1
|
Rani A, Sindhu A, Yao TJ, Horng JC, Venkatesu P. Profiling the impact of choline chloride on the self-assembly of collagen mimetic peptide (Pro-Hyp-Gly)10. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Hulgan SAH, Hartgerink JD. Recent Advances in Collagen Mimetic Peptide Structure and Design. Biomacromolecules 2022; 23:1475-1489. [PMID: 35258280 DOI: 10.1021/acs.biomac.2c00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Collagen mimetic peptides (CMPs) fold into a polyproline type II triple helix, allowing the study of the structure and function (or misfunction) of the collagen family of proteins. This Perspective will focus on recent developments in the use of CMPs toward understanding the structure and controlling the stability of the triple helix. Triple helix assembly is influenced by various factors, including the single amino acid propensity for the triple helix fold, pairwise interactions between these amino acids, and long-range effects observed across the helix, such as bend, twist, and fraying. Important progress in creating a comprehensive and predictive understanding of these factors for peptides with exclusively natural amino acids has been made. In contrast, several groups have successfully developed unnatural amino acids that are engineered to stabilize the triple helical structure. A third approach to controlling the triple helical structure includes covalent cross-linking of the triple helix to stabilize the assembly, which eliminates the problematic equilibrium of unfolding into monomers and enforces compositional control. Advances in all these areas have resulted in significant improvements to our understanding and control of this important class of protein, allowing for the design and application of more chemically complex and well-controlled collagen mimetic biomaterials.
Collapse
Affiliation(s)
- Sarah A H Hulgan
- Rice University, Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D Hartgerink
- Rice University, Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Jiang L, Kirshenbaum K. A modular approach for organizing dimeric coiled coils on peptoid oligomer scaffolds. Org Biomol Chem 2020; 18:2312-2320. [PMID: 32159574 DOI: 10.1039/d0ob00453g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a general approach to promote the folding of synthetic oligopeptides capable of forming homodimeric coiled coil assemblies. By pre-organizing the peptides on macrocyclic oligomer scaffolds, the stability of the coiled coils is enhanced with an observed increase in the melting temperature of 30 °C to 40 °C. Molecular dynamics simulations substantiate the hypothesis that the enhanced stability is established by constraining motion at the peptide termini and by pre-organizing intramolecular helix-helix contacts. We demonstrate the modularity of this approach by using a family of peptoid scaffolds to promote the folding of a dimeric coiled coil. Importantly, this strategy for templating coiled coils allows preservation of native amino acid sequences. Comparing a macrocyclic peptoid scaffold to its linear counterparts indicates that both types of assemblies are effective for organizing stable coiled coils. These results will guide future designs of coiled coil peptides for biomedical applications and as building blocks for more complex supramolecular assemblies.
Collapse
Affiliation(s)
- Linhai Jiang
- Chemistry Department, New York University, New York, NY 10003, USA.
| | - Kent Kirshenbaum
- Chemistry Department, New York University, New York, NY 10003, USA.
| |
Collapse
|
4
|
Hulgan SAH, Jalan AA, Li IC, Walker DR, Miller MD, Kosgei AJ, Xu W, Phillips GN, Hartgerink JD. Covalent Capture of Collagen Triple Helices Using Lysine–Aspartate and Lysine–Glutamate Pairs. Biomacromolecules 2020; 21:3772-3781. [DOI: 10.1021/acs.biomac.0c00878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sarah A. H. Hulgan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Abhishek A. Jalan
- Department of Biochemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - I-Che Li
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Douglas R. Walker
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Mitchell D. Miller
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Abigael J. Kosgei
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Weijun Xu
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - George N. Phillips
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Abstract
The combination of supramolecular aggregation of collagen model peptides with reversible covalent end‐capping of the formed triple helix in a single experimental set‐up yielded minicollagens, which were characterized by a single melting temperature. In spite of the numerous possible reaction intermediates, a specific synthetic collagen with a leading, middle and trailing strand is formed in a highly cooperative self‐assembly process.
