1
|
Suresh A, Bagchi D, Kaliappan KP. Thapsigargin: a promising natural product with diverse medicinal potential - a review of synthetic approaches and total syntheses. Org Biomol Chem 2024. [PMID: 39363839 DOI: 10.1039/d4ob01239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Thapsigargin, a sesquiterpene lactone, naturally occurring in the roots and fruits of the Mediterranean shrub Thapsia garganica L, is known to the practitioners of traditional medicines since the medieval ages as a cure for rheumatic pain, lung diseases, and female infertility. This naturally occurring guaianolide has shown remarkable activity for Sarco endoplasmic reticulum Ca2+ ATPase inhibition, which eventually renders it fit as a potential candidate for anti-cancer drugs. Mipsagargin, a prodrug derived from thapsigargin, is under clinical trials for the treatment of glioblastoma. Recently, thapsigargin has shown promise as an antiviral against SARS-CoV-2. Limited natural availability and challenging synthesis have prompted research into new synthetic pathways. This review discusses significant synthetic approaches and total syntheses of thapsigargin reported to date.
Collapse
Affiliation(s)
- Anisha Suresh
- Department of Chemistry, Indian Institute of Technology (IIT), Bombay, Powai, Mumbai, 400076, India.
| | - Dibyojeet Bagchi
- Department of Chemistry, Indian Institute of Technology (IIT), Bombay, Powai, Mumbai, 400076, India.
| | - Krishna P Kaliappan
- Department of Chemistry, Indian Institute of Technology (IIT), Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
2
|
Monaghan RM, Naylor RW, Flatman D, Kasher PR, Williams SG, Keavney BD. FLT4 causes developmental disorders of the cardiovascular and lymphovascular systems via pleiotropic molecular mechanisms. Cardiovasc Res 2024; 120:1164-1176. [PMID: 38713105 PMCID: PMC11368125 DOI: 10.1093/cvr/cvae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
AIMS Rare, deleterious genetic variants in FLT4 are associated with Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease. The distinct genetic variants in FLT4 are also an established cause of Milroy disease, the most prevalent form of primary hereditary lymphoedema. The phenotypic features of these two conditions are non-overlapping, implying pleiotropic cellular mechanisms during development. METHODS AND RESULTS In this study, we show that FLT4 variants identified in patients with TOF, when expressed in primary human endothelial cells, cause aggregation of FLT4 protein in the perinuclear endoplasmic reticulum, activating proteostatic and metabolic signalling, whereas lymphoedema-associated FLT4 variants and wild-type (WT) FLT4 do not. FLT4 TOF variants display characteristic gene expression profiles in key developmental signalling pathways, revealing a role for FLT4 in cardiogenesis distinct from its role in lymphatic development. Inhibition of proteostatic signalling abrogates these effects, identifying potential avenues for therapeutic intervention. Depletion of flt4 in zebrafish caused cardiac phenotypes of reduced heart size and altered heart looping. These phenotypes were rescued with coinjection of WT human FLT4 mRNA, but incompletely or not at all by mRNA harbouring FLT4 TOF variants. CONCLUSION Taken together, we identify a pathogenic mechanism for FLT4 variants predisposing to TOF that is distinct from the known dominant negative mechanism of Milroy-causative variants. FLT4 variants give rise to conditions of the two circulatory subdivisions of the vascular system via distinct developmental pleiotropic molecular mechanisms.
Collapse
Affiliation(s)
- Richard M Monaghan
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, 5th Floor, AV Hill Building, Oxford Road, Manchester, M13 9NT, UK
| | - Richard W Naylor
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PN, UK
| | - Daisy Flatman
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Simon G Williams
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, 5th Floor, AV Hill Building, Oxford Road, Manchester, M13 9NT, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, 5th Floor, AV Hill Building, Oxford Road, Manchester, M13 9NT, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Oxford Road, M13 9WL, UK
| |
Collapse
|
3
|
Fernandes RA, Moharana S, Khatun GN. Recent advances in the syntheses of guaianolides. Org Biomol Chem 2023; 21:6652-6670. [PMID: 37551715 DOI: 10.1039/d3ob01019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Sesquiterpene lactones, especially guaianolides representing a bigger class of natural products, have served as appealing candidates for total synthesis due to their varied bio- and pharmaceutical activities. This tutorial review delineates the creative efforts of many researchers in the total syntheses of different complex guaianolides recently published in the literature. Many of the syntheses display meticulous interplay between new methods and the ingenuity of strategies achieved through well-planned routes. In some cases, the Chiron approach has come in quite handy, wherein the structural features and stereochemistry of select molecules could map well with naturally available starting materials. A few catalytic methods like diastereoselective aldol reaction, enediyne or dienyne metathesis, or photochemical methods have been efficiently used. This compilation also aims to enhance the diversity space based on these natural products and further interest in the sustainable total synthesis of this class of compounds and related molecules.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Sanjita Moharana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Gulenur Nesha Khatun
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
4
|
Kurisawa N, Iwasaki A, Teranuma K, Dan S, Toyoshima C, Hashimoto M, Suenaga K. Structural Determination, Total Synthesis, and Biological Activity of Iezoside, a Highly Potent Ca 2+-ATPase Inhibitor from the Marine Cyanobacterium Leptochromothrix valpauliae. J Am Chem Soc 2022; 144:11019-11032. [DOI: 10.1021/jacs.2c04459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naoaki Kurisawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kazuya Teranuma
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Chikashi Toyoshima
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaru Hashimoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
5
|
Yu S, Wang Y, Tang B, Liu X, Song L, Xu G, Zhu H, Sun H. Four calcium signaling pathway-related genes were upregulated in microcystic adnexal carcinoma: transcriptome analysis and immunohistochemical validation. World J Surg Oncol 2022; 20:142. [PMID: 35509066 PMCID: PMC9066904 DOI: 10.1186/s12957-022-02601-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Microcystic adnexal carcinoma (MAC) is a skin cancer with challenges in diagnosis and management. This study was aimed to detect molecular alterations of MAC and guide its pathologic diagnosis and treatment. METHODS We performed transcriptome analysis on 5 MAC and 5 normal skin tissues, identified the differentially expressed genes, and verified them by immunohistochemistry. RESULTS Three hundred four differentially expressed genes (DEGs) in MAC were identified by next-generation transcriptome sequencing, among which 225 genes were upregulated and 79 genes were downregulated. Four genes of the calcium signaling pathway, including calcium voltage-gated channel subunit alpha 1 S (CACNA1S), ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1 (ATP2A1), ryanodine receptor 1 (RYR1), and myosin light chain kinase 3 (MYLK3), were upregulated and then been verified by immunohistochemistry. The expression of CACNA1S, ATP2A1, RYR1, and MYLK3 was upregulated in MAC compared with normal sweat glands and syringoma tumor cells and was generally negative in trichoepithelioma and infundibulocystic type basal cell carcinoma. CONCLUSIONS The four genes of the calcium signaling pathway were upregulated in MAC at both RNA and protein levels. CACNA1S, ATP2A1, RYR1, and MYLK3 may be new diagnostic molecular markers and therapeutic targets for MAC.
