1
|
Gurram DP, Marri G, Jothimani N, Chen YR, Lin W. Diversity-oriented synthesis of chromone inden-1-one-fused cyclopentadienylides and C-acylated chromone adducts via allylic phosphorus ylides. Chem Commun (Camb) 2024; 60:9817-9820. [PMID: 39171397 DOI: 10.1039/d4cc03210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
An organophosphine-controlled diversity-oriented synthesis of chromone inden-1-one-fused cyclopentadienylides and C-acylated 2-((chromone-3-yl)methylene)-indandiones is reported. Key attributes of the methodology are the in situ generation of an allylic P-ylide and subsequent regio- and chemoselective intramolecular cyclization reactions that preferentially result in the aforementioned chromone adducts.
Collapse
Affiliation(s)
- Durga Prasad Gurram
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| | - Gangababu Marri
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| | - Naveen Jothimani
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| |
Collapse
|
2
|
Di Matteo M, Gagliardi A, Pradal A, Veiros LF, Gallou F, Poli G. Pd-Catalyzed C(sp 2)-H/C(sp 2)-H Coupling of Limonene. J Org Chem 2024; 89:10451-10461. [PMID: 39025478 DOI: 10.1021/acs.joc.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Limonene undergoes a regioselective Pd(II)-catalyzed C(sp2)-H/C(sp2)-H coupling with acrylic acid esters and amides, α,β-unsaturated ketones, styrenes, and allyl acetate, affording novel 1,3-dienes. DFT computations gave results in accord with the experimental results and allowed for the formulation of a plausible mechanism. The postfunctionalization of one of the coupled products was achieved via a large-scale Sonogashira reaction conducted under micellar catalysis.
Collapse
Affiliation(s)
- Marco Di Matteo
- Institut Parisien de Chimie Moléculaire (IPCM), Faculté des Sciences et Ingénierie, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Anna Gagliardi
- Institut Parisien de Chimie Moléculaire (IPCM), Faculté des Sciences et Ingénierie, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Alexandre Pradal
- Institut Parisien de Chimie Moléculaire (IPCM), Faculté des Sciences et Ingénierie, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | | | - Giovanni Poli
- Institut Parisien de Chimie Moléculaire (IPCM), Faculté des Sciences et Ingénierie, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
3
|
Gao Y, Wang M, Sun J, Zhao XJ, He Y. Electrochemical-induced solvent-tuned selective C(sp 3)-H bond activation towards the synthesis of C3-functionalized chromone derivatives. Chem Commun (Camb) 2024; 60:5050-5053. [PMID: 38634308 DOI: 10.1039/d4cc00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
An unprecedented solvent-tuned electrochemical method for selective C(sp3)-H bond activation towards the synthesis of C3 functionalized chromone derivatives has been developed. This electrosynthesis protocol provides an efficient and green way to access various C3-functionalized chromones by avoiding traditionally employed transition metals and high temperatures. The swappable chemoselectivity was controlled mainly by altering the solvent and the current. A plausible reaction mechanism has been proposed with the help of radical capture and cyclic voltammetry experiments.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Mingxu Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Jingxian Sun
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
4
|
Hu W, Diao X, Yuan J, Liang W, Yang W, Yang L, Ma J, Zhang S. Photoredox-Catalyzed Tandem Cyclization of Enaminones with N-Sulfonylaminopyridinium Salts toward the Synthesis of 3-Sulfonaminated Chromones. J Org Chem 2024; 89:644-655. [PMID: 38088130 DOI: 10.1021/acs.joc.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A photoredox-catalyzed intermolecular tandem sulfonamination/cyclization of enaminones was realized by using N-aminopyridinium salts as the sulfonaminated reagents without transition-metal catalysts or bases. The reaction exhibits a broad scope and good functional group tolerance, good yields, and regioselectivity. Preliminary mechanistic studies support the radical property of the reaction and the involvement of N-centered radical intermediates.
Collapse
Affiliation(s)
- Wenyu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xiaoqiong Diao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wei Liang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wan Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Ji Ma
- Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P.R. China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| |
Collapse
|
5
|
Hu JY, Xie ZB, Tang J, Le ZG, Zhu ZQ. Combining Enzyme and Photoredox Catalysis for the Construction of 3-Aminoalkyl Chromones. J Org Chem 2022; 87:14965-14969. [PMID: 36279475 DOI: 10.1021/acs.joc.2c01977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we reported a practical and efficient strategy combining photoredox and enzyme catalysis for the construction of 3-aminoalkyl chromones from o-hydroxyaryl enaminones and N-arylglycine esters. A variety of 3-aminoalkyl chromones were synthesized with good yields under mild conditions in one pot. This synthetic protocol consists of sequential enzymatic hydrolysis and photoredox decarboxylation of N-arylglycine esters, oxidation of aminoalkyl radicals, Mannich reaction, and intramolecular nucleophilic cyclization, which affords a convenient pathway for the preparation of various 3-substituted chromones.
