1
|
Kusnadi EP, Timpone C, Topisirovic I, Larsson O, Furic L. Regulation of gene expression via translational buffering. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119140. [PMID: 34599983 DOI: 10.1016/j.bbamcr.2021.119140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022]
Abstract
Translation of an mRNA represents a critical step during the expression of protein-coding genes. As mechanisms governing post-transcriptional regulation of gene expression are progressively unveiled, it is becoming apparent that transcriptional programs are not fully reflected in the proteome. Herein, we highlight a previously underappreciated post-transcriptional mode of regulation of gene expression termed translational buffering. In principle, translational buffering opposes the impact of alterations in mRNA levels on the proteome. We further describe three types of translational buffering: compensation, which maintains protein levels e.g. across species or individuals; equilibration, which retains pathway stoichiometry; and offsetting, which acts as a reversible mechanism that maintains the levels of selected subsets of proteins constant despite genetic alteration and/or stress-induced changes in corresponding mRNA levels. While mechanisms underlying compensation and equilibration have been reviewed elsewhere, the principal focus of this review is on the less-well understood mechanism of translational offsetting. Finally, we discuss potential roles of translational buffering in homeostasis and disease.
Collapse
Affiliation(s)
- Eric P Kusnadi
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Clelia Timpone
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Ola Larsson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| | - Luc Furic
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Udofia IA, Gbayo KO, Oloba-Whenu OA, Ogunbayo TB, Isanbor C. In silico studies of selected multi-drug targeting against 3CLpro and nsp12 RNA-dependent RNA-polymerase proteins of SARS-CoV-2 and SARS-CoV. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2021; 10:22. [PMID: 33786291 PMCID: PMC7992627 DOI: 10.1007/s13721-021-00299-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/25/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022]
Abstract
An outbreak of a cluster of viral pneumonia cases, subsequently identified as coronavirus disease 2019 (COVID-19), due to a novel SARS-CoV-2 necessitates an urgent need for a vaccine to prevent infection or an approved medication for a cure. In our in silico molecular docking study, a total of 173 compounds, including FDA-approved antiviral drugs, with good ADME descriptors, and some other nucleotide analogues were screened. The results show that these compounds demonstrate strong binding affinity for the residues at the active sites of RNA-dependent RNA-polymerase (RdRp) modelled structures and Chymotrypsin-like cysteine protease (3CLpro) of the HCoV proteins. Free energies (ΔG's) of binding for SARS-CoV-2 and SARS-CoV RdRp range from - 5.4 to - 8.8 kcal/mol and - 4.9 to - 8.7 kcal/mol, respectively. Also, SARS-CoV-2 and SARS-CoV 3CLpro gave ΔG values ranging from - 5.1 to - 8.4 kcal/mol and - 5.5 to - 8.6 kcal/mol, respectively. Interesting results are obtained for ivermectin, an antiparasitic agent with broad spectrum activity, which gave the highest binding energy value (- 8.8 kcal/mol) against the 3CLpro of SARS-CoV-2 and RdRps of both SARS-CoV and SARS-CoV-2. The reason for such high binding energy values is probably due to the presence of hydroxy, methoxy and sugar moieties in its structure. The stability of the protein-ligand complexes of polymerase inhibitors considered in this investigation, such as Sofosbuvir, Remdesivir, Tenofovir, Ribavirin, Galidesivir, 5c3, 5h1 and 7a1, show strong to moderate hydrogen bonding and hydrophobic interactions (π-π stacked, π-π T-shaped, π-sigma and π-alkyl). The stability provided from such interactions translate into greater antiviral activity or inhibitory effect of the ligands. Assessment of the average free energies of binding of the FDA approved drugs are highly comparable for conformers of a particular inhibitor, indicating similar modes of binding within the pockets. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13721-021-00299-2.
