1
|
Kung MG, Onnuch P, Liu RY. Rapid and General Amination of Aryl Boronic Acids and Esters Using O-(Diphenylphosphinyl)hydroxylamine (DPPH). Org Lett 2024. [PMID: 39540420 DOI: 10.1021/acs.orglett.4c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
O-(Diphenylphosphinyl)hydroxylamine (DPPH) is a general reagent for the conversion of (hetero)aryl boronic acids and esters to primary anilines. The transformation proceeds rapidly at rt and exhibits a broad substrate scope and exceptional functional-group tolerance. In terms of rate, the reaction is relatively insensitive to the electronic properties of the substrate, in contrast to similar reactions using electrophilic amination reagents such as hydroxylamine-O-sulfonic acid. Consequently, this protocol is particularly useful for accessing electron-deficient (hetero)aryl anilines, which had been challenging to prepare using prior methods.
Collapse
Affiliation(s)
- Matthew G Kung
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Polpum Onnuch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Richard Y Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Lou C, Huang Q, Lv L, Li Z. Formal Transformation of Benzylic Carboxylic Acids to Phenols. Chemistry 2024:e202403301. [PMID: 39400927 DOI: 10.1002/chem.202403301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/15/2024]
Abstract
Phenols play a crucial role as core structural motifs in natural products and also serve as fundamental building blocks in synthetic chemistry. Apart from the known protocols for the conversion of aryl precursors to phenols (i. e., decarboxylative oxygenation), we report here the efficient synthesis of phenols from the stable and readily available benzylic carboxylic acids under mild reaction conditions. The photocatalytic conversion of carboxylic acids to peroxides is a crucial step in this strategy, allowing the subsequent C-O bond formation via Hock rearrangement.
Collapse
Affiliation(s)
- Chenhao Lou
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| | - Qiuwei Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| |
Collapse
|
3
|
Edelmann S, Lumb JP. A para- to meta-isomerization of phenols. Nat Chem 2024; 16:1193-1199. [PMID: 38632366 DOI: 10.1038/s41557-024-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phenols and their derivatives are ubiquitous in nature and critically important industrial chemicals. Their properties are intimately linked to the relative substitution pattern of the aromatic ring, reflecting well-known electronic effects of the OH group. Because of these ortho-, para-directing effects, meta-substituted phenols have historically been more difficult to synthesize. Here we describe a procedure to transpose phenols that hinges on a regioselective diazotization of the corresponding ortho-quinone. The procedure affords the meta-substituted phenol directly from its more common and accessible para-substituted isomer, and demonstrates good chemoselectivity that enables its application in late-stage settings. By changing the electronic effect of the OH group and its trajectory of hydrogen bonding, our transposition can be used to diversify natural products and existing chemical libraries, and potentially shorten the length and cost of producing underrepresented arene isomers.
Collapse
Affiliation(s)
- Simon Edelmann
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Zhao BY, Jia Q, Wang YQ. Synthesis of meta-carbonyl phenols and anilines. Nat Commun 2024; 15:2415. [PMID: 38499520 PMCID: PMC10948751 DOI: 10.1038/s41467-024-46576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Phenols and anilines are of extreme importance for medicinal chemistry and material science. The development of efficient approaches to prepare both compounds has thus long been a vital research topic. The utility of phenols and anilines directly reflects the identity and pattern of substituents on the benzenoid ring. Electrophilic substitutions remain among the most powerful synthetic methods to substituted phenols and anilines, yet in principle achieving ortho- and para-substituted products. Therefore, the selective preparation of meta-substituted phenols and anilines is the most significant challenge. We herein report an efficient copper-catalyzed dehydrogenation strategy to exclusively synthesize meta-carbonyl phenols and anilines from carbonyl substituted cyclohexanes. Mechanistic studies indicate that this transformation undergoes a copper-catalyzed dehydrogenation/allylic hydroxylation or amination/oxidative dehydrogenation/aromatization cascade process.
