1
|
Barrington H, McCabe TJD, Donnachie K, Fyfe C, McFall A, Gladkikh M, McGuire J, Yan C, Reid M. Parallel and High Throughput Reaction Monitoring with Computer Vision. Angew Chem Int Ed Engl 2025; 64:e202413395. [PMID: 39166494 DOI: 10.1002/anie.202413395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
We report the development and applications of a computer vision based reaction monitoring method for parallel and high throughput experimentation (HTE). Whereas previous efforts reported methods to extract bulk kinetics of one reaction from one video, this new approach enables one video to capture bulk kinetics of multiple reactions running in parallel. Case studies, in and beyond well-plate high throughput settings, are described. Analysis of parallel dye-quenching hydroxylations, DMAP-catalysed esterification, solid-liquid sedimentation dynamics, metal catalyst degradation, and biologically-relevant sugar-mediated nitro reduction reactions have each provided insight into the scope and limitations of camera-enabled high throughput kinetics as a means of widening known analytical bottlenecks in HTE for reaction discovery, mechanistic understanding, and optimisation. It is envisaged that the nature of the multi-reaction time-resolved datasets made available by this analytical approach will later serve a broad range of downstream efforts in machine learning approaches to exploring chemical space.
Collapse
Affiliation(s)
- H Barrington
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - T J D McCabe
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - K Donnachie
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Calum Fyfe
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - A McFall
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - M Gladkikh
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - J McGuire
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - C Yan
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - M Reid
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Jiao R, Zhang L, You R, Peng X, Pei C, Jiang B, Hu M, Li J, Du Y, Qian EW. Efficient and Cost-Effective Synthesis of N-Acetyllactosamine by Sequential Modular Enzymatic Cascade Reactions Involving NTP Regeneration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28060-28071. [PMID: 39625714 DOI: 10.1021/acs.jafc.4c08638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Human milk oligosaccharides (HMOs) play important roles in the development of infants, which are the third most abundant component in human milk. N-Acetyllactosamine (LacNAc) is an important intermediate for the biosynthesis of other HMOs and antigens. Since currently appropriate synthetic methods for large-scale production of LacNAc are not available, it is urgently needed to develop an efficient and cost-effective synthetic pathway for LacNAc preparation. In this study, a cost-effective pathway of LacNAc synthesis involving regeneration of adenosine triphosphate (ATP) and uridine 5'-triphosphate (UTP) was established. After optimizing the reaction conditions, LacNAc was synthesized at a yield of >90% via a sequential one-pot multienzyme (OPME) method with crude enzymes at 100 mM substrates. Finally, LacNAc was produced efficiently and cost-effectively at a 5 L scale. This strategy would possibly meet the requirements of potential industrial production of LacNAc and would provide guidance for the production of other structurally complex HMOs or functional oligosaccharides in the future.
Collapse
Affiliation(s)
- Runmiao Jiao
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 1848588, Japan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Liming Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ran You
- Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, China
| | - Xinlv Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixia Pei
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 1848588, Japan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Bowen Jiang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 1848588, Japan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Meirong Hu
- Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Eika W Qian
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 1848588, Japan
| |
Collapse
|
3
|
Xu Y, Wang X, Zaal EA, Berkers CR, Lorent JH, Heise T, Cox R, Pieters RJ, Breukink E. Specific labeling of newly synthesized lipopolysaccharide via metabolic incorporation of azido-galactose. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159467. [PMID: 38382574 DOI: 10.1016/j.bbalip.2024.159467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Gram-negative bacteria possess an asymmetric outer membrane (OM) primarily composed of lipopolysaccharides (LPS) on the outer leaflet and phospholipids on the inner leaflet. The outer membrane functions as an effective permeability barrier to compounds such as antibiotics. Studying LPS biosynthesis is therefore helpful to explore novel strategies for new antibiotic development. Metabolic glycan labeling of the bacterial surface has emerged as a powerful method to investigate LPS biosynthesis. However, the previously reported methods of labeling LPS are based on radioactivity or difficult-to-produce analogs of bacterial sugars. In this study, we report on the incorporation of azido galactose into the LPS of the Gram-negative bacteria Escherichia coli and Salmonella typhi via metabolic labeling. As a common sugar analog, azido galactose successfully labeled both O-antigen and core of Salmonella LPS, but not E. coli LPS. This labeling of Salmonella LPS, as shown by SDS-PAGE analysis and fluorescence microscopy, differs from the previously reported labeling of either O-antigen or core of LPS. Our findings are useful for studying LPS biogenesis pathways in Gram-negative bacteria like Salmonella. In addition, our approach is helpful for screening for agents that target LPS biosynthesis as it allows for the detection of newly synthesized LPS that appears in the OM. Furthermore, this approach may also aid in isolating chemically modified LPS for vaccine development or immunotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Xiaoqi Wang
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Celia R Berkers
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Joseph H Lorent
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Torben Heise
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Ruud Cox
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
4
|
da Silva CB, Silva L, Debia NP, Chaves OA, Lüdtke DS, Rodembusch FS. Photoactive glycoconjugates with a very large Stokes shift: synthesis, photophysics, and copper(II) and BSA sensing. Org Biomol Chem 2023; 21:9242-9254. [PMID: 37966045 DOI: 10.1039/d3ob01388j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
This study presents the synthesis of novel glycoconjugates by connecting benzazole and carbohydrate units with a 1,2,3-triazole linker. A simple synthetic route employing a copper(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) was utilized. The synthesized compounds exhibit excited-state intramolecular proton transfer (ESIPT), resulting in longer wavelength emission with a significantly large Stokes shift (∼10 000 cm-1). These compounds show potential as chemical sensors due to their ability to detect Cu2+ ions, causing a decrease in fluorescence emission (turn-off effect). Additionally, they demonstrate strong interaction with proteins, exemplified by their interaction with bovine serum albumin (BSA) as a model protein.
