1
|
Bachmann V, Schädel P, Westhoff J, Perić M, Schömberg F, Skaltsounis AL, Höppener S, Pantsar T, Fischer D, Vilotijević I, Werz O. Bromo-substituted indirubins for inhibition of protein kinase-mediated signalling involved in inflammatory mediator release in human monocytes. Bioorg Chem 2024; 149:107470. [PMID: 38838619 DOI: 10.1016/j.bioorg.2024.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Targeting protein kinases that regulate signalling pathways in inflammation is an effective pharmacological approach to alleviate uncontrolled inflammatory diseases. In this context, the natural product indirubin and its 6-bromo-substituted analogue 6-bromoindirubin-3 -glycerol-oxime ether (6BIGOE; 1) were identified as potent inhibitors of glycogen synthase kinase-3β (GSK-3β). These inhibitors suppress the release of pro-inflammatory cytokines and prostaglandins (PG) from human monocytes. However, indirubin derivatives target several protein kinases such as cyclin-dependent kinases (CDKs) which has been a major concern for their application in inflammation therapy. Here, we report on a library of 13 5-bromo-substituted indirubin derivatives that have been designed to improve potency and target selectivity. Side-by-side comparison of reference compound 1 (6BIGOE) with 5-bromo derivatives revealed its isomer 2 (5BIGOE), as the most potent derivative able to supress pro-inflammatory cytokine and PG release in lipopolysaccharide-stimulated human monocytes. Analysis of protein kinase inhibition in intact monocytes, supported by our in silico findings, proposed higher selectivity of 1 for GSK-3β inhibition with lesser potency against CDKs 8 and 9. In contrast, 2 supressed the activity of these CDKs with higher effectiveness than GSK-3β, representing additional targets of indirubins within the inflammatory response. Encapsulation of 1 and 2 into polymer-based nanoparticles (NP) improved their pharmacological potential. In conclusion, the 5- and 6-brominated indirubins 1 and 2 as dual GSK-3β and CDK8/9 inhibitors represent a novel concept for intervention with inflammatory disorders.
Collapse
Affiliation(s)
- Vivien Bachmann
- Department of Pharmaceutical/ Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Patrick Schädel
- Department of Pharmaceutical/ Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Jan Westhoff
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Milica Perić
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Fritz Schömberg
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacy, Division of Pharmacognosy and Natural Product Chemistry, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Stephanie Höppener
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Tatu Pantsar
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonrinne 3, FI-70210 Kuopio, Finland
| | - Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; FAU NeW - Research Center for New Bioactive Compounds, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Ivan Vilotijević
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | - Oliver Werz
- Department of Pharmaceutical/ Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
2
|
Sharma H, Mondal J, Ghosh AK, Pal RR, Goswami RK. Total synthesis of the antibacterial polyketide natural product thailandamide lactone. Chem Sci 2022; 13:13403-13408. [PMID: 36507156 PMCID: PMC9682914 DOI: 10.1039/d2sc04727f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Stereoselective total synthesis of the structurally intriguing polyketide natural product thailandamide lactone was accomplished, and done so using a convergent approach for the first time to the best of our knowledge. The key features of this synthesis included use of a Crimmins acetate aldol reaction, Evans methylation, Urpi acetal aldol reaction, Sharpless asymmetric epoxidation and subsequent γ-lactonization for the installation of six asymmetric centers and the use of the Negishi reaction, Julia-Kocienski olefination, cross metathesis, HWE olefination and intermolecular Heck coupling for construction of a variety of unsaturated linkages. Pd(i)-based Heck coupling was introduced, for the first time to the best of our knowledge, quite efficiently to couple the major eastern and sensitive western segments of the molecule. The antibacterial activity of thailandamide lactone was also evaluated.