Collapse
Affiliation(s)
- Jia-Yu Hu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, PR China
| | - Zong-Bo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, PR China
| | - Juan Tang
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, PR China
| | - Zhi-Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, PR China
| |
Collapse
|
6
|
Zhu Z, Hu J, Xie Z, Tang J, Le Z. Visible‐Light‐Enabled Photosensitizer‐ and Additive‐Free Decarboxylative Coupling Cyclization of Enaminone with
N
‐Arylglycine for 3‐Aminoalkyl Chromones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhi‐Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| | - Jia‐Yu Hu
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| | - Zong‐Bo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| | - Juan Tang
- Ministry of Education Key Laboratory of Functional Small Organic Molecule Department of Chemistry and chemical engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Zhang‐Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| |
Collapse
|
7
|
Peng Y, Gong H, Wang J, Chen H, Deng H, Hao J, Wan W. Regiospecific C2‐Difluoroalkylation on Chromone via Transition‐Metal‐free Oxidative Decarboxylation of Aryldifluoroacetic acids. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yi Peng
- Shanghai University Department of chemistry CHINA
| | - Haiying Gong
- Shanghai University Department of chemistry CHINA
| | - Juan Wang
- Shanghai University Department of chemistry CHINA
| | - Hua Chen
- Shanghai University Department of chemistry CHINA
| | - Hongmei Deng
- Shanghai University laboratory of Microstructures CHINA
| | - Jian Hao
- Shanghai University Department of chemistry CHINA
| | - Wen Wan
- Shanghai University of Science and Technology: Shanghai University Deptartment of Chemistry Shangda Road 99 200444 Shanghai CHINA
| |
Collapse
|
8
|
Benny AT, Radhakrishnan EK. Advances in the site-selective C-5, C-3 and C-2 functionalization of chromones via sp 2 C-H activation. RSC Adv 2022; 12:3343-3358. [PMID: 35425362 PMCID: PMC8979368 DOI: 10.1039/d1ra08214k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 02/02/2023] Open
Abstract
In this work, site-selective C-H activation at C-5, C-3 and C-2 positions of chromones for the introduction of structural diversity to the chromone scaffold was studied. The keto group of the chromone moiety acts as the directing group for the selective functionalization of chromones at the C-5 position. Furthermore, the C-H functionalization at the electron-rich C-3 position of the chromone can be achieved using electrophilic coupling partners. The C-H functionalization at the C-2 position can be possible using nucleophilic coupling partners. The direct functionalization methods provide a better pathway for the generation of C-5, C-3 and C-2-substituted chromones with good atom economy than that of classical pre-functionalized reaction protocols.
Collapse
|
9
|
Yan J, Zheng X, Zheng Y, Zhan R, Huang H. Asymmetric Michael reaction of 3-homoacyl coumarins with chromone-fused dienes toward enantioenriched coumarin chromone skeletons. Org Biomol Chem 2021; 19:8102-8107. [PMID: 34494052 DOI: 10.1039/d1ob01200b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric Michael reaction of 3-homoacyl coumarins and chromone-fused dienes was developed by employing a chiral squaramide, and a series of coumarin chromone skeletons were furnished in moderate to high yields (up to 99%) and stereoselectivities (up to 98 : 2 dr, 99% ee).
Collapse
Affiliation(s)
- Juzhang Yan
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China.
| | - Xiurong Zheng
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China.
| | - Yangqing Zheng
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China.
| | - Ruoting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China.
| | - Huicai Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China.
| |
Collapse
|
10
|
Chernov NM, Shutov RV, Sipkina NY, Krivchun MN, Yakovlev IP. A Flexible Synthetic Approach to Fluorescent Chromeno[4,3-b]pyridines and Pyrano[3,2-c]chromenes from Electron-Deficient 3-Vinylchromones. Chempluschem 2021; 86:1256-1266. [PMID: 34472730 DOI: 10.1002/cplu.202100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Indexed: 11/09/2022]
Abstract
We report a flexible approach to the synthesis of phenanthrene-like heterocycles through organocatalytic ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) reaction of electron-deficient 3-vinylchromones with cyanoacetamide. Addition of highly basic DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or tetramethylguanidine (TMG) at 80 °C leads to chromeno[4,3-b]pyridines in good yields, whereas Et3 N at 20 °C made it possible to obtain the less accessible pyrano[3,2-c]chromenes and their 2-imines. The synthesis proceeds in mild conditions (EtOH, 20-80 °C), is versatile and applicable for a wide scope of reactants. The obtained compounds show bright fluorescence in the range 460-595 nm with high quantum yields (up to 0.84) in various solvents (MeCN, DMSO, EtOH, H2 O).