Collapse
Affiliation(s)
- Cláudia Brito da Silva
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada. Instituto de Química (UFRGS), Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil.
| | - Luana Silva
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Natalí Pires Debia
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Otávio Augusto Chaves
- CQC-IMS, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
- Laboratório de Imunofarmacologia, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil 4036 - Bloco 2, 21040-361 Rio de Janeiro - RJ, Brazil
| | - Diogo Seibert Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Fabiano Severo Rodembusch
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada. Instituto de Química (UFRGS), Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Ortiz-Soto ME, Baier M, Brenner D, Timm M, Seibel J. Single-mutations at the galactose-binding site of enzymes GalK, GalU, and LgtC enable the efficient synthesis of UDP-6-azido-6-deoxy-d-galactose and azido-functionalized Gb3 analogs. Glycobiology 2023; 33:651-660. [PMID: 37283491 DOI: 10.1093/glycob/cwad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023] Open
Abstract
Lysosomal accumulation of the glycosphingolipid globotriaosylceramide Gb3 is linked to the deficient activity of the α-galactosidase A in the Anderson-Fabry disease and an elevated level of deacylated Gb3 is a hallmark of this condition. Localization of Gb3 in the plasma membrane is critical for studying how the membrane organization and its dynamics are affected in this genetic disorder. Gb3 analogs containing a terminal 6-azido-functionalized galactose in its head group globotriose (αGal1, 4βGal1, and 4Glc) are attractive chemical reporters for bioimaging, as the azido-group may act as a chemical tag for bio-orthogonal click chemistry. We report here the production of azido-Gb3 analogs employing mutants of galactokinase, UTP-glucose-1-phosphate uridylyltransferase, and α-1,4-galactosyltransferase LgtC, which participate in the synthesis of the sugar motif globotriose. Variants of enzymes galactokinase/UTP-glucose-1-phosphate uridylyltransferase generate UDP-6-azido-6-deoxy-d-galactose, which is the galactosyl-donor used by LgtC for transferring the terminal galactose moiety to lactosyl-acceptors. Residues at the galactose-binding site of the 3 enzymes were modified to facilitate the accommodation of azido-functionalized substrates and variants outperforming the wild-type enzymes were characterized. Synthesis of 6-azido-6-deoxy-d-galactose-1-phosphate, UDP-6-azido-6-deoxy-d-galactose, and azido-Gb3 analogs by variants GalK-E37S, GalU-D133V, and LgtC-Q187S, respectively, is 3-6-fold that of their wild-type counterparts. Coupled reactions with these variants permit the production of the pricy, unnatural galactosyl-donor UDP-6-azido-6-deoxy-d-galactose with ~90% conversion yields, and products azido-globotriose and lyso-AzGb3 with substrate conversion of up to 70%. AzGb3 analogs could serve as precursors for the synthesis of other tagged glycosphingolipids of the globo-series.
Collapse
Affiliation(s)
- Maria E Ortiz-Soto
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Makarius Baier
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Daniela Brenner
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Malte Timm
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Jürgen Seibel
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Sadler J, Brewster RC, Kjeldsen A, González AF, Nirkko JS, Varzandeh S, Wallace S. Overproduction of Native and Click-able Colanic Acid Slime from Engineered Escherichia coli. JACS AU 2023; 3:378-383. [PMID: 36873680 PMCID: PMC9976346 DOI: 10.1021/jacsau.2c00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The fundamental biology and application of bacterial exopolysaccharides is gaining increasing attention. However, current synthetic biology efforts to produce the major component of Escherichia sp. slime, colanic acid, and functional derivatives thereof have been limited. Herein, we report the overproduction of colanic acid (up to 1.32 g/L) from d-glucose in an engineered strain of Escherichia coli JM109. Furthermore, we report that chemically synthesized l-fucose analogues containing an azide motif can be metabolically incorporated into the slime layer via a heterologous fucose salvage pathway from Bacteroides sp. and used in a click reaction to attach an organic cargo to the cell surface. This molecular-engineered biopolymer has potential as a new tool for use in chemical, biological, and materials research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen Wallace
- Institute
of Quantitative Biology,
Biochemistry and Biotechnology, School of Biological Sciences, Roger
Land Building, Alexander Crum Brown Road, The King’s Buildings,
Edinburgh, EH9 3FF.
| |
Collapse
|
7
|
Dolan JP, Cosgrove SC, Miller GJ. Biocatalytic Approaches to Building Blocks for Enzymatic and Chemical Glycan Synthesis. JACS AU 2023; 3:47-61. [PMID: 36711082 PMCID: PMC9875253 DOI: 10.1021/jacsau.2c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
While the field of biocatalysis has bloomed over the past 20-30 years, advances in the understanding and improvement of carbohydrate-active enzymes, in particular, the sugar nucleotides involved in glycan building block biosynthesis, have progressed relatively more slowly. This perspective highlights the need for further insight into substrate promiscuity and the use of biocatalysis fundamentals (rational design, directed evolution, immobilization) to expand substrate scopes toward such carbohydrate building block syntheses and/or to improve enzyme stability, kinetics, or turnover. Further, it explores the growing premise of using biocatalysis to provide simple, cost-effective access to stereochemically defined carbohydrate materials, which can undergo late-stage chemical functionalization or automated glycan synthesis/polymerization.
Collapse
Affiliation(s)
- Jonathan P. Dolan
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Sebastian C. Cosgrove
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
8
|
Chen CY, Lin YW, Wang SW, Lin YC, Cheng YY, Ren CT, Wong CH, Wu CY. Synthesis of Azido-Globo H Analogs for Immunogenicity Evaluation. ACS CENTRAL SCIENCE 2022; 8:77-85. [PMID: 35106375 PMCID: PMC8796297 DOI: 10.1021/acscentsci.1c01277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 06/14/2023]
Abstract
Globo H (GH) is a tumor-associated carbohydrate antigen (TACA), and GH conjugations have been evaluated as potential cancer vaccines. However, like all carbohydrate-based vaccines, low immunogenicity is a major issue. Modifications of the TACA increase its immunogenicity, but the systemic modification on GH is challenging and the synthesis is cumbersome. In this study, we synthesized several azido-GH analogs for evaluation, using galactose oxidase to selectively oxidize C6-OH of the terminal galactose or N-acetylgalactosamine on lactose, Gb3, Gb4, and SSEA3 into C6 aldehyde, which was then transformed chemically to the azido group. The azido-derivatives were further glycosylated to azido-GH analogs by glycosyltransferases coupled with sugar nucleotide regeneration. These azido-GH analogs and native GH were conjugated to diphtheria toxoid cross-reactive material CRM197 for vaccination with C34 adjuvant in mice. Glycan array analysis of antisera indicated that the azido-GH glycoconjugate with azide at Gal-C6 of Lac (1-CRM197) elicited the highest antibody response not only to GH, SSEA3, and SSEA4, which share the common SSEA3 epitope, but also to MCF-7 cancer cells, which express these Globo-series glycans.