Collapse
Affiliation(s)
- Himangshu Sharma
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Joyanta Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Ananyo K Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Ritesh Ranjan Pal
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| |
Collapse
|
3
|
Dethe DH, Srivastava A, Nirpal AK, Beeralingappa NC, Kumar V, Bhat AA. Diversification of ( E,E)-1,6-Dioxo-2,4-Dienes for the Synthesis of (+)-Aspicillin, Isolaurepan, and β-Parinaric Acid. J Org Chem 2022; 87:11021-11030. [PMID: 35921130 DOI: 10.1021/acs.joc.2c01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A divergent formal synthesis of polyhydroxylated macrocyclic lactone (+)-aspicillin and polyene bioactive natural product β-parinaric acid and the total synthesis of non-terpenoid metabolite isolaurepan have been achieved using a ruthenium-catalyzed stereo- and chemoselective oxidative coupling reaction of easily accessible vinyl ketones and acrylates. The crucial transformation involves the efficient synthesis and functionalization of stereodefined (E,E)-1,6-dioxo-2,4-dienes using simple reaction protocols, which enabled straightforward access to a diverse range of bioactive natural products.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Aparna Srivastava
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Appasaheb K Nirpal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | | - Vimlesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arsheed A Bhat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
4
|
Kuramochi A, Komine N, Kiyota S, Hirano M. Ru(0)-Catalyzed Synthesis of Borylated-Conjugated Triene Building Blocks by Cross-Dimerization and Their Use in Cross-Coupling Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ayumi Kuramochi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Nobuyuki Komine
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Sayori Kiyota
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
5
|
Abstract
A convergent route for the asymmetric total synthesis of potent anticancer polyketide natural product amphirionin-2 has been developed. Our initial synthetic trials revealed that the proposed structures of amphirionin-2 need to be revised consistent with a recent report of Fuwa et al., where the actual structure of amphirionin-2 was established. The key features of our synthesis comprised Sharpless asymmetric dihydroxylation, followed by cycloetherification, Wittig olefination, Julia-Kocienski olefination, and Crimmins propionate aldol reaction.
Collapse
Affiliation(s)
- Dhiman Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Gour Hari Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
6
|
Eskandari R, Hess JP, Tochtrop GP. Synthesis of α,β-unsaturated epoxy ketones utilizing a bifunctional sulfonium/phosphonium ylide. Chem Commun (Camb) 2021; 57:7136-7139. [PMID: 34180477 DOI: 10.1039/d1cc02475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a new protocol for rapid synthesis of α,β-unsaturated epoxy ketones utilizing a bifunctional sulfonium/phosphonium ylide is described. This approach comprises two sequential chemoselective reactions between sulfonium and phosphonium ylides and two distinct aldehydes, which allows for the rapid construction of a variety of unsymmetric α,β-unsaturated epoxy ketones. This methodology allows the rapid construction of the core reactive functionality of a family of lipid peroxidation products, the epoxyketooctadecenoic acids, but can be further broadly utilized as a useful synthon for the synthesis of natural products, particularly those derived from oxidized fatty acids. Accordingly, a protocol utilizing this approach to synthesize the epoxyketooctadecenoic acid family of molecules is described.
Collapse
Affiliation(s)
- Roozbeh Eskandari
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Jeremy P Hess
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
7
|
Elagamy A, Althagafi I, Pratap R. Step-wise and one-pot synthesis of highly substituted conjugated trienes from 2-oxobenzo[ h]chromenes/2 H-pyran-2-ones. Org Biomol Chem 2021; 19:3901-3910. [PMID: 33949600 DOI: 10.1039/d1ob00314c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and efficient route for the synthesis of conjugated trienes via nitroethane-mediated ring contraction of 2-oxobenzo[h]chromenes/2H-pyran-2-ones followed by decarboxylative rearrangement of the obtained spirobutenolides and butenolides is described. The (E)-isomer of trienes was obtained by step-wise and one-pot approaches from 2-oxobenzo[h]chromenes. Butenolides 4a-l as new substrates have been developed for the construction of trienes. The mixture of the (E)- and (Z)-isomers of spirobutenolides undergoes decarboxylative rearrangement in the presence of sodium ethoxide as a base to yield the (E)-isomer of trienes, while the (E)-isomer of butenolides reacts to give a mixture of (2E,4E)- and (2E,4Z)-isomers of trienes in an almost steady ratio of 45 : 55 or 1 : 1.2. The structure and geometry of the obtained butenolides and trienes were confirmed by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Amr Elagamy
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India.
| | - Ismail Althagafi
- Chemistry Department, Faculty of Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Ramendra Pratap
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India.
| |
Collapse
|
8
|
Kim D, Shi G, Kim Y, Koo S. Fast Assembly and High-Throughput Screening of Structure and Antioxidant Relationship of Carotenoids. Org Lett 2019; 21:714-718. [PMID: 30648872 DOI: 10.1021/acs.orglett.8b03915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C20 heptaenyl diphosphonate 4 was prepared for one-pot synthesis of carotenoids 1. Olefination with various aromatic aldehydes allowed fast assembly of the corresponding carotenoids. The SAR of carotenoids was investigated by high-throughput screening of ABTS and DPPH assays and their hierarchical clustering analysis. Antioxidant activity of carotenoids increased with the number of electron-donating substituents. Carotene 1a with multiple electron-donating substituents was most proficient, which showed better radical scavenging activities than β-carotene and lycopene.