Collapse
Affiliation(s)
- Nikita M Chernov
- Organic Chemistry Department, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st., 14, Saint-Petersburg, 197376, Russia
| | - Roman V Shutov
- Organic Chemistry Department, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st., 14, Saint-Petersburg, 197376, Russia
| | - Nadezhda Yu Sipkina
- Analytical Center, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st., 14, Saint-Petersburg, 197376, Russia
| | - Maxim N Krivchun
- Organic Chemistry Department, Saint-Petersburg State Institute of Technology, Moskovsky av., 26, Saint-Petersburg, 190013, Russia
| | - Igor P Yakovlev
- Organic Chemistry Department, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st., 14, Saint-Petersburg, 197376, Russia
| |
Collapse
|
11
|
Sosnovskikh VY. Synthesis and Reactivity of Electron-Deficient 3-Vinylchromones. SYNOPEN 2021. [DOI: 10.1055/a-1589-9556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractThe reported methods and data for the synthesis and reactivity of electron-deficient 3-vinylchromones containing electron-withdrawing groups at the exo-cyclic double bond are summarized and systematized for the first time. The main methods for obtaining these compounds are Knoevenagel condensation, Wittig reaction, and palladium-catalyzed cross-couplings. The most important chemical properties are transformations under the action of mono- and dinucleophiles, ambiphilic cyclizations, and cycloaddition reactions. The cross-conjugated and polyelectrophilic dienone system in 3-vinylchromones provides their high reactivity and makes these compounds valuable building blocks for the preparation of more complex heterocyclic systems. Chemical transformations of 3-vinylchromones usually begin with an attack of the C-2 atom and are accompanied by the opening of the pyrone ring followed by recyclization, in which the carbonyl group of chromone, an exo-double bond or a substituent on it can take part. The mechanisms of the reactions are discussed, the conditions for their implementation are described, and the yields of the resulting products are given. This review focuses on an analysis and generalization of the knowledge that has accumulated on the chemistry of electron-deficient 3-vinylchromones, mostly over the past 15 years.1 Introduction2 Synthesis of 3-Vinylchromones3 Reactions with Mononucleophiles4 Reactions with Dinucleophiles5 Ambiphilic Cyclization6 Cycloaddition Reactions7 Other Reactions8 Conclusion
Collapse
|
12
|
Yu JT, Li Y, Chen R, Yang Z, Pan C. DTBP-promoted site-selective α-alkoxyl C-H functionalization of alkyl esters: synthesis of 2-alkyl ester substituted chromanones. Org Biomol Chem 2021; 19:4520-4528. [PMID: 33928985 DOI: 10.1039/d1ob00605c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct C-H functionalization of ethyl acetates was developed, delivering a variety of 1-(4-oxochroman-2-yl)ethyl acetate derivatives by reacting with chromones. This reaction has a wide substrate scope with excellent site-selective C-H activation at the inactive α-hydrogen of the alkoxyl group instead of the α-hydrogen of the carbonyl group under radical conditions. Compared with other protocols for the α-alkoxyl C-H functionalization of alkyl esters, a distinguishing feature of this reaction is that no metal catalyst was required, with DTBP as the sole oxidant.
Collapse
Affiliation(s)
- Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Yiting Li
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Rongzhen Chen
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Zixian Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China. and School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
13
|
Danton F, Najjar R, Othman M, Lawson AM, Moncol J, Ghinet A, Rigo B, Oulyadi H, Daïch A. Site‐Selective Pd‐Catalysed Fujiwara‐Moritani type Reaction of
N,S
‐Heterocyclic Systems with Olefins. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanny Danton
- Normandie Univ UNILEHAVRE, CNRS, URCOM, 76600 Le Havre, France EA 3221 CNRS INC3M FR3030, UFS-ST 25 Rue Philippe Lebon, BP. 1123 76063 Le Havre Cedex France
| | - Riham Najjar
- Normandie Univ UNIROUEN, INSA Rouen, CNRS, COBRA 76000 Rouen France
| | - Mohamed Othman
- Normandie Univ UNILEHAVRE, CNRS, URCOM, 76600 Le Havre, France EA 3221 CNRS INC3M FR3030, UFS-ST 25 Rue Philippe Lebon, BP. 1123 76063 Le Havre Cedex France
| | - Ata Martin Lawson
- Normandie Univ UNILEHAVRE, CNRS, URCOM, 76600 Le Havre, France EA 3221 CNRS INC3M FR3030, UFS-ST 25 Rue Philippe Lebon, BP. 1123 76063 Le Havre Cedex France
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical & Food Technology Slovak University of Technology Radlinského 9 SK-81237 Bratislava Slovakia
| | - Alina Ghinet
- Yncréa Hauts-de-France Laboratory of Sustainable Chemistry and Health Health & Environment Department Team Sustainable Chemistry Ecole des Hautes Etudes d'Ingénieur (HEI), UCLille 13 rue de Toul F-59046 Lille France
- Univ. Lille, Inserm CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE – Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement F-59000 Lille France
- Faculty of Chemistry, Department of Organic Chemistry ‘Al. I. Cuza' University of Iasi Bd. Carol I nr. 11 700506 Iasi Romania
| | - Benoît Rigo
- Yncréa Hauts-de-France Laboratory of Sustainable Chemistry and Health Health & Environment Department Team Sustainable Chemistry Ecole des Hautes Etudes d'Ingénieur (HEI), UCLille 13 rue de Toul F-59046 Lille France
- Univ. Lille, Inserm CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE – Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement F-59000 Lille France
| | - Hassan Oulyadi
- Normandie Univ UNIROUEN, INSA Rouen, CNRS, COBRA 76000 Rouen France
| | - Adam Daïch
- Normandie Univ UNILEHAVRE, CNRS, URCOM, 76600 Le Havre, France EA 3221 CNRS INC3M FR3030, UFS-ST 25 Rue Philippe Lebon, BP. 1123 76063 Le Havre Cedex France
| |
Collapse
|
14
|
Soengas RG, Rodríguez-Solla H. Modern Synthetic Methods for the Stereoselective Construction of 1,3-Dienes. Molecules 2021; 26:molecules26020249. [PMID: 33418882 PMCID: PMC7825119 DOI: 10.3390/molecules26020249] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/16/2022] Open
Abstract
The 1,3-butadiene motif is widely found in many natural products and drug candidates with relevant biological activities. Moreover, dienes are important targets for synthetic chemists, due to their ability to give access to a wide range of functional group transformations, including a broad range of C-C bond-forming processes. Therefore, the stereoselective preparation of dienes have attracted much attention over the past decades, and the search for new synthetic protocols continues unabated. The aim of this review is to give an overview of the diverse methodologies that have emerged in the last decade, with a focus on the synthetic processes that meet the requirements of efficiency and sustainability of modern organic chemistry.