Collapse
Affiliation(s)
- Chiang-Yun Chen
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Wei Lin
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Szu-Wen Wang
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 106, Taiwan
| | - Yung-Chu Lin
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yang-Yu Cheng
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute
of Biochemistry and Molecular Biology, National
Yang-Ming University, Taipei 112, Taiwan
| | - Chien-Tai Ren
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 106, Taiwan
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chung-Yi Wu
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
9
|
Wan Y, Wu X, Xue Y, Lin XE, Wang L, Sun JS, Zhang Q. Stereoselective glycosylation with conformation-constrained 2-Nitroglycals as donors and bifunctional thiourea as catalyst. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2021.2023560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yongyong Wan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Xiaopei Wu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Yunxia Xue
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Xi-E Lin
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
- Key laboratory of Functional Small Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
10
|
Kempa EE, Galman JL, Parmeggiani F, Marshall JR, Malassis J, Fontenelle CQ, Vendeville JB, Linclau B, Charnock SJ, Flitsch SL, Turner NJ, Barran PE. Rapid Screening of Diverse Biotransformations for Enzyme Evolution. JACS AU 2021; 1:508-516. [PMID: 34056634 PMCID: PMC8154213 DOI: 10.1021/jacsau.1c00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The lack of label-free high-throughput screening technologies presents a major bottleneck in the identification of active and selective biocatalysts, with the number of variants often exceeding the capacity of traditional analytical platforms to assess their activity in a practical time scale. Here, we show the application of direct infusion of biotransformations to the mass spectrometer (DiBT-MS) screening to a variety of enzymes, in different formats, achieving sample throughputs equivalent to ∼40 s per sample. The heat map output allows rapid selection of active enzymes within 96-well plates facilitating identification of industrially relevant biocatalysts. This DiBT-MS screening workflow has been applied to the directed evolution of a phenylalanine ammonia lyase (PAL) as a case study, enhancing its activity toward electron-rich cinnamic acid derivatives which are relevant to lignocellulosic biomass degradation. Additional benefits of the screening platform include the discovery of biocatalysts (kinases, imine reductases) with novel activities and the incorporation of ion mobility technology for the identification of product hits with increased confidence.
Collapse
Affiliation(s)
- Emily E Kempa
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - James L Galman
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Fabio Parmeggiani
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - James R Marshall
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Julien Malassis
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, United Kingdom
| | - Clement Q Fontenelle
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, United Kingdom
| | | | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, United Kingdom
| | - Simon J Charnock
- Prozomix Ltd., Building 4, West End Ind. Estate, Haltwhistle, Northumberland NE49 9HA, United Kingdom
| | - Sabine L Flitsch
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nicholas J Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita E Barran
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
11
|
Mhamane TB, Sambyal S, Vemireddy S, Khan IA, Shafi S, Halmuthur M SK. Novel 1,2,3-triazole-tethered Pam 3CAG conjugates as potential TLR-2 agonistic vaccine adjuvants. Bioorg Chem 2021; 111:104838. [PMID: 33848722 DOI: 10.1016/j.bioorg.2021.104838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
A focused library of water soluble 1,2,3-triazole tethered glycopeptide conjugates derived from variety of azido-monosaccharides and aliphatic azido-alcohols were synthesized through manipulation at the C-terminus of Pam3CAG and screened for their potential as TLR2 agonistic adjuvants against HBsAg antigen. In vitro ligand induced TLR2 signal activation was observed with all the analogues upon treatment with HEK blue TLR2 cell lines. Conjugate derived from ribose (6e), which exhibited pronounced HBsAg specific antibody (IgG) titer also shown enhanced CD8+ population indicating superior cell mediated immunity compared to standard adjuvant Pam3CSK4. Further, docking studies revealed ligand induced heterodimerization between TLR1 and 2. Overall, the result indicates the usefulness of novel conjugates as potential vaccine adjuvant.
Collapse
Affiliation(s)
- Tukaram B Mhamane
- Vaccine Immunology Laboratory, OSPC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Shainy Sambyal
- Vaccine Immunology Laboratory, OSPC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Sravanthi Vemireddy
- Vaccine Immunology Laboratory, OSPC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Imran A Khan
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi
| | - Sampath Kumar Halmuthur M
- Vaccine Immunology Laboratory, OSPC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
12
|
Lacto- N-biose synthesis via a modular enzymatic cascade with ATP regeneration. iScience 2021; 24:102236. [PMID: 33748718 PMCID: PMC7967015 DOI: 10.1016/j.isci.2021.102236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/18/2020] [Accepted: 02/20/2021] [Indexed: 11/23/2022] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component of human milk, are reported to be beneficial to infant health. The biosynthesis of lacto-N-biose (LNB), the building block for HMOs, suffers from excessive addition of cofactors and intermediate inhibition. Here, we developed an in vitro multienzyme cascade composed of LNB module, ATP regeneration, and pyruvate oxidase-driven phosphate recycling to produce LNB. The integration between ATP regeneration and Pi alleviation increased the LNB conversion ratio and resulted in a ΔG'° decrease of 540 KJ/mol. Under optimal conditions, the LNB conversion ratio was improved from 0.34 to 0.83 mol/mol GlcNAc and the ATP addition decreased to 50%. Finally, 0.96 mol/mol GlcNAc and 71.6 mg LNB g-1 GlcNAc h-1 of LNB yield was achieved in a 100-mL reaction system. The synergistic strategy not only paves the way for producing LNB but also facilitates other chemicals with multienzyme cascades.