Collapse
Affiliation(s)
- Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, School of Foreign Languages, Northwest University, Xi'an, 710069, China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, School of Foreign Languages, Northwest University, Xi'an, 710069, China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, School of Foreign Languages, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
5
|
Lu H, Wan Y, Wang Q, Li Y, Wu H, Ma N, Zhang Z, Zhang G. Aerobic Oxidative Hydroxylation of Arylboronic Acids under Visible-Light Irradiation without Metal Catalysts or Additives. Org Lett 2024; 26:1959-1964. [PMID: 38407134 DOI: 10.1021/acs.orglett.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Phenols are versatile synthetic intermediates and key structural motifs in many natural products and biologically active compounds. We herein report a visible-light-induced aerobic oxidative hydroxylation of arylboronic acids/pinacol esters using air as oxidant and without using any catalysts and base, etc., additives, providing a green entry to a variety of phenols in a highly efficient and concise fashion. This novel reaction is enabled by photoactivation of an electron donor-acceptor complex, in which THF serves as both the solvent and electron donor. DFT studies indicated that the oxidation process involves a concerted hydrogen abstraction transfer from THF and dehydroxylation of boronic acid undergoing spin crossover from triplet to singlet to produce an active peroxoboronic acid intermidiate. Salient merits of this chemistry include broad substrate scope and excellent functional group tolerance, gram-scale synthesis, and versatile late-stage functionalizations as well as the use of air, visible light, and catalyst- and additive-free conditions. This strategy introduces a novel photoreaction mode with the aid of a solvent, offering a succinct and environmentally sustainable route for synthesizing phenols. The strong practicability and highly efficient access to modifying complex biorelevant molecules bode well for the potential applications of this chemistry in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Hongchen Lu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yameng Wan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Qiongjin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yabo Li
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Hao Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Song X, Liu H, Liu S, Li T, Lv L, Cui B, Wang T, Chen W, Chen Y, Li X. Enhancing Triplet-Triplet Annihilation Upconversion of Pyrene Derivatives for Photoredox Catalysis via Molecular Engineering. Chemistry 2024; 30:e202302520. [PMID: 37877456 DOI: 10.1002/chem.202302520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) has the potential to enhance photoredox catalysis yield. It includes a sensitizer and an annihilator. Efficient and stable annihilators are essential for photoredox catalysis, yet only a few examples are reported. Herein, we designed four novel pyrene annihilators (1, 2, 3 and 4) via introducing aryl-alkynyl groups onto pyrene to systematically modulate their singlet and triplet energies. Coupled with platinum octaethylporphyrin (PtOEP), the TTA-UC efficiency is enhanced gradually as the number of aryl-alkynyl group increases. When combining 4 with palladium tetraphenyl-tetrabenzoporphyrin (PdTPTBP), we achieved the highest red-to-green upconversion efficiency (22.4±0.3 %) (out of a 50 % maximum) so far. Then, this pair was used to activate photooxidation of aryl boronic acid under red light (630 nm), which achieved a great improved reaction yield compared to that activated by green light directly. The results not only provide a design strategy for efficient annihilators, but also show the advantage of applying TTA-UC into improving the photoredox catalysis yield.
Collapse
Affiliation(s)
- Xiaojuan Song
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Heyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Shanshan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
- Institute for Smart Materials & Engineering, University of Jinan, 250022, Jinan, China
| | - Tianyu Li
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Liping Lv
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Boce Cui
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Tianying Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Wenmiao Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, 77842, Doha, Qatar
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| |
Collapse
|
7
|
Choudhary P, Kumari K, Sharma D, Kumar S, Krishnan V. Surface Nanoarchitectonics of Boron Nitride Nanosheets for Highly Efficient and Sustainable ipso-Hydroxylation of Arylboronic Acids. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9412-9420. [PMID: 36775910 DOI: 10.1021/acsami.2c21545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One of the important industrial processes commonly employed in the pharmaceutical, explosive, and plastic manufacturing industries is ipso-hydroxylation of arylboronic acids. In this work, a straightforward, metal-free methodology for the synthesis of phenols from arylboronic acids has been demonstrated using hydroxyl functionalized boron nitride (BN-OH) nanosheets. The functionalized hydroxyl groups on the BN nanosheets act as the active sites for the hydroxylation reaction to take place. The detailed optimization of reaction parameters was done in order to attain high catalytic efficiency, and the reactions were conducted in water, which eliminates the use of toxic solvents. The as-synthesized catalysts exhibited excellent recyclability and reusability in addition to high product yields and good turnover numbers. The green metrics parameters were also evaluated for the model reaction to examine the sustainable nature of the developed protocol. The use of BN-OH catalysts for the ipso-hydroxylation reactions under base-free and metal-free conditions using environmentally benign solvents is utmost desired for industrial processes and can pave a way toward sustainable organic catalysis.