Collapse
|
3
|
Structural effects of modified ribonucleotides and magnesium in transfer RNAs. Bioorg Med Chem 2016; 24:4826-4834. [PMID: 27364608 DOI: 10.1016/j.bmc.2016.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022]
Abstract
Modified nucleotides are ubiquitous and important to tRNA structure and function. To understand their effect on tRNA conformation, we performed a series of molecular dynamics simulations on yeast tRNAPhe and tRNAinit, Escherichia coli tRNAinit and HIV tRNALys. Simulations were performed with the wild type modified nucleotides, using the recently developed CHARMM compatible force field parameter set for modified nucleotides (J. Comput. Chem.2016, 37, 896), or with the corresponding unmodified nucleotides, and in the presence or absence of Mg2+. Results showed a stabilizing effect associated with the presence of the modifications and Mg2+ for some important positions, such as modified guanosine in position 37 and dihydrouridines in 16/17 including both structural properties and base interactions. Some other modifications were also found to make subtle contributions to the structural properties of local domains. While we were not able to investigate the effect of adenosine 37 in tRNAinit and limitations were observed in the conformation of E. coli tRNAinit, the presence of the modified nucleotides and of Mg2+ better maintained the structural features and base interactions of the tRNA systems than in their absence indicating the utility of incorporating the modified nucleotides in simulations of tRNA and other RNAs.
Collapse
|
4
|
McKenney KM, Alfonzo JD. From Prebiotics to Probiotics: The Evolution and Functions of tRNA Modifications. Life (Basel) 2016; 6:E13. [PMID: 26985907 PMCID: PMC4810244 DOI: 10.3390/life6010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
All nucleic acids in cells are subject to post-transcriptional chemical modifications. These are catalyzed by a myriad of enzymes with exquisite specificity and that utilize an often-exotic array of chemical substrates. In no molecule are modifications more prevalent than in transfer RNAs. In the present document, we will attempt to take a chemical rollercoaster ride from prebiotic times to the present, with nucleoside modifications as key players and tRNA as the centerpiece that drove the evolution of biological systems to where we are today. These ideas will be put forth while touching on several examples of tRNA modification enzymes and their modus operandi in cells. In passing, we submit that the choice of tRNA is not a whimsical one but rather highlights its critical function as an essential invention for the evolution of protein enzymes.
Collapse
Affiliation(s)
- Katherine M McKenney
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
|
6
|
Agris PF. Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications. EMBO Rep 2008; 9:629-35. [PMID: 18552770 DOI: 10.1038/embor.2008.104] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 05/13/2008] [Indexed: 11/09/2022] Open
Abstract
The biosynthesis of RNA includes its post-transcriptional modifications, and the crucial functions of these modifications have supported their conservation within all three kingdoms. For example, the modifications located within or adjacent to the anticodon of the transfer RNA (tRNA) enhance the accuracy of codon binding, maintain the translational reading frame and enable translocation of the tRNA from the A-site to the P-site of the ribosome. Although composed of different chemistries, the more than 70 known modifications of tRNA have in common their ability to reduce conformational dynamics, and to bring order to the internal loops and hairpin structures of RNA. The modified nucleosides of the anticodon domain of tRNA restrict its dynamics and shape its architecture; therefore, the need of the ribosome to constrain or remodel each tRNA to fit the decoding site is diminished. This concept reduces an entropic penalty for translation and provides a physicochemical basis for the conservation of RNA modifications in general.
Collapse
Affiliation(s)
- Paul F Agris
- Department of Molecular and Structural Biochemistry, 128 Polk Hall, Campus Box 7622, North Carolina State University, Raleigh, North Carolina 27695-7622, USA.
| |
Collapse
|
7
|
Porcher S, Pitsch S. Synthesis of 2′-O-[(Triisopropylsilyl)oxy]methyl (= tom)-Protected Ribonucleoside Phosphoramidites Containing Various Nucleobase Analogues. Helv Chim Acta 2005. [DOI: 10.1002/hlca.200590209] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Durant PC, Bajji AC, Sundaram M, Kumar RK, Davis DR. Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A. Biochemistry 2005; 44:8078-89. [PMID: 15924427 DOI: 10.1021/bi050343f] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous nuclear magnetic resonance (NMR) studies of unmodified and pseudouridine39-modified tRNA(Lys) anticodon stem loops (ASLs) show that significant structural rearrangements must occur to attain a canonical anticodon loop conformation. The Escherichia coli tRNA(Lys) modifications mnm(5)s(2)U34 and t(6)A37 have indeed been shown to remodel the anticodon loop, although significant dynamic flexibility remains within the weakly stacked U35 and U36 anticodon residues. The present study examines the individual effects of mnm(5)s(2)U34, s(2)U34, t(6)A37, and Mg(2+) on tRNA(Lys) ASLs to decipher how the E. coli modifications accomplish the noncanonical to canonical structural transition. We also investigated the effects of the corresponding human tRNA(Lys,3) versions of the E. coli modifications, using NMR to analyze tRNA ASLs containing the nucleosides mcm(5)U34, mcm(5)s(2)U34, and ms(2)t(6)A37. The human wobble modification has a less dramatic loop remodeling effect, presumably because of the absence of a positive charge on the mcm(5) side chain. Nonspecific magnesium effects appear to play an important role in promoting anticodon stacking. Paradoxically, both t(6)A37 and ms(2)t(6)A37 actually decrease anticodon stacking compared to A37 by promoting U36 bulging. Rather than stack with U36, the t(6)A37 nucleotide in the free tRNAs is prepositioned to form a cross-strand stack with the first codon nucleotide as seen in the recent crystal structures of tRNA(Lys) ASLs bound to the 30S ribosomal subunit. Wobble modifications, t(6)A37, and magnesium each make unique contributions toward promoting canonical tRNA structure in the fundamentally dynamic tRNA(Lys)(UUU) anticodon.