Collapse
|
13
|
Goel B, Tripathi N, Mukherjee D, Jain SK. Glycorandomization: A promising diversification strategy for the drug development. Eur J Med Chem 2021; 213:113156. [PMID: 33460832 DOI: 10.1016/j.ejmech.2021.113156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Glycorandomization is a natural product derivatization strategy in which different sugar moieties are linked to the aglycone part of the naturally existing glycosides to create glycorandomized libraries. Sugars attached to the natural products are responsible for affecting their solubility, mechanism of action, target recognition, and toxicity and thus, by changing the sugar part, these properties could be modified. Glycorandomization can be done via two approaches (i) a synthetic approach known as neoglycorandomization, and (ii) chemoenzymatic approach including in-vitro and in-vivo glycorandomization. Glycorandomization can be a promising technology for the drug discovery that has proved its potential to improve pharmacokinetic (solubility) and pharmacodynamic profile (mechanism of action, toxicity, and target recognition) of the parent compounds. The substrate flexibility of glycosyltransferases and other enzymes towards sugars and/or aglycone substrates has made this technique versatile. Further, the enzymes can be altered by genetic engineering to generate glycorandomized libraries of diverse natural product scaffolds. This technique has the potential to produce new compounds that can be helpful to the mankind by treating the threatening disease states. This review covers the different strategies for glycorandomization as a tool in drug discovery and development. The fundamentals of glycorandomization, different types, and further development of differentially glycorandomized libraries of natural products and small molecule based drugs have been discussed.
Collapse
Affiliation(s)
- Bharat Goel
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Debaraj Mukherjee
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
14
|
Keenan T, Parmeggiani F, Malassis J, Fontenelle CQ, Vendeville JB, Offen W, Both P, Huang K, Marchesi A, Heyam A, Young C, Charnock SJ, Davies GJ, Linclau B, Flitsch SL, Fascione MA. Profiling Substrate Promiscuity of Wild-Type Sugar Kinases for Multi-fluorinated Monosaccharides. Cell Chem Biol 2020; 27:1199-1206.e5. [DOI: 10.1016/j.chembiol.2020.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
|
15
|
Mohammed AI, Ahmed AM, Bhadbhade MM, Ho J, Read RW. Sugar-substituted fluorous 1,2,3-triazoles: Helical twists in fluoroalkyl chains and their molecular association in the solid state and correlations with physicochemical properties. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Zhang X, Sheng W, Li K, Rong Y, Wu Q, Meng Q, Kong Y, Chen M. Substrate specificity of the galactokinase from the human gut symbiont Akkermansia muciniphila ATCC BAA-835. Enzyme Microb Technol 2020; 139:109568. [PMID: 32732027 DOI: 10.1016/j.enzmictec.2020.109568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
Galactokinases, which catalyze the phosphorylation of galactose and possible other monosaccharides, can provide an activated sugar donor to synthesize sugar-containing molecules. In this study, a novel galactokinase from human gut symbiont Akkermansia muciniphila ATCC BAA-835 (GalKAmu) was expressed and characterized. GalKAmu displayed broad substrate tolerance, with catalytic activity towards Gal (100 %), GalN (100 %), GalA (20.2 %), Glc (52.5 %), GlcNAc (15.5 %), Xyl (<5%), ManNAc (58 %), ManF (37.4 %) and l-Glc (80 %). Most interestingly, this was the first GalK isoform which can tolerate ManNAc. Thus, our characterization of GalKAmu broadens the substrate selection of galactokinases.
Collapse
Affiliation(s)
- Xunlian Zhang
- The State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
| | - Weihao Sheng
- The State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
| | - Kun Li
- The State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
| | - Yongheng Rong
- The State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
| | - Qizheng Wu
- The State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
| | - Qingyun Meng
- The State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
| | - Yun Kong
- The State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China.
| | - Min Chen
- The State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
17
|
McAuley M, Huang M, Timson DJ. Dynamic origins of substrate promiscuity in bacterial galactokinases. Carbohydr Res 2019; 486:107839. [PMID: 31704571 DOI: 10.1016/j.carres.2019.107839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
Abstract
Galactokinase catalyses the ATP-dependent phosphorylation of galactose and structurally related sugars. The enzyme has attracted interest as a potential biocatalyst for the production of sugar 1-phosphates and several attempts have been made to broaden its specificity. In general, bacterial galactokinases have wider substrate ranges than mammalian ones. The enzymes from Escherichia coli and Lactococcus lactis have received particular attention and a number of variants with increased promiscuity have been identified. Here, we present a molecular dynamics study designed to investigate the molecular causes of the wider substrate ranges of these enzymes and their variants with particular reference to protein mobility. Some regions close to the active site of the enzyme have different structures in the bacterial enzymes compared to the human one. Alterations known to increase the substrate range (e.g. Y371H in the E. coli enzyme), tend to alter the conformation of a key α-helical region (residues 216-232 in the E. coli enzyme). The equivalent helix in the human enzyme has previously been predicted to be altered in variants which affect catalytic activity or protein stability. This helix appears to be a key region in galactokinases from a range of species and may represent an interesting target for future attempts to broaden the specificity of galactokinases.
Collapse
Affiliation(s)
- Margaret McAuley
- School of Biological Sciences Queen's University Belfast, Medical Biology Building, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - David J Timson
- School of Biological Sciences Queen's University Belfast, Medical Biology Building, 97 Lisburn Road, Belfast, BT9 7BL, UK; School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK.
| |
Collapse
|
18
|
Schoenenberger B, Kind S, Meier R, Eggert T, Obkircher M, Wohlgemuth R. Efficient biocatalytic synthesis of D-tagatose 1,6-diphosphate by LacC-catalysed phosphorylation of D-tagatose 6-phosphate. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1634694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | | | | | - Roland Wohlgemuth
- Sigma-Aldrich/Merck KGaA, Buchs, Switzerland
- Institute of Technical Biochemistry, Technical University Lodz, Lodz, Poland
| |
Collapse
|
19
|
Abstract
Carbohydrate kinases activate a wide variety of monosaccharides by adding a phosphate group, usually from ATP. This modification is fundamental to saccharide utilization, and it is likely a very ancient reaction. Modern organisms contain carbohydrate kinases from at least five main protein families. These range from the highly specialized inositol kinases, to the ribokinases and galactokinases, which belong to families that phosphorylate a wide range of substrates. The carbohydrate kinases utilize a common strategy to drive the reaction between the sugar hydroxyl and the donor phosphate. Each sugar is held in position by a network of hydrogen bonds to the non-reactive hydroxyls (and other functional groups). The reactive hydroxyl is deprotonated, usually by an aspartic acid side chain acting as a catalytic base. The deprotonated hydroxyl then attacks the donor phosphate. The resulting pentacoordinate transition state is stabilized by an adjacent divalent cation, and sometimes by a positively charged protein side chain or the presence of an anion hole. Many carbohydrate kinases are allosterically regulated using a wide variety of strategies, due to their roles at critical control points in carbohydrate metabolism. The evolution of a similar mechanism in several folds highlights the elegance and simplicity of the catalytic scheme.