Collapse
Affiliation(s)
- Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Kamlesh Kumari
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| |
Collapse
|
8
|
Preparation of Copper Catalysts Immobilized on Poly(3-carboxypropyl)Thiophene and Their Application in Organic Transformation. Catal Letters 2022. [DOI: 10.1007/s10562-022-04148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Jiang D, Zheng M, Yan X, Huang B, Huang H, Gong T, Liu K, Liu J. A "turn-on" ESIPT fluorescence probe of 2-(aminocarbonyl)phenylboronic acid for the selective detection of Cu(ii). RSC Adv 2022; 12:31186-31191. [PMID: 36349016 PMCID: PMC9620781 DOI: 10.1039/d2ra04348c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
Abstract
Herein, we report a highly selective fluorescent probe for the detection of Cu(ii). The detection mechanism relies on the Cu(ii)-catalyzed oxidative hydroxylation of 2-(aminocarbonyl)phenylboronic acid into salicylamide, thus recovering the excited-state intramolecular proton transfer (ESIPT) effect and inducing more than 35-fold fluorescence enhancement. The simple structure and readily available fluorescent probe give a novel method for quantitatively detecting Cu(ii) in the linear range of 0-22 μM, with a limit of detection down to 68 nM, and exhibiting high selectivity for Cu(ii) over 16 other metal ions.
Collapse
Affiliation(s)
- Dandan Jiang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Minghao Zheng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Xiaoyang Yan
- Jiaxing Hospital of TCM. ICUZhongshan East Road 1501Jiaxing 314001China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Hui Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Tianhao Gong
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Kunming Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Jinbiao Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| |
Collapse
|
10
|
Xiong W, Shi Q, Liu WH. Simple and Practical Conversion of Benzoic Acids to Phenols at Room Temperature. J Am Chem Soc 2022; 144:15894-15902. [PMID: 35997485 DOI: 10.1021/jacs.2c07529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenols are important organic molecules because they have found widespread applications in many fields. Herein, an efficient and practical approach to prepare phenols from benzoic acids via simple organic reagents at room temperature is reported. This approach is compatible with various functional groups and heterocycles and can be easily scaled up. To demonstrate its synthetic utility, bioactive molecules and unsymmetrical hexaarylbenzenes have been prepared by leveraging this transformation as strategic steps. Mechanistic investigations suggest that the key migration step involves a free carbocation instead of a radical intermediate. Considering the abundance of benzoic acids and the utility of phenols, it is anticipated that this method will find broad applications in organic synthesis.
Collapse
Affiliation(s)
- Wenzhang Xiong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiu Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Bhuyan AJ, Bharali SJ, Sharma A, Dutta D, Gogoi P, Saikia L. Copper-Catalyzed Direct Syntheses of Phenoxypyrimidines from Chloropyrimidines and Arylboronic Acids: A Cascade Avenue and Unconventional Substrate Pairs. J Org Chem 2022; 87:11846-11851. [PMID: 35976814 DOI: 10.1021/acs.joc.2c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This letter describes the first synthetic methodology for phenoxypyrimidines that avoids the direct use of phenols or their salts. In contrast to the general trend of delivering Suzuki-Miyaura cross-coupling products in reactions between aryl or alky halides and arylboronic acids, the substrate pairs used herein (chloropyrimidines and arylboronic acids) led to C-O bond formation under the reaction conditions. In total, 25 phenoxypyrimidines were successfully synthesized using the described protocol, 6 of which had a structural resemblance to etravirine.
Collapse
Affiliation(s)
- Amar Jyoti Bhuyan
- Department of Chemistry, Rajiv Gandhi University, Rono-Hills, Doimukh, Arunachal Pradesh 791112, India
| | - Sourav Jyoti Bharali
- Department of Chemistry, Rajiv Gandhi University, Rono-Hills, Doimukh, Arunachal Pradesh 791112, India
| | - Abhilash Sharma
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dhiraj Dutta
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Lakhinath Saikia
- Department of Chemistry, Rajiv Gandhi University, Rono-Hills, Doimukh, Arunachal Pradesh 791112, India
| |
Collapse
|
12
|
Kohzadi H, Soleiman‐Beigi M. Immobilization of PdCl
2
on a Natural Asphalt Sulfonic Acid Network for C−N and C−O bonds Formation. ChemistrySelect 2022. [DOI: 10.1002/slct.202200799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Homa Kohzadi
- Department of Chemistry, Faculty of Basic Sciences Ilam University P.O. Box 69315–516 Ilam Iran
| | - Mohammad Soleiman‐Beigi
- Department of Chemistry, Faculty of Basic Sciences Ilam University P.O. Box 69315–516 Ilam Iran
| |
Collapse
|
13
|
Xia H, Wang G, Zhao D, Zhu C. Visible Light Induced Aerobic Coupling of Arylboronic Acids Promoted by Hydrazone. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Dongbo Zhao
- Institute of Fluid Engineering Equipment, JITRI CHINA
| | | |
Collapse
|
14
|
Application of Raw and Chemically Modified Biomasses for Heterogeneous Cu-Catalysed Conversion of Aryl boronic Acids to Phenols Derivatives. Catalysts 2022. [DOI: 10.3390/catal12010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This work describes the application of raw and chemically modified cellulose and sugarcane bagasse for ipso-hydroxylation of aryl boronic acids in environmentally friendly reaction conditions. The catalytic efficiency of five support-[Cu] materials was compared in forming phenols from aryl boronic acids. Our investigation highlights that the CEDA-[Cu] material (6-deoxy-6-aminoethyleneamino cellulose loaded with Cu) leads to the best results under very mild reaction conditions. The optimized catalytic sequence, allowing a facile transformation of boronic acids to phenols, required the mandatory and joint presence of the support, Cu2O, and KOH at room temperature. CEDA-[Cu] was characterized using 13C solid-state NMR, ICP, and FTIR. The use of CEDA-[Cu] accounts for the efficacious synthesis of variously substituted phenol derivatives and presents very good recyclability after five catalytic cycles.