Collapse
Affiliation(s)
- Dahye Kim
- Department of Energy Science and Technology, Department of Chemistry , Myongji University , Myongji-Ro 116 , Cheoin-Gu, Yongin , Gyeonggi-Do , 17058 , Korea
| | - Gaosheng Shi
- Department of Energy Science and Technology, Department of Chemistry , Myongji University , Myongji-Ro 116 , Cheoin-Gu, Yongin , Gyeonggi-Do , 17058 , Korea
| | - YunJi Kim
- Department of Energy Science and Technology, Department of Chemistry , Myongji University , Myongji-Ro 116 , Cheoin-Gu, Yongin , Gyeonggi-Do , 17058 , Korea
| | - Sangho Koo
- Department of Energy Science and Technology, Department of Chemistry , Myongji University , Myongji-Ro 116 , Cheoin-Gu, Yongin , Gyeonggi-Do , 17058 , Korea
| |
Collapse
|
9
|
Chatterjee S, Mandal GH, Goswami RK. Total Synthesis of Cytospolide Q. ACS OMEGA 2018; 3:7350-7357. [PMID: 31458894 PMCID: PMC6644782 DOI: 10.1021/acsomega.8b00937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/21/2018] [Indexed: 06/10/2023]
Abstract
A flexible and convergent strategy for the stereoselective total synthesis of bioactive marine natural product cytospolide Q has been developed. The key features of this synthesis include Evans anti-aldol reaction for the installation of C-2 and C-3 stereocenters and cycloetherification via epoxide opening followed by concomitant lactonization for the construction of tetrahydrofuran and γ-butyrolactone scaffolds. This synthetic study also revealed that protected oxygenated functionality (methyl ester or benzyl ether) at C-1 position participated readily in epoxide opening.
Collapse
|
10
|
Chen Q, Wen C, Wang X, Yu G, Ou Y, Huo Y, Zhang K. DDQ-Promoted Allylic C−H Phosphorylation of 1,3-Diarylpropenes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800804] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qian Chen
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 People's Republic of China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Chunxiao Wen
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 People's Republic of China
| | - Xiaofeng Wang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 People's Republic of China
| | - Guodian Yu
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 People's Republic of China
| | - Yingcong Ou
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 People's Republic of China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 People's Republic of China
| | - Kun Zhang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 People's Republic of China
| |
Collapse
|
11
|
Gerhards F, Griebel N, Runsink J, Raabe G, Gais HJ. Chiral Lithiated Allylic α-Sulfonyl Carbanions: Experimental and Computational Study of Their Structure, Configurational Stability, and Enantioselective Synthesis. Chemistry 2015; 21:17904-20. [PMID: 26494207 DOI: 10.1002/chem.201503123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 11/06/2022]
Abstract
X-ray crystal structure analysis of the lithiated allylic α-sulfonyl carbanions [CH2 CHC(Me)SO2 Ph]Li⋅diglyme, [cC6 H8 SO2 tBu]Li⋅PMDETA and [cC7 H10 SO2 tBu]Li⋅PMDETA showed dimeric and monomeric CIPs, having nearly planar anionic C atoms, only OLi bonds, almost planar allylic units with strong CC bond length alternation and the s-trans conformation around C1C2. They adopt a C1S conformation, which is similar to the one generally found for alkyl and aryl substituted α-sulfonyl carbanions. Cryoscopy of [EtCHCHC(Et)SO2 tBu]Li in THF at 164 K revealed an equilibrium between monomers and dimers in a ratio of 83:17, which is similar to the one found by low temperature NMR spectroscopy. According to NMR spectroscopy the lone-pair orbital at C1 strongly interacts with the CC double bond. Low temperature (6) Li,(1) H NOE experiments of [EtCHCHC(Et)SO2 tBu]Li in THF point to an equilibrium between monomeric CIPs having only OLi bonds and CIPs having both OLi and C1Li bonds. Ab initio calculation of [MeCHCHC(Me)SO2 Me]Li⋅(Me2 O)2 gave three isomeric CIPs having the s-trans conformation and three isomeric CIPs having the s-cis conformation around the C1C2 bond. All s-trans isomers are more stable than the s-cis isomers. At all levels of theory the s-trans isomer having OLi and C1Li bonds is the most stable one followed by the isomer which has two OLi bonds. The allylic unit