Collapse
Affiliation(s)
- Shuaixia Yu
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yang Wang
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Baijie Tang
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiang Liu
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Linhong Song
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Gang Xu
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hong Zhu
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China. .,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Huajun Sun
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China. .,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
6
|
Deihl ED, Jesikiewicz LT, Newman LJ, Liu P, Brummond KM. Rh(I)-Catalyzed Allenic Pauson-Khand Reaction to Access the Thapsigargin Core: Influence of Furan and Allenyl Chloroacetate Groups on Enantioselectivity. Org Lett 2022; 24:995-999. [PMID: 35081313 DOI: 10.1021/acs.orglett.1c03951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thapsigargin (Tg) is a potent SERCA pump inhibitor with the potential to treat cancer and COVID-19. We have extended the scope of the asymmetric allenic Pauson-Khand reaction to furan-tethered allene-ynes, a stereoconvergent transformation affording the 5,7,5-ring system of Tg in good yields and high enantioselectivity. Computational studies of the oxidative cyclization step show that the furan and chloroacetate groups contribute to this high selectivity.
Collapse
Affiliation(s)
- Eric D Deihl
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Luke T Jesikiewicz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Logan J Newman
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kay M Brummond
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Thapsigargin-From Traditional Medicine to Anticancer Drug. Int J Mol Sci 2020; 22:ijms22010004. [PMID: 33374919 PMCID: PMC7792614 DOI: 10.3390/ijms22010004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
A sesquiterpene lactone, thapsigargin, is a phytochemical found in the roots and fruits of Mediterranean plants from Thapsia L. species that have been used for centuries in folk medicine to treat rheumatic pain, lung diseases, and female infertility. More recently thapsigargin was found to be a potent cytotoxin that induces apoptosis by inhibiting the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump, which is necessary for cellular viability. This biological activity encouraged studies on the use of thapsigargin as a novel antineoplastic agent, which were, however, hampered due to high toxicity of this compound to normal cells. In this review, we summarized the recent knowledge on the biological activity and molecular mechanisms of thapsigargin action and advances in the synthesis of less-toxic thapsigargin derivatives that are being developed as novel anticancer drugs.
Collapse
|
8
|
Marchesini M, Gherli A, Montanaro A, Patrizi L, Sorrentino C, Pagliaro L, Rompietti C, Kitara S, Heit S, Olesen CE, Møller JV, Savi M, Bocchi L, Vilella R, Rizzi F, Baglione M, Rastelli G, Loiacono C, La Starza R, Mecucci C, Stegmaier K, Aversa F, Stilli D, Lund Winther AM, Sportoletti P, Bublitz M, Dalby-Brown W, Roti G. Blockade of Oncogenic NOTCH1 with the SERCA Inhibitor CAD204520 in T Cell Acute Lymphoblastic Leukemia. Cell Chem Biol 2020; 27:678-697.e13. [PMID: 32386594 PMCID: PMC7305996 DOI: 10.1016/j.chembiol.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
The identification of SERCA (sarco/endoplasmic reticulum calcium ATPase) as a target for modulating gain-of-function NOTCH1 mutations in Notch-dependent cancers has spurred the development of this compound class for cancer therapeutics. Despite the innate toxicity challenge associated with SERCA inhibition, we identified CAD204520, a small molecule with better drug-like properties and reduced off-target Ca2+ toxicity compared with the SERCA inhibitor thapsigargin. In this work, we describe the properties and complex structure of CAD204520 and show that CAD204520 preferentially targets mutated over wild-type NOTCH1 proteins in T cell acute lymphoblastic leukemia (T-ALL) and mantle cell lymphoma (MCL). Uniquely among SERCA inhibitors, CAD204520 suppresses NOTCH1-mutated leukemic cells in a T-ALL xenografted model without causing cardiac toxicity. This study supports the development of SERCA inhibitors for Notch-dependent cancers and extends their application to cases with isolated mutations in the PEST degradation domain of NOTCH1, such as MCL or chronic lymphocytic leukemia (CLL).
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Enzyme Inhibitors/chemical synthesis
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Female
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred ICR
- Mice, Inbred NOD
- Mice, SCID
- Molecular Structure
- Mutation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptor, Notch1/antagonists & inhibitors
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Matteo Marchesini
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Andrea Gherli
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Anna Montanaro
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Laura Patrizi
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Claudia Sorrentino
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Luca Pagliaro
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Chiara Rompietti
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Samuel Kitara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Sabine Heit
- University of Oxford, Department of Biochemistry, Oxford OX1 3QU, UK
| | - Claus E Olesen
- Aarhus University, Department of Biomedicine, 8000 Aarhus C, Denmark
| | - Jesper V Møller
- Aarhus University, Department of Biomedicine, 8000 Aarhus C, Denmark
| | - Monia Savi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Leonardo Bocchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Rocchina Vilella
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Federica Rizzi
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy; INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| | - Marilena Baglione
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Giorgia Rastelli
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Caterina Loiacono
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Roberta La Starza
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Cristina Mecucci
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute, Cambridge, MA 02142, USA
| | - Franco Aversa
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Donatella Stilli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | | | - Paolo Sportoletti
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Maike Bublitz
- University of Oxford, Department of Biochemistry, Oxford OX1 3QU, UK
| | | | - Giovanni Roti
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy.
| |
Collapse
|
9
|
Shao H, Fang K, Wang YP, Zhang XM, Ding TM, Zhang SY, Chen ZM, Tu YQ. Total Synthesis of Fawcettimine-Type Alkaloid, Lycojaponicumin A. Org Lett 2020; 22:3775-3779. [PMID: 32330061 DOI: 10.1021/acs.orglett.0c00961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The efficient total synthesis of lycojaponicumin A (1) has been accomplished for the first time. The remarkable features of this novel strategy include the following: (1) rapid construction of tricyclic intermediate 4 through a regio- and stereoselective semipinacol ring expansion, which simplified the construction of rings A and B of 1; (2) the subsequent regio- and stereoselective formation of the highly strained rings C-E of 1 through a tandem oxa-hetero [3 + 2] cycloaddition/N-cycloalkylation.