Collapse
Affiliation(s)
- Christoph Priem
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Armin Geyer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| |
Collapse
|
6
|
Kubyshkin V. Stabilization of the triple helix in collagen mimicking peptides. Org Biomol Chem 2019; 17:8031-8047. [PMID: 31464337 DOI: 10.1039/c9ob01646e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Collagen mimics are peptides designed to reproduce structural features of natural collagen. A triple helix is the first element in the hierarchy of collagen folding. It is an assembly of three parallel peptide chains stabilized by packing and interchain hydrogen bonds. In this review we summarize the existing chemical approaches towards stabilization of this structure including the most recent developments. Currently proposed methods include manipulation of the amino acid composition, application of unnatural amino acid analogues, stimuli-responsive modifications, chain tethering approaches, peptide amphiphiles, modifications that target interchain interactions and more. This ability to manipulate the triple helix as a supramolecular self-assembly contributes to our understanding of the collagen folding. It also provides essential information needed to design collagen-based biomaterials of the future.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, University of Manitoba, Dysart Rd. 144, R3T 2N2, Winnipeg, Manitoba, Canada.
| |
Collapse
|
7
|
Egli J, Siebler C, Köhler M, Zenobi R, Wennemers H. Hydrophobic Moieties Bestow Fast-Folding and Hyperstability on Collagen Triple Helices. J Am Chem Soc 2019; 141:5607-5611. [DOI: 10.1021/jacs.8b13871] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jasmine Egli
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Christiane Siebler
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Martin Köhler
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| |
Collapse
|
8
|
Takita KK, Fujii KK, Kadonosono T, Masuda R, Koide T. Cyclic Peptides for Efficient Detection of Collagen. Chembiochem 2018; 19:1613-1617. [PMID: 29756312 DOI: 10.1002/cbic.201800166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 01/19/2023]
Abstract
We report here a new class of collagen-binding peptides, cyclic collagen-mimetic peptides (cCMPs), that efficiently hybridize with the triple-helix-forming portions of collagen. cCMPs are composed of two parallel collagen-like (Xaa-Yaa-Gly)n strands with both termini tethered by covalent linkages. Enzyme-linked immunosorbent assays and western blotting analysis showed that cCMPs exhibit more potent affinity toward collagen than reported collagen-binding peptides and can specifically detect different collagen polypeptides in a mixture of proteins. Collagen secreted from cultured cells was detected by confocal microscopy with fluorescein-labeled cCMP. The cCMP is also shown to detect sensitively folding intermediates in the endoplasmic reticulum, something that was difficult to visualize with conventional collagen detectors. Molecular-dynamics simulations suggested that a cCMP forms a more stably hybridized product than its single-chain counterpart; this could explain why cCMP has higher affinity toward denatured collagen. These results indicate the usefulness of cCMPs as tools for detecting denatured collagen.
Collapse
Affiliation(s)
- Koh K Takita
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
| | - Kazunori K Fujii
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
| | - Tetsuya Kadonosono
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Ryo Masuda
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
| | - Takaki Koide
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
| |
Collapse
|
9
|
Delsuc N, Uchinomiya S, Ojida A, Hamachi I. A host-guest system based on collagen-like triple-helix hybridization. Chem Commun (Camb) 2018; 53:6856-6859. [PMID: 28604910 DOI: 10.1039/c7cc03055j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A strategy inspired by tweezer receptors has been employed to develop a new host-guest system. The hybridization into a collagen-like triple helix is the driving force for the recognition that occurs with high affinity and selectivity. Several systems have been screened to find the best host-guest pair and this strategy may be implemented for tag fused protein recognition.
