 +66-043-009700 ext. 42175
| |
Collapse
|
12
|
Sribuhom T, Posri P, Khankeaw W, Pornchoo C, Prawan A, Tontapha S, Amornkitbamrung V, Yenjai C. A rare isoflavone-quinone and a new flavanone from the roots of Dalbergia stipulacea Roxb. Nat Prod Res 2022:1-9. [PMID: 35300543 DOI: 10.1080/14786419.2022.2053852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two previously undescribed compounds, namely dalpulapans F and G (1 and 2), along with 11 known compounds were isolated from the MeOH crude extract of the roots of Dalbergia stipulacea. Dalpulapan F was found as a rare isoflavone-quinone derivative. Their structures and absolute configurations were supported by extensive spectroscopic data analysis, including 1 D and 2 D NMR, HRESIMS data, specific rotation data, and comparison of the experimental and calculated ECD data. Cytotoxicity evaluation of the isolated compounds against HepG2 and KKU-M156 cell lines revealed that isoflavonoid 9 and rotenoid 13 exhibited the most activity against the two cell lines.
Collapse
Affiliation(s)
- Thurdpong Sribuhom
- Faculty of Science, Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Priyapan Posri
- Faculty of Science, Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Wilaiwan Khankeaw
- Faculty of Science, Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Chanakan Pornchoo
- Faculty of Medicine, Department of Pharmacology, Khon Kaen University, Khon Kaen, Thailand
| | - Auemduan Prawan
- Faculty of Medicine, Department of Pharmacology, Khon Kaen University, Khon Kaen, Thailand
| | - Sarawut Tontapha
- Faculty of Science, Integrated Nanotechnology Research Centre, Department of Physics, Khon Kaen University, Khon Kaen, Thailand
| | - Vittaya Amornkitbamrung
- Faculty of Science, Integrated Nanotechnology Research Centre, Department of Physics, Khon Kaen University, Khon Kaen, Thailand
| | - Chavi Yenjai
- Faculty of Science, Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
13
|
Jing S, Qu Z, Zhao C, Li X, Guo L, Liu Z, Zheng Y, Gao W. Dihydroisocoumarins and Dihydroisoflavones from the Rhizomes of Dioscorea collettii with Cytotoxic Activity and Structural Revision of 2,2'-Oxybis(1,4-di-tert-butylbenzene). Molecules 2021; 26:molecules26175381. [PMID: 34500814 PMCID: PMC8433754 DOI: 10.3390/molecules26175381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
The investigation of the constituents of the rhizomes of Dioscorea collettii afforded one new dihydroisocoumarin, named (−)-montroumarin (1a), along with five known compounds—montroumarin (1b), 1,1′-oxybis(2,4-di-tert-butylbenzene) (2), (3R)-3′-O-methylviolanone (3a), (3S)-3′-O-methylviolanone (3b), and (RS)-sativanone (4). Their structures were elucidated using extensive spectroscopic methods. To the best of our knowledge, compound 1a is a new enantiomer of compound 1b. The NMR data of compound 2 had been reported but its structure was erroneous. The structure of compound 2 was revised on the basis of a reinterpretation of its NMR data (1D and 2D) and the assignment of the 1H and 13C NMR data was given rightly for the first time. Compounds 3a–4, three dihydroisoflavones, were reported from the Dioscoreaceae family for the first time. The cytotoxic activities of all the compounds were tested against the NCI-H460 cell line. Two dihydroisocoumarins, compounds 1a and 1b, displayed moderate cytotoxic activities, while the other compounds showed no cytotoxicity.
Collapse
Affiliation(s)
- Songsong Jing
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (S.J.); (L.G.); (Z.L.)
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (C.Z.); (X.L.)
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China;
| | - Chengcheng Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (C.Z.); (X.L.)
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (C.Z.); (X.L.)
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (S.J.); (L.G.); (Z.L.)
| | - Zhao Liu
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (S.J.); (L.G.); (Z.L.)
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (S.J.); (L.G.); (Z.L.)
- Hebei Chemical & Pharmaceutical College, Shijiazhuang 050200, China
- Correspondence: (Y.Z.); (W.G.); Tel.: +86-022-87401895 (W.G.)
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (C.Z.); (X.L.)
- Correspondence: (Y.Z.); (W.G.); Tel.: +86-022-87401895 (W.G.)
| |
Collapse
|
14
|
Dan VM, Raveendran RS, Baby S. Resistance to Intervention: Paclitaxel in Breast Cancer. Mini Rev Med Chem 2021; 21:1237-1268. [PMID: 33319669 DOI: 10.2174/1389557520999201214234421] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Breast cancer stands as the most prevalent cancer in women globally, and contributes to the highest percentage of mortality due to cancer-related deaths in women. Paclitaxel (PTX) is heavily relied on as a frontline chemotherapy drug in breast cancer treatment, especially in advanced metastatic cancer. Generation of resistance to PTX often derails clinical management and adversely affects patient outcomes. Understanding the molecular mechanism of PTX resistance is necessary to device methods to aid in overcoming the resistance. Recent studies exploring the mechanism of development of PTX resistance have led to unveiling of a range novel therapeutic targets. PTX resistance pathways that involve major regulatory proteins/RNAs like RNF8/Twist/ROR1, TLR, ErbB3/ErbB2, BRCA1- IRIS, MENA, LIN9, MiRNA, FoxM1 and IRAK1 have expanded the complexity of resistance mechanisms, and brought newer insights into the development of drug targets. These resistance-related targets can be dealt with synthetic/natural therapeutics in combination with PTX. The present review encompasses the recent understanding of PTX resistance mechanisms in breast cancer and possible therapeutic combinations to overcome resistance.