Collapse
|
15
|
Fu L, Xu Z, Wan JP, Liu Y. The Domino Chromone Annulation and a Transient Halogenation-Mediated C–H Alkenylation toward 3-Vinyl Chromones. Org Lett 2020; 22:9518-9523. [DOI: 10.1021/acs.orglett.0c03548] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Leiqing Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
- College of Chemistry and Bio-Engineering, Yichun University, Yichun, Jiangxi 336000, P. R. China
| | - Zhongrong Xu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
16
|
Tian S, Luo T, Zhu Y, Wan JP. Recent advances in the diversification of chromones and flavones by direct C H bond activation or functionalization. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Zhou Y, Liang H, Sheng Y, Wang S, Gao Y, Zhan L, Zheng Z, Yang M, Liang G, Zhou J, Deng J, Song Z. Ruthenium(II)-Catalyzed C-H Activation of Chromones with Maleimides to Synthesize Succinimide/Maleimide-Containing Chromones. J Org Chem 2020; 85:9230-9243. [PMID: 32578431 DOI: 10.1021/acs.joc.0c01223] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An efficient route for the coupling of maleimides with chromones at the C5-position has been developed under Ru(II) catalysis. It could provide 1,4-addition products and oxidative Heck-type products by switching additives. Benzoic acid led to the formation of 1,4-addition products under solvent-free conditions, and silver acetate was promoted to the generation of oxidative Heck-type products. Various maleimides and chromones were suitable for this transformation, affording the desired products with good to excellent yields in a short reaction time. To understand the mechanism of this reaction, deuteration studies and control experiments have been performed.
Collapse
Affiliation(s)
- Yan Zhou
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Hong Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yaoguang Sheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Shaoli Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Yi Gao
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Lingling Zhan
- The First Affiliated Hospital, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Zhilong Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Mengjie Yang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Jianmin Zhou
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Jun Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zengqiang Song
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
18
|
Wang Y, Hu B, Zhang Q, Zhao S, Zhao Y, Zhang B, Yu F. Selectfluor-triggered fluorination/cyclization of o-hydroxyarylenaminones: A facile access to 3-fluoro-chromones. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820923084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A fast and efficient Selectfluor-triggered fluorination/cyclization reaction of o-hydroxyarylenaminones has been successfully developed. The reaction successfully provides an expedient method for the synthesis of 3-fluoro-chromones promoted by potassium carbonate, which shows readily available starting materials and is easy to operate. In addition, a plausible mechanism of this tandem cyclization reaction was proposed where 4 H-chromen-4-one, 2-(dimethylamino)-3,3-difluorochroman-4-one, and 3,3-difluoro-2-hydroxychroman-4-one were not found to be the reactive intermediates. Moreover, these novel compounds have been obtained in moderate to good yields, and their structures have been confirmed by 1H NMR, 13C NMR, and high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Yanqin Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Biao Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Qiaohe Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Siyun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Yuxuan Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Biao Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| |
Collapse
|
19
|
Saha M, Das AR. Nanocrystalline ZnO: A Competent and Reusable Catalyst for the Preparation of Pharmacology Relevant Heterocycles in the Aqueous Medium. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346107666200218122718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
:Nanoparticle catalyzed synthesis is a green and convenient method to achieve most of the chemical transformations in water or other green solvents. Nanoparticle ensures an easy isolation process of catalyst as well as products from the reaction mixture avoiding the hectic work up procedure. Zinc oxide is a biocompatible, environmentally benign and economically viable nanocatalyst with effectivity comparable to the other metal nanocatalyst employed in several reaction strategies. This review mainly focuses on the recent applications of zinc oxide in the synthesis of biologically important heterocyclic molecules under sustainable reaction conditions.:Application of zinc oxide in organic synthesis: Considering the achievable advantages of this nanocatalyst, presently several research groups are paying attention in anchoring zincoxide or its modified structure in several types of organic conversions e.g. multicomponent reactions, ligand-free coupling reactions, cycloaddition reaction, etc. The advantages and limitations of this nanocatalyst are also demonstrated. The present study aims to highlight the recent multifaceted applications of ZnO towards the synthesis of diverse heterocyclic motifs. Being a promising biocompatible nanoparticle, this catalyst has an important contribution in the fields of synthetic chemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Moumita Saha
- Department of Chemistry, University of Calcutta, Kolkata-700009, India
| | - Asish R. Das
- Department of Chemistry, University of Calcutta, Kolkata-700009, India
| |
Collapse
|
20
|
Das A, Jana A, Maji B. Palladium-catalyzed remote C-H functionalization of 2-aminopyrimidines. Chem Commun (Camb) 2020; 56:4284-4287. [PMID: 32182324 DOI: 10.1039/d0cc00575d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A straightforward strategy was developed for the arylation and olefination at the C5-position of the N-(alkyl)pyrimidin-2-amine core with readily available aryl halides and alkenes, respectively. This approach was highly regioselective, and the transformation was achieved based on two different (Pd(ii)/Pd(iv)) and (Pd(0)/Pd(ii)) catalytic cycles.