Collapse
Affiliation(s)
- Philippe C Durant
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
9
|
Bajji AC, Sundaram M, Myszka DG, Davis DR. An RNA complex of the HIV-1 A-loop and tRNA(Lys,3) is stabilized by nucleoside modifications. J Am Chem Soc 2002; 124:14302-3. [PMID: 12452693 DOI: 10.1021/ja028015f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HIV transcription initiation complex involves a putative interaction between the primer tRNA anticodon and a conserved A-rich loop in the HIV genome. Surface plasmon resonance was used to demonstrate that the hypermodified nucleosides in the tRNA anticodon stem loop (ASL) stabilize RNA-RNA interactions in a model for the anticodon/A-loop complex. tRNA ASL hairpins with the modifications of Escherchia coli tRNALys and human tRNALys,3 each form stable complexes. Partially modified tRNA ASLs bind the A-loop hairpin with lesser affinity, and it was found that the modifications of the bacterial and mammalian tRNAs make distinct contributions toward stabilizing the RNA complex. One model for the anticodon/A-loop RNA complex that is consistent with the known modification effects on tRNA structure and function is that of complementary tRNAs, as seen for the published crystal structure of tRNAAsp.
Collapse
Affiliation(s)
- Ashok C Bajji
- Department of Medicinal Chemistry, 30 South 2000 East Room 307, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
10
|
Jiang Y, Blanga S, Amitsur M, Meidler R, Krivosheyev E, Sundaram M, Bajji AC, Davis DR, Kaufmann G. Structural features of tRNALys favored by anticodon nuclease as inferred from reactivities of anticodon stem and loop substrate analogs. J Biol Chem 2002; 277:3836-41. [PMID: 11723135 DOI: 10.1074/jbc.m110072200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial tRNA(Lys)-specific PrrC-anticodon nuclease efficiently cleaved an anticodon stem-loop (ASL) oligoribonucleotide containing the natural modified bases, suggesting this region harbors the specificity determinants. Assays of ASL analogs indicated that the 6-threonylcarbamoyl adenosine modification (t(6)A37) enhances the reactivity. The side chain of the modified wobble base 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) has a weaker positive effect depending on the context of other modifications. The s(2)U34 modification apparently has none and the pseudouridine (psi39) was inhibitory in most modification contexts. GC-rich but not IC-rich stems abolished the activity. Correlating the reported structural effects of the base modifications with their effects on anticodon nuclease activity suggests preference for substrates where the anticodon nucleotides assume a stacked A-RNA conformation and base pairing interactions in the stem are destabilized. Moreover, the proposal that PrrC residue Asp(287) contacts mnm(5)s(2)U34 was reinforced by the observations that the mammalian tRNA(Lys-3) wobble base 5-methoxycarbonyl methyl-2-thiouridine (mcm(5)s(2)U) is inhibitory and that the D287H mutant favors tRNA(Lys-3) over Escherichia coli tRNA(Lys). The detection of this mutation and ability of PrrC to cleave the isolated ASL suggest that anticodon nuclease may be used to cleave tRNA(Lys-3) primer molecules annealed to the genomic RNA template of the human immunodeficiency virus.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Biochemistry, Tel Aviv University, Ramat, Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chambert S, Décout JL. RECENT DEVELOPMENTS IN THE SYNTHESIS, CHEMICAL MODIFICATIONS AND BIOLOGICAL APPLICATIONS OF SULFUR MODIFIED NUCLEOSIDES, NUCLEOTIDES AND OLIGONUCLEOTIDES. ORG PREP PROCED INT 2002. [DOI: 10.1080/00304940209355745] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|