Collapse
Affiliation(s)
- Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Reji Saradha Raveendran
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| |
Collapse
|
15
|
Pan L, Fu L, Jia XG, Jia XY, Zhang T, Zou ZM. New stilbenoligan and flavonoid from the roots of Caragana stenophylla Pojark. and their anti-inflammatory activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:627-636. [PMID: 33985389 DOI: 10.1080/10286020.2021.1918119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
A phytochemical investigation on the 80% ethanol extract of the roots of Caragana stenophylla Pojark. resulted in the isolation of 20 compounds, including two new ones, named kompasinol P (2) and 3,5,7,2',3'-pentahydroxy-4'-methoxyisoflavanone (3). Among them, a pair of enantiomers, (7S, 8 R, 7'R, 8'S)-kompasinol A (1a) and (7 R, 8S, 7'S, 8'R)-kompasinol A (1b), were successfully separated by the chiral-phase HPLC resolution for the first time. The absolute configurations of 1a and 1b were determined by the experimental and calculated electronic circular dichroism (ECD) data. 15 isolates were evaluated for their anti-inflammatory activity via inhibiting the production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells. Compounds 1a/1b, 6, 7, 9, 10, 12, 14, and 16-18 showed moderate inhibition with IC50 values ranging from 11.45 to 68.54 μM.
Collapse
Affiliation(s)
- Lan Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiao-Guang Jia
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Xin-Yue Jia
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
16
|
Netcharoensirisuk P, Abrahamian C, Tang R, Chen CC, Rosato AS, Beyers W, Chao YK, Filippini A, Di Pietro S, Bartel K, Biel M, Vollmar AM, Umehara K, De-Eknamkul W, Grimm C. Flavonoids increase melanin production and reduce proliferation, migration and invasion of melanoma cells by blocking endolysosomal/melanosomal TPC2. Sci Rep 2021; 11:8515. [PMID: 33875769 PMCID: PMC8055690 DOI: 10.1038/s41598-021-88196-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/07/2021] [Indexed: 01/31/2023] Open
Abstract
Two-pore channel 2 (TPC2) resides in endolysosomal membranes but also in lysosome-related organelles such as the melanin producing melanosomes. Gain-of-function polymorphisms in hTPC2 are associated with decreased melanin production and blond hair color. Vice versa genetic ablation of TPC2 increases melanin production. We show here an inverse correlation between melanin production and melanoma proliferation, migration, and invasion due to the dual activity of TPC2 in endolysosomes and melanosomes. Our results are supported by both genetic ablation and pharmacological inhibition of TPC2. Mechanistically, our data show that loss/block of TPC2 results in reduced protein levels of MITF, a major regulator of melanoma progression, but an increased activity of the melanin-generating enzyme tyrosinase. TPC2 inhibition thus provides a twofold benefit in melanoma prevention and treatment by increasing, through interference with tyrosinase activity, the synthesis of UV blocking melanin in melanosomes and by decreasing MITF-driven melanoma progression by increased GSK3β-mediated MITF degradation.
Collapse
Affiliation(s)
- Ponsawan Netcharoensirisuk
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
- Department of Biochemistry and Microbiology/Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Carla Abrahamian
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Rachel Tang
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Anna Scotto Rosato
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Wyatt Beyers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yu-Kai Chao
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161, Rome, Italy
| | - Santiago Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Karin Bartel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | | | - Wanchai De-Eknamkul
- Department of Biochemistry and Microbiology/Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
17
|
The subgroup of 2'-hydroxy-flavonoids: Molecular diversity, mechanism of action, and anticancer properties. Bioorg Med Chem 2021; 32:116001. [PMID: 33444847 DOI: 10.1016/j.bmc.2021.116001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
Flavonoids are abundant in nature, structurally very diversified and largely investigated. However, the subgroup of 2'-hydroxyflavonoids is much less known and not frequently studied. The present review identifies the major naturally-occurring and synthetic 2'-hydroxyflavonoid derivatives and discusses their structural characteristics and biological properties, with a focus on anticancer activities. The pharmacological properties of 2'-hydroxyflavone (2'-HF) and 2'-hydroxyflavanone (2'-HFa) are detailed. Upon binding to the Ral-interacting protein Rlip implicated in the transport of glutathione conjugates, 2'-HFa inhibits tumor cell proliferation and restrict tumor growth, in particular in breast cancer models. Among the synthetic derivatives, the characteristics of the anticancer product 2D08 (2',3',4'-trihydroxy flavone) are detailed to shed light on the molecular mechanism of action of this compound, as a regulator of protein SUMOylation. Inhibition of protein SUMOylation by 2D08 blocks cancer cell migration and invasion, and the compound greatly enhances the anticancer effects of conventional cytotoxic drugs like etoposide. The structural role of the 2'-hydroxyl group on the phenyl C-ring of the flavonoid is discussed, notably the capacity to engage intramolecular H-bonding interactions with the O1 atom on the B-ring of the chromone unit (or the oxygen of a 3-OH group when it is presents). The 2'-hydroxyl group of flavonoid appears as a regulator of the conformational freedom between the bicyclic A-B unit and the appended phenyl C-ring, favoring the planarity of the molecule. It is an essential group accounting for the biological properties of 2'-HF, 2'-HFa and structurally related compounds. This review shed light on 2'-hydroxyflavonoids to encourage their use and chemical development.