Collapse
Affiliation(s)
- Hui Shao
- School of Chemistry and Chemical Engineering, Frontiers Science Center of Transformative Molecules, Shanghai Jiao Tong University, Shanghai, P. R. China, 200240
| | - Kun Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China, 730000
| | - Yun-Peng Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center of Transformative Molecules, Shanghai Jiao Tong University, Shanghai, P. R. China, 200240
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China, 730000
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center of Transformative Molecules, Shanghai Jiao Tong University, Shanghai, P. R. China, 200240
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center of Transformative Molecules, Shanghai Jiao Tong University, Shanghai, P. R. China, 200240
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center of Transformative Molecules, Shanghai Jiao Tong University, Shanghai, P. R. China, 200240
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontiers Science Center of Transformative Molecules, Shanghai Jiao Tong University, Shanghai, P. R. China, 200240.,State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China, 730000
| |
Collapse
|
10
|
Peterková L, Kmoníčková E, Ruml T, Rimpelová S. Sarco/Endoplasmic Reticulum Calcium ATPase Inhibitors: Beyond Anticancer Perspective. J Med Chem 2020; 63:1937-1963. [PMID: 32030976 DOI: 10.1021/acs.jmedchem.9b01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sarco/endoplasmic reticulum calcium ATPase (SERCA), which plays a key role in the maintenance of Ca2+ ion homeostasis, is an extensively studied enzyme, the inhibition of which has a considerable impact on cell life and death decision. To date, several SERCA inhibitors have been thoroughly studied and the most notable one, a derivative of the sesquiterpene lactone thapsigargin, is gradually approaching a clinical application. Meanwhile, new compounds with SERCA-inhibiting properties of natural, synthetic, or semisynthetic origin are being discovered and/or developed; some of these might also be suitable for the development of new drugs with improved performance. This review brings an up-to-date comprehensive overview of recently discovered compounds with the potential of SERCA inhibition, discusses their mechanism of action, and highlights their potential clinical applications, such as cancer treatment.
Collapse
Affiliation(s)
- Lucie Peterková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Eva Kmoníčková
- Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
11
|
Hu X, Musacchio AJ, Shen X, Tao Y, Maimone TJ. Allylative Approaches to the Synthesis of Complex Guaianolide Sesquiterpenes from Apiaceae and Asteraceae. J Am Chem Soc 2019; 141:14904-14915. [PMID: 31448610 DOI: 10.1021/jacs.9b08001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With hundreds of unique members isolated to date, guaianolide lactones represent a particularly prolific class of terpene natural products. Given their extensive documented therapeutic properties and fascinating chemical structures, these metabolites have captivated the synthetic chemistry community for many decades. As a result of divergent biosynthetic pathways, which produce a wide array of stereochemical and oxidative permutations, a unifying synthetic pathway to this broad family of natural products is challenging. Herein we document the evolution of a chiral-pool-based synthetic program aimed at accessing an assortment of guaianolides, particularly those from the plant family Apiaceae as well as Asteraceae, members of which possess distinct chemical substructures and necessitate deviating synthetic platforms. An initial route employing the linear monoterpene linalool generated a lower oxidation state guaianolide but was not compatible with the majority of family members. A double-allylation disconnection using a carvone-derived fragment was then developed to access first an Asteraceae-type guaianolide and then various Apiaceae congeners. Finally, using these findings in conjunction with a tandem polyoxygenation cascade, we developed a pathway to highly oxygenated nortrilobolide. A variety of interesting observations in metal-mediated aldehyde allylation and alkene polyoxygenation are reported and discussed.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J Maimone
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| |
Collapse
|
12
|
Sanogo Y, Othman RB, Dhambri S, Selkti M, Jeuken A, Prunet J, Férézou JP, Ardisson J, Lannou MI, Sorin G. Ti(II) and Rh(I) Complexes as Reagents toward a Thapsigargin Core. J Org Chem 2019; 84:5821-5830. [PMID: 30964681 DOI: 10.1021/acs.joc.8b03249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel approach toward the [5-7]fused bicyclic core of thapsigargin, a subnanomolar inhibitor of the endo/sarcoplasmic calcium ATPase (SERCA), is presented. The synthetic route includes an original Ti(II)-mediated hydroxy-directed reductive coupling of an enantiomerically enriched propargylic alcohol and an intramolecular Rh(I)-catalyzed cyclocarbonylation reaction as key steps. Interestingly, through the first experiments of titanocene-mediated reductive cyclization of a 1,8-enyne, a seven-membered cycle was isolated as a unique product with a total diastereoselectivity.
Collapse
Affiliation(s)
- Youssouf Sanogo
- Unité CNRS UMR 8638 , Université Paris Descartes, Faculté de Pharmacie , Sorbonne Paris Cité, 4 Avenue de l'Observatoire , Paris Cedex 06 75270 , France
| | - Raja Ben Othman
- Unité CNRS UMR 8638 , Université Paris Descartes, Faculté de Pharmacie , Sorbonne Paris Cité, 4 Avenue de l'Observatoire , Paris Cedex 06 75270 , France
| | - Sabrina Dhambri
- Unité CNRS UMR 8638 , Université Paris Descartes, Faculté de Pharmacie , Sorbonne Paris Cité, 4 Avenue de l'Observatoire , Paris Cedex 06 75270 , France
| | - Mohamed Selkti
- Unité CNRS UMR 8015 , Université Paris Descartes, Faculté de Pharmacie , Sorbonne Paris Cité, 4 Avenue de l'Observatoire , Paris Cedex 06 75270 , France
| | - Alan Jeuken
- WestCHEM, School of Chemistry , University of Glasgow , Joseph Black Building, University Avenue , Glasgow G12 8QQ , United Kingdom
| | - Joëlle Prunet
- WestCHEM, School of Chemistry , University of Glasgow , Joseph Black Building, University Avenue , Glasgow G12 8QQ , United Kingdom
| | - Jean-Pierre Férézou
- Méthodologie, Synthèse et Molécules Thérapeutiques, ICMMO (CNRS UMR 8182) , Université Paris-Sud, Université Paris-Saclay , Bâtiment 410 , Orsay F-91405 , France
| | - Janick Ardisson
- Unité CNRS UMR 8638 , Université Paris Descartes, Faculté de Pharmacie , Sorbonne Paris Cité, 4 Avenue de l'Observatoire , Paris Cedex 06 75270 , France
| | - Marie-Isabelle Lannou
- Unité CNRS UMR 8638 , Université Paris Descartes, Faculté de Pharmacie , Sorbonne Paris Cité, 4 Avenue de l'Observatoire , Paris Cedex 06 75270 , France
| | - Geoffroy Sorin
- Unité CNRS UMR 8638 , Université Paris Descartes, Faculté de Pharmacie , Sorbonne Paris Cité, 4 Avenue de l'Observatoire , Paris Cedex 06 75270 , France
| |
Collapse
|
13
|
Kempton RJ, Kidd-Kautz TA, Laurenceau S, Paula S. Heck- and Suzuki-coupling approaches to novel hydroquinone inhibitors of calcium ATPase. Beilstein J Org Chem 2019; 15:971-975. [PMID: 31164934 PMCID: PMC6541364 DOI: 10.3762/bjoc.15.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/15/2019] [Indexed: 11/23/2022] Open
Abstract
In this study, we explored Heck- and Suzuki-coupling methodology to modify the template 2,5-di-tert-butylhydroquinone (BHQ, 2), an inhibitor of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA). We found that by utilizing Suzuki coupling, we could successfully attach a six-carbon tether to BHQ that terminated in a leucine moiety to obtain target 14. Similar to related compounds based on the structure of the natural product thapsigargin, 14 displayed inhibitory potency against SERCA activity. This makes 14 a suitable candidate for the future attachment of a deactivating peptide to convey specificity for prostate cancer cells.