Collapse
|
20
|
Keenan T, Mills R, Pocock E, Budhadev D, Parmeggiani F, Flitsch S, Fascione M. The characterisation of a galactokinase from Streptomyces coelicolor. Carbohydr Res 2019; 472:132-137. [DOI: 10.1016/j.carres.2018.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 01/08/2023]
|
21
|
McAuley M, Huang M, Timson DJ. Modulation of the mobility of a key region in human galactokinase: Impacts on catalysis and stability. Bioorg Chem 2018; 81:649-657. [DOI: 10.1016/j.bioorg.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/28/2022]
|
22
|
Fischöder T, Wahl C, Zerhusen C, Elling L. Repetitive Batch Mode Facilitates Enzymatic Synthesis of the Nucleotide Sugars UDP-Gal, UDP-GlcNAc, and UDP-GalNAc on a Multi-Gram Scale. Biotechnol J 2018; 14. [PMID: 30367549 DOI: 10.1002/biot.201800386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/04/2018] [Indexed: 01/02/2023]
Abstract
The availability of nucleotide sugars is considered as bottleneck for Leloir-glycosyltransferases mediated glycan synthesis. A breakthrough for the synthesis of nucleotide sugars is the development of salvage pathway like enzyme cascades with high product yields from affordable monosaccharide substrates. In this regard, the authors aim at high enzyme productivities of these cascades by a repetitive batch approach. The authors report here for the first time that the exceptional high enzyme cascade stability facilitates the synthesis of Uridine-5'-diphospho-α-d-galactose (UDP-Gal), Uridine-5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), and Uridine-5'-diphospho-N-acetylgalactosamine (UDP-GalNAc) in a multi-gram scale by repetitive batch mode. The authors obtained 12.8 g UDP-Gal through a high mass based total turnover number (TTNmass ) of 494 [gproduct /genzyme ] and space-time-yield (STY) of 10.7 [g/L*h]. Synthesis of UDP-GlcNAc in repetitive batch mode gave 11.9 g product with a TTNmass of 522 [gproduct /genzyme ] and a STY of 9.9 [g/L*h]. Furthermore, the scale-up to a 200 mL scale using a pressure operated concentrator was demonstrated for a UDP-GalNAc producing enzyme cascade resulting in an exceptional high STY of 19.4 [g/L*h] and 23.3 g product. In conclusion, the authors demonstrate that repetitive batch mode is a versatile strategy for the multi-gram scale synthesis of nucleotide sugars by stable enzyme cascades.
Collapse
Affiliation(s)
- Thomas Fischöder
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| | - Claudia Wahl
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| | - Christian Zerhusen
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| | - Lothar Elling
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| |
Collapse
|
23
|
McAuley M, Mesa-Torres N, McFall A, Morris S, Huang M, Pey AL, Timson DJ. Improving the Activity and Stability of Human Galactokinase for Therapeutic and Biotechnological Applications. Chembiochem 2018; 19:1088-1095. [DOI: 10.1002/cbic.201800025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Margaret McAuley
- School of Biological Sciences; Queen's University; Belfast; Medical Biology Centre; Lisburn Road Belfast BT9 7BL UK
| | - Noel Mesa-Torres
- Department of Physical Chemistry; University of Granada; Av. Fuentenueva s/n 18071 Granada Spain
| | - Aisling McFall
- School of Biological Sciences; Queen's University; Belfast; Medical Biology Centre; Lisburn Road Belfast BT9 7BL UK
| | - Sarah Morris
- School of Biological Sciences; Queen's University; Belfast; Medical Biology Centre; Lisburn Road Belfast BT9 7BL UK
| | - Meilan Huang
- School of Chemistry and Chemical Engineering; Queen's University; Belfast; David Keir Building Stranmillis Road Belfast BT9 5AG UK
| | - Angel L. Pey
- Department of Physical Chemistry; University of Granada; Av. Fuentenueva s/n 18071 Granada Spain
| | - David J. Timson
- School of Biological Sciences; Queen's University; Belfast; Medical Biology Centre; Lisburn Road Belfast BT9 7BL UK
- School of Pharmacy and Biomolecular Sciences; University of Brighton; Huxley Building Lewes Road Brighton BN2 4GJ UK
| |
Collapse
|
24
|
Huang K, Parmeggiani F, Pallister E, Huang CJ, Liu FF, Li Q, Birmingham WR, Both P, Thomas B, Liu L, Voglmeir J, Flitsch SL. Characterisation of a Bacterial Galactokinase with High Activity and Broad Substrate Tolerance for Chemoenzymatic Synthesis of 6-Aminogalactose-1-Phosphate and Analogues. Chembiochem 2018; 19:388-394. [PMID: 29193544 DOI: 10.1002/cbic.201700477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 11/07/2022]
Abstract
Glycosyl phosphates are important intermediates in many metabolic pathways and are substrates for diverse carbohydrate-active enzymes. Thus, there is a need to develop libraries of structurally similar analogues that can be used as selective chemical probes in glycomics. Here, we explore chemoenzymatic cascades for the fast generation of glycosyl phosphate libraries without protecting-group strategies. The key enzyme is a new bacterial galactokinase (LgGalK) cloned from Leminorella grimontii, which was produced in Escherichia coli and shown to catalyse 1-phosphorylation of galactose. LgGalK displayed a broad substrate tolerance, being able to catalyse the 1-phosphorylation of a number of galactose analogues, including 3-deoxy-3-fluorogalactose and 4-deoxy-4-fluorogalactose, which were first reported to be substrates for wild-type galactokinase. LgGalK and galactose oxidase variant M1 were combined in a one-pot, two-step system to synthesise 6-oxogalactose-1-phosphate and 6-oxo-2-fluorogalactose-1-phosphate, which were subsequently used to produce a panel of 30 substituted 6-aminogalactose-1-phosphate derivatives by chemical reductive amination in a one-pot, three-step chemoenzymatic process.