Collapse
|
18
|
Que Y, He H. Advances in N‐Heterocyclic Carbene Catalysis for Natural Product Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yonglei Que
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road 200062 Shanghai China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663 North Zhongshan Road 200062 Shanghai China
| |
Collapse
|
19
|
Iwai K, Ono M, Nanjo Y, Ema T. Minimization of Amounts of Catalyst and Solvent in NHC-Catalyzed Benzoin Reactions of Solid Aldehydes: Mechanistic Consideration of Solid-to-Solid Conversion and Total Synthesis of Isodarparvinol B. ACS OMEGA 2020; 5:10207-10216. [PMID: 32391509 PMCID: PMC7203951 DOI: 10.1021/acsomega.0c01141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/08/2020] [Indexed: 05/03/2023]
Abstract
Attempts were made to minimize the amounts of catalyst and solvent in the NHC-catalyzed benzoin reactions of solid aldehydes. In some case, solid-to-solid conversions proceeded in the solvent-free NHC-catalyzed benzoin reactions. Even if a mixture of the substrate, N-heterocyclic carbene (NHC) precursor, and inorganic base was initially a powdery solid, the reaction did proceed at reaction temperature lower than the melting points of each compound. The solid mixture partially melted or became a slurry or suspension in the meantime. We call this solid/liquid mixture a semisolid state. The reaction giving an optically active product was faster than that giving a racemic mixture of the same product. Melting-point depression was observed for a series of mixtures of the substrate and product in different substrate/product ratios. Solvent-free solid-to-solid conversions were accelerated by the formation of a semisolid state resulting from the melting-point depression of the solid substrate accompanied by the product formation. In the case of solid substrates with high melting points, melting-point depression was useless, and the addition of a small amount of solvent was needed. The first total synthesis of isodarparvinol B was achieved via the NHC-catalyzed intramolecular benzoin reaction using a small amount of solvent as an additive.
Collapse
|
20
|
Hameed A, Hussain SA, Ijaz MU, Ullah S, Muhammad Z, Suleria HAR, Song Y. Antioxidant activity of polyphenolic extracts of filamentous fungus Mucor circinelloides (WJ11): Extraction, characterization and storage stability of food emulsions. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Investigating the Systems-Level Effect of Pueraria lobata for Menopause-Related Metabolic Diseases Using an Ovariectomized Rat Model and Network Pharmacological Analysis. Biomolecules 2019; 9:biom9110747. [PMID: 31752216 PMCID: PMC6921005 DOI: 10.3390/biom9110747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 12/29/2022] Open
Abstract
This study was conducted to evaluate the biological activities of Pueraria lobata (PL) on menopause-related metabolic diseases and to explore the underlying mechanism of PL by network pharmacological analyses. We used ovariectomized (OVX) rats as a postmenopausal model and administered PL at different doses (50, 100, and 200 mg/kg). In OVX rats, decreased uterine weights and PPAR-γ (peroxisome proliferator-activated receptor-gamma) mRNA expression in the thigh muscle were significantly recovered after PL administration. PL also significantly alleviated OVX-induced increases in total cholesterol, triglyceride, alanine aminotransferase (ALT/GPT), and aspartate aminotransferase (AST/GOT) levels. To identify the systems-level mechanism of PL, we performed network pharmacological analyses by predicting the targets of the potential bioactive compounds and their associated pathways. We identified 61 targets from four potential active compounds of PL: formononetin, beta-sitosterol, 3’-methoxydaidzein, and daidzein-4,7-diglucoside. Pathway enrichment analysis revealed that among female sex hormone-related pathways, the estrogen signaling pathways, progesterone-mediated oocyte maturation, oxytocin signaling pathways, and prolactin signaling pathways were associated with multiple targets of PL. In conclusion, we found that PL improved various indicators associated with lipid metabolism in the postmenopausal animal model, and we also identified that its therapeutic effects are exerted via multiple female sex hormone-related pathways.