of the C,O,Li isomer shows strong bond length alternation and the C1 atom is in contrast to the O,Li isomer significantly pyramidalized. According to NBO analysis of the s-trans and s-cis isomers, the interaction of the lone pair at C1 with the π* orbital of the CC double bond is energetically much more favorable than that with the "empty" orbitals at the Li atom. The C1S and C1C2 conformations are determined by the stereoelectronic effects nC -σSR * interaction and allylic conjugation. (1) H DNMR spectroscopy of racemic [EtCHCHC(Et)SO2 tBu]Li, [iPrCHCHC(iPr)SO2 tBu]Li and [EtCHC(Me)C(Et)SO2 tBu]Li in [D8 ]THF gave estimated barriers of enantiomerization of ΔG(≠) =13.2 kcal mol(-1) (270 K), 14.2 kcal mol(-1) (291 K) and 14.2 kcal mol(-1) (295 K), respectively. Deprotonation of sulfone (R)-EtCHCHCH(Et)SO2 tBu (94 % ee) with nBuLi in THF at -105 °C occurred with a calculated enantioselectivity of 93 % ee and gave carbanion (M)-[EtCHCHC(Et)SO2 tBu]Li, the deuteration and alkylation of which with CF3 CO2 D and MeOCH2 I, respectively, proceeded with high enantioselectivities. Time-dependent deuteration of the enantioenriched carbanion (M)-[EtCHCHC(Et)SO2 tBu]Li in THF gave a racemization barrier of ΔG(≠) =12.5 kcal mol(-1) (168 K), which translates to a calculated half-time of racemization of t1/2 =12 min at -105 °C.
Collapse
Affiliation(s)
- Frank Gerhards
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany).,Present address: Philipp Reis Strasse 12, 40215 Düsseldorf (Germany)
| | - Nicole Griebel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany).,Present address: Kaiserstrasse 66, 52080 Aachen (Germany)
| | - Jan Runsink
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
| | - Gerhard Raabe
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
| | - Hans-Joachim Gais
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany).
| |
Collapse
|
12
|
Cichowicz NR, Kaplan W, Khomutnyk Y, Bhattarai B, Sun Z, Nagorny P. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions. J Am Chem Soc 2015; 137:14341-8. [PMID: 26491886 PMCID: PMC4651737 DOI: 10.1021/jacs.5b08528] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive β,β'-enones and substituted β,β'-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Δ(5)-unsaturation are key controlling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones.
Collapse
Affiliation(s)
- Nathan R. Cichowicz
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Will Kaplan
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Yaroslav Khomutnyk
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Bijay Bhattarai
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Zhankui Sun
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Larsen BJ, Sun Z, Lachacz E, Khomutnyk Y, Soellner MB, Nagorny P. Synthesis and Biological Evaluation of Lactimidomycin and Its Analogues. Chemistry 2015; 21:19159-67. [PMID: 26577990 DOI: 10.1002/chem.201503527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 02/06/2023]
Abstract
The studies culminating in the total synthesis of the glutarimide-containing eukaryote translation elongation inhibitor lactimidomycin are described. The optimized synthetic route features a Zn(II)-mediated intramolecular Horner-Wadsworth-Emmons (HWE) reaction resulting in a highly stereoselective formation of the strained 12-membered macrolactone of lactimidomycin on a 423 mg scale. The presence of the E,Z-diene functionality was found to be key for effective macrocyclizations as a complete removal of these unsaturation units resulted in exclusive formation of the dimer rather than monocyclic enoate. The synthetic route features a late-stage installation of the glutarimide functionality via an asymmetric catalytic Mukaiyama aldol reaction, which allows for a quick generation of lactimidomycin homolog 55 containing two additional carbons in the glutarimide side chain. Similar to lactimidomycin, this analog was found to possess cytotoxicity against MDA-MB-231 breast cancer cells (GI50 =1-3 μM) using in vitro 2D and 3D assays. Although lactimidomycin was found to be the most potent compound in terms of anticancer activity, 55 as well as truncated analogues 50-52 lacking the glutarimide side-chain were found to be significantly less toxic against human mammary epithelial cells.