Collapse
Affiliation(s)
- Kun Huang
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Fabio Parmeggiani
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Edward Pallister
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Chuen-Jiuan Huang
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Fang-Fang Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Li
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - William R Birmingham
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Peter Both
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Baptiste Thomas
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sabine L Flitsch
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
25
|
Conway LP, Liu FF, Li Q, Voglmeir J. The Shewanella woodyi galactokinase pool phosphorylates glucose at the 6-position. Carbohydr Res 2018; 455:39-44. [DOI: 10.1016/j.carres.2017.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/03/2017] [Accepted: 10/26/2017] [Indexed: 11/28/2022]
|
26
|
Xia T, Sriram N, Lee SA, Altman R, Urbauer JL, Altman E, Eiteman MA. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli. Microbiology (Reading) 2017. [DOI: 10.1099/mic.0.000480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Tian Xia
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Neeraj Sriram
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Sarah A. Lee
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Ronni Altman
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Jeffrey L. Urbauer
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Elliot Altman
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Mark A. Eiteman
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
27
|
Wahl C, Spiertz M, Elling L. Characterization of a new UDP-sugar pyrophosphorylase from Hordeum vulgare (barley). J Biotechnol 2017; 258:51-55. [PMID: 28347767 DOI: 10.1016/j.jbiotec.2017.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/24/2022]
Abstract
The broad substrate spectrum of UDP-sugar pyrophosphorylases from plant salvage pathways is of high interest for the synthesis of expensive nucleotide sugars by straightforward enzyme cascade reactions in combination with monosaccharide kinases. We here present a new UDP-sugar pyrophosphorylase from Hordeum vulgare with favorable biochemical properties like broad pH and temperature tolerances as well as a broad substrate spectrum and high synthesis stability. Enzyme properties were determined and reaction conditions were optimized by high-through-put multiplexed capillary electrophoresis analysis. In combination with a galactokinase UDP-α-d-galactose (UDP-Gal) was efficiently synthesized with a space-time-yield of 17g/L*h for full conversion of 10mM substrate within 20min by 1.2U of each enzyme.
Collapse
Affiliation(s)
- Claudia Wahl
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Markus Spiertz
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
28
|
McAuley M, Huang M, Timson DJ. Insight into the mechanism of galactokinase: Role of a critical glutamate residue and helix/coil transitions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:321-328. [PMID: 27789348 DOI: 10.1016/j.bbapap.2016.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 11/24/2022]
Abstract
Galactokinase, the enzyme which catalyses the first committed step in the Leloir pathway, has attracted interest due to its potential as a biocatalyst and as a possible drug target in the treatment of type I galactosemia. The mechanism of the enzyme is not fully elucidated. Molecular dynamics (MD) simulations of galactokinase with the active site residues Arg-37 and Asp-186 altered predicted that two regions (residues 174-179 and 231-240) had different dynamics as a consequence. Interestingly, the same two regions were also affected by alterations in Arg-105, Glu-174 and Arg-228. These three residues were identified as important in catalysis in previous computational studies on human galactokinase. Alteration of Arg-105 to methionine resulted in a modest reduction in activity with little change in stability. When Arg-228 was changed to methionine, the enzyme's interaction with both ATP and galactose was affected. This variant was significantly less stable than the wild-type protein. Changing Glu-174 to glutamine (but not to aspartate) resulted in no detectable activity and a less stable enzyme. Overall, these combined in silico and in vitro studies demonstrate the importance of a negative charge at position 174 and highlight the critical role of the dynamics in to key regions of the protein. We postulate that these regions may be critical for mediating the enzyme's structure and function.
Collapse
Affiliation(s)
- Margaret McAuley
- School of Biological Sciences, Queen's University Belfast, Medical Biology Building, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Building, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| |
Collapse
|
29
|
Functional analysis of anomeric sugar kinases. Carbohydr Res 2016; 432:23-30. [DOI: 10.1016/j.carres.2016.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/19/2022]
|
30
|
Modulating Mobility: a Paradigm for Protein Engineering? Appl Biochem Biotechnol 2016; 181:83-90. [PMID: 27449223 DOI: 10.1007/s12010-016-2200-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/17/2016] [Indexed: 12/30/2022]
Abstract
Proteins are highly mobile structures. In addition to gross conformational changes occurring on, for example, ligand binding, they are also subject to constant thermal motion. The mobility of a protein varies through its structure and can be modulated by ligand binding and other events. It is becoming increasingly clear that this mobility plays an important role in key functions of proteins including catalysis, allostery, cooperativity, and regulation. Thus, in addition to an optimum structure, proteins most likely also require an optimal dynamic state. Alteration of this dynamic state through protein engineering will affect protein function. A dramatic example of this is seen in some inherited metabolic diseases where alternation of residues distant from the active site affects the mobility of the protein and impairs function. We postulate that using molecular dynamics simulations, experimental data or a combination of the two, it should be possible to engineer the mobility of active sites. This may be useful in, for example, increasing the promiscuity of enzymes. Thus, a paradigm for protein engineering is suggested in which the mobility of the active site is rationally modified. This might be combined with more "traditional" approaches such as altering functional groups in the active site.