Collapse
|
15
|
Fan CH, Xu T, Ke Z, Yeung YY. Autocatalytic aerobic ipso-hydroxylation of arylboronic acid with Hantzsch ester and Hantzsch pyridine. Org Chem Front 2022. [DOI: 10.1039/d2qo00618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ipso-Hydroxylation of arylboronic acids with Hantzsch ester has been developed. The by-product Hantzsch pyridine was found to promote the reaction in the presence of oxygen under ambient conditions.
Collapse
Affiliation(s)
- Chi-Hang Fan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Tianyue Xu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Zhihai Ke
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
16
|
Su W, Xu P, Ritter T. Decarboxylative Hydroxylation of Benzoic Acids. Angew Chem Int Ed Engl 2021; 60:24012-24017. [PMID: 34464007 PMCID: PMC8596882 DOI: 10.1002/anie.202108971] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Indexed: 11/12/2022]
Abstract
Herein, we report the first decarboxylative hydroxylation to synthesize phenols from benzoic acids at 35 °C via photoinduced ligand-to-metal charge transfer (LMCT)-enabled radical decarboxylative carbometalation. The aromatic decarboxylative hydroxylation is synthetically promising due to its mild conditions, broad substrate scope, and late-stage applications.
Collapse
Affiliation(s)
- Wanqi Su
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm Platz 145470Mülheim an der RuhrGermany
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Peng Xu
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm Platz 145470Mülheim an der RuhrGermany
| | - Tobias Ritter
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
17
|
Affiliation(s)
- Wanqi Su
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Peng Xu
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
18
|
Pan W, Li C, Zhu H, Li F, Li T, Zhao W. A mild and practical method for deprotection of aryl methyl/benzyl/allyl ethers with HPPh 2 and tBuOK. Org Biomol Chem 2021; 19:7633-7640. [PMID: 34524311 DOI: 10.1039/d1ob01286j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general method for the demethylation, debenzylation, and deallylation of aryl ethers using HPPh2 and tBuOK is reported. The reaction features mild and metal-free reaction conditions, broad substrate scope, good functional group compatibility, and high chemical selectivity towards aryl ethers over aliphatic structures. Notably, this approach is competent to selectively deprotect the allyl or benzyl group, making it a general and practical method in organic synthesis.
Collapse
Affiliation(s)
- Wenjing Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Chenchen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Haoyin Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Fangfang Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Tao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
19
|
An efficient Ti0.95Cu0.05O1.95 catalyst for ipso – hydroxylation of arylboronic acid and reduction of 4-nitrophenol. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Kawamoto T, Ryu I. Blacklight‐Induced Hydroxylation of Arylboronic Acids Leading to Hydroxyarenes Using Molecular Oxygen and Tetrabutylammonium Borohydride. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takuji Kawamoto
- Department of Applied Chemistry Yamaguchi University Ube, Yamaguchi 755-8611 Japan
| | - Ilhyong Ryu
- Organization for Research Promotion Osaka Prefecture University Sakai, Osaka 599-8531 Japan
- Department of Applied Chemistry National Yang Ming Chiao Tung University (NYCU) Hsinchu 30010 Taiwan
| |
Collapse
|
21
|
|
22
|
Upadhyay R, Singh D, Maurya SK. Highly efficient heterogeneous V
2
O
5
@TiO
2
catalyzed the rapid transformation of boronic acids to phenols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rahul Upadhyay
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Deepak Singh
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
| | - Sushil K. Maurya
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
23
|
Thomson CG, Banks C, Allen M, Barker G, Coxon CR, Lee AL, Vilela F. Expanding the Tool Kit of Automated Flow Synthesis: Development of In-line Flash Chromatography Purification. J Org Chem 2021; 86:14079-14094. [PMID: 34270260 DOI: 10.1021/acs.joc.1c01151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent advancements in in-line extraction and purification technology have enabled complex multistep synthesis in continuous flow reactor systems. However, for the large scope of chemical reactions that yield mixtures of products or residual starting materials, off-line purification is still required to isolate the desired compound. We present the in-line integration of a commercial automated flash chromatography system with a flow reactor for the continuous synthesis and isolation of product(s). A proof-of-principle study was performed to validate the system and test the durability of the column cartridges, performing an automated sequence of 100 runs over 2 days. Three diverse reaction systems that highlight the advantages of flow synthesis were successfully applied with in-line normal- or reversed-phase flash chromatography, continuously isolating products with 97-99% purity. Productivity of up to 9.9 mmol/h was achieved, isolating gram quantities of pure product from a feed of crude reaction mixture. Herein, we describe the development and optimization of the systems and suggest guidelines for selecting reactions well suited to in-line flash chromatography.