Collapse
Affiliation(s)
- Animesh Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | | | | |
Collapse
|
21
|
Mkrtchyan S, Iaroshenko VO. Visible-light-mediated arylation of ortho-hydroxyarylenaminones: direct access to isoflavones. Chem Commun (Camb) 2020; 56:2606-2609. [DOI: 10.1039/c9cc09945j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The first visible-light-promoted direct synthesis of isoflavones following the arylation of ortho-hydroxyarylenaminones by aryl onium salts was developed.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- PL-90-363 Łodź
- Poland
| | - Viktor O. Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- PL-90-363 Łodź
- Poland
| |
Collapse
|
22
|
Minami Y, Konishi A, Yasuda M. Synthesis of α-Alkenyl α,β-Unsaturated Ketones via Dehydrogermylation of Oxagermacycles with Regeneration of the Germanium(II) Species. Org Lett 2019; 21:9818-9823. [PMID: 31682128 DOI: 10.1021/acs.orglett.9b03454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of α-alkenyl α,β-unsaturated ketones using germanium(II) salts is reported. Oxagermacycles derived from α,β-unsaturated ketones with germanium(II) salts and aldehydes can be transformed into α-alkenyl α,β-unsaturated ketones. Ammonium salts promoted the elimination of Ge(II) species to afford the two classes of α-alkenyl α,β-unsaturated ketones in good yields. The α-alkenyl α,β-unsaturated ketones are precursors for multisubstituted heterocycles.
Collapse
|
23
|
Kunde SP, Kanade KG, Karale BK, Akolkar HN, Randhavane PV, Shinde ST. Synthesis and characterization of nanostructured Cu-ZnO: An efficient catalyst for the preparation of (E)-3-styrylchromones. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Kumar TU, Roy D, Bhattacharya A. Iron(III) catalyzed direct C–H functionalization at the C-3 position of chromone for the synthesis of fused chromeno-quinoline scaffolds. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Wan J, Tu Z, Wang Y. Transient and Recyclable Halogenation Coupling (TRHC) for Isoflavonoid Synthesis with Site‐Selective Arylation. Chemistry 2019; 25:6907-6910. [DOI: 10.1002/chem.201901025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/07/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Jie‐Ping Wan
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| | - Zhi Tu
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| | - Yuyun Wang
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
26
|
Dou Y, Kenry, Liu J, Jiang J, Zhu Q. Late‐Stage Direct
o
‐Alkenylation of Phenols by Pd
II
‐Catalyzed C−H Functionalization. Chemistry 2019; 25:6896-6901. [DOI: 10.1002/chem.201900530] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yandong Dou
- College of Biotechnology and Bioengineering, & Collaborative Innovation Center of Yangtze, River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 China
| | - Kenry
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Jiang Liu
- College of Biotechnology and Bioengineering, & Collaborative Innovation Center of Yangtze, River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 China
| | - Jianze Jiang
- College of Biotechnology and Bioengineering, & Collaborative Innovation Center of Yangtze, River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 China
| | - Qing Zhu
- College of Biotechnology and Bioengineering, & Collaborative Innovation Center of Yangtze, River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
27
|
Debbarma S, Sk MR, Modak B, Maji MS. On-Water Cp*Ir(III)-Catalyzed C–H Functionalization for the Synthesis of Chromones through Annulation of Salicylaldehydes with Diazo-Ketones. J Org Chem 2019; 84:6207-6216. [DOI: 10.1021/acs.joc.9b00418] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suvankar Debbarma
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Md Raja Sk
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Biswabrata Modak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
28
|
Koubachi J, El Brahmi N, Guillaumet G, El Kazzouli S. Oxidative Alkenylation of Fused Bicyclic Heterocycles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jamal Koubachi
- Faculté Polydisciplinaire de Taroudant; Laboratoire de Chimie Appliquée et Environnement (LACAPE); Université Ibn Zohr d′Agadir; B.P 271 83000 Taroudant Morocco
| | - Nabil El Brahmi
- Euromed Research Center; Euromed Faculty of Engineering; Euromed University of Fes; Route de Meknes 30000 Fès Morocco
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique (ICOA); Université d'Orléans, UMR CNRS 7311; BP 6759 45067 Orléans Cedex 2 France
| | - Saïd El Kazzouli
- Euromed Research Center; Euromed Faculty of Engineering; Euromed University of Fes; Route de Meknes 30000 Fès Morocco
| |
Collapse
|
29
|
Lekkala R, Lekkala R, Moku B, Rakesh KP, Qin HL. Applications of sulfuryl fluoride (SO2F2) in chemical transformations. Org Chem Front 2019. [DOI: 10.1039/c9qo00747d] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A number of novel methodologies concerning the chemical, biological and medicinal applications of sulfuryl fluoride (SO2F2) gas have dramatically improved year by year.