Collapse
Affiliation(s)
- Robert J Kempton
- Department of Chemistry and Biochemistry, Northern Kentucky University, Nunn Drive, Highland Heights, KY 41099, USA
| | - Taylor A Kidd-Kautz
- Department of Chemistry and Biochemistry, Northern Kentucky University, Nunn Drive, Highland Heights, KY 41099, USA
| | - Soizic Laurenceau
- Department of Chemistry and Biochemistry, Northern Kentucky University, Nunn Drive, Highland Heights, KY 41099, USA
| | - Stefan Paula
- Department of Chemistry, Purdue University, Oval Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Lichota A, Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int J Mol Sci 2018; 19:E3533. [PMID: 30423952 PMCID: PMC6275022 DOI: 10.3390/ijms19113533] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
This paper describes the substances of plant and marine origin that have anticancer properties. The chemical structure of the molecules of these substances, their properties, mechanisms of action, their structure⁻activity relationships, along with their anticancer properties and their potential as chemotherapeutic drugs are discussed in this paper. This paper presents natural substances from plants, animals, and their aquatic environments. These substances include the vinca alkaloids, mistletoe plant extracts, podophyllotoxin derivatives, taxanes, camptothecin, combretastatin, and others including geniposide, colchicine, artesunate, homoharringtonine, salvicine, ellipticine, roscovitine, maytanasin, tapsigargin, and bruceantin. Compounds (psammaplin, didemnin, dolastin, ecteinascidin, and halichondrin) isolated from the marine plants and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates (e.g., sponges, tunicates, and soft corals) as well as certain other substances that have been tested on cells and experimental animals and used in human chemotherapy.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| |
Collapse
|
15
|
Abstract
The field of natural product total synthesis has reached the point where synthetic efficiency has become more important than merely defining a viable (yet less ideal) route to the target molecule. Synthetic efficiency is best represented by the number of steps it takes to finish the target molecule from readily available starting materials, as by reducing the number of steps, all other factors of synthetic efficiency are influenced positively. By comparing several total syntheses from the recent years, the most successful strategies for step efficient syntheses will be highlighted. Each synthesis will be presented using a color-coded synthetic flowchart, in which each step is categorized by a colored box. Five categories of transformations are defined and rated according to their synthetic value. Each class will be signified by different colors so that the reader can quickly see which parts of the synthesis are productive and those that are not.
Collapse
Affiliation(s)
- Johannes Schwan
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 10781 Berlin, Germany.
| | | |
Collapse
|
16
|
Chu H, Dünstl G, Felding J, Baran PS. Divergent synthesis of thapsigargin analogs. Bioorg Med Chem Lett 2018; 28:2705-2707. [PMID: 29636219 PMCID: PMC6119632 DOI: 10.1016/j.bmcl.2018.03.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/22/2018] [Indexed: 11/29/2022]
Abstract
Thapsigargin (3) is a potent inhibitor of the SERCA-pump protein, with potential for application in a variety of medicinal areas. The efficient and scalable syntheses of thapsigargin (3) and nortrilobolide (2) have been disclosed previously. To demonstrate the modularity of the previous routes, three natural products (compounds 6, 13, 15) and four analogs (compounds 17-20) have been divergently prepared from a common building block featuring varied acyl chains at the C2, C3, and C8 positions. Biological tests revealed that all of the compounds prepared displayed promising activity profiles.
Collapse
Affiliation(s)
- Hang Chu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Georg Dünstl
- Research & Development, LEO Pharma, A/S Industriparken 55, 2750 Ballerup, Denmark
| | - Jakob Felding
- Research & Development, LEO Pharma, A/S Industriparken 55, 2750 Ballerup, Denmark
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
17
|
Indu S, Kaliappan KP. A new and informative [a,b,c,d] nomenclature for one-pot multistep transformations: a simple tool to measure synthetic efficiency. RSC Adv 2018; 8:21292-21305. [PMID: 35557999 PMCID: PMC9088519 DOI: 10.1039/c8ra03338b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/04/2018] [Indexed: 01/03/2023] Open
Abstract
Domino, cascade and tandem reactions constitute the most efficient and creative chemical transformations with a huge domain of synthetic utility and applications. A number of reactions may be achieved in a single pot, accompanied by the formation of new rings and new bonds, leading towards higher molecular complexity. A lack of one unified, yet informative descriptor often understates the synthetic ingenuity of certain highly creative transformations. In this review, we propose a new tetra-coordinated [a,b,c,d] nomenclature which takes into account and displays the basic parameters which generally indicate the level of efficiency of a chemical transformation. An almost exhaustive set of one-pot multistep reactions may be described by this system and this review is an attempt to display the one-pot multistep transformations reported from our group and to classify them based on our proposed descriptor.
Collapse
Affiliation(s)
- Satrajit Indu
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai-400076 India
| | - Krishna P Kaliappan
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai-400076 India
| |
Collapse
|
18
|
Ye Z, Liu G, Guo J, Su Z. Hypothalamic endoplasmic reticulum stress as a key mediator of obesity-induced leptin resistance. Obes Rev 2018. [PMID: 29514392 DOI: 10.1111/obr.12673] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is an epidemic disease that is increasing worldwide and is a major risk factor for many metabolic diseases. However, effective agents for the prevention or treatment of obesity remain limited. Therefore, it is urgent to clarify the pathophysiological mechanisms underlying the development and progression of obesity and exploit potential agents to cure and prevent this disease. According to a recent study series, obesity is associated with the development of endoplasmic reticulum stress and the activation of its stress responses (unfolded protein response) in metabolically active tissues, which contribute to the development of obesity-related insulin and leptin resistance, inflammation and energy imbalance. Hypothalamic endoplasmic reticulum stress is the central mechanism underlying the development of obesity-associated leptin resistance and disruption of energy homeostasis; thus, targeting endoplasmic reticulum stress offers a promising therapeutic strategy for improving leptin sensitivity, increasing energy expenditure and ultimately combating obesity. In this review, we highlight the relationship between and mechanism underlying hypothalamic endoplasmic reticulum stress and obesity-associated leptin resistance and energy imbalance and provide new insight regarding strategies for the treatment of obesity.