Collapse
Affiliation(s)
- Christopher G Thomson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Colin Banks
- Cheshire Sciences (UK) Limited, Kao Hockham Building, Edinburgh Way, Harlow, Essex, England CM20 2NQ, United Kingdom
| | - Mark Allen
- Advion (UK) Limited, Kao Hockham Building, Edinburgh Way, Harlow, Essex, England CM20 2NQ, United Kingdom
| | - Graeme Barker
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom.,Continuum Flow Lab, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Christopher R Coxon
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Filipe Vilela
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom.,Continuum Flow Lab, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| |
Collapse
|
24
|
Dandia A, Sharma R, Saini P, Badgoti RS, Rathore KS, Parewa V. The graphite-catalyzed ipso-functionalization of arylboronic acids in an aqueous medium: metal-free access to phenols, anilines, nitroarenes, and haloarenes. RSC Adv 2021; 11:18040-18049. [PMID: 35480165 PMCID: PMC9033238 DOI: 10.1039/d1ra01940f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
An efficient, metal-free, and sustainable strategy has been described for the ipso-functionalization of phenylboronic acids using air as an oxidant in an aqueous medium. A range of carbon materials has been tested as carbocatalysts. To our surprise, graphite was found to be the best catalyst in terms of the turnover frequency. A broad range of valuable substituted aromatic compounds, i.e., phenols, anilines, nitroarenes, and haloarenes, has been prepared via the functionalization of the C-B bond into C-N, C-O, and many other C-X bonds. The vital role of the aromatic π-conjugation system of graphite in this protocol has been established and was observed via numerous analytic techniques. The heterogeneous nature of graphite facilitates the high recyclability of the carbocatalyst. This effective and easy system provides a multipurpose approach for the production of valuable substituted aromatic compounds without using any metals, ligands, bases, or harsh oxidants.
Collapse
Affiliation(s)
- Anshu Dandia
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| | - Ruchi Sharma
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| | - Pratibha Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| | - Ranveer Singh Badgoti
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| | - Kuldeep S Rathore
- Department of Physics, Arya College of Engineering and IT Jaipur India
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| |
Collapse
|
25
|
Copper-grafted Zagrousian natural asphalt sulfonate (Cu-Zagronas): as a novel heterogeneous carbonious nanocatalyst for the synthesis of anilines and phenols. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-020-01918-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Swierczynski MJ, Ball ZT. One-Step Protein-Polymer Conjugates from Boronic-Acid-Functionalized Polymers. Bioconjug Chem 2020; 31:2494-2498. [PMID: 33078937 DOI: 10.1021/acs.bioconjchem.0c00516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymer-protein conjugates are hybrid materials with interesting and useful properties. Methods to prepare diverse diblock materials of this sort often struggle to deal with the complexity and size of reagents, and so polymer-protein conjugation represents a stringent testing ground for nontraditional bioconjugation methods, such as metal-catalyzed arylation. This work demonstrates a simple Ni2+-promoted arylation of cysteine residues with end-functionalized polymer-boronic acid reagents, and explores some molecular and physical properties possible in these hybrid structures.
Collapse
Affiliation(s)
- Michael J Swierczynski
- Department of Chemistry, Rice University, 6100 Main Street, Bioscience Research Collaborative, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, 6100 Main Street, Bioscience Research Collaborative, Houston, Texas 77005, United States
| |
Collapse
|
27
|
Elumalai V, Hansen JH. A scalable and green one-minute synthesis of substituted phenols. RSC Adv 2020; 10:40582-40587. [PMID: 35520826 PMCID: PMC9057563 DOI: 10.1039/d0ra08580d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
A mild, green and highly efficient protocol was developed for the synthesis of substituted phenols via ipso-hydroxylation of arylboronic acids in ethanol. The method utilizes the combination of aqueous hydrogen peroxide as the oxidant and H2O2/HBr as the reagent under unprecedentedly simple and convenient conditions. A wide range of arylboronic acids were smoothly transformed into substituted phenols in very good to excellent yields without chromatographic purification. The reaction is scalable up to at least 5 grams at room temperature with one-minute reaction time and can be combined in a one-pot sequence with bromination and Pd-catalyzed cross-coupling to generate more diverse, highly substituted phenols.