Collapse
Affiliation(s)
- Ravindar Lekkala
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Revathi Lekkala
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - K. P. Rakesh
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| |
Collapse
|
30
|
Tiwari VK, Kapur M. Catalyst-controlled positional-selectivity in C–H functionalizations. Org Biomol Chem 2019; 17:1007-1026. [DOI: 10.1039/c8ob02272k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C–H bonds are ubiquitous in organic molecules and typically these bonds are chemically indistinct from each other and it would be highly advantageous for a synthetic chemist to have the ability to choose which C–H bond is functionalized in a given molecule.
Collapse
Affiliation(s)
- Virendra Kumar Tiwari
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| | - Manmohan Kapur
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| |
Collapse
|
31
|
Paul S, Khanal HD, Clinton CD, Kim SH, Lee YR. Pd(TFA)2-catalyzed direct arylation of quinoxalinones with arenes. Org Chem Front 2019. [DOI: 10.1039/c8qo01250d] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pd(TFA)2-catalyzed cross-dehydrogenative coupling reaction for the direct C-3 arylation of quinoxalin-2-ones with arenes is described.
Collapse
Affiliation(s)
- Sanjay Paul
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 712-749
- Republic of Korea
- Department of Chemistry
| | - Hari Datta Khanal
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 712-749
- Republic of Korea
| | - Chayan Dhar Clinton
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 712-749
- Republic of Korea
| | - Sung Hong Kim
- Analysis Research Division
- Daegu Center
- Korea Basic Science Institute
- Daegu 41566
- Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 712-749
- Republic of Korea
| |
Collapse
|
32
|
Lekkala R, Lekkala R, Moku B, Qin HL. SO2F2 mediated dehydrative cross-coupling of alcohols with electron-deficient olefins in DMSO using a Pd-catalyst: one-pot transformation of alcohols into 1,3-dienes. Org Chem Front 2019. [DOI: 10.1039/c8qo01388h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A Pd-catalyzed, SO2F2 mediated dehydrative cross-coupling of alcohols with electron-deficient olefins for the construction of 1,3-dienes was developed.
Collapse
Affiliation(s)
- Revathi Lekkala
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Ravindar Lekkala
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| |
Collapse
|
33
|
Wang M, Tang BC, Ma JT, Wang ZX, Xiang JC, Wu YD, Wang JG, Wu AX. I2/DMSO-mediated multicomponent reaction of o-hydroxyaryl methyl ketones, rongalite, and DMSO: access to C3-sulfenylated chromones. Org Biomol Chem 2019; 17:1535-1541. [DOI: 10.1039/c8ob02994f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient I2–DMSO reagent system-mediated multicomponent reaction strategy for the synthesis of C3-sulfenylated chromones from o-hydroxyaryl methyl ketones, rongalite, and dimethyl sulfoxide has been developed.
Collapse
Affiliation(s)
- Miao Wang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Zi-Xuan Wang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Jia-Chen Xiang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Jun-Gang Wang
- School of Chemical Engineering
- Guizhou Minzu University
- Guiyang
- P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| |
Collapse
|
34
|
Mkrtchyan S, Iaroshenko VO. New Entries to 3-Acylchromones: TM-Catalysed Decarboxylative Cross-Coupling of α-Keto Acids with ortho
-Hydroxyarylenaminones, 2,3-Unsubstituted Chromones and 3-Iodochromones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza 112, PL -90-363 Łodź Poland
| | - Viktor O. Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza 112, PL -90-363 Łodź Poland
| |
Collapse
|
35
|
Synthesis, molecular docking and inhibition studies of novel 3-N-aryl substituted-2-heteroarylchromones targeting microtubule affinity regulating kinase 4 inhibitors. Eur J Med Chem 2018; 159:166-177. [PMID: 30290280 DOI: 10.1016/j.ejmech.2018.09.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/11/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
Abstract
A series of 3-N-aryl substituted-2-heteroarylchromones was efficiently synthesized via Pd-mediated oxidative coupling under the influence of hetero-atoms neighboring group participation. Synthesized molecules were evaluated against human microtubule affinity regulating kinase 4 (MARK4) enzyme inhibitors, a recently identified anti-cancer drug target. Among 21 synthesized molecules, compounds 2, 3, and 14 exhibited excellent in vitro inhibitory effect against MARK4 with IC50 value (50% of ATPase activity) at 2.12 ± 0.22 μM, 1.98 ± 0.34 μM and 5.56 ± 0.42 μM respectively. The fluorescence binding and dot blot assay of these compounds were found in μM range, indicating a better binding affinity. In vitro study of these compounds against cancerous cells (MCF-7 and HepG2) inhibited the cell viability, induced apoptosis and lowered the tau-phosphorylation. Cell viability studies of compounds 2, 3, and 14 showed inhibition of cancerous cells growth with IC50 values of 3.22 ± 0.42, 4.32 ± 0.23 μM and 16.22 ± 1.33 μM for human breast cancer cells (MCF-7) and 6.45 ± 1.12, 5.22 ± 0.72 μM and 19.12 ± 1.43 μM for human liver carcinoma cells (HepG2) respectively. ROS quantification of these compounds showed oxidative stress to cancerous cells and molecular docking study showed hydrogen bonding, charge or polar and van der Waals interactions with the active site residues of MARK4. Owning to high binding fit nicely in the active site, offering the possibilities to be used as novel therapeutic molecules in the drug discovery against MARK4-related diseases.