Collapse
|
22
|
Posri P, Suthiwong J, Thongsri Y, Yenjai C. Antifungal activity of compounds from the stems of Dalbergia stipulacea against Pythium insidiosum. Nat Prod Res 2019; 35:2823-2830. [DOI: 10.1080/14786419.2019.1672068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Priyapan Posri
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Jittra Suthiwong
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit (CMIRU), Department of Medical Technology, Faculty of Allied Health Science, Naresuan University, Phitsanulok, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
23
|
Correlation between the Potency of Flavonoids on Mushroom Tyrosinase Inhibitory Activity and Melanin Synthesis in Melanocytes. Molecules 2018; 23:molecules23061403. [PMID: 29890751 PMCID: PMC6100075 DOI: 10.3390/molecules23061403] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 01/16/2023] Open
Abstract
Twenty-seven flavonoids isolated from Dalbergia parviflora with vast structural diversity were screened for inhibitory activity against mushroom and murine tyrosinases using l-DOPA as the substrate. Among the flavonoids tested, only four—khrinone (5), cajanin (9), (3RS)-3′-hydroxy-8-methoxy vestitol (21), and (6aR,11aR)-3,8-dihydroxy-9-methoxy pterocarpan (27)—reacted with mushroom tyrosinase, with IC50 values of 54.0, 67.9, 67.8, and 16.7 μM, respectively, and only compound 27 showed inhibitory activity against murine tyrosinase. With cell-based assays, only compounds 9 and 27 effectively inhibited melanogenesis in B16-F10 melanoma cells (by 34% and 59%, respectively), at a concentration of 15 μM, without being significantly toxic to the cells. However, the crude extract of D. parviflora and some of the flavonoid constituents appeared to increase melanin production in B16-F10 cells, suggesting that there are flavonoids with both inhibitory and stimulatory melanogenesis in the crude extract. Studies on the correlation between the enzyme-based and cell-based assays showed that only the flavonoids with IC50 values below 50 μM against mushroom tyrosinase could inhibit the mammalian tyrosinase, and thus, reduce melanogenesis in B16-F10. Flavonoids with the IC50 values greater than 50 μM, on the other hand, could not inhibit the mammalian tyrosinase, and had either no effect or enhancement of melanogenesis. In conclusion, the tyrosinase enzyme from mushroom is not as selective as the one from mammalian source for the enzyme-based melanogenesis inhibitory screening, and the mammalian cell-based assay appears to be a more reliable model for screening than the enzyme-based one.
Collapse
|
24
|
|
25
|
Singh DK, Kim J, Sung JH, Kim I. Total Syntheses of Biologically Active Pterocarpan, Isoflavan, and Isoflavanone from Dalbergia oliveri. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dileep Kumar Singh
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences; Yonsei University; Incheon 21983 Republic of Korea
| | - Jinwoo Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences; Yonsei University; Incheon 21983 Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences; Yonsei University; Incheon 21983 Republic of Korea
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences; Yonsei University; Incheon 21983 Republic of Korea
| |
Collapse
|
26
|
Zeng L, Yuan S, Shen J, Wu M, Pan L, Kong X. Suppression of human breast cancer cells by tectorigenin through downregulation of matrix metalloproteinases and MAPK signaling in vitro. Mol Med Rep 2017; 17:3935-3943. [PMID: 29359782 DOI: 10.3892/mmr.2017.8313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/09/2017] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is a major life‑threatening malignancy and is the second highest cause of mortality. The aim of the present study was to investigate the effects of tectorigenin (Tec), a Traditional Chinese Medicine, against human breast cancer cells in vitro. MDA‑MB‑231 and MCF‑7 human breast cancer cells were treated with various concentrations of Tec. Cell proliferation was evaluated using the Cell Counting kit‑8 assay, and apoptosis and the cell cycle were examined by flow cytometry. The migratory and invasive abilities of these cells were detected by Transwell and Matrigel assays, respectively. Metastasis‑, apoptosis‑ and survival‑related gene expression levels were measured by reverse transcription‑quantitative polymerase chain reaction and western blotting. The results indicated that Tec was able to inhibit the proliferation of MDA‑MB‑231 and MCF‑7 cells in a dose‑ and time‑dependent manner. Furthermore, Tec treatment induced apoptosis and G0/G1‑phase arrest, and inhibited cell migration and invasion. Tec treatment decreased the expression of matrix metalloproteinase (MMP)‑2, MMP9, BCL‑2, phosphorylated‑AKT and components of the mitogen‑activated protein kinase (MAPK) signaling pathway, and increased the expression of BCL‑2‑associated X, cleaved poly [ADP‑ribose] polymerase and cleaved caspase‑3. In conclusion, Tec treatment suppressed human breast cancer cells through the downregulation of AKT and MAPK signaling and the upregulated expression and/or activity of the caspase family in vitro. Therefore, Tec may be a potential therapeutic drug to treat human breast cancer.
Collapse
Affiliation(s)
- Linwen Zeng
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Shaofeng Yuan
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Jianliang Shen
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Ming Wu
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Liangming Pan
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Xiangdong Kong
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| |
Collapse
|
27
|
Son NT, Harada K, Cuong NM, Fukuyama Y. Two New Carboxyethylflavanones from the Heartwood of Dalbergia tonkinensis and Their Antimicrobial Activities. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701201115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two new carboxyethylflavanone derivatives, (2 S)-8-carboxyethylnarigenin (2) and (2 S)-6,8-dicarboxyethylpinocembrin (3) were isolated from the heartwood of Dalbergia tonkinensis Prain, along with four known compounds 1, and 4-6. The chemical structures of two new compounds 2 and 3 were elucidated based on analyses of the spectroscopic data, including 1D and 2D NMR, HR-ESI-MS, IR, UV, and CD spectroscopies. By carrying out antimicrobial assay, CH3OH and CHCl3 fractions exhibited weak MIC value at 200 μg/mL against filamentous fungus A. niger (439), whereas the known flavanone 1 and the new carboxyethylflavanone 2 had MIC at 100 μg/mL.