Collapse
Affiliation(s)
- Vijayaragavan Elumalai
- UiT The Arctic University of Norway, Department of Chemistry, Chemical Synthesis and Analysis Group N9037 Tromsø Norway
| | - Jørn H Hansen
- UiT The Arctic University of Norway, Department of Chemistry, Chemical Synthesis and Analysis Group N9037 Tromsø Norway
| |
Collapse
|
28
|
Oxidative Hydroxylation of Aryl Boronic Acid Catalyzed by Co-porphyrin Complexes via Blue-Light Irradiation. Catalysts 2020. [DOI: 10.3390/catal10111262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Oxidative reactions often require unstable and environmentally harmful oxidants; therefore, the investigation of safer alternatives is urgent. Here, the hydroxylation of aryl boronic acid in the presence of Co-complexes is demonstrated. Tetrakis(4-carboxyphenyl) Co(II)-porphyrin was combined with biodegradable polymers such as chitosan catalyzed hydroxylation of phenyl boronic acids to form phenol derivatives under blue-light irradiation. This catalytic system can be used as an eco-friendly oxidation process that does not release oxidizing agents into the atmosphere.
Collapse
|
29
|
Optimizing the crystallization process of conjugated polymer photocatalysts to promote electron transfer and molecular oxygen activation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Chutia R, Chetia B. An efficient base and H2O2 free protocol for the synthesis of phenols in water and oxygen using spinel CuFe2O4 magnetic nanoparticles. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1802437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Rituparna Chutia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, India
| | - Bolin Chetia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
31
|
McCarthy C, Losada‐Garcia N, Palomo JM. Direct Synthesis of Phenols from Phenylboronic Acids in Aqueous Media Catalyzed by a Cu(0)‐Nanoparticles Biohybrid. ChemistrySelect 2020. [DOI: 10.1002/slct.202002110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Caitlin McCarthy
- Department of Biocatalysis Institute of Catalysis (CSIC) Cantoblanco campus UAM 28049 Madrid Spain) E-mail
| | - Noelia Losada‐Garcia
- Department of Biocatalysis Institute of Catalysis (CSIC) Cantoblanco campus UAM 28049 Madrid Spain) E-mail
| | - Jose M. Palomo
- Department of Biocatalysis Institute of Catalysis (CSIC) Cantoblanco campus UAM 28049 Madrid Spain) E-mail
| |
Collapse
|
32
|
Yu K, Zhang H, Sheng Y, Zhu Y. Visible-light-promoted aerobic oxidative hydroxylation of arylboronic acids in water by hydrophilic organic semiconductor. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Synthesis of Phenols via Metal-Free Hydroxylation of Aryl Boronic Acids with Aqueous TBHP. J CHEM-NY 2020. [DOI: 10.1155/2020/1543081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An alternate procedure for oxidative hydroxylation of aryl boronic acids with aqueous TBHP to access phenols is described. The protocol tolerated various functional groups substituted with aromatic rings. The reaction was performed in water and free from transition metal oxidants.
Collapse
|
34
|
Bora SJ, Paul R, Dutta A, Goswami S, Guha AK, Thakur AJ. Trinuclear Mn 2+/Zn 2+ based microporous coordination polymers as efficient catalysts for ipso-hydroxylation of boronic acids. Dalton Trans 2020; 49:5454-5462. [PMID: 32315018 DOI: 10.1039/d0dt00794c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two microporous coordination polymers based on hourglass trinuclear building units, [Mn3(bpdc)3(bpy)]·2DMF and [Zn3(bpdc)3(bpy)]·2DMF·4H2O (bpdc = 4,4'-biphenyl dicarboxylic acid, bpy = 4,4'-bipyridine), have been synthesized under solvothermal conditions employing DMF as the solvent. Each structure consists of two crystallographically distinct M2+ (M1 and M2) centers that are connected via carboxylate bridges from six bpdc ligands, generating a trinuclear metal cluster, [M3(bpdc)3(bpy)]. Cluster representation of the structure resulted in an interpenetrated net of rare hex topological type. Catalytic activities of the CPs have been assessed for the oxidative hydroxylation of phenylboronic acids (PBAs) using aqueous hydrogen peroxide (H2O2). Various substituted aryl/hetero-arylboronic acids RB(OH)2 [R = phenyl, 2,4-difluorophenyl, 4-aminophenyl, 2-thiophene etc.] underwent ipso-hydroxylation smoothly at room temperature to generate the corresponding phenols in excellent yields. The main advantages of this protocol are the aqueous medium reaction, heterogeneous catalytic system, and short reaction time with excellent yield.