Collapse
|
36
|
Kang D, Ahn K, Hong S. Site-Selective C−H Bond Functionalization of Chromones and Coumarins. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800128] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dahye Kang
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon Korea
| | - Kukcheol Ahn
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon Korea
| | - Sungwoo Hong
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon Korea
| |
Collapse
|
37
|
Le Bras J, Muzart J. Palladium-Catalyzed Domino Dehydrogenation/Heck-Type Reactions of Carbonyl Compounds. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800258] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jean Le Bras
- Institut de Chimie Moléculaire de Reims, UMR 7312; CNRS - Université de Reims Champagne-Ardenne; B.P. 1039 51687 Reims Cedex 2 France
| | - Jacques Muzart
- Institut de Chimie Moléculaire de Reims, UMR 7312; CNRS - Université de Reims Champagne-Ardenne; B.P. 1039 51687 Reims Cedex 2 France
| |
Collapse
|
38
|
Chen R, Yu JT, Cheng J. Site-specific hydroxyalkylation of chromones via alcohol mediated Minisci-type radical conjugate addition. Org Biomol Chem 2018; 16:1823-1827. [DOI: 10.1039/c8ob00392k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The metal-free C2-functionalization of chromones with alcohols and ethers via radical sp3 C–H activation was developed.
Collapse
Affiliation(s)
- Rongzhen Chen
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou 213164
| | - Jin-Tao Yu
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou 213164
| | - Jiang Cheng
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou 213164
| |
Collapse
|
39
|
Bakthadoss M, Kumar PV, Reddy TS. Ruthenium-Catalyzed, Keto-Directed, Site-Selective C-H Activation of Diverse Chromanones with Alkenes. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Polu Vijay Kumar
- Department of Chemistry; Pondicherry University; 605014 Puducherry India
| | | |
Collapse
|
40
|
Yu C, Li F, Zhang J, Zhong G. A direct cross-coupling reaction of electron-deficient alkenes using an oxidizing directing group. Chem Commun (Camb) 2017; 53:533-536. [PMID: 27966727 DOI: 10.1039/c6cc07064g] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An oxidant-free cross-coupling reaction of electron-deficient alkenes using an inexpensive ruthenium catalyst is reported. With the assistance of the oxidizing directing group CONH(OMe), this protocol provides a mild, straightforward and efficient method for the preparation of valuable 1,3-butadiene skeletons with excellent Z,E selectivities.
Collapse
Affiliation(s)
- Chunbing Yu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| | - Feifei Li
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| | - Jian Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
41
|
Li F, Yu C, Zhang J, Zhong G. Weinreb amide directed cross-coupling reaction between electron-deficient alkenes catalyzed by a rhodium catalyst. Org Biomol Chem 2017; 15:1236-1244. [DOI: 10.1039/c7ob00026j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A rhodium-catalyzed Weinreb amide directed cross-coupling reaction between electron-deficient alkenes is reported, which provides an efficient route for the synthesis of valuable and versatile Weinreb amide functionalized (Z,E)-butadienes.
Collapse
Affiliation(s)
- Feifei Li
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Chunbing Yu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Jian Zhang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Guofu Zhong
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| |
Collapse
|
42
|
Zhong S, Liu Y, Cao X, Wan JP. KIO3-Catalyzed Domino C(sp2)−H Bond Sulfenylation and C−N Bond Oxygenation of Enaminones toward the Synthesis of 3-Sulfenylated Chromones. ChemCatChem 2016. [DOI: 10.1002/cctc.201601273] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shanshan Zhong
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| | - Xiaoji Cao
- Research Center of Analysis and Measurement; Zhejiang University of Technology; 18 Chaowang Road, Hangzhou Zhejiang 310014 P.R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| |
Collapse
|
43
|
Zhong XM, Cheng GJ, Chen P, Zhang X, Wu YD. Mechanistic Study on Pd/Mono-N-protected Amino Acid Catalyzed Vinyl–Vinyl Coupling Reactions: Reactivity and E/Z Selectivity. Org Lett 2016; 18:5240-5243. [DOI: 10.1021/acs.orglett.6b02542] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiu-Mei Zhong
- Lab
of Computational Chemistry and Drug Design, Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Gui-Juan Cheng
- Lab
of Computational Chemistry and Drug Design, Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ping Chen
- Lab
of Computational Chemistry and Drug Design, Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinhao Zhang
- Lab
of Computational Chemistry and Drug Design, Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun-Dong Wu
- Lab
of Computational Chemistry and Drug Design, Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- College
of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Li F, Yu C, Zhang J, Zhong G. Olefination of Electron-Deficient Alkenes with Allyl Acetate: Stereo- and Regioselective Access to (2Z,4E)-Dienamides. Org Lett 2016; 18:4582-5. [DOI: 10.1021/acs.orglett.6b02229] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feifei Li
- College of Materials, Chemistry
and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Chunbing Yu
- College of Materials, Chemistry
and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jian Zhang
- College of Materials, Chemistry
and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Guofu Zhong
- College of Materials, Chemistry
and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
45
|
Choi H, Min M, Peng Q, Kang D, Paton RS, Hong S. Unraveling innate substrate control in site-selective palladium-catalyzed C-H heterocycle functionalization. Chem Sci 2016; 7:3900-3909. [PMID: 30155034 PMCID: PMC6013790 DOI: 10.1039/c5sc04590h] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/02/2016] [Indexed: 11/23/2022] Open
Abstract