Collapse
Affiliation(s)
- Ninh The Son
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Nguyen Manh Cuong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
28
|
Elsherbini AM, Mohammed MAR, Ibrahim FM. Effect of Biochanin A versus 17β estradiol in rat submandibular salivary gland. J Oral Sci 2017; 59:579-588. [PMID: 28993577 DOI: 10.2334/josnusd.16-0651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The epigenetic nature of development mandates the observation of the effect of any exogenous substance, especially those with estrogenic activities, during critical phases of development. The submandibular gland (SMG) presents as a great model due to extensive postnatal development, and is known to be regulated and affected by hormones as well as growth factors. Herein, we observed postnatal development following low doses of Biochanin A (BCA) and 17β estradiol (E2) in rats. The pups were randomly divided into four groups: control, BCA, E2, and dimethyl sulfoxide (DMSO), and euthanized at the 6th, 15th, 30th, and 60th postnatal days (PND). SMG morphogenesis was assessed. The nuclear expression of estrogen receptor beta (ERβ) was evaluated immunohistochemically; ERβ expression was up-regulated by BCA and down-regulated by E2. Similarly, caspase three gene expression, assessed by real time polymerase chain reaction was increased in the BCA group but decreased in the E2 group. A significant decrease in epidermal growth factor gene expression was noted at PND 30. The results presented by this study provide evidence that the effect of a postnatal exposure of the SMG to Biochanin A during development could be linked to sex hormone-dependent disorders.
Collapse
Affiliation(s)
| | | | - Fatma M Ibrahim
- Oral Biology Department, Faculty of Dentistry, Mansoura University
| |
Collapse
|
29
|
Peng W, Wang L, Qiu XH, Jiang YP, Pan L, Jia XG, Qin LP, Zheng CJ. Flavonoids from Caragana pruinosa roots. Fitoterapia 2016; 114:105-109. [DOI: 10.1016/j.fitote.2016.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 11/28/2022]
|
30
|
Guo L, Chen X, Li LN, Tang W, Pan YT, Kong JQ. Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering. Microb Cell Fact 2016; 15:27. [PMID: 26846670 PMCID: PMC4743118 DOI: 10.1186/s12934-016-0424-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022] Open
Abstract
Background (2S)-Pinocembrin is a chiral flavanone with versatile pharmacological and biological activities. Its health-promoting effects have spurred on research effects on the microbial production of (2S)-pinocembrin. However, an often-overlooked salient feature in the analysis of microbial (2S)-pinocembrin is its chirality. Results Here, we presented a full characterization of absolute configuration of microbial (2S)-pinocembrin from engineered Escherichia coli. Specifically, a transcriptome-wide search for genes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum, a plant rich in flavonoids, was first performed in the present study. A total of 104,180 unigenes were finally generated with an average length of 520 bp. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping assigned 26 unigenes, representing three enzyme families of 4-coumarate:coenzyme A ligase (4CL), chalcone synthase (CHS) and chalcone isomerase(CHI), onto (2S)-pinocembrin biosynthetic pathway. A total of seven, three and one full-length candidates encoding 4CL, CHS and CHI were then verified by reverse transcription polymerase chain reaction, respectively. These candidates were screened by functional expression in E. coli individual or coupled multienzyme reaction systems based on metabolic engineering processes. Oc4CL1, OcCHS2 and OcCHI were identified to be bona fide genes encoding respective pathway enzymes of (2S)-pinocembrin biosynthesis. Then Oc4CL1, OcCHS2 and MsCHI from Medicago sativa, assembled as artificial gene clusters in different organizations, were used for fermentation production of (2S)-pinocembrin in E. coli. The absolute configuration of the resulting microbial pinocembrin at C-2 was assigned to be 2S-configured by combination of retention time, UV spectrum, LC–MS, NMR, optical rotation and circular dichroism spectroscopy. Improvement of (2S)-pinocembrin titres was then achieved by optimization of gene organizations, using of codon-optimized pathway enzymes and addition of cerulenin for increasing intracellular malonyl CoA pools. Overall, the optimized strain can produce (2S)-pinocembrin of 36.92 ± 4.1 mg/L. Conclusions High titre of (2S)-pinocembrin can be obtained from engineered E. coli by an efficient method. The fermentative production of microbial (2S)-pinocembrin in E. coli paved the way for yield improvement and further pharmacological testing. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0424-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| | - Xi Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China. .,School of Medicine of Wuhan University, Wuhan, China.
| | - Li-Na Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| | - Wei Tang
- School of Medicine of Wuhan University, Wuhan, China.