Collapse
|
31
|
Wahl C, Hirtz D, Elling L. Multiplexed Capillary Electrophoresis as Analytical Tool for Fast Optimization of Multi-Enzyme Cascade Reactions - Synthesis of Nucleotide Sugars: Dedicated to Prof. Dr. Vladimir Křen on the occasion of his 60 th birthday. Biotechnol J 2016; 11:1298-1308. [PMID: 27311566 DOI: 10.1002/biot.201600265] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/09/2023]
Abstract
Nucleotide sugars are considered as bottleneck and expensive substrates for enzymatic glycan synthesis using Leloir-glycosyltransferases. Synthesis from cheap substrates such as monosaccharides is accomplished by multi-enzyme cascade reactions. Optimization of product yields in such enzyme modules is dependent on the interplay of multiple parameters of the individual enzymes and governed by a considerable time effort when convential analytic methods like capillary electrophoresis (CE) or HPLC are applied. We here demonstrate for the first time multiplexed CE (MP-CE) as fast analytical tool for the optimization of nucleotide sugar synthesis with multi-enzyme cascade reactions. We introduce a universal separation method for nucleotides and nucleotide sugars enabling us to analyze the composition of six different enzyme modules in a high-throughput format. Optimization of parameters (T, pH, inhibitors, kinetics, cofactors and enzyme amount) employing MP-CE analysis is demonstrated for enzyme modules for the synthesis of UDP-α-D-glucuronic acid (UDP-GlcA) and UDP-α-D-galactose (UDP-Gal). In this way we achieve high space-time-yields: 1.8 g/L⋆h for UDP-GlcA and 17 g/L⋆h for UDP-Gal. The presented MP-CE methodology has the impact to be used as general analytical tool for fast optimization of multi-enzyme cascade reactions.
Collapse
Affiliation(s)
- Claudia Wahl
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Dennis Hirtz
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
32
|
Abstract
Galactokinase catalyses the first committed step of the Leloir pathway, i.e. the ATP-dependent phosphorylation of α-D-galactose at C1-OH. Reduced galactokinase activity results in the inherited metabolic disease type II galactosaemia. However, inhibition of galactokinase is considered a viable approach to treating more severe forms of galactosaemia (types I and III). Considerable progress has been made in the identification of high affinity, selective inhibitors. Although the structure of galactokinase from a variety of species is known, its catalytic mechanism remains uncertain. Although the bulk of evidence suggests that the reaction proceeds via an active site base mechanism, some experimental and theoretical studies contradict this. The enzyme has potential as a biocatalyst in the production of sugar 1-phosphates. This potential is limited by its high specificity. A variety of approaches have been taken to identify galactokinase variants which are more promiscuous. These have broadened galactokinase's specificity to include a wide range of D- and L-sugars. Initial studies suggest that some of these alterations result in increased flexibility at the active site. It is suggested that modulation of protein flexibility is at least as important as structural modifications in determining the success or failure of enzyme engineering.
Collapse
|
33
|
Wildberger P, Pfeiffer M, Brecker L, Nidetzky B. Diastereoselektive Synthese von Glykosylphosphaten mit einem Phosphorylase‐Phosphatase‐Kombikatalysator. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Patricia Wildberger
- Institut für Biotechnologie und Bioprozesstechnik, Technische Universität Graz, Petersgasse 12, 8010 Graz (Österreich)
| | - Martin Pfeiffer
- Institut für Biotechnologie und Bioprozesstechnik, Technische Universität Graz, Petersgasse 12, 8010 Graz (Österreich)
| | - Lothar Brecker
- Institut für Organische Chemie, Universität Wien, Währingerstraße 38, 1090 Wien (Österreich)
| | - Bernd Nidetzky
- Institut für Biotechnologie und Bioprozesstechnik, Technische Universität Graz, Petersgasse 12, 8010 Graz (Österreich)
- acib – Austrian Centre of Industrial Biotechnology (Österreich)
| |
Collapse
|
34
|
Wildberger P, Pfeiffer M, Brecker L, Nidetzky B. Diastereoselective Synthesis of Glycosyl Phosphates by Using a Phosphorylase-Phosphatase Combination Catalyst. Angew Chem Int Ed Engl 2015; 54:15867-71. [PMID: 26565075 PMCID: PMC4737314 DOI: 10.1002/anie.201507710] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 11/10/2022]
Abstract
Sugar phosphates play an important role in metabolism and signaling, but also as constituents of macromolecular structures. Selective phosphorylation of sugars is chemically difficult, particularly at the anomeric center. We report phosphatase-catalyzed diastereoselective "anomeric" phosphorylation of various aldose substrates with α-D-glucose 1-phosphate, derived from phosphorylase-catalyzed conversion of sucrose and inorganic phosphate, as the phosphoryl donor. Simultaneous and sequential two-step transformations by the phosphorylase-phosphatase combination catalyst yielded glycosyl phosphates of defined anomeric configuration in yields of up to 70 % based on the phosphate applied to the reaction. An efficient enzyme-assisted purification of the glycosyl phosphate products from reaction mixtures was established.
Collapse
Affiliation(s)
- Patricia Wildberger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, 8010 Graz (Austria)
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, 8010 Graz (Austria)
| | - Lothar Brecker
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna (Austria)
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, 8010 Graz (Austria). .,acib - Austrian Centre of Industrial Biotechnology (Austria).
| |
Collapse
|
35
|
Chen C, Van der Borght J, De Vreese R, D'hooghe M, Soetaert W, Desmet T. Engineering the specificity of trehalose phosphorylase as a general strategy for the production of glycosyl phosphates. Chem Commun (Camb) 2015; 50:7834-6. [PMID: 24909572 DOI: 10.1039/c4cc02202e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step process is reported for the anomeric phosphorylation of galactose, using trehalose phosphorylase as biocatalyst. The monosaccharide enters this process as acceptor but can subsequently be released from the donor side, thanks to the non-reducing nature of the disaccharide intermediate. A key development was the creation of an optimized enzyme variant that displays a strict specificity (99%) for β-galactose 1-phosphate as product.