Collapse
Affiliation(s)
- N Delsuc
- Laboratoire des Biomolécules, Département de Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005 Paris, France.
| | | | | | | |
Collapse
|
10
|
Stawikowski MJ, Fields GB. Tricine as a convenient scaffold for the synthesis of C-terminally branched collagen-model peptides. Tetrahedron Lett 2018; 59:130-134. [PMID: 29545652 PMCID: PMC5846494 DOI: 10.1016/j.tetlet.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel and convenient method for the synthesis of C-terminally branched collagen-model peptides has been achieved using tricine (N-[tris(hydroxymethyl)methyl]glycine) as a branching scaffold and 1,2-diaminoethane or 1,4-diaminobutane as a linker. The peptide sequence was incorporated directly onto the linker and scaffold during solid-phase synthesis without additional manipulations. The resulting branched triple-helical peptides exhibited comparable thermal stabilities to the parent, unbranched sequence, and served as substrates for matrix metalloproteinase-1 (MMP-1). The tricine-based branch reported herein represents the simplest synthetic scaffold for the convenient synthesis of covalently linked homomeric collagen-model triple-helical peptides.
Collapse
Affiliation(s)
- Maciej J. Stawikowski
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431
| | - Gregg B. Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431
- The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
11
|
Van Duong H, Chau TTL, Dang NTT, Nguyen DV, Le SL, Ho TS, Vu TP, Tran TTV, Nguyen TD. Self-aggregation of water-dispersible nanocollagen helices. Biomater Sci 2018; 6:651-660. [DOI: 10.1039/c7bm01141e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The self-aggregation of water-dispersible native collagen nanofibrils has been investigated to generate hierarchical networks with structural variation from helicity to layering.
Collapse
Affiliation(s)
- Hau Van Duong
- Department of Chemistry
- Hue University of Agriculture and Forestry
- Hue University
- Hue 530000
- Vietnam
| | - Trang The Lieu Chau
- Department of Chemistry
- Hue University of Sciences
- Hue University
- Hue 530000
- Vietnam
| | - Nhan Thi Thanh Dang
- Department of Chemistry
- Hue University of Education
- Hue University
- Hue 530000
- Vietnam
| | - Duc Van Nguyen
- Faculty of Agronomy
- Hue University of Agriculture and Forestry
- Hue 530000
- Vietnam
| | - Son Lam Le
- Department of Chemistry
- Hue University of Sciences
- Hue University
- Hue 530000
- Vietnam
| | - Thang Sy Ho
- Department of Natural Resource and Environment
- Dong Thap University
- Dong Thap 870000
- Vietnam
| | - Tuyen Phi Vu
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
- National Institute of Information and Communications Strategy
| | - Thi Thi Van Tran
- Department of Chemistry
- Hue University of Sciences
- Hue University
- Hue 530000
- Vietnam
| | - Thanh-Dinh Nguyen
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
12
|
Hentzen NB, Smeenk LEJ, Witek J, Riniker S, Wennemers H. Cross-Linked Collagen Triple Helices by Oxime Ligation. J Am Chem Soc 2017; 139:12815-12820. [PMID: 28872857 DOI: 10.1021/jacs.7b07498] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent cross-links are crucial for the folding and stability of triple-helical collagen, the most abundant protein in nature. Cross-linking is also an attractive strategy for the development of synthetic collagen-based biocompatible materials. Nature uses interchain disulfide bridges to stabilize collagen trimers. However, their implementation into synthetic collagen is difficult and requires the replacement of the canonical amino acids (4R)-hydroxyproline and proline by cysteine or homocysteine, which reduces the preorganization and thereby stability of collagen triple helices. We therefore explored alternative covalent cross-links that allow for connecting triple-helical collagen via proline residues. Here, we present collagen model peptides that are cross-linked by oxime bonds between 4-aminooxyproline (Aop) and 4-oxoacetamidoproline placed in coplanar Xaa and Yaa positions of neighboring strands. The covalently connected strands folded into hyperstable collagen triple helices (Tm ≈ 80 °C). The design of the cross-links was guided by an analysis of the conformational properties of Aop, studies on the stability and functionalization of Aop-containing collagen triple helices, and molecular dynamics simulations. The studies also show that the aminooxy group exerts a stereoelectronic effect comparable to fluorine and introduce oxime ligation as a tool for the functionalization of synthetic collagen.