| | - Yi-Ting Pan
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| |
Collapse
|
31
|
Muhit MA, Izumikawa M, Umehara K, Noguchi H. Phenolic constituents of the Bangladeshi medicinal plant Pothos scandens and their anti-estrogenic, hyaluronidase inhibition, and histamine release inhibitory activities. PHYTOCHEMISTRY 2016; 121:30-37. [PMID: 26542239 DOI: 10.1016/j.phytochem.2015.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/10/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Extracts from the stem and roots of the Bangladeshi medicinal plant Pothos scandens L. (Araceae) were isolated, and three hemiterpene glucoside aromatic esters, pothobanosides A (1), B (2), and C (3), and a phenylisobutanoid, pothobanol (4), along with 14 known compounds, were characterized. The isolates were tested for their estrogenic/anti-estrogenic activity using the estrogen-responsive human breast cancer cell lines MCF-7 and T47D, and syringoyl derivatives (2, 3, and canthoside B) showed strong inhibitory activity against both cell lines. Their less oxygenated analogs (1, and markhamioside F) were almost inactive. The isolates were also evaluated for hyaluronidase and histamine release inhibitory activities, and pothobanoside A (1) showed significant hyaluronidase inhibitory activity among the isolated compounds, which was similar to that of the positive control rosmarinic acid. Because hyaluronidase produces an angiogenic response that has been implicated in tumor invasiveness and metastasis, 1 could be valuable as an anti-tumor compound with a different mechanism of action from related compounds (2, 3). Pothobanoside C (3) and pothobanol (4) were also found to inhibit histamine release to a similar degree to the positive control epigallocatechin 3-O-(3"-O-methyl)-gallate. The histamine release inhibitory potency of these isolates may support the traditional uses of this plant in folk medicine.
Collapse
Affiliation(s)
- Md Abdul Muhit
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan; Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Masahiro Izumikawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Kaoru Umehara
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | - Hiroshi Noguchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| |
Collapse
|
32
|
Castellano G, Torrens F. Quantitative Structure-Antioxidant Activity Models of Isoflavonoids: A Theoretical Study. Int J Mol Sci 2015; 16:12891-906. [PMID: 26062128 PMCID: PMC4490477 DOI: 10.3390/ijms160612891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022] Open
Abstract
Seventeen isoflavonoids from isoflavone, isoflavanone and isoflavan classes are selected from Dalbergia parviflora. The ChEMBL database is representative from these molecules, most of which result highly drug-like. Binary rules appear risky for the selection of compounds with high antioxidant capacity in complementary xanthine/xanthine oxidase, ORAC, and DPPH model assays. Isoflavonoid structure-activity analysis shows the most important properties (log P, log D, pKa, QED, PSA, NH + OH ≈ HBD, N + O ≈ HBA). Some descriptors (PSA, HBD) are detected as more important than others (size measure Mw, HBA). Linear and nonlinear models of antioxidant potency are obtained. Weak nonlinear relationships appear between log P, etc. and antioxidant activity. The different capacity trends for the three complementary assays are explained. Isoflavonoids potency depends on the chemical form that determines their solubility. Results from isoflavonoids analysis will be useful for activity prediction of new sets of flavones and to design drugs with antioxidant capacity, which will prove beneficial for health with implications for antiageing therapy.
Collapse
Affiliation(s)
- Gloria Castellano
- Departamento de Ciencias Experimentales y Matemáticas, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Guillem de Castro-94, E 46001 València, Spain.
| | - Francisco Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, Edifici d'Instituts de Paterna, P. O. Box 22085, E 46071 València, Spain.
| |
Collapse
|
33
|
Ham SA, Hwang JS, Kang ES, Yoo T, Lim HH, Lee WJ, Paek KS, Seo HG. Ethanol extract of Dalbergia odorifera protects skin keratinocytes against ultraviolet B-induced photoaging by suppressing production of reactive oxygen species. Biosci Biotechnol Biochem 2015; 79:760-6. [PMID: 25560618 DOI: 10.1080/09168451.2014.993916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dalbergia odorifera T. Chen (Leguminosae), an indigenous medicinal herb, has been widely used in northern and eastern Asia to treat diverse diseases. Here, we investigated the anti-senescent effects of ethanolic extracts of Dalbergia odorifera (EEDO) in ultraviolet (UV) B-irradiated skin cells. EEDO significantly inhibited UVB-induced senescence of human keratinocytes in a concentration-dependent manner, concomitant with inhibition of reactive oxygen species (ROS) generation. UVB-induced increases in the levels of p53 and p21, biomarkers of cellular senescence, were almost completely abolished in the presence of EEDO. Sativanone, a major constituent of EEDO, also attenuated UVB-induced senescence and ROS generation in keratinocytes, indicating that sativanone is an indexing (marker) molecule for the anti-senescence properties of EEDO. Finally, treatment of EEDO to mice exposed to UVB significantly reduced ROS levels and the number of senescent cells in the skin. Thus, EEDO confers resistance to UVB-induced cellular senescence by inhibiting ROS generation in skin cells.
Collapse
Affiliation(s)
- Sun Ah Ham
- a Department of Animal Biotechnology , Konkuk University , Seoul , Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Doran R, Carroll MP, Akula R, Hogan BF, Martins M, Fanning S, Guiry PJ. A Stereoselective Switch: Enantiodivergent Approach to the Synthesis of Isoflavanones. Chemistry 2014; 20:15354-9. [DOI: 10.1002/chem.201405246] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 12/23/2022]
|
35
|
Watanabe K, Mino T, Abe T, Kogure T, Sakamoto M. Hydrazone-palladium-catalyzed allylic arylation of cinnamyloxyphenylboronic acid pinacol esters. J Org Chem 2014; 79:6695-702. [PMID: 24962496 DOI: 10.1021/jo501235w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Allylic arylation of cinnamyloxyphenylboronic acid pinacol esters 3, which have arylboronic acid moiety and allylic ether moiety, using a hydrazone 1d-Pd(OAc)2 system proceeded and gave the corresponding 1,3-diarylpropene derivatives 4 with a phenolic hydroxyl group via a selective coupling reaction of the π-allyl intermediate to the boron-substituted position of the leaving group.