Collapse
Affiliation(s)
- Sanchay J Bora
- Department of Chemistry, Pandu College, Guwahati-781012, Assam, India.
| | | | | | | | | | | |
Collapse
|
35
|
Marais L, Vosloo HC, Swarts AJ. The development of a Cu(I)/pyrazolylpyridineamine catalyst system for the hydroxylation of aryl halides. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Kwon G, Lim I, Shin US, Kim S. Highly Porous Polycaprolactone Membrane: A Biocompatible Promotor for Oxidative Hydroxylation of Arylboronic Acids. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gyu‐Tae Kwon
- Department of ChemistryDankook University Yongin‐si South Korea
| | - In‐Kyun Lim
- Department of ChemistryDankook University Yongin‐si South Korea
| | - Ueon Sang Shin
- Graduate School of Nanobiomedical ScienceDankook University Cheonan 31116 South Korea
| | - Seung‐Hoi Kim
- Department of ChemistryDankook University Yongin‐si South Korea
| |
Collapse
|
37
|
Schuhmacher A, Shiro T, Ryan SJ, Bode JW. Synthesis of secondary and tertiary amides without coupling agents from amines and potassium acyltrifluoroborates (KATs). Chem Sci 2020; 11:7609-7614. [PMID: 34094137 PMCID: PMC8152719 DOI: 10.1039/d0sc01330g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although highly effective for most amide syntheses, the activation of carboxylic acids requires the use of problematic coupling reagents and is often poorly suited for challenging cases such as N-methyl amino acids. As an alternative to both secondary and tertiary amides, we report their convenient synthesis by the rapid oxidation of trifluoroborate iminiums (TIMs). TIMs are easily prepared by acid-promoted condensation of potassium acyltrifluoroborates (KATs) and amines and are cleanly and rapidly oxidized to amides with hydrogen peroxide. The overall transformation can be conducted either as a one-pot procedure or via isolation of the TIM. The unique nature of the neutral, zwitterionic TIMs makes possible the preparation of tertiary amides via an iminium species that would not be accessible from other carbonyl derivatives and can be conducted in the presence of unprotected functional groups including acids, alcohols and thioethers. In preliminary studies, this approach was applied to the late-stage modifications of long peptides and the iterative synthesis of short, N-methylated peptides without the need for coupling agents. Oxidative amidation of potassium acyltrifluoroborates (KATs) and amines via trifluoroborate iminiums (TIMs) delivers amides without coupling agents. This unusual approach to amides can be applied for the late-stage modification of bioactive molecules and for solid-phase peptide synthesis.![]()
Collapse
Affiliation(s)
- Anne Schuhmacher
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Tomoya Shiro
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Sarah J Ryan
- Small Molecule Design and Development, Eli Lilly and Company Indianapolis IN 46285 USA
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
38
|
Rongalite-promoted metal-free aerobic ipso-hydroxylation of arylboronic acids under sunlight: DFT mechanistic studies. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Chen Y, Hu J, Ding A. Aerobic photooxidative hydroxylation of boronic acids catalyzed by anthraquinone-containing polymeric photosensitizer. RSC Adv 2020; 10:7927-7932. [PMID: 35492190 PMCID: PMC9049903 DOI: 10.1039/d0ra00176g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/17/2020] [Indexed: 11/21/2022] Open
Abstract
We report herein the synthesis of a polymeric photosensitizer and its application in aerobic photooxidative hydroxylation of boronic acids.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- PR China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- PR China
| | - Aishun Ding
- Department of Chemistry
- Fudan University
- Shanghai 200438
- PR China
| |
Collapse
|
40
|
Hao L, Ding G, Deming DA, Zhang Q. Recent Advances in Green Synthesis of Functionalized Phenols from Aromatic Boronic Compounds. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901303] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Leiduan Hao
- Department of Chemistry; Washington State University; 99164 Pullman Washington USA
| | - Guodong Ding
- Department of Chemistry; Washington State University; 99164 Pullman Washington USA
| | - Derek A. Deming
- Department of Chemistry; Washington State University; 99164 Pullman Washington USA
| | - Qiang Zhang
- Department of Chemistry; Washington State University; 99164 Pullman Washington USA
- Materials Science and Engineering Program; Washington State University; 99164 Pullman Washington USA
| |
Collapse
|
41
|