Collapse
Affiliation(s)
- Nina B Hentzen
- Laboratorium für Organische Chemie, ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Linde E J Smeenk
- Laboratorium für Organische Chemie, ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Jagna Witek
- Laboratorium für Physikalische Chemie, ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratorium für Physikalische Chemie, ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Helma Wennemers
- Laboratorium für Organische Chemie, ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Abstract
In some natural collagen triple helices, cysteine (Cys) residues on neighboring strands are linked by disulfide bonds, enhancing association and maintaining proper register. Similarly, Cys-Cys disulfide bridges have been used to impose specific associations between collagen-mimetic peptides (CMPs). Screening a library of disulfide linkers in silico for compatibility with collagen identifies the disulfide bridge between proximal homocysteine (Hcy) and Cys as conferring much greater stability than a Cys-Cys bridge, but only when Hcy is installed in the Xaa position of the canonical Xaa-Yaa-Gly repeat and Cys is installed in the Yaa position. Experimental evaluation of CMPs that host alternative thiols validates this design: only Hcy-Cys bridges improve triple-helical structure and stability upon disulfide-bond formation. This privileged linker can enhance CMP-based biomaterials and enable previously inaccessible molecular designs.
Collapse
Affiliation(s)
- I Caglar Tanrikulu
- Department of Biochemistry and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | |
Collapse
|
14
|
Stabilization of collagen-model, triple-helical peptides for in vitro and in vivo applications. Methods Mol Biol 2013; 1081:167-94. [PMID: 24014440 PMCID: PMC4260935 DOI: 10.1007/978-1-62703-652-8_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The triple-helical structure of collagen has been accurately reproduced in numerous chemical and recombinant model systems. Triple-helical peptides and proteins have found application for dissecting collagen-stabilizing forces, isolating receptor- and protein-binding sites in collagen, mechanistic examination of collagenolytic proteases, and development of novel biomaterials. Introduction of native-like sequences into triple-helical constructs can reduce the thermal stability of the triple-helix to below that of the physiological environment. In turn, incorporation of nonnative amino acids and/or templates can enhance triple-helix stability. We presently describe approaches by which triple-helical structure can be modulated for use under physiological or near-physiological conditions.
Collapse
|
15
|
Syntheses, crystal structures and antibacterial activities of six cobalt(II) pyrazole carboxylate complexes with helical character. Polyhedron 2012. [DOI: 10.1016/j.poly.2012.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Lebruin LT, Banerjee S, O'Rourke BD, Case MA. Metal ion-assembled micro-collagen heterotrimers. Biopolymers 2011; 95:792-800. [PMID: 21590759 DOI: 10.1002/bip.21678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/05/2011] [Accepted: 05/07/2011] [Indexed: 11/09/2022]
Abstract
Collagen mimetic peptides (CMPs) provide critical insight into the assembly, stability, and structure of the triple helical collagen protein. The majority of natural fibrous collagens are aab or abc heterotrimers, yet few examples of heterotrimeric CMPs have been reported. Previously, CMP heterotrimers have only been accessible by total syntheses or by introducing complementary interstrand electrostatic or steric interactions. Here, we describe an abc CMP heterotrimer in which each contributing CMP consists of only three amino acids: glycine, proline and 4-hydroxyproline. Assembly of the heterotrimeric triple helix is directed by a combination of metal-ion coordination to set the relative register of the CMPs, and minimization of valence frustration to direct heterotrimerization. Assembly of the four-component mixture is facile and extremely rapid, and equilibration to the abc heterotrimer occurs within a few hours at modestly elevated temperatures. The melting temperatures of the metal-assembled collagen trimers are higher by some 30°C than the apopeptide assemblies. Two iterations of the design are described, and the outcomes suggest possibilities for designing self-assembling abc and abb heterotrimers.