Collapse
Affiliation(s)
- Z Ye
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| | - G Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - J Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Z Su
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
19
|
Callari R, Fischer D, Heider H, Weber N. Biosynthesis of angelyl-CoA in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:72. [PMID: 29753326 PMCID: PMC5948907 DOI: 10.1186/s12934-018-0925-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 11/24/2022] Open
Abstract
Background The angelic acid moiety represents an essential modification in many biologically active products. These products are commonly known as angelates and several studies have demonstrated their therapeutic benefits, including anti-inflammatory and anti-cancer effects. However, their availability for use in the development of therapeutics is limited due to poor extraction yields. Chemical synthesis has been achieved but its complexity prevents application, therefore microbial production may offer a promising alternative. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce angelyl-CoA, the CoA-activated form of angelic acid. Results For yeast-based production of angelyl-CoA we first expressed genes recently identified in the biosynthetic cluster ssf of Streptomyces sp. SF2575 in S. cerevisiae. Exogenous feeding of propionate and heterologous expression of a propionyl-CoA synthase from Streptomyces sp. were initially employed to increase the intracellular propionyl-CoA level, resulting in production of angelyl-CoA in the order of 5 mg/L. Substituting the Streptomyces sp. propionyl-CoA carboxylase with a carboxylase derived from Streptomyces coelicolor resulted in angelyl-CoA levels up to 6.4 mg/L. In vivo analysis allowed identification of important intermediates in the pathway, including methyl-malonyl-CoA and 3-hydroxyl-2-methyl-butyryl-CoA. Furthermore, methyl-malonate supplementation and expression of matB CoA ligase from S. coelicolor allowed for methyl-malonyl-CoA synthesis and supported, together with parts of the ssf pathway, angelyl-CoA titres of approximately 1.5 mg/L. Finally, feeding of angelic acid to yeasts expressing acyl-CoA ligases from plant species led to angelyl-CoA production rates of approximately 40 mg/L. Conclusions Our results demonstrate the biosynthesis of angelyl-CoA in yeast from exogenously supplied carboxylic acid precursors. This is the first report on the activity of the ssf genes. We envision that our approach will provide a platform for a more sustainable production of the pharmaceutically important compound class of angelates. Electronic supplementary material The online version of this article (10.1186/s12934-018-0925-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberta Callari
- Evolva SA, Duggingerstrasse 23, 4153, Reinach, Switzerland.,Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - David Fischer
- Evolva SA, Duggingerstrasse 23, 4153, Reinach, Switzerland
| | - Harald Heider
- Evolva SA, Duggingerstrasse 23, 4153, Reinach, Switzerland
| | - Nora Weber
- Evolva SA, Duggingerstrasse 23, 4153, Reinach, Switzerland.
| |
Collapse
|
20
|
Pilli RA, Assis FFDE. Organic Synthesis: New Vistas in the Brazilian Landscape. AN ACAD BRAS CIENC 2018; 90:895-941. [PMID: 29742201 DOI: 10.1590/0001-3765201820170564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
In this overview, we present our analysis of the future of organic synthesis in Brazil, a highly innovative and strategic area of research which underpins our social and economical progress. Several different topics (automation, catalysis, green chemistry, scalability, methodological studies and total syntheses) were considered to hold promise for the future advance of chemical sciences in Brazil. In order to put it in perspective, contributions from Brazilian laboratories were selected by the citations received and importance for the field and were benchmarked against some of the most important results disclosed by authors worldwide. The picture that emerged reveals a thriving area of research, with new generations of well-trained and productive chemists engaged particularly in the areas of green chemistry and catalysis. In order to fulfill the promise of delivering more efficient and sustainable processes, an integration of the academic and industrial research agendas is to be expected. On the other hand, academic research in automation of chemical processes, a well established topic of investigation in industrial settings, has just recently began in Brazil and more academic laboratories are lining up to contribute. All these areas of research are expected to enable the future development of the almost unchartered field of scalability.
Collapse
|
21
|
Han P, Zhou Z, Si CM, Sha XY, Gu ZY, Wei BG, Lin GQ. Asymmetric Synthesis of Rupestonic Acid and Pechueloic Acid. Org Lett 2017; 19:6732-6735. [PMID: 29211481 DOI: 10.1021/acs.orglett.7b03459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this report, the originally proposed rupestonic acid (5) and pechueloic acid (3) were efficiently synthesized. The chiral lactone 13, recycled from the degradation of saponin glycosides, was utilized to prepare the key chiral fragment 11. During the exploration of this convergent assembly strategy, the ring-closing metathesis (RCM), SmI2-prompted intermolecular addition, and [2,3]-Wittig rearrangement proved to be effective transformations for the synthesis of subunits.
Collapse
Affiliation(s)
- Pan Han
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Zhu Zhou
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Chang-Mei Si
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Xian-Yi Sha
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Zheng-Yi Gu
- Xinjiang Institute of Materia Medica , Lane 140, South Xinhua Road, Urumqi, Xinjiang 830004, China
| | - Bang-Guo Wei
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Guo-Qiang Lin
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University , 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
22
|
Dey S, Bajaj SO. Promising anticancer drug thapsigargin: A perspective toward the total synthesis. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1386789] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Supriya Dey
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| | - Sumit O. Bajaj
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
23
|
Chen D, Evans PA. A Concise, Efficient and Scalable Total Synthesis of Thapsigargin and Nortrilobolide from (R)-(-)-Carvone. J Am Chem Soc 2017; 139:6046-6049. [PMID: 28422492 DOI: 10.1021/jacs.7b01734] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A concise, efficient and scalable synthesis of thapsigargin and nortrilobolide from commercially available (R)-(-)-carvone was developed. Our synthetic strategy is inspired by nature's carbon-carbon bond formation sequence, which facilitates the construction of a highly functionalized sesquiterpene lactone skeleton in five steps via an enantioselective ketone alkylation and a diastereoselective pinacol cyclization. We envision that this strategy will permit the construction of other members of the family, structural analogs and provide a practical synthetic route to these important bioactive agents. In addition, we anticipate that the prodrug Mipsagargin, which is currently in late-stage clinical trials for the treatment of cancer, will also be accessible via this strategy. Hence, the limited availability from natural sources, coupled with an estimated demand of one metric ton per annum for the prodrug, provides a compelling mandate to develop practical total syntheses of these agents.