Collapse
Affiliation(s)
- Kohei Watanabe
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University , 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
36
|
Promden W, Monthakantirat O, Umehara K, Noguchi H, De-Eknamkul W. Structure and antioxidant activity relationships of isoflavonoids from Dalbergia parviflora. Molecules 2014; 19:2226-37. [PMID: 24561331 PMCID: PMC6271601 DOI: 10.3390/molecules19022226] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 11/24/2022] Open
Abstract
The antioxidant activities of 24 isoflavonoids that were previously isolated as pure compounds from Dalbergia parviflora were evaluated using three different in vitro antioxidant-based assay systems: xanthine/xanthine oxidase (X/XO), ORAC, and DPPH. The isolates consisted of three subgroups, namely isoflavones, isoflavanones, and isoflavans, each of which appeared to have diversified substituents, and were thus ideal for the study of their structure-activity relationships (SARs). The SAR analysis was performed using the results obtained from both the inter-subgroup isoflavonoids with the same substitution pattern and the intra-subgroup compounds with different substitution patterns. The inter-subgroup comparison showed that the isoflavones exhibited the highest antioxidant activities based on all three assays. The intra-subgroup analysis showed that the additional presence of an OH group in Ring B at either R3′ or R5′ from the basic common structure of the R7-OH of Ring A and the R4′-OH (or -OMe) of Ring B greatly increased the antioxidant activities of all of the isoflavonoid subgroups and that other positions of OH and OMe substitutions exerted different effects on the activities depending on the subgroup and assay type. Therefore, based on the structural diversity of the isoflavonoids in D. parviflora, the present study provides the first clarification of the detailed antioxidant SARs of isoflavonoids.
Collapse
Affiliation(s)
- Worrawat Promden
- Division of General Science, Faculty of Education, Buriram Rajabhat University, Buriram 31000, Thailand.
| | - Orawan Monthakantirat
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kaoru Umehara
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Hiroshi Noguchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Wanchai De-Eknamkul
- Department of Pharmacognosy and Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
37
|
Zhao Y, Sun L, Zeng T, Wang J, Peng Y, Song G. Direct olefination of benzaldehydes into 1,3-diarylpropenes via a copper-catalyzed heterodomino Knoevenagel-decarboxylation-Csp3-H activation sequence. Org Biomol Chem 2014; 12:3493-8. [DOI: 10.1039/c4ob00155a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Copper-catalyzed direct olefination of benzaldehydes into unsymmetrical 1,3-diarylpropenes by a novel domino Knoevenagel-decarboxylation-Csp3-H activation sequence using simpler substrates like benzaldehydes.
Collapse
Affiliation(s)
- Yaping Zhao
- Shanghai Key Laboratory of Chemical Biology
- Institute of Pesticides and Pharmaceuticals
- East China University of Science and Technology
- Shanghai 200237, P.R. China
| | - Lu Sun
- Shanghai Key Laboratory of Chemical Biology
- Institute of Pesticides and Pharmaceuticals
- East China University of Science and Technology
- Shanghai 200237, P.R. China
| | - Tieqiang Zeng
- Shanghai Key Laboratory of Chemical Biology
- Institute of Pesticides and Pharmaceuticals
- East China University of Science and Technology
- Shanghai 200237, P.R. China
| | - Jiayi Wang
- Shanghai Key Laboratory of Chemical Biology
- Institute of Pesticides and Pharmaceuticals
- East China University of Science and Technology
- Shanghai 200237, P.R. China
| | - Yanqing Peng
- Shanghai Key Laboratory of Chemical Biology
- Institute of Pesticides and Pharmaceuticals
- East China University of Science and Technology
- Shanghai 200237, P.R. China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemical Biology
- Institute of Pesticides and Pharmaceuticals
- East China University of Science and Technology
- Shanghai 200237, P.R. China
| |
Collapse
|
38
|
Huang Z, Lim LH, Chen Z, Li Y, Zhou F, Su H, Zhou JS. Arene CHO Hydrogen Bonding: A Stereocontrolling Tool in Palladium-Catalyzed Arylation and Vinylation of Ketones. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300621] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Huang Z, Lim LH, Chen Z, Li Y, Zhou F, Su H, Zhou JS. Arene CH-O hydrogen bonding: a stereocontrolling tool in palladium-catalyzed arylation and vinylation of ketones. Angew Chem Int Ed Engl 2013; 52:4906-11. [PMID: 23553877 DOI: 10.1002/anie.201300621] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/09/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiyan Huang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | | | | | | | | | | | | |
Collapse
|
40
|
Mino T, Kogure T, Abe T, Koizumi T, Fujita T, Sakamoto M. Palladium-Catalyzed Allylic Arylation of Allylic Ethers with Arylboronic Acids Using Hydrazone Ligands. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201276] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
|
42
|
|
43
|