Collapse
|
17
|
Byrne C, McEwan PA, Emsley J, Fischer PM, Chan WC. End-stapled homo and hetero collagen triple helices: a click chemistry approach. Chem Commun (Camb) 2010; 47:2589-91. [PMID: 21173963 DOI: 10.1039/c0cc04795c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A CuAAC reaction was established for modular synthesis of end-stapled homo- and hetero-triple helical peptides, generating "clicked" macro-assemblies with enhanced thermal stability.
Collapse
Affiliation(s)
- Cillian Byrne
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, UK
| | | | | | | | | |
Collapse
|
18
|
Template-tethered collagen mimetic peptides for studying heterotrimeric triple-helical interactions. Biopolymers 2010; 95:94-104. [DOI: 10.1002/bip.21536] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/05/2010] [Accepted: 08/11/2010] [Indexed: 11/07/2022]
|
19
|
Yoo B, Shin SBY, Huang ML, Kirshenbaum K. Peptoid macrocycles: making the rounds with peptidomimetic oligomers. Chemistry 2010; 16:5528-37. [PMID: 20414912 DOI: 10.1002/chem.200903549] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Macrocyclic constraints are often employed to rigidify the conformation of flexible oligomeric systems. This approach has recently been used to organize the structure of peptoid oligomers, which are peptidomimetics composed of chemically diverse N-substituted glycine monomer units. In this review, we describe advances in the synthesis and characterization of cyclic peptoids. We evaluate how the installation of covalent constraints between the oligomer termini or side chains has been effective in defining peptoid conformations. We also discuss the potential applications for this promising family of macrocyclic peptidomimetics.
Collapse
Affiliation(s)
- Barney Yoo
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Triple-helical peptides (THPs) have been utilized as collagen models since the 1960s. The original focus for THP-based research was to unravel the structural determinants of collagen. In the last two decades, virtually all aspects of collagen structural biochemistry have been explored with THP models. More specifically, secondary amino acid analogs have been incorporated into THPs to more fully understand the forces that stabilize triple-helical structure. Heterotrimeric THPs have been utilized to better appreciate the contributions of chain sequence diversity on collagen function. The role of collagen as a cell signaling protein has been dissected using THPs that represent ligands for specific receptors. The mechanisms of collagenolysis have been investigated using THP substrates and inhibitors. Finally, THPs have been developed for biomaterial applications. These aspects of THP-based research are overviewed herein.
Collapse
Affiliation(s)
- Gregg B Fields
- University of Texas Health Science Center, Department of Biochemistry, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
21
|
Dai N, Etzkorn FA. Cis−Trans Proline Isomerization Effects on Collagen Triple-Helix Stability Are Limited. J Am Chem Soc 2009; 131:13728-32. [DOI: 10.1021/ja904177k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nan Dai
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061
| | | |
Collapse
|
22
|
Boulègue C, Musiol HJ, Götz MG, Renner C, Moroder L. Natural and artificial cystine knots for assembly of homo- and heterotrimeric collagen models. Antioxid Redox Signal 2008; 10:113-25. [PMID: 17961005 DOI: 10.1089/ars.2007.1868] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Native collagens are molecules that are difficult to handle because of their high tendency towards aggregation and denaturation. It was discovered early on that synthetic collagenous peptides are more amenable to conformational characterization and thus can serve as useful models for structural and functional studies. Single-stranded collagenous peptides of high propensity to self-associate into triple-helical trimers were used for this purpose as well as interchain-crosslinked homotrimers assembled on synthetic scaffolds. With the growing knowledge of the biosynthetic pathways of natural collagens and the importance of their interchain disulfide crosslinks, which stabilize the triple-helical structure, native as well as de novo designed cystine knots have gained increasing attention in the assembly of triple-stranded collagen peptides. In addition, natural sequences of collagens were incorporated in order to biophysically characterize their functional epitopes. This review is focused on the methods developed over the years, and future perspectives for the production of collagen-mimicking synthetic and recombinant triple-helical homo- and heterotrimers.
Collapse
Affiliation(s)
- Cyril Boulègue
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|