Collapse
Affiliation(s)
- Dezhi Chen
- Department of Chemistry, Queen's University , 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - P Andrew Evans
- Department of Chemistry, Queen's University , 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
24
|
Ouyang Z, Li W, Meng Q, Zhang Q, Wang X, Elgehama A, Wu X, Shen Y, Sun Y, Wu X, Xu Q. A natural compound jaceosidin ameliorates endoplasmic reticulum stress and insulin resistance via upregulation of SERCA2b. Biomed Pharmacother 2017; 89:1286-1296. [PMID: 28320096 DOI: 10.1016/j.biopha.2017.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022] Open
Abstract
Increased endoplasmic reticulum (ER) stress has emerged as a vital contributor to dysregulated glucose homeostasis, and impaired function of sarco-endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) is one of the central mechanisms underlying ER stress. In this study, we reported that SERCA2b upregulation contributed to the amelioration of ER stress and insulin resistance by a small natural compound jaceosidin. In a model of differentiated C2C12 myotubes, jaceosidin-triggered SERCA2b upregulation enhanced insulin sensitivity and decreased ER stress. Moreover, the activity of Ca2+-ATPase in thapsigargin-treated myotubes was also augmented by jaceosidin. Furthermore, jaceosidin significantly suppressed blood glucose levels, improved glucose tolerance and lowered body weight, but did not alter food intake in insulin-resistant obese mice. In addition, this compound markedly reduced lipid accumulation, suppressed the expression of lipogenic genes in liver and ameliorated liver injury. The ameliorative effects of jaceosidin were due to its ability to reduce ER stress via increasing the expression of SERCA2b in the muscles of obese mice. Taken together, jaceosidin could improve ER stress and attenuate insulin resistance via SERCA2b upregulation in mice skeletal muscles.
Collapse
Affiliation(s)
- Zijun Ouyang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wanshuai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qianqian Meng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xingqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ahmed Elgehama
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
25
|
Ren Y, Yu J, Kinghorn AD. Development of Anticancer Agents from Plant-Derived Sesquiterpene Lactones. Curr Med Chem 2017; 23:2397-420. [PMID: 27160533 DOI: 10.2174/0929867323666160510123255] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022]
Abstract
Sesquiterpene lactones are of considerable interest due to their potent bioactivities, including cancer cell cytotoxicity and antineoplastic efficacy in in vivo studies. Among these compounds, artesunate, dimethylaminoparthenolide, and L12ADT peptide prodrug, a derivative of thapsigargin, are being evaluated in the current cancer clinical or preclinical trials. Based on the structures of several antitumor sesquiterpene lactones, a number of analogues showing greater potency have been either isolated as natural products or partially synthesized, and some potential anticancer agents that have emerged from this group of lead compounds have been investigated extensively. The present review focuses on artemisinin, parthenolide, thapsigargin, and their naturally occurring or synthetic analogues showing potential anticancer activity. This provides an overview of the advances in the development of these types of sesquiterpene lactones as potential anticancer agents, including their structural characterization, synthesis and synthetic modification, and antitumor potential, with the mechanism of action and structure-activity relationships also discussed. It is hoped that this will be helpful in stimulating the further interest in developing sesquiterpene lactones and their derivatives as new anticancer agents.
Collapse
Affiliation(s)
| | | | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
26
|
Chu H, Smith JM, Felding J, Baran PS. Scalable Synthesis of (-)-Thapsigargin. ACS CENTRAL SCIENCE 2017; 3:47-51. [PMID: 28149952 PMCID: PMC5269647 DOI: 10.1021/acscentsci.6b00313] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 05/29/2023]
Abstract
Total syntheses of the complex, highly oxygenated sesquiterpenes thapsigargin (1) and nortrilobolide (2) are presented. Access to analogues of these promising bioactive natural products has been limited to tedious isolation and semisynthetic efforts. Elegant prior total syntheses demonstrated the feasibility of creating these entitites in 36-42 step processes. The currently reported route proceeds in a scalable and more concise fashion by utilizing two-phase terpene synthesis logic. Salient features of the work include application of the classic photosantonin rearrangement and precisely choreographed installation of the multiple oxygenations present on the guaianolide skeleton.
Collapse
Affiliation(s)
- Hang Chu
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Joel M. Smith
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jakob Felding
- Front
End Innovation, LEO Pharma, A/S Industriparken 55, 2750 Ballerup, Denmark
| | - Phil S. Baran
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
27
|
Pereira DM, Valentão P, Correia-da-Silva G, Teixeira N, Andrade PB. Translating endoplasmic reticulum biology into the clinic: a role for ER-targeted natural products? Nat Prod Rep 2015; 32:705-22. [PMID: 25703279 DOI: 10.1039/c4np00102h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ER stress has been identified as a hallmark, and sometimes trigger, of several pathologies, notably cancer, inflammation and neurodegenerative diseases like Alzheimer's and Parkinson's. Among the molecules described in literature known to affect ER function, the majority are natural products, suggesting that natural molecules may constitute a significant arsenal of chemical entities for modulating this cellular target. In this review, we will start by presenting the current knowledge of ER biology and the hallmarks of ER stress, thus paving the way for presenting the natural products that have been described as being ER modulators, either stress inducers or ER protectors. The chemistry, distribution and mechanism of action of these compounds will be presented and discussed.
Collapse
Affiliation(s)
- David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| | | | | | | | | |
Collapse
|
28
|
Andersen TB, López CQ, Manczak T, Martinez K, Simonsen HT. Thapsigargin--from Thapsia L. to mipsagargin. Molecules 2015; 20:6113-27. [PMID: 25856061 PMCID: PMC6272310 DOI: 10.3390/molecules20046113] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022] Open
Abstract
The sesquiterpene lactone thapsigargin is found in the plant Thapsia garganica L., and is one of the major constituents of the roots and fruits of this Mediterranean species. In 1978, the first pharmacological effects of thapsigargin were established and the full structure was elucidated in 1985. Shortly after, the overall mechanism of the Sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) inhibition that leads to apoptosis was discovered. Thapsigargin has a potent antagonistic effect on the SERCA and is widely used to study Ca2+-signaling. The effect on SERCA has also been utilized in the treatment of solid tumors. A prodrug has been designed to target the blood vessels of cancer cells; the death of these blood vessels then leads to tumor necrosis. The first clinical trials of this drug were initiated in 2008, and the potent drug is expected to enter the market in the near future under the generic name Mipsagargin (G-202). This review will describe the discovery of the new drug, the on-going elucidation of the biosynthesis of thapsigargin in the plant and attempts to supply the global market with a novel potent anti-cancer drug.