Lu G, Ren Y, Dong B, Zhou B, Ren J, Ke Y, Zeng BB. A practical method for preparation of phenols from arylboronic acids catalyzed by iodopovidone in aqueous medium. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Kandula V, Nagababu U, Behera M, Yennam S, Chatterjee A. A facile green synthesis of silver nanoparticles: An investigation on catalytic hydroxylation studies for efficient conversion of aryl boronic acids to phenol. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Laskar K, Paul S, Bora U. Cellulose as recyclable organocatalyst for ipso-hydroxylation of arylboronic acids. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Versatile catalysis of “natural extract”: oxidation of sulfides and alcohols and ipso-hydroxylation of arylboronic acids. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01707-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Shin EJ, Joo SR, Kim SH. Cooperation of biopolymer chitosan with hydrogen peroxide for ipso-hydroxylation of arylboronic acids under green conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Castro-Godoy WD, Schmidt LC, Argüello JE. A Green Alternative for the Conversion of Arylboronic Acids/Esters into Phenols Promoted by a Reducing Agent, Sodium Sulfite. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Willber D. Castro-Godoy
- INFIQC-CONICET-UNC; Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Luciana C. Schmidt
- INFIQC-CONICET-UNC; Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Juan E. Argüello
- INFIQC-CONICET-UNC; Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| |
Collapse
|
47
|
Joo S, Kwon G, Park S, Kim S. Chemically Modified Chitosan as a Biopolymer Support in Copper‐catalyzed
ipso
‐Hydroxylation of Arylboronic Acids in Water. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seong‐Ryu Joo
- Department of ChemistryDankook University Cheonan 31116 South Korea
| | - Gyu‐Tae Kwon
- Department of ChemistryDankook University Cheonan 31116 South Korea
| | - Soo‐Youl Park
- Interface Chemistry & Engineering Research Team, Korea Research Institute of Chemical Technology Daejon 34114 South Korea
| | - Seung‐Hoi Kim
- Department of ChemistryDankook University Cheonan 31116 South Korea
| |
Collapse
|
48
|
Ghiasbeigi E, Soleiman‐Beigi M. Copper Immobilized on Isonicotinic Acid Hydrazide Functionalized Nano‐Magnetite as a Novel Recyclable Catalyst for Direct Synthesis of Phenols and Anilines. ChemistrySelect 2019. [DOI: 10.1002/slct.201803770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Elahe Ghiasbeigi
- Department of Chemistry Basic of Sciences FacultyIlam University PO Box 69315–516 Ilam Iran
| | | |
Collapse
|
49
|
Shin EJ, Kim HS, Joo SR, Shin US, Kim SH. Heterogeneous Palladium–Chitosan–CNT Core–Shell Nanohybrid Composite for Ipso-hydroxylation of Arylboronic Acids. Catal Letters 2019. [DOI: 10.1007/s10562-019-02682-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Demianenko E, Rayevsky A, Soriano-Ursúa MA, Trujillo-Ferrara JG. Theoretical Coupling and Stability of Boronic Acid Adducts with Catecholamines. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180710101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:
Catecholamines combined with boric/boronic acids are attractive chemical
agents in drug design because some of their adducts have shown interesting biological activity.
Scant information exists about their stability.
Objective:
The aim of the present theoretical study was to explore the role of boron in molecules
that combine catecholamines and boric/boronic acids, with a particular interest in examining
stability.
Method:
The methodology was based on the US GAMESS program using DFT with the B3LYP
exchange-correlation functional and the 6-31G (d,p) split-valence basis set.
Results:
According to the current findings, the boron-containing compounds (BCCs) exhibit weaker
bonding to the hydroxyls on the ethylamine moiety than to those in the aromatic ring. The strongest
binding site of a hydroxyl group was often found to be in meta-position (relative to ethylamine
moiety) for boron-free compounds and in para-position for BCCs. Nonetheless, the methyl substituent
in the amino group was able to induce changes in this pattern. We analyzed feasible boronsubstituted
structures and assessed the relative strength of the respective C-B bonds, which allowed
for the identification of the favorable points for reaction and stability.
Conclusion:
It is feasible to form adducts by bonding on the amine and catechol sides of catecholamines.
The presence of boron stabilizes the adducts in para-position. Since some of these BCCs
are promising therapeutic agents, understanding the mechanisms of reaction is relevant for drug
design.
Collapse
Affiliation(s)
- Eugeniy Demianenko
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., Kyiv, 03164, Ukraine
| | - Alexey Rayevsky
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., Kyiv, 03164, Ukraine
| | - Marvin A. Soriano-Ursúa
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, Mexico City, 11340, Mexico
| | - José G. Trujillo-Ferrara
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, Mexico City, 11340, Mexico
| |
Collapse
|