Understanding the regioselectivity of C-H activation in the absence of directing groups is an important step towards the design of site-selective C-H functionalizations. The Pd(ii)-catalyzed direct arylation of chromones and enaminones provides an intriguing example where a simple substitution leads to a divergence in substrate-controlled site-selectivity. We describe computational and experimental studies which reveal this results from a switch in mechanism and therefore the selectivity-determining step. We present computational results and experimentally measured kinetic isotope effects and labelling studies consistent with this proposal. The C-H activation of these substrates proceeds via a CMD mechanism, which favors more electron rich positions and therefore displays a pronounced kinetic selectivity for the C3-position. However, C2-selective carbopalladation is also a competitive pathway for chromones so that the overall regiochemical outcome depends on which substrate undergoes activation first. Our studies provide insight into the site-selectivity based on the favorability of two competing CMD and carbopalladation processes of the substrates undergoing coupling. This model can be utilized to predict the regioselectivity of coumarins which are proficient substrates for carbopalladation. Furthermore, our model is able to account for the opposite selectivities observed for enaminone and chromone, and explains how a less reactive coupling partner leads to a switch in selectivity.
Collapse
Affiliation(s)
- Hwanho Choi
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , UK . ;
| | - Minsik Min
- Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon , 34141 Korea .
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon , 34141 Korea
| | - Qian Peng
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , UK . ;
| | - Dahye Kang
- Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon , 34141 Korea .
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon , 34141 Korea
| | - Robert S Paton
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , UK . ;
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon , 34141 Korea .
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon , 34141 Korea
| |
Collapse
|
46
|
Kong WJ, Liu YJ, Xu H, Chen YQ, Dai HX, Yu JQ. Pd-Catalyzed α-Selective C–H Functionalization of Olefins: En Route to 4-Imino-β-Lactams. J Am Chem Soc 2016; 138:2146-9. [DOI: 10.1021/jacs.5b13353] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei-Jun Kong
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yue-Jin Liu
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hui Xu
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yan-Qiao Chen
- Department
of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Hui-Xiong Dai
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Quan Yu
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Department
of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
47
|
Medina FG, Marrero JG, Macías-Alonso M, González MC, Córdova-Guerrero I, Teissier García AG, Osegueda-Robles S. Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat Prod Rep 2015; 32:1472-507. [PMID: 26151411 DOI: 10.1039/c4np00162a] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review highlights the broad range of science that has arisen from the synthesis of coumarin-linked and fused heterocycle derivatives. Specific topics include their synthesis and biological activity.
Collapse
Affiliation(s)
- Fernanda G Medina
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Av. Mineral de Valenciana, No. 200, Col. Fracc. Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico.
| | | | | | | | | | | | | |
Collapse
|
48
|
Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Oxidative Coupling between Two Hydrocarbons: An Update of Recent C–H Functionalizations. Chem Rev 2015; 115:12138-204. [DOI: 10.1021/cr500431s] [Citation(s) in RCA: 836] [Impact Index Per Article: 92.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chao Liu
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jiwen Yuan
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Meng Gao
- National
Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
| | - Shan Tang
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wu Li
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Renyi Shi
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Aiwen Lei
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
- National
Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
| |
Collapse
|
49
|
Jeong Y, Moon Y, Hong S. Tandem Dehydrogenation/Oxidation/Oxidative Cyclization Approach to Wrightiadione and Its Derivatives. Org Lett 2015; 17:3252-5. [PMID: 26090926 DOI: 10.1021/acs.orglett.5b01618] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wrightiadione contains a unique tetracyclic isoflavone moiety and has been shown to exhibit a broad range of biological activities. An efficient and straightforward synthetic method for generating the molecular complexity of wrightiadione was developed through three-step tandem dehydrogenation/oxidation/oxidative cyclization reactions with a Pd/Cu catalytic system. This unprecedented one-pot route utilizes a broad range of substrates, providing a convenient and powerful synthetic tool for accessing naturally occurring tetracyclic isoflavone wrightiadione and its nitrogen-containing derivatives.
Collapse
Affiliation(s)
- Yujeong Jeong
- †Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea.,‡Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Youngtaek Moon
- †Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea.,‡Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Sungwoo Hong
- †Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea.,‡Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| |
Collapse
|
50
|
Kim K, Choe H, Jeong Y, Lee JH, Hong S. Ru(II)-Catalyzed Site-Selective Hydroxylation of Flavone and Chromone Derivatives: The Importance of the 5-Hydroxyl Motif for the Inhibition of Aurora Kinases. Org Lett 2015; 17:2550-3. [DOI: 10.1021/acs.orglett.5b01138] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kiho Kim
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Hyeonjeong Choe
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Yujeong Jeong
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Jun Hee Lee
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Sungwoo Hong
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| |
Collapse
|