Collapse
Affiliation(s)
- Trine Bundgaard Andersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Carmen Quiñonero López
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Tom Manczak
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Karen Martinez
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Henrik Toft Simonsen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| |
Collapse
|
29
|
García-Cabeza AL, Ray LP, Marín-Barrios R, Ortega MJ, Moreno-Dorado FJ, Guerra FM, Massanet GM. Optimization by Response Surface Methodology (RSM) of the Kharasch–Sosnovsky Oxidation of Valencene. Org Process Res Dev 2014. [DOI: 10.1021/op5002462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Leticia García-Cabeza
- Departamento
de Química
Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Lindsey P. Ray
- Departamento
de Química
Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Rubén Marín-Barrios
- Departamento
de Química
Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - María J. Ortega
- Departamento
de Química
Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - F. Javier Moreno-Dorado
- Departamento
de Química
Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Francisco M. Guerra
- Departamento
de Química
Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Guillermo M. Massanet
- Departamento
de Química
Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
30
|
Marín-Barrios R, García-Cabeza AL, Moreno-Dorado FJ, Guerra FM, Massanet GM. Acyloxylation of Cyclic Enones: Synthesis of Densely Oxygenated Guaianolides. J Org Chem 2014; 79:6501-9. [DOI: 10.1021/jo500915r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rubén Marín-Barrios
- Departamento de Química
Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Ana Leticia García-Cabeza
- Departamento de Química
Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - F. Javier Moreno-Dorado
- Departamento de Química
Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Francisco M. Guerra
- Departamento de Química
Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Guillermo M. Massanet
- Departamento de Química
Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
31
|
Pan Z, Avila A, Gollahon L. Paclitaxel induces apoptosis in breast cancer cells through different calcium--regulating mechanisms depending on external calcium conditions. Int J Mol Sci 2014; 15:2672-94. [PMID: 24549172 PMCID: PMC3958875 DOI: 10.3390/ijms15022672] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/19/2022] Open
Abstract
Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis.
Collapse
Affiliation(s)
- Zhi Pan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - Andrew Avila
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
32
|
Hagiwara H. Carvone as a Versatile Chiral Building Block for Total Syntheses of Heterocyclic Sesquiterpenoids. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This review article is focused on the total syntheses of heterocyclic sesquiterpenoids starting from carvone since 1996.
Collapse
Affiliation(s)
- Hisahiro Hagiwara
- Graduate School of Science and Technology Niigata University 8050 2-Nocho Ikarashi Nishi-ku Niigata 950-2181 Japan
| |
Collapse
|
33
|
Webber MJ, Warren SA, Grainger DM, Weston M, Clark S, Woodhead SJ, Powell L, Stokes S, Alanine A, Stonehouse JP, Frampton CS, White AJP, Spivey AC. Towards the enantioselective synthesis of (−)-euonyminol – preparation of a fully functionalised lower-rim model. Org Biomol Chem 2013; 11:2514-33. [DOI: 10.1039/c3ob27187k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Tap A, Jouanneau M, Galvani G, Sorin G, Lannou MI, Férézou JP, Ardisson J. Asymmetric synthesis of a highly functionalized enantioenriched system close to thapsigargin framework. Org Biomol Chem 2012; 10:8140-6. [DOI: 10.1039/c2ob26194d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Abstract
Cyclocarbonylation of α-methylene butyrolactone-containing allene-ynes affords 6,12-guaianolide ring systems. Incorporation of the α-methylene butyrolactone early in a synthetic sequence is rare for reactivity reasons; however, this moiety proves to be beneficial to the allenic Pauson-Khand reaction. The three double bonds and the ketone in the resulting 5-7-5 ring system bear significant differences in their reactivity and are ideally positioned for synthetic application to 6,12-guaianolides and analogs.
Collapse
Affiliation(s)
- Francois Grillet
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
36
|
Thapsigargin affinity purification of intracellular P2A-type Ca2+ ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1118-27. [DOI: 10.1016/j.bbamcr.2010.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/23/2022]
|
37
|
Guerra FM, Moreno-Dorado FJ, Jorge ZD, Massanet GM. Recent Advances in the Synthesis of Sesquiterpenolides from Umbelliferae. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100600409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A review of our latest developments in the synthesis of sesquiterpenolides isolated from plants of the Umbelliferae family is presented.
Collapse
Affiliation(s)
- Francisco M. Guerra
- Departamento de Química Orgánica, Universidad de Cádiz, Facultad de Ciencias, Pol. Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
| | - F. Javier Moreno-Dorado
- Departamento de Química Orgánica, Universidad de Cádiz, Facultad de Ciencias, Pol. Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
| | - Zacarías D. Jorge
- Departamento de Química Orgánica, Universidad de Cádiz, Facultad de Ciencias, Pol. Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
| | - Guillermo M. Massanet
- Departamento de Química Orgánica, Universidad de Cádiz, Facultad de Ciencias, Pol. Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
38
|
Elam C, Lape M, Deye J, Zultowsky J, Stanton DT, Paula S. Discovery of novel SERCA inhibitors by virtual screening of a large compound library. Eur J Med Chem 2011; 46:1512-23. [PMID: 21353727 DOI: 10.1016/j.ejmech.2011.01.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/10/2010] [Accepted: 01/29/2011] [Indexed: 01/07/2023]
Abstract
Two screening protocols based on recursive partitioning and computational ligand docking methodologies, respectively, were employed for virtual screens of a compound library with 345,000 entries for novel inhibitors of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA), a potential target for cancer chemotherapy. A total of 72 compounds that were predicted to be potential inhibitors of SERCA were tested in bioassays and 17 displayed inhibitory potencies at concentrations below 100 μM. The majority of these inhibitors were composed of two phenyl rings tethered to each other by a short link of one to three atoms. Putative interactions between SERCA and the inhibitors were identified by inspection of docking-predicted poses and some of the structural features required for effective SERCA inhibition were determined by analysis of the classification pattern employed by the recursive partitioning models.
Collapse
Affiliation(s)
- Christopher Elam
- Department of Chemistry, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | | | | | | | | | | |
Collapse
|
39
|
Marcos I, Benéitez A, Moro R, Basabe P, Díez D, Urones J. Semisynthesis of (+)-angeloyl-gutierrezianolic acid methyl ester diterpenoid. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.09.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
|
41
|
Skytte DM, Møller JV, Liu H, Nielsen HØ, Svenningsen LE, Jensen CM, Olsen CE, Christensen SB. Elucidation of the topography of the thapsigargin binding site in the sarco-endoplasmic calcium ATPase. Bioorg Med Chem 2010; 18:5634-46. [PMID: 20615710 DOI: 10.1016/j.bmc.2010.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/07/2010] [Accepted: 06/10/2010] [Indexed: 11/15/2022]
Abstract
Removal of each of the acyl groups of thapsigargin at O-3, O-8 and O-10 significant reduces the affinity of the inhibitors to the SERCA1a pump. Replacement of the acyl groups at O-3 and O-10 with flexible residues could be performed with only a minor decrease of the affinity, whereas introduction of voluminous stiff residues caused dramatic reduction of the affinity. The results can be rationalized on the basis of the interactions of thapsigargin with the SERCA1a pump as revealed from 3D X-ray structural models of thapsigargin bound to the SERCA1a. In conclusion the results confirm and elaborate the previously suggested pharmocophore model of thapsigargin.