Yang YI, Lee KT, Park HJ, Kim TJ, Choi YS, Shih IM, Choi JH. Tectorigenin sensitizes paclitaxel-resistant human ovarian cancer cells through downregulation of the Akt and NFκB pathway. Carcinogenesis 2012; 33:2488-98. [PMID: 23027625 DOI: 10.1093/carcin/bgs302] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Paclitaxel (Taxol) is currently used as the front-line chemotherapeutic agent for several cancers including ovarian carcinoma; however, the drug frequently induces drug resistance through multiple mechanisms. The new strategy of using natural compounds in combination therapies is highly attractive because those compounds may enhance the efficacy of chemotherapy. In this study, we found that tectorigenin, an isoflavonoid isolated from flower of Pueraria thunbergiana, enhanced the growth-inhibitory effect of paclitaxel in paclitaxel-resistant ovarian cancer cells (MPSC1(TR), A2780(TR) and SKOV3(TR)) as well as their naive counterparts. The combination of tectorigenin with paclitaxel resulted in a synergistic apoptosis compared with either agent alone through activation of caspases-3, -8 and -9. Treatment with tectorigenin inhibited the nuclear translocation of NFκB and the expression of NFκB-dependent genes such as FLIP, XIAP, Bcl-2, Bcl-xL and COX-2, which are known to be associated with chemoresistance. In addition, the tectorigenin-paclitaxel combination inhibited the phosphorylation of IκB and IKK and the activation of Akt in paclitaxel-resistant cancer cells. Moreover, tectorigenin-paclitaxel-induced cell growth inhibition was enhanced by pretreatment with the Akt inhibitor LY294002 or overexpression of the dominant negative Akt (Akt-DN), but reduced by overexpression of constitutively activated Akt (Akt-Myr). Furthermore, we found that Akt-Myr, at least in part, reversed tectorigenin-paclitaxel-induced nuclear translocation of NFκB and the phosphorylation of IκB and IKK. These data suggest that tectorigenin could sensitize paclitaxel-resistant human ovarian cancer cells through inactivation of the Akt/IKK/IκB/NFκB signaling pathway, and promise a new intervention to chemosensitize paclitaxel-induced cytotoxicity in ovarian cancer.
Collapse
Affiliation(s)
- Yeong-In Yang
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Simons R, Gruppen H, Bovee TFH, Verbruggen MA, Vincken JP. Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs). Food Funct 2012; 3:810-27. [PMID: 22684228 DOI: 10.1039/c2fo10290k] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Isoflavonoids are a class of secondary metabolites, which comprise amongst others the subclasses of isoflavones, isoflavans, pterocarpans and coumestans. Isoflavonoids are abundant in Leguminosae, and many of them can bind to the human estrogen receptor (hER) with affinities similar to or lower than that of estradiol. Dietary intake of these so-called phytoestrogens has been associated with positive effects on menopausal complaints, hormone-related cancers, and osteoporosis. Therefore, phytoestrogens are used as nutraceuticals in functional foods or food supplements. Most of the isoflavonoids show agonistic activity towards both hERα and hERβ, the extent of which is modulated by the substitution pattern of their skeleton (i.e.-OH, -OCH(3)). Interestingly, substitutions consisting of a five-carbon prenyl group often seem to result in an antiestrogenic activity. There is growing evidence that the action of some of these prenylated isoflavonoids is tissue-specific, suggesting that they act like selective estrogen receptor modulators (SERMs), such as the well-known chemically synthesized raloxifene and tamoxifen. These so-called phytoSERMS might have high potential for realizing new food and pharma applications. In this review, the structural features of isoflavonoids (i.e. the kind of skeleton and prenylation (e.g. chain or pyran), position of the prenyl group on the skeleton, and the extent of prenylation (single, double)) are discussed in relation to their estrogenic activity. Anti-estrogenic and SERM activity of isoflavonoids was always associated with prenylation, but these activities did not seem to be confined to one particular kind/position of prenylation or isoflavonoid subclass. Few estrogens with agonistic activity were prenylated, but these were not tested for antagonistic activity; possibly, these molecules will turn out to be phytoSERMs as well. Furthermore, the data on the dietary occurrence, bioavailability and metabolism of prenylated isoflavonoids are discussed.
Collapse
Affiliation(s)
- Rudy Simons
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, the Netherlands
| | | | | | | | | |
Collapse
|
46
|
Chen J, Li Y, Yang LQ, Li YZ, Nan ZB, Gao K. Biological activities of flavonoids from pathogenic-infected Astragalus adsurgens. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Physicochemical Properties, Chemical Composition and Antioxidant Activity of Dalbergia odorifera T. Chen Seed Oil. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-011-1967-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Moon Y, Hong S. A facile route to isoflavone quinones via the direct cross-coupling of chromones and quinones. Chem Commun (Camb) 2012; 48:7191-3. [DOI: 10.1039/c2cc33204c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Mino T, Koizumi T, Suzuki S, Hirai K, Kajiwara K, Sakamoto M, Fujita T. Synthesis of 1,3-Diarylpropenes through Palladium-Catalyzed Mizoroki-Heck and Allyl Cross-Coupling Reactions Using Hydrazones as Ligands. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101533] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Cytotoxicity of chemical constituents from the stems of Dalbergia parviflora. Fitoterapia 2011; 82:1169-74. [DOI: 10.1016/j.fitote.2011.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 01/19/2023]
|