Collapse
Affiliation(s)
- Brian J Larsen
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055 (USA)
| | - Zhankui Sun
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055 (USA)
| | - Eric Lachacz
- Medicinal Chemistry Department, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065 (USA)
| | - Yaroslav Khomutnyk
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055 (USA)
| | - Matthew B Soellner
- Medicinal Chemistry Department, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065 (USA).
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055 (USA).
| |
Collapse
|
14
|
Li X, Chen X, Yuan J, Liu Y, Li P, Qu L, Zhao Y. An Efficient Synthesis of 1,2,3-Triazole Bridge-Connected Phosphonate Derivatives of Coumarin. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2014.979987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Xu Li
- Department of Chemistry, Zhengzhou University, Key Laboratory of Organic Chemistry and Chemical Biology, Henan Province, Zhengzhou, P.R. China
| | - Xiaolan Chen
- Department of Chemistry, Zhengzhou University, Key Laboratory of Organic Chemistry and Chemical Biology, Henan Province, Zhengzhou, P.R. China
| | - Jinwei Yuan
- Chemistry and Chemical Engineering School, Henan University of Technology, Henan Province, Zhengzhou, P.R. China
| | - Yang Liu
- Department of Chemistry, Zhengzhou University, Key Laboratory of Organic Chemistry and Chemical Biology, Henan Province, Zhengzhou, P.R. China
| | - Peipei Li
- Department of Chemistry, Zhengzhou University, Key Laboratory of Organic Chemistry and Chemical Biology, Henan Province, Zhengzhou, P.R. China
| | - Lingbo Qu
- Department of Chemistry, Zhengzhou University, Key Laboratory of Organic Chemistry and Chemical Biology, Henan Province, Zhengzhou, P.R. China
- Chemistry and Chemical Engineering School, Henan University of Technology, Henan Province, Zhengzhou, P.R. China
| | - Yufen Zhao
- Department of Chemistry, Zhengzhou University, Key Laboratory of Organic Chemistry and Chemical Biology, Henan Province, Zhengzhou, P.R. China
- Department of Chemistry, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
15
|
Das S, Kuilya TK, Goswami RK. Asymmetric Total Synthesis of Bioactive Natural Lipid Mycalol. J Org Chem 2015; 80:6467-89. [DOI: 10.1021/acs.joc.5b00972] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Subhendu Das
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tapan Kumar Kuilya
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rajib Kumar Goswami
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
16
|
Kong L, Rao M, Ou J, Yin J, Lu W, Liu M, Pang X, Gao S. Total synthesis and biological studies of cryptocin and derivatives of equisetin and fusarisetin A. Org Biomol Chem 2015; 12:7591-7. [PMID: 25139438 DOI: 10.1039/c4ob01149j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Total synthesis of cryptocin, a fungus metabolite, was achieved based on the biosynthetic hypothesis. A variety of derivatives of cryptocin, equisetin and fusarisetin A were prepared, wherein the racemization of C-3 and diastereoselectivity of C-5 were investigated. We further examined their inhibitory effects on breast cancer cell survival and metastasis, and summarized the structure-activity relationship.
Collapse
Affiliation(s)
- Lili Kong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
A novel copper-catalyzed allylic C–H phosphonation reaction has been developed under mild reaction conditions.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Hong-Yu Zhang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
18
|
Lukáč M, Garajová M, Mrva M, Devínsky F, Ondriska F, Kubincová J. Novel fluorinated dialkylphosphonatocholines: Synthesis, physicochemical properties and antiprotozoal activities against Acanthamoeba spp. J Fluor Chem 2014. [DOI: 10.1016/j.jfluchem.2014.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Yang L, Ye J, Gao Y, Deng D, Lin Y, Ning G. One-Step Stereoselective Synthesis of (2Z,4Z,6Z,8Z)-Decatetraene Diketone from Pyrylium Salts. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Jiang H, Gao Y, Wu W, Huang Y. Pd(II)-Catalyzed Highly Regio- and Stereoselective Assembly of C–C Double Bonds: An Efficient Method for the Synthesis of 2,4-Dihalo-1,3,5-trienes from Alkynols. Org Lett 2012; 15:238-41. [DOI: 10.1021/ol302730x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Huanfeng Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yang Gao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yubing Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|