1
|
Panahi F, Bauer F, Breit B. Rhodium-Catalyzed Allylic Addition as an Atom-Efficient Approach in Total Synthesis. Acc Chem Res 2023; 56:3676-3693. [PMID: 38064346 DOI: 10.1021/acs.accounts.3c00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
ConspectusFinding efficient synthetic methods for the asymmetric synthesis of complex molecules has always been of interest to organic chemists. Creating and controlling the stereochemistry of stereogenic centers bearing branched allylic moieties in organic molecules using a catalytic process is an attractive and successful method for the synthesis of several natural products and medicinally important compounds. Remarkable progress toward their synthesis has been achieved via transition-metal catalysis, especially in the case of allylic substitution and allylic C-H oxidation chemistry. However, for allylic substitution the preinstallation of a leaving group is essential, and for allylic C-H oxidation, stoichiometric amounts of oxidant are required. Besides that, the control of regioselectivity with these methods is often problematic because the linear product can be produced as a major isomer. Our research group has developed a regioselective, enantioselective, and atom economic route toward the more valuable branched product via a Rh-catalyzed coupling of easily accessible alkynes or the double-bond isomeric allenes with pronucleophiles. It was demonstrated that, using this new approach, it is possible to add different pronucleophiles to alkynes or allenes to form branched allylic moieties through C-C and C-heteroatom bond formation. Since new organic reactions offer new opportunities in chemical synthesis and the benchmark for new synthetic methods is their application in target-oriented synthesis, we have demonstrated several successful syntheses of natural products and medicinally relevant targets. For example, in the total syntheses of Quercuslactones, Helicascolides A-C, Epothilone D, Homolargazole, and Thailandepsin B, the Rh-catalyzed hydro-oxycarbonylation of allenes was used as key step via C-O bond formation. Remarkably, the Rh-catalyzed C2-symmetric dimerization strategy was used to synthesize the complex molecules Clavosolide A and Vermiculine, leading to an extreme increase in structural complexity within a single step. For the total syntheses of Centrolobine, Pitavastatin, and Rosuvastatin, C-O bond formation was achieved through the addition of a hydroxy function to the allene moiety. The potential of the addition of nitrogen pronucleophiles to allenes was demonstrated in the total syntheses of Cusparein, Angusterein, Cermicin C, Senepodin G, Homoproline, Pipecolinol, Coniceine, Coniine, Ruxolitinib, Sitagliptin, Abacavir, Glucokinase activators, and Chaetominine. All of these examples testify to the wide applicability of the Rh-catalyzed addition of pronucleophiles to allenes or alkynes in target-oriented synthesis, and in this Account we summarize our contribution.
Collapse
Affiliation(s)
- Farhad Panahi
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Felix Bauer
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Miyazaki M, Ura Y. Palladium/Iron-Catalyzed Wacker-Type Oxidation of Aliphatic Terminal and Internal Alkenes Using O 2. ACS OMEGA 2023; 8:41983-41990. [PMID: 37969998 PMCID: PMC10634151 DOI: 10.1021/acsomega.3c07577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 11/17/2023]
Abstract
The Wacker-type oxidation of aliphatic terminal alkenes proceeds using a Pd/Fe catalyst system under mild reaction conditions using 1 atm O2 without other additives. The use of 1,2-dimethoxyethane/H2O as a mixed solvent was effective. The slow addition of alkenes is also important for improving product yields. Fe(III) citrate was the most efficient cocatalyst among the iron complexes examined, whereas other complexes such as FeSO4, Fe2(SO4)3, Fe(NO3)3, and Fe2O3 were also operative. This method is also applicable to aliphatic internal alkenes, which are generally difficult to oxidize using conventional Pd/Cu catalyst systems. The gram-scale synthesis and reuse of the Pd catalysts were also demonstrated.
Collapse
Affiliation(s)
- Mayu Miyazaki
- Department of Chemistry,
Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Yasuyuki Ura
- Department of Chemistry,
Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara 630-8506, Japan
| |
Collapse
|
3
|
Escorihuela J, Lledós A, Ujaque G. Anti-Markovnikov Intermolecular Hydroamination of Alkenes and Alkynes: A Mechanistic View. Chem Rev 2023; 123:9139-9203. [PMID: 37406078 PMCID: PMC10416226 DOI: 10.1021/acs.chemrev.2c00482] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 07/07/2023]
Abstract
Hydroamination, the addition of an N-H bond across a C-C multiple bond, is a reaction with a great synthetic potential. Important advances have been made in the last decades concerning catalysis of these reactions. However, controlling the regioselectivity in the amine addition toward the formation of anti-Markovnikov products (addition to the less substituted carbon) still remains a challenge, particularly in intermolecular hydroaminations of alkenes and alkynes. The goal of this review is to collect the systems in which intermolecular hydroamination of terminal alkynes and alkenes with anti-Markovnikov regioselectivity has been achieved. The focus will be placed on the mechanistic aspects of such reactions, to discern the step at which regioselectivity is decided and to unravel the factors that favor the anti-Markovnikov regioselectivity. In addition to the processes entailing direct addition of the amine to the C-C multiple bond, alternative pathways, involving several reactions to accomplish anti-Markovnikov regioselectivity (formal hydroamination processes), will also be discussed in this review. The catalysts gathered embrace most of the metal groups of the Periodic Table. Finally, a section discussing radical-mediated and metal-free approaches, as well as heterogeneous catalyzed processes, is also included.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departament
de Química Orgànica, Universitat
de València, 46100 Burjassot, Valencia, Spain
| | - Agustí Lledós
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Gregori Ujaque
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Sietmann J, Tenberge M, Wahl JM. Wacker Oxidation of Methylenecyclobutanes: Scope and Selectivity in an Unusual Setting. Angew Chem Int Ed Engl 2023; 62:e202215381. [PMID: 36416612 PMCID: PMC10108300 DOI: 10.1002/anie.202215381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Methylenecyclobutanes are found to undergo Wacker oxidation via a semi-pinacol-type rearrangement. Key to a successful process is the use of tert-butyl nitrite as oxidant, which not only enables efficient catalyst turn-over but also ensures high Markovnikov-selectivity under mild conditions. Thus, cyclopentanones (26 examples) can be accessed in an overall good yield and excellent selectivity (up to 97 % yield, generally >99 : 1 ketone:aldehyde ratio). Stereochemical analysis of the reaction sequence reveals migration aptitudes in line with related 1,2-shifts. By introducing a pyox ligand to palladium, prochiral methylenecyclobutanes can be desymmetrized, thus realizing the first enantioselective Wacker oxidation.