Collapse
Affiliation(s)
- Chao Chen
- Centre for Industrial Biotechnology and Biocatalysis Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Li SP, Hsiao WC, Yu CC, Chien WT, Lin HJ, Huang LD, Lin CH, Wu WL, Wu SH, Lin CC. Characterization ofMeiothermus taiwanensisGalactokinase and its Use in the One-Pot Enzymatic Synthesis of Uridine Diphosphate-Galactose and the Chemoenzymatic Synthesis of the Carbohydrate Antigen Stage Specific Embryonic Antigen-3. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Kumar D, Mishra KB, Mishra BB, Mondal S, Tiwari VK. Click chemistry inspired highly facile synthesis of triazolyl ethisterone glycoconjugates. Steroids 2014; 80:71-9. [PMID: 24316164 DOI: 10.1016/j.steroids.2013.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/05/2013] [Accepted: 11/23/2013] [Indexed: 01/31/2023]
Abstract
Numerous deoxy-azido sugars 3 were prepared by the reaction of tosyl/bromo sugars with NaN3 in dry DMF under heating condition. The 1,3-dipolar cycloaddition of deoxy-azido sugars 3 with ethisterone 4 to afford regioselective triazole-linked ethisterone glycoconjugates 5 was investigated in the presence of CuI and DIPEA in dichloromethane or CuSO4·5H2O and sodium ascorbate in aqueous medium. All the developed compounds were characterized by spectroscopic analysis (IR, (1)H &(13)C NMR, and MS spectra). Structure of triazolyl ethisterone glycoconjugate 5a has been further confirmed by its Single Crystal X-ray analysis.
Collapse
Affiliation(s)
- Dhananjay Kumar
- Department of Chemistry, Centre of Advanced Study, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saheli Mondal
- Department of Chemistry, Centre of Advanced Study, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
39
|
Reinhardt LA, Thoden JB, Peters GS, Holden HM, Cleland WW. pH-rate profiles support a general base mechanism for galactokinase (Lactococcus lactis). FEBS Lett 2013; 587:2876-81. [PMID: 23872454 DOI: 10.1016/j.febslet.2013.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 11/16/2022]
Abstract
Galactokinase (GALK), a member the Leloir pathway for normal galactose metabolism, catalyzes the conversion of α-d-galactose to galactose-1-phosphate. For this investigation, we studied the kinetic mechanism and pH profiles of the enzyme from Lactococcus lactis. Our results show that the mechanism for its reaction is sequential in both directions. Mutant proteins D183A and D183N are inactive (< 10000 fold), supporting the role of Asp183 as a catalytic base that deprotonates the C-1 hydroxyl group of galactose. The pH-kcat profile of the forward reaction has a pKa of 6.9 ± 0.2 that likely is due to Asp183. The pH-k(cat)/K(Gal) profile of the reverse reaction further substantiates this role as it is lacking a key pKa required for a direct proton transfer mechanism. The R36A and R36N mutant proteins show over 100-fold lower activity than that for the wild-type enzyme, thus suggesting that Arg36 lowers the pKa of the C-1 hydroxyl to facilitate deprotonation.
Collapse
Affiliation(s)
- Laurie A Reinhardt
- Institute For Enzyme Research and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA.
| | | | | | | | | |
Collapse
|
40
|
Pocci M, Alfei S, Lucchesini F, Castellaro S, Bertini V. Synthesis and NMR investigation of styrene glycopolymers containing d-galactose units functionalized with 4-(4-hydroxybutoxy)benzylamine residues. Polym Chem 2013. [DOI: 10.1039/c2py20587d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
|
42
|
Li L, Liu Y, Wang W, Cheng J, Zhao W, Wang P. A highly efficient galactokinase from Bifidobacterium infantis with broad substrate specificity. Carbohydr Res 2012; 355:35-9. [DOI: 10.1016/j.carres.2012.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 11/25/2022]
|
43
|
Chang Hsu Y, Hwu JR. Deoxygenative Olefination Reaction as the Key Step in the Syntheses of Deoxy and Iminosugars. Chemistry 2012; 18:7686-90. [DOI: 10.1002/chem.201201060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Indexed: 11/09/2022]
|
44
|
Substrate specificity of galactokinase from Streptococcus pneumoniae TIGR4 towards galactose, glucose, and their derivatives. Bioorg Med Chem Lett 2012; 22:3540-3. [DOI: 10.1016/j.bmcl.2012.03.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 03/07/2012] [Accepted: 03/14/2012] [Indexed: 11/21/2022]
|
45
|
Muthana MM, Qu J, Li Y, Zhang L, Yu H, Ding L, Malekan H, Chen X. Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem Commun (Camb) 2012; 48:2728-30. [PMID: 22306833 DOI: 10.1039/c2cc17577k] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A promiscuous UDP-sugar pyrophosphorylase (BLUSP) was cloned from Bifidobacterium longum strain ATCC55813 and used efficiently with a Pasteurella multocida inorganic pyrophosphatase (PmPpA) with or without a monosaccharide 1-kinase for one-pot multienzyme synthesis of UDP-galactose, UDP-glucose, UDP-mannose, and their derivatives. Further chemical diversification of a UDP-mannose derivative resulted in the formation of UDP-N-acetylmannosamine.
Collapse
Affiliation(s)
- Musleh M Muthana
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen M, Chen LL, Zou Y, Xue M, Liang M, Jin L, Guan WY, Shen J, Wang W, Wang L, Liu J, Wang PG. Wide sugar substrate specificity of galactokinase from Streptococcus pneumoniae TIGR4. Carbohydr Res 2011; 346:2421-5. [DOI: 10.1016/j.carres.2011.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/27/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
|
47
|
N-acetylgalactosamine Kinase: A Naturally Promiscuous Small Molecule Kinase. Appl Biochem Biotechnol 2011; 166:57-63. [DOI: 10.1007/s12010-011-9403-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/26/2011] [Indexed: 10/17/2022]
|
48
|
Kristiansson H, Timson DJ. Increased Promiscuity of Human Galactokinase Following Alteration of a Single Amino Acid Residue Distant from the Active Site. Chembiochem 2011; 12:2081-7. [DOI: 10.1002/cbic.201100308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Indexed: 11/09/2022]
|
49
|
Regioselective synthesis of 5-trifluoromethyl-1,2,3-triazole nucleoside analogues via TBS-directed 1,3-dipolar cycloaddition reaction. J Fluor Chem 2011. [DOI: 10.1016/j.jfluchem.2010.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Gantt RW, Peltier-Pain P, Thorson JS. Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules. Nat Prod Rep 2011; 28:1811-53. [DOI: 10.1039/c1np00045d] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|