Collapse
Affiliation(s)
- Dorthe Mondrup Skytte
- Department of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Brummond KM, Davis MM, Huang C. Rh(I)-catalyzed cyclocarbonylation of allenol esters to prepare acetoxy 4-alkylidenecyclopent-3-en-2-ones. J Org Chem 2010; 74:8314-20. [PMID: 19821580 DOI: 10.1021/jo901459t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Rh(I)-catalyzed cyclocarbonylation reaction of allenol esters has been examined and its synthetic viability established for the conversion of trisubstituted allenes to bicyclo[4.3.0] and -[5.3.0] skeletons possessing an alpha-acetoxy cyclopentadienone. Tetrasubstituted allenol acetates gave elimination products, providing examples of a cyclocarbonylation reaction between an alkyne and a latent cumulene or cumulene equivalent. Cleavage of the acetate affords a free hydroxyl group illustrating the utility of this method for accessing alpha-hydroxy carbonyls from allenol esters.
Collapse
Affiliation(s)
- Kay M Brummond
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | |
Collapse
|
43
|
Paula S, Abell J, Deye J, Elam C, Lape M, Purnell J, Ratliff R, Sebastian K, Zultowsky J, Kempton RJ. Design, synthesis, and biological evaluation of hydroquinone derivatives as novel inhibitors of the sarco/endoplasmic reticulum calcium ATPase. Bioorg Med Chem 2009; 17:6613-9. [PMID: 19699645 DOI: 10.1016/j.bmc.2009.07.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/27/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
Abstract
Analogues of the compound 2,5-di-tert-butylhydroquinone (BHQ) are capable of inhibiting the enzyme sarco/endoplasmic reticulum ATPase (SERCA) in the low micromolar and submicromolar concentration ranges. Not only are SERCA inhibitors valuable research tools, but they also have potential medicinal value as agents against prostate cancer. This study describes the synthesis of 13 compounds representing several classes of BHQ analogues, such as hydroquinones with a single aromatic substituent, symmetrically and unsymmetrically disubstituted hydroquinones, and hydroquinones with omega-amino acid tethers attached to their hydroxyl groups. Structure-activity relationships were established by measuring the inhibitory potencies of all synthesized compounds in bioassays. The assays were complemented by computational ligand docking for an analysis of the relevant ligand/receptor interactions.
Collapse
Affiliation(s)
- Stefan Paula
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Howard BE, Woerpel KA. Silylene transfer to alpha-keto esters and application to the synthesis of gamma-lactones. Tetrahedron 2009; 65:6447-6453. [PMID: 20625460 DOI: 10.1016/j.tet.2009.05.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Disubstituted alpha-hydroxy acids have been synthesized by metal-catalyzed silylene transfer to alpha-keto esters. A range of substituents are tolerated in the transformation with the exception of branched groups at the vinylic position. The alpha-hydroxy acid products can be converted into gamma-lactones using a variety of lactonization conditions.
Collapse
Affiliation(s)
- Brett E Howard
- Department of Chemistry, University of California, Irvine, California 92697-2025
| | | |
Collapse
|
45
|
Sainte-Luce Banchelin T, Carret S, Giannini A, Deprés JP. Short and Stereoselective Total Synthesis of Δ-11,13-Didehydroguaianes and -guaianolides: Synthesis of (±)-Achalensolide and (±)-Pechueloic Acid; Revision of the Structure of (+)-Rupestonic Acid. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900456] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Simonsen HT, Drew DP, Lunde C. Perspectives on using physcomitrella patens as an alternative production platform for thapsigargin and other terpenoid drug candidates. PERSPECTIVES IN MEDICINAL CHEMISTRY 2009; 3:1-6. [PMID: 19812738 PMCID: PMC2754923 DOI: 10.4137/pmc.s2220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To overcome the potential future demand for terpenoids used as drugs, a new production platform is currently being established in our laboratory. The moss Physcomitrella has been chosen as the candidate organism for production of drug candidates based on terpenoids derived from plants, with a primary focus on the sesquiterpene lactone, thapsigargin. This drug candidate and other candidates/drugs with sesquiterpene skeleton are difficult to obtain by chemical synthesis due to their large number of chiral centers. Furthermore, they are not available in sufficient amounts from their original plant. The requirement for a new production system to meet the potential market demand for these compounds is not only obvious, but also essential if sufficient quantities of the drug candidates are to be available for the potential therapeutic use.
Collapse
Affiliation(s)
- Henrik Toft Simonsen
- VKR Research Centre Pro-Active Plants, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | | |
Collapse
|
47
|
Abstract
Azadirachtin has been the subject of intensive research within the scientific community ever since its isolation from the neem tree in 1968. There are now over 1000 publications relating to this natural product which cover all aspects of structural, biological and synthetic studies. Herein, we describe the worldwide synthesis efforts towards this fascinating molecule.
Collapse
Affiliation(s)
- Gemma E Veitch
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
48
|
Deye J, Elam C, Lape M, Ratliff R, Evans K, Paula S. Structure-based virtual screening for novel inhibitors of the sarco/endoplasmic reticulum calcium ATPase and their experimental evaluation. Bioorg Med Chem 2008; 17:1353-60. [PMID: 19117760 DOI: 10.1016/j.bmc.2008.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 11/28/2008] [Accepted: 12/07/2008] [Indexed: 10/21/2022]
Abstract
A public compound library with 260,000 compounds was screened virtually by computational docking for novel inhibitors of the transmembrane enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA). Docking was performed with the program GOLD in conjunction with a high resolution X-ray crystal structure of SERCA. Compounds that were predicted to be active were tested in bioassays. Nineteen novel compounds were discovered that were capable of inhibiting the ATP hydrolysis activity of SERCA at concentrations below 50 microM. Crucial enzyme/inhibitor interactions were identified by analyzing the docking-predicted binding poses of active compounds. Like other SERCA inhibitors, the newly discovered compounds are of considerable medicinal interest because of their potential for cancer chemotherapy.
Collapse
Affiliation(s)
- Joel Deye
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Substituent effects in the transannular cyclizations of germacranes. Synthesis of 6-epi-costunolide and five natural steiractinolides. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|