Collapse
Affiliation(s)
- Jan Sietmann
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 3648149MünsterGermany
| | - Marius Tenberge
- Department ChemieJohannes Gutenberg-UniversitätDuesbergweg 10–1455128MainzGermany
| | - Johannes M. Wahl
- Department ChemieJohannes Gutenberg-UniversitätDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
5
|
Nie Z, Yang T, Su M, Luo WP, Liu Q, Guo CC. One‐Step Synthesis of Arylacetaldehydes from Aryl aldehydes or Diaryl ketones via One‐Carbon Extension by Using the System of DMSO/KOH/Zinc. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Fernandes RA, Yadav SS, Kumar P. Palladium-catalyzed anti-Markovnikov oxidative acetalization of activated olefins with iron(III) sulphate as the reoxidant. Org Biomol Chem 2022; 20:427-443. [PMID: 34927658 DOI: 10.1039/d1ob02227j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This paper discloses the efficient palladium-catalyzed anti-Markovnikov oxidative acetalization of activated terminal olefins with iron(III) sulfate as the reoxidant. This methodology requires mild reaction conditions and shows high regioselectivity toward anti-Markovnikov products and compatibility with a wide range of functional groups. Iron(III) sulphate was the sole reoxidant used in this method. Various olefins like vinylarenes, aryl-allylethers, aryl or benzyl acrylates and homoallylic alcohols all reacted well providing anti-Markovnikov acetals, some of which represent orthogonally functionalized 1,3- and 1,4-dioxygenated compounds.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Sandhya S Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
7
|
Lei SH, Zhong Y, Cai XP, Huang Q, Qu JP, Kang YB. Direct synthesis of β-acyloxy aldehydes from linear allylic esters using O2 as the sole oxidant. Org Chem Front 2022. [DOI: 10.1039/d1qo01607e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and practical preparation of β-O substituted aldehydes directly from linear allylic esters using oxygen as the sole oxidant and tert-butyl nitrite as a simple and sole redox cocatalyst is developed.
Collapse
Affiliation(s)
- Shu-Hui Lei
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ya Zhong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xian-Peng Cai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qing Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Gogin LL, Zhizhina EG. Features of the Liquid-Phase Oxidation of Alkenes to Carbonyl Compounds in the Presence of Palladium Compounds. CATALYSIS IN INDUSTRY 2021. [DOI: 10.1134/s2070050421030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Hashimoto T, Maruyama T, Ishimaru T, Matsugaki M, Shiota K, Yamaguchi Y. Wacker‐Tsuji‐Type Oxidation Reactions of Styrene Derivatives Catalyzed by Ferrate. ChemistrySelect 2021. [DOI: 10.1002/slct.202101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Toru Hashimoto
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University Yokohama Kanagawa 240-8501 Japan
- Department of Applied Chemistry Faculty of Engineering Sanyo-Onoda City University Sanyo-Onoda Yamaguchi 756-0884 Japan
| | - Tsubasa Maruyama
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University Yokohama Kanagawa 240-8501 Japan
| | - Toshiya Ishimaru
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University Yokohama Kanagawa 240-8501 Japan
| | - Masaru Matsugaki
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University Yokohama Kanagawa 240-8501 Japan
| | - Keisuke Shiota
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University Yokohama Kanagawa 240-8501 Japan
| | - Yoshitaka Yamaguchi
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University Yokohama Kanagawa 240-8501 Japan
| |
Collapse
|
10
|
Ura Y. Realization of Anti-Markovnikov Selectivity in Pd-Catalyzed Oxidative Acetalization and Wacker-Type Oxidation of Terminal Alkenes. CHEM REC 2021; 21:3458-3469. [PMID: 34021681 DOI: 10.1002/tcr.202100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Indexed: 11/10/2022]
Abstract
Catalytic oxidative acetalization and Wacker-type oxidation of terminal alkenes normally proceed with Markovnikov selectivity to afford internally oxyfunctionalized compounds, such as internal acetals and ketones. Thus, the realization of anti-Markovnikov (AM) selectivity in these reactions is challenging. This account focuses on our recent development of Pd-catalyzed AM oxidation of terminal alkenes (mainly styrenes and aliphatic alkenes), that is, oxidative acetalization (oxidation to terminal acetals) and Wacker-type oxidation (oxidation to aldehydes). The key factors that enhance the yield and AM selectivity of the products found in our studies are: 1) the steric bulkiness of the oxygen nucleophiles that attack on the coordinated alkenes, 2) the electron-deficient cyclic alkenes as additives that withdraw electrons from Pd, 3) the slow addition of substrates in the case of the aliphatic alkenes, which suppresses the isomerization of the terminal alkenes into internal alkenes, and 4) the halogen directing groups in the case of aliphatic alkenes.
Collapse
Affiliation(s)
- Yasuyuki Ura
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| |
Collapse
|
11
|
Puls F, Linke P, Kataeva O, Knölker HJ. Iron-Catalyzed Wacker-type Oxidation of Olefins at Room Temperature with 1,3-Diketones or Neocuproine as Ligands*. Angew Chem Int Ed Engl 2021; 60:14083-14090. [PMID: 33856090 PMCID: PMC8251641 DOI: 10.1002/anie.202103222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 11/11/2022]
Abstract
Herein, we describe a convenient and general method for the oxidation of olefins to ketones using either tris(dibenzoylmethanato)iron(III) [Fe(dbm)3 ] or a combination of iron(II) chloride and neocuproine (2,9-dimethyl-1,10-phenanthroline) as catalysts and phenylsilane (PhSiH3 ) as additive. All reactions proceed efficiently at room temperature using air as sole oxidant. This transformation has been applied to a variety of substrates, is operationally simple, proceeds under mild reaction conditions, and shows a high functional-group tolerance. The ketones are formed smoothly in up to 97 % yield and with 100 % regioselectivity, while the corresponding alcohols were observed as by-products. Labeling experiments showed that an incorporated hydrogen atom originates from the phenylsilane. The oxygen atom of the ketone as well as of the alcohol derives from the ambient atmosphere.
Collapse
Affiliation(s)
- Florian Puls
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Philipp Linke
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, 420088, Russia
| | - Hans-Joachim Knölker
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| |
Collapse
|
12
|
Puls F, Linke P, Kataeva O, Knölker H. Iron‐Catalyzed Wacker‐type Oxidation of Olefins at Room Temperature with 1,3‐Diketones or Neocuproine as Ligands**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Florian Puls
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Philipp Linke
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center Russian Academy of Sciences Arbuzov Str. 8 Kazan 420088 Russia
| | - Hans‐Joachim Knölker
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| |
Collapse
|
13
|
Muzart J. Progress in the synthesis of aldehydes from Pd-catalyzed Wacker-type reactions of terminal olefins. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Yang H, Zhang X, Yu Y, Chen Z, Liu Q, Li Y, Cheong WC, Qi D, Zhuang Z, Peng Q, Chen X, Xiao H, Chen C, Li Y. Manganese vacancy-confined single-atom Ag in cryptomelane nanorods for efficient Wacker oxidation of styrene derivatives. Chem Sci 2021; 12:6099-6106. [PMID: 33996006 PMCID: PMC8098698 DOI: 10.1039/d1sc00700a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single-atom catalysts provide a pathway to elucidate the nature of catalytically active sites. However, keeping them stabilized during operation proves to be challenging. Herein, we employ cryptomelane-type octahedral molecular sieve nanorods featuring abundant manganese vacancy defects as a support, to periodically anchor single-atom Ag. The doped Ag atoms with tetrahedral coordination are found to locate at cation substitution sites rather than being supported on the catalyst surface, thus effectively tuning the electronic structure of adjacent manganese atoms. The resulting unique Ag–O–MnOx unit functions as the active site. Its turnover frequency reaches 1038 h−1, one order of magnitude higher than for previously reported catalysts, with 90% selectivity for anti-Markovnikov phenylacetaldehyde. Mechanistic studies reveal that the activation of styrene on the ensemble site of Ag–O–MnOx is significantly promoted, which can accelerate the oxidation of styrene and, in particular, the rate-determining step of forming the epoxide intermediate. Such an extraordinary electronic promotion can be extended to other single-atom catalysts and paves the way for their practical applications. Manganese vacancy-confined single-atom Ag in cryptomelane nanorods efficiently catalyses Wacker oxidation of styrene derivatives.![]()
Collapse
Affiliation(s)
- Hongling Yang
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Xun Zhang
- School of Physical Science and Technology, Shanghai Tech University Shanghai 201210 China
| | - Yi Yu
- School of Physical Science and Technology, Shanghai Tech University Shanghai 201210 China
| | - Zheng Chen
- College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 China
| | - Qinggang Liu
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yang Li
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Weng-Chon Cheong
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau Taipa Macau SAR 999078 China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Zewen Zhuang
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Qing Peng
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing 100083 China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Chen Chen
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yadong Li
- Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
15
|
Seong C, Kang J, Lee J, Oh CH. One‐Step Synthesis of Norabietane Core and its Alkylation to Abietane Analogs. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaehyeon Seong
- Department of Chemistry and Institute of Natural Science Hanyang University, Sungdong‐Gu Seoul 04763 Republic of Korea
| | - Juyeon Kang
- Department of Chemistry and Institute of Natural Science Hanyang University, Sungdong‐Gu Seoul 04763 Republic of Korea
| | - Junseong Lee
- College of Natural Science, Department of Chemistry Chonnam National University Gwangju 500‐757 Republic of Korea
| | - Chang Ho Oh
- Department of Chemistry and Institute of Natural Science Hanyang University, Sungdong‐Gu Seoul 04763 Republic of Korea
| |
Collapse
|
16
|
Schwarz A, Hecko S, Rudroff F, Kohrt JT, Howard RM, Winkler M. Cell-free in vitro reduction of carboxylates to aldehydes: With crude enzyme preparations to a key pharmaceutical building block. Biotechnol J 2021; 16:e2000315. [PMID: 33245607 DOI: 10.1002/biot.202000315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/03/2020] [Indexed: 11/07/2022]
Abstract
The scarcity of practical methods for aldehyde synthesis in chemistry necessitates the development of mild, selective procedures. Carboxylic acid reductases catalyze aldehyde formation from stable carboxylic acid precursors in an aqueous solution. Carboxylic acid reductases were employed to catalyze aldehyde formation in a cell-free system with activation energy and reducing equivalents provided through auxiliary proteins for ATP and NADPH recycling. In situ product removal was used to suppress over-reduction due to background enzyme activities, and an N-protected 4-formyl-piperidine pharma synthon was prepared in 61% isolated yield. This is the first report of preparative aldehyde synthesis with carboxylic acid reductases employing crude, commercially available enzyme preparations.
Collapse
Affiliation(s)
- Anna Schwarz
- Austrian Center of Industrial Biotechnology, Area Biotransformation, Graz, Austria
| | - Sebastian Hecko
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Jeffrey T Kohrt
- Pfizer Worldwide Research and Development, Applied Synthesis Technologies - Biocatalysis, Groton, USA
| | - Roger M Howard
- Pfizer Worldwide Research and Development, Applied Synthesis Technologies - Biocatalysis, Groton, USA
| | - Margit Winkler
- Austrian Center of Industrial Biotechnology, Area Biotransformation, Graz, Austria.,Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
17
|
Ura Y. Palladium-Catalyzed Anti-Markovnikov Oxidation of Aromatic and Aliphatic Alkenes to Terminal Acetals and Aldehydes. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractCatalytic anti-Markovnikov (AM) oxidation of terminal alkenes can provide terminally oxyfunctionalized organic compounds. This short review mainly summarizes our recent progress on the Pd-catalyzed AM oxidations of aromatic and aliphatic terminal alkenes to give terminal acetals (oxidative acetalization) and aldehydes (Wacker-type oxidation), along with related reports. These reactions demonstrate the efficacy of the PdCl2(MeCN)2/CuCl/electron-deficient cyclic alkenes/O2 catalytic system. Notably, electron-deficient cyclic alkenes such as p-benzoquinones (BQs) and maleimides are key additives that facilitate nucleophilic attack of oxygen nucleophiles on coordinated terminal alkenes and enhance the AM selectivity. BQs also function to oxidize Pd(0) depending on the reaction conditions. Several other factors that improve the AM selectivity, such as the steric demand of the nucleophiles, slow substrate addition, and halogen-directing groups, are also discussed.1 Introduction2 Anti-Markovnikov Oxidation of Aromatic Alkenes to Terminal Acetals3 Anti-Markovnikov Oxidation of Aromatic Alkenes to Aldehydes4 Anti-Markovnikov Oxidation of Aliphatic Alkenes to Terminal Acetals5 Anti-Markovnikov Oxidation of Aliphatic Alkenes to Aldehydes6 Conclusion
Collapse
|
18
|
Temkin ON. Oxidation of Olefins to Carbonyl Compounds: Modern View of the Classical Reaction. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420050122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Saha S, Yadav S, Reshi NUD, Dutta I, Kunnikuruvan S, Bera JK. Electronic Asymmetry of an Annelated Pyridyl–Mesoionic Carbene Scaffold: Application in Pd(II)-Catalyzed Wacker-Type Oxidation of Olefins. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sayantani Saha
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Suman Yadav
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Noor U Din Reshi
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Indranil Dutta
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sooraj Kunnikuruvan
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jitendra K. Bera
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
20
|
Malinowski J, Zych D, Jacewicz D, Gawdzik B, Drzeżdżon J. Application of Coordination Compounds with Transition Metal Ions in the Chemical Industry-A Review. Int J Mol Sci 2020; 21:ijms21155443. [PMID: 32751682 PMCID: PMC7432526 DOI: 10.3390/ijms21155443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
This publication presents the new trends and opportunities for further development of coordination compounds used in the chemical industry. The review describes the influence of various physicochemical factors regarding the coordination relationship (for example, steric hindrance, electron density, complex geometry, ligand), which condition technological processes. Coordination compounds are catalysts in technological processes used during organic synthesis, for example: Oxidation reactions, hydroformylation process, hydrogenation reaction, hydrocyanation process. In this article, we pointed out the possibilities of using complex compounds in catalysis, and we noticed what further research should be undertaken for this purpose.
Collapse
Affiliation(s)
- Jacek Malinowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.M.); (D.Z.); (D.J.); (J.D.)
| | - Dominika Zych
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.M.); (D.Z.); (D.J.); (J.D.)
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.M.); (D.Z.); (D.J.); (J.D.)
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15 G, 25-406 Kielce, Poland
- Correspondence: ; Tel.: +48-41-349-70-16
| | - Joanna Drzeżdżon
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.M.); (D.Z.); (D.J.); (J.D.)
| |
Collapse
|
21
|
Komori S, Yamaguchi Y, Murakami Y, Kataoka Y, Ura Y. Palladium/Copper‐catalyzed Oxidation of Aliphatic Terminal Alkenes to Aldehydes Assisted by
p
‐Benzoquinone. ChemCatChem 2020. [DOI: 10.1002/cctc.202000472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saki Komori
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science Nara Women's University Kitauoyanishi-machi Nara 630-8506 Japan
| | - Yoshiko Yamaguchi
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science Nara Women's University Kitauoyanishi-machi Nara 630-8506 Japan
| | - Yuka Murakami
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science Nara Women's University Kitauoyanishi-machi Nara 630-8506 Japan
| | - Yasutaka Kataoka
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science Nara Women's University Kitauoyanishi-machi Nara 630-8506 Japan
| | - Yasuyuki Ura
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science Nara Women's University Kitauoyanishi-machi Nara 630-8506 Japan
| |
Collapse
|
22
|
Lauro FV, Maria LR, Tomas LG, Francisco DC, Rolando GM, Marcela RN, Virginia MA, Alejandra GEE, Yazmin OA. Design and synthesis of two new steroid derivatives with biological activity on heart failure via the M 2-muscarinic receptor activation. Steroids 2020; 158:108620. [PMID: 32119871 DOI: 10.1016/j.steroids.2020.108620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 11/26/2022]
Abstract
Several drugs have been prepared to treat of heart failure using some protocols which require dangerous reagents and specific conditions. The aim of this study was to synthesize a series of steroid derivatives (compounds 2 to 18) using some chemical strategies. The biological activity of steroid derivatives against heart failure was evaluated using an ischemia/reperfusion model. In addition, the effect exerted by compounds 4 or 5 on left ventricular pressure was evaluated in the absence or presence of yohimbine, butaxamine and methoctramine. The results showed that 1) both compounds 4 or 5 significantly decrease the heart failure (translated as infarct area) compared with the compounds 2, 3 and 6-18. In addition, the compound 4 and 5 decreased the left ventricular pressure in a dose-dependent manner and this effect was significantly inhibited in the presence of methoctramine (p = 005). In conclusion, the compounds 4 or 5 decrease both the infarct area and left ventricular pressure via M2-muscarinic receptor activation.
Collapse
Affiliation(s)
- Figueroa-Valverde Lauro
- Laboratory of Pharmaco-Chemistry at the Faculty of Chemical Biological Sciences of the University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista, C.P. 24039 Campeche Cam., Mexico.
| | - Lopez-Ramos Maria
- Laboratory of Pharmaco-Chemistry at the Faculty of Chemical Biological Sciences of the University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista, C.P. 24039 Campeche Cam., Mexico
| | - Lopez-Gutierrez Tomas
- Laboratory of Pharmaco-Chemistry at the Faculty of Chemical Biological Sciences of the University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista, C.P. 24039 Campeche Cam., Mexico
| | - Diaz Cedillo Francisco
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala, s/n Col. Santo Tomas, D.F. C.P. 11340, Mexico
| | - Garcia-Martinez Rolando
- Laboratory of Pharmaco-Chemistry at the Faculty of Chemical Biological Sciences of the University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista, C.P. 24039 Campeche Cam., Mexico
| | - Rosas-Nexticapa Marcela
- Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontólogos s/n, 91010 Xalapa, Veracruz, Mexico; Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, 91010 Xalapa, Veracruz, Mexico.
| | - Mateu-Armand Virginia
- Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontólogos s/n, 91010 Xalapa, Veracruz, Mexico; Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, 91010 Xalapa, Veracruz, Mexico
| | - Garcimarero-Espino E Alejandra
- Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontólogos s/n, 91010 Xalapa, Veracruz, Mexico; Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, 91010 Xalapa, Veracruz, Mexico
| | - Ortiz-Ake Yazmin
- Laboratory of Pharmaco-Chemistry at the Faculty of Chemical Biological Sciences of the University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista, C.P. 24039 Campeche Cam., Mexico
| |
Collapse
|
23
|
Chen TR, Lin YS, Wang YX, Lee WJ, Chen KHC, Chen JD. Graphene oxide-iridium nanocatalyst for the transformation of benzylic alcohols into carbonyl compounds. RSC Adv 2020; 10:4436-4445. [PMID: 35495275 PMCID: PMC9049132 DOI: 10.1039/c9ra10294a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/15/2020] [Indexed: 01/07/2023] Open
Abstract
A catalyst constructed from graphene oxide and iridium chloride exhibited high activity and reliability for the selective transformation of benzylic alcohols into aromatic aldehydes or ketones. Instead of thermal reaction, the transformation was performed under ultrasonication, a green process with low byproduct, high atomic yield and high selectivity. Experimental data obtained from spherical-aberration corrected field emission TEM (ULTRA-HRTEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy and Raman spectra confirm the nanostructure of the title complex. Noticeably, the activity and selectivity for the transformation of benzylic alcohols remained unchanged within 25 catalytic cycles. The average turn over frequency is higher than 5000 h−1, while the total turnover number (TON) is more than one hundred thousand, making it a high greenness and eco-friendly process for alcohol oxidation. Graphene oxide–iridium nanostructure act as a robust catalyst exhibiting high activity and reliability for the selective transformation of benzylic alcohols into aromatic aldehydes or ketones.![]()
Collapse
Affiliation(s)
- Tsun-Ren Chen
- Department of Applied Chemistry, National Ping Tung University Pingtong City Taiwan
| | - Yi-Sheng Lin
- Department of Applied Chemistry, National Ping Tung University Pingtong City Taiwan
| | - Yu-Xiang Wang
- Department of Applied Chemistry, National Ping Tung University Pingtong City Taiwan
| | - Wen-Jen Lee
- Department of Applied Physics, National Ping Tung University Pingtong City Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Ping Tung University Pingtong City Taiwan
| | - Jhy-Der Chen
- Department of Chemistry, Chung-Yuan Christian University Chung-Li Taiwan
| |
Collapse
|
24
|
Schreyer M, Milzarek TM, Wegmann M, Brunner A, Hintermann L. Discovery and Comparison of Homogeneous Catalysts in a Standardized HOT‐CAT Screen with Microwave‐Heating and qNMR Analysis: Exploring Catalytic Hydration of Alkynes. ChemCatChem 2019. [DOI: 10.1002/cctc.201900456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias Schreyer
- Technische Universität MünchenDepartment Chemie Lichtenbergstr. 4 Garching bei München 85748 Germany
- TUM Catalysis Research Center Ernst-Otto-Fischer-Str. 1 Garching bei München 85748 Germany
| | - Tobias M. Milzarek
- Technische Universität MünchenDepartment Chemie Lichtenbergstr. 4 Garching bei München 85748 Germany
| | - Marcus Wegmann
- Technische Universität MünchenDepartment Chemie Lichtenbergstr. 4 Garching bei München 85748 Germany
- TUM Catalysis Research Center Ernst-Otto-Fischer-Str. 1 Garching bei München 85748 Germany
| | - Andreas Brunner
- Technische Universität MünchenDepartment Chemie Lichtenbergstr. 4 Garching bei München 85748 Germany
| | - Lukas Hintermann
- Technische Universität MünchenDepartment Chemie Lichtenbergstr. 4 Garching bei München 85748 Germany
- TUM Catalysis Research Center Ernst-Otto-Fischer-Str. 1 Garching bei München 85748 Germany
| |
Collapse
|
25
|
Thopate Y, Singh R, Rastogi SK, Sinha AK. A Highly Regioselective and Practical Synthesis of α‐Aryl Ketones under a Cooperative Cascade Effect of an Ionic Liquid and Tetrabutylammonium Fluoride. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yogesh Thopate
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi India
| | - Richa Singh
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
| | - Sumit K. Rastogi
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi India
| | - Arun K. Sinha
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi India
| |
Collapse
|
26
|
Komori S, Yamaguchi Y, Kataoka Y, Ura Y. Palladium-Catalyzed Aerobic Anti-Markovnikov Oxidation of Aliphatic Alkenes to Terminal Acetals. J Org Chem 2019; 84:3093-3099. [PMID: 30663313 DOI: 10.1021/acs.joc.8b02919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Terminal acetals were selectively synthesized from various unbiased aliphatic terminal alkenes and 1,2-, 1,3-, or 1,4-diols using a PdCl2(MeCN)2/CuCl catalyst system in the presence of p-toluquinone under 1 atm of O2 and mild reaction conditions. The slow addition of terminal alkenes suppressed the isomerization to internal alkenes successfully. Electron-deficient cyclic alkenes, such as p-toluquinone, were key additives to enhance the catalytic activity and the anti-Markovnikov selectivity. The halogen groups in the alkenes were found to operate as directing groups, suppressing isomerization and increasing the selectivity efficiently.
Collapse
Affiliation(s)
- Saki Komori
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science , Nara Women's University , Kitauoyanishi-machi, Nara 630-8506 , Japan
| | - Yoshiko Yamaguchi
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science , Nara Women's University , Kitauoyanishi-machi, Nara 630-8506 , Japan
| | - Yasutaka Kataoka
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science , Nara Women's University , Kitauoyanishi-machi, Nara 630-8506 , Japan
| | - Yasuyuki Ura
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science , Nara Women's University , Kitauoyanishi-machi, Nara 630-8506 , Japan
| |
Collapse
|
27
|
Feng X, Ji P, Li Z, Drake T, Oliveres P, Chen EY, Song Y, Wang C, Lin W. Aluminum Hydroxide Secondary Building Units in a Metal–Organic Framework Support Earth-Abundant Metal Catalysts for Broad-Scope Organic Transformations. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00259] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xuanyu Feng
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Pengfei Ji
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Zhe Li
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China
| | - Tasha Drake
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Pau Oliveres
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Emily Y. Chen
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Yang Song
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Cheng Wang
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
28
|
Ceylan YS, Cundari TR. Direct Anti-Markovnikov Addition of Water to Olefin To Synthesize Primary Alcohols: A Theoretical Study. J Phys Chem A 2019; 123:958-965. [DOI: 10.1021/acs.jpca.8b10290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yavuz S. Ceylan
- Department of Chemistry, Center for Advanced Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle #305070, Denton, Texas 76203, United States
| | - Thomas R. Cundari
- Department of Chemistry, Center for Advanced Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle #305070, Denton, Texas 76203, United States
| |
Collapse
|
29
|
Ura Y. Toward the Development of Palladium-catalyzed Terminal-selective Oxidations of Hydrocarbons Using Molecular Oxygen. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.1291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Smith CD, Phillips D, Tirla A, France DJ. Catalytic Isohypsic-Redox Sequences for the Rapid Generation of C sp3 -Containing Heterocycles. Chemistry 2018; 24:17201-17204. [PMID: 30203869 PMCID: PMC6391974 DOI: 10.1002/chem.201804131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Cross‐coupling reactions catalyzed by transition metals are among the most influential in modern synthetic chemistry. The vast majority of transition‐metal‐catalyzed cross‐couplings rely on a catalytic cycle involving alternating oxidation and reduction of the metal center and are generally limited to forging just one type of new bond per reaction (e.g., the biaryl linkage formed during a Suzuki cross‐coupling). This work presents an Isohypsic‐Redox Sequence (IRS) that uses one metal to effect two catalytic cycles, thereby generating multiple new types of bonds from a single catalyst source. We show that the IRS strategy is amenable to several widely used transformations including the Suzuki–Miyaura coupling, Buchwald–Hartwig amination, and Wacker oxidation. Furthermore, each of these reactions generates value‐added heterocycles with significant sp3‐C (3‐dimensional) content. Our results provide a general framework for generating complex products by using a single metal to fulfill multiple roles. By uniting different combinations of reactions in the isohypsic and redox phases of the process, this type of catalytic multiple bond‐forming platform has the potential for wide applicability in the efficient synthesis of functional organic molecules.
Collapse
Affiliation(s)
- Craig D Smith
- WestChem School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - David Phillips
- WestChem School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Alina Tirla
- WestChem School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - David J France
- WestChem School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
31
|
Abstract
The total synthesis of the phenolic sesquiterpene onitin using dimethylated indanone as the key intermediate is reported. Key to the success of this synthesis route is the Suzuki-Miyaura cross-coupling reaction of aryl bromide to introduce the vinyl side chain followed by formyl selective Wacker oxidation to generate the aldehyde. The target aldehyde was also obtained in high overall yield via an acid-catalyzed pinacol-pinacolone-type rearrangement of the epoxide. The epoxide was generated from oxidation of a styrene derivative by oxone. Demethylation of the aldehyde followed by chemoselective reduction furnished onitin.
Collapse
Affiliation(s)
- Muthiah Suresh
- Centre for Applied Chemistry , Central University of Jharkhand , Brambe , Ranchi 835 205 , India
| | - Anusueya Kumari
- Centre for Applied Chemistry , Central University of Jharkhand , Brambe , Ranchi 835 205 , India
| | - Debjit Das
- Department of Chemistry , Triveni Devi Bhalotia College , Raniganj , West Bengal 713347 , India
| | - Raj Bahadur Singh
- Centre for Applied Chemistry , Central University of Jharkhand , Brambe , Ranchi 835 205 , India
| |
Collapse
|
32
|
Hu KF, Ning XS, Qu JP, Kang YB. Tuning Regioselectivity of Wacker Oxidation in One Catalytic System: Small Change Makes Big Step. J Org Chem 2018; 83:11327-11332. [PMID: 30106581 DOI: 10.1021/acs.joc.8b01547] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A regioselectivity switchable aerobic Wacker-Tsuji oxidation has been developed using catalytic tert-butyl nitrite as a simple organic redox cocatalyst. By solely switching the solvent, either substituted aldehydes or ketones could be prepared under mild aerobic conditions in good yields, respectively. A mechanistic explanation for the selectivity control is proposed.
Collapse
Affiliation(s)
- Kang-Fei Hu
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xiao-Shan Ning
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Yan-Biao Kang
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
33
|
Walter A, Chaikuad A, Helmer R, Loaëc N, Preu L, Ott I, Knapp S, Meijer L, Kunick C. Molecular structures of cdc2-like kinases in complex with a new inhibitor chemotype. PLoS One 2018; 13:e0196761. [PMID: 29723265 PMCID: PMC5933782 DOI: 10.1371/journal.pone.0196761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/19/2018] [Indexed: 12/18/2022] Open
Abstract
Cdc2-like kinases (CLKs) represent a family of serine-threonine kinases involved in the regulation of splicing by phosphorylation of SR-proteins and other splicing factors. Although compounds acting against CLKs have been described, only a few show selectivity against dual-specificity tyrosine phosphorylation regulated-kinases (DYRKs). We here report a novel CLK inhibitor family based on a 6,7-dihydropyrrolo[3,4-g]indol-8(1H)-one core scaffold. Within the series, 3-(3-chlorophenyl)-6,7-dihydropyrrolo[3,4-g]indol-8(1H)-one (KuWal151) was identified as inhibitor of CLK1, CLK2 and CLK4 with a high selectivity margin towards DYRK kinases. The compound displayed a potent antiproliferative activity in an array of cultured cancer cell lines. The X-ray structure analyses of three members of the new compound class co-crystallized with CLK proteins corroborated a molecular binding mode predicted by docking studies.
Collapse
Affiliation(s)
- Anne Walter
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engeneering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Renate Helmer
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nadège Loaëc
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, Roscoff, France
| | - Lutz Preu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Ott
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engeneering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Laurent Meijer
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, Roscoff, France
- * E-mail: (CK); (LM)
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engeneering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
- * E-mail: (CK); (LM)
| |
Collapse
|
34
|
Gromova MA, Kharitonov YV, Rybalova TV, Shul’ts EE. Synthetic Transformations of Higher Terpenoids. 36.* Synthesis of 13-(Oxazol-5-Yl)-15,16-Bisnorisopimaranes. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2327-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Yu J, Zhang Z, Zhou S, Zhang W, Tong R. Evolution of two routes for asymmetric total synthesis of tetrahydroprotoberberine alkaloids. Org Chem Front 2018. [DOI: 10.1039/c7qo00776k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two routes were developed for the catalytic asymmetric total synthesis of tetrahydroprotoberberine alkaloids.
Collapse
Affiliation(s)
- Jingxun Yu
- Department of Chemistry
- Hong Kong University of Science and Technology
- Kowloon
- China
| | - Zhihong Zhang
- Department of Chemistry
- Hong Kong University of Science and Technology
- Kowloon
- China
| | - Shiqiang Zhou
- Department of Chemistry
- Hong Kong University of Science and Technology
- Kowloon
- China
| | - Wei Zhang
- Department of Chemistry
- Hong Kong University of Science and Technology
- Kowloon
- China
| | - Rongbiao Tong
- Department of Chemistry
- Hong Kong University of Science and Technology
- Kowloon
- China
- HKUST Shenzhen Research Institute
| |
Collapse
|
36
|
Puls F, Knölker HJ. Conversion of Olefins into Ketones by an Iron-Catalyzed Wacker-type Oxidation Using Oxygen as the Sole Oxidant. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Florian Puls
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| | - Hans-Joachim Knölker
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| |
Collapse
|
37
|
Puls F, Knölker HJ. Conversion of Olefins into Ketones by an Iron-Catalyzed Wacker-type Oxidation Using Oxygen as the Sole Oxidant. Angew Chem Int Ed Engl 2017; 57:1222-1226. [DOI: 10.1002/anie.201710370] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Florian Puls
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| | - Hans-Joachim Knölker
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| |
Collapse
|
38
|
Hammer SC, Kubik G, Watkins E, Huang S, Minges H, Arnold FH. Anti-Markovnikov alkene oxidation by metal-oxo–mediated enzyme catalysis. Science 2017; 358:215-218. [DOI: 10.1126/science.aao1482] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/05/2017] [Indexed: 12/23/2022]
|
39
|
Li XH, Mi C, Liao XH, Meng XG. Selective Oxidation of Aromatic Olefins Catalyzed by Copper(II) Complex in Micellar Media. Catal Letters 2017; 147:2508-2514. [DOI: 10.1007/s10562-017-2160-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Liu B, Jin F, Wang T, Yuan X, Han W. Wacker‐Type Oxidation Using an Iron Catalyst and Ambient Air: Application to Late‐Stage Oxidation of Complex Molecules. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Binbin Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Wenyuan Road No.1 210023 Nanjing China
| | - Fengli Jin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Wenyuan Road No.1 210023 Nanjing China
| | - Tianjiao Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Wenyuan Road No.1 210023 Nanjing China
| | - Xiaorong Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Wenyuan Road No.1 210023 Nanjing China
| | - Wei Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Wenyuan Road No.1 210023 Nanjing China
| |
Collapse
|
41
|
Liu B, Jin F, Wang T, Yuan X, Han W. Wacker-Type Oxidation Using an Iron Catalyst and Ambient Air: Application to Late-Stage Oxidation of Complex Molecules. Angew Chem Int Ed Engl 2017; 56:12712-12717. [PMID: 28815838 DOI: 10.1002/anie.201707006] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/06/2017] [Indexed: 11/10/2022]
Abstract
A practical and general iron-catalyzed Wacker-type oxidation of olefins to ketones is presented, and it uses ambient air as the sole oxidant. The mild oxidation conditions enable exceptional functional-group tolerance, which has not been demonstrated for any other Wacker-type reaction to date. The inexpensive and nontoxic reagents [iron(II) chloride, polymethylhydrosiloxane, and air] can, therefore, also be employed to oxidize complex natural-product-derived and polyfunctionalized molecules.
Collapse
Affiliation(s)
- Binbin Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Fengli Jin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Tianjiao Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Xiaorong Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Wei Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| |
Collapse
|
42
|
Huang J, Li J, Zheng J, Wu W, Hu W, Ouyang L, Jiang H. Dual Role of H 2O 2 in Palladium-Catalyzed Dioxygenation of Terminal Alkenes. Org Lett 2017. [PMID: 28621539 DOI: 10.1021/acs.orglett.7b01228] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed, environmentally friendly dioxygenation reaction of simple alkenes has been developed that enabled rapid assembly of valuable α-hydroxy ketones with high atom economy. Notably, control experiments and 18O isotope-labeling experiments established that H2O2 played a dominant dual role in this transformation.
Collapse
Affiliation(s)
- Jiuzhong Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Jia Zheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Weigao Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Lu Ouyang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| |
Collapse
|
43
|
Matsumura S, Sato R, Nakaoka S, Yokotani W, Murakami Y, Kataoka Y, Ura Y. Palladium-Catalyzed Aerobic Synthesis of Terminal Acetals from Vinylarenes Assisted by π-Acceptor Ligands. ChemCatChem 2017. [DOI: 10.1002/cctc.201601517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Satoko Matsumura
- Department of Chemistry, Faculty of Science; Nara Women's University; Kitauoyanishi-machi Nara 630-8506 Japan
| | - Ruriko Sato
- Department of Chemistry, Faculty of Science; Nara Women's University; Kitauoyanishi-machi Nara 630-8506 Japan
| | - Sonoe Nakaoka
- Department of Chemistry, Faculty of Science; Nara Women's University; Kitauoyanishi-machi Nara 630-8506 Japan
| | - Wakana Yokotani
- Department of Chemistry, Faculty of Science; Nara Women's University; Kitauoyanishi-machi Nara 630-8506 Japan
| | - Yuka Murakami
- Department of Chemistry, Faculty of Science; Nara Women's University; Kitauoyanishi-machi Nara 630-8506 Japan
| | - Yasutaka Kataoka
- Department of Chemistry, Faculty of Science; Nara Women's University; Kitauoyanishi-machi Nara 630-8506 Japan
| | - Yasuyuki Ura
- Department of Chemistry, Faculty of Science; Nara Women's University; Kitauoyanishi-machi Nara 630-8506 Japan
| |
Collapse
|
44
|
Synthesis of a novel six membered CNS palladacycle; TD-DFT study and catalytic activity towards microwave-assisted selective oxidation of terminal olefin to aldehyde. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Zhang G, Hu X, Chiang CW, Yi H, Pei P, Singh AK, Lei A. Anti-Markovnikov Oxidation of β-Alkyl Styrenes with H2O as the Terminal Oxidant. J Am Chem Soc 2016; 138:12037-40. [DOI: 10.1021/jacs.6b07411] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Guoting Zhang
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xia Hu
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Chien-Wei Chiang
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Hong Yi
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Pengkun Pei
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Atul K. Singh
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Aiwen Lei
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
- Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
46
|
White KL, Movassaghi M. Concise Total Syntheses of (+)-Haplocidine and (+)-Haplocine via Late-Stage Oxidation of (+)-Fendleridine Derivatives. J Am Chem Soc 2016; 138:11383-9. [PMID: 27510728 PMCID: PMC5014600 DOI: 10.1021/jacs.6b07623] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the first total syntheses of (+)-haplocidine and its N1-amide congener (+)-haplocine. Our concise synthesis of these alkaloids required the development of a late-stage and highly selective C-H oxidation of complex aspidosperma alkaloid derivatives. A versatile, amide-directed ortho-acetoxylation of indoline amides enabled our implementation of a unified strategy for late-stage diversification of hexacyclic C19-hemiaminal ether structures via oxidation of the corresponding pentacyclic C19-iminium ions. An electrophilic amide activation of a readily available C21-oxygenated lactam, followed by transannular cyclization and in situ trapping of a transiently formed C19-iminium ion, expediently provided access to hexacyclic C19-hemiaminal ether alkaloids (+)-fendleridine, (+)-acetylaspidoalbidine, and (+)-propionylaspidoalbidine. A highly effective enzymatic resolution of a non-β-branched primary alcohol (E = 22) allowed rapid preparation of both enantiomeric forms of a C21-oxygenated precursor for synthesis of these aspidosperma alkaloids. Our synthetic strategy provides succinct access to hexacyclic aspidosperma derivatives, including the antiproliferative alkaloid (+)-haplocidine.
Collapse
Affiliation(s)
- Kolby L. White
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
47
|
|
48
|
Chu CK, Ziegler DT, Carr B, Wickens ZK, Grubbs RH. Direct Access to β-Fluorinated Aldehydes by Nitrite-Modified Wacker Oxidation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Crystal K. Chu
- Division of Chemistry and Chemical Engineering; California Institute of Technology; Pasadena CA 91125 USA
| | - Daniel T. Ziegler
- Division of Chemistry and Chemical Engineering; California Institute of Technology; Pasadena CA 91125 USA
| | - Brian Carr
- Division of Chemistry and Chemical Engineering; California Institute of Technology; Pasadena CA 91125 USA
| | - Zachary K. Wickens
- Division of Chemistry and Chemical Engineering; California Institute of Technology; Pasadena CA 91125 USA
| | - Robert H. Grubbs
- Division of Chemistry and Chemical Engineering; California Institute of Technology; Pasadena CA 91125 USA
| |
Collapse
|
49
|
Chu CK, Ziegler DT, Carr B, Wickens ZK, Grubbs RH. Direct Access to β-Fluorinated Aldehydes by Nitrite-Modified Wacker Oxidation. Angew Chem Int Ed Engl 2016; 55:8435-9. [PMID: 27225538 DOI: 10.1002/anie.201603424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/26/2016] [Indexed: 12/17/2022]
Abstract
An aldehyde-selective Wacker-type oxidation of allylic fluorides proceeds with a nitrite catalyst. The method represents a direct route to prepare β-fluorinated aldehydes. Allylic fluorides bearing a variety of functional groups are transformed in high yield and very high regioselectivity. Additionally, the unpurified aldehyde products serve as versatile intermediates, thus enabling access to a diverse array of fluorinated building blocks. Preliminary mechanistic investigations suggest that inductive effects have a strong influence on the rate and regioselectivity of the oxidation.
Collapse
Affiliation(s)
- Crystal K Chu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Daniel T Ziegler
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Brian Carr
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Zachary K Wickens
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robert H Grubbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
50
|
Ning XS, Wang MM, Yao CZ, Chen XM, Kang YB. tert-Butyl Nitrite: Organic Redox Cocatalyst for Aerobic Aldehyde-Selective Wacker-Tsuji Oxidation. Org Lett 2016; 18:2700-3. [PMID: 27191227 DOI: 10.1021/acs.orglett.6b01165] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An aldehyde-selective aerobic Wacker-Tsuji oxidation is developed. Using tert-butyl nitrite as a simple organic redox cocatalyst instead of copper or silver salts, a variety of aldehydes were achieved as major products in up to 30/1 regioselectivity as well as good to high yields at room temperature.
Collapse
Affiliation(s)
- Xiao-Shan Ning
- Center of Advanced Nanocatalysis, Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Mei-Mei Wang
- Center of Advanced Nanocatalysis, Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Chuan-Zhi Yao
- Center of Advanced Nanocatalysis, Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Xian-Min Chen
- Center of Advanced Nanocatalysis, Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Yan-Biao Kang
- Center of Advanced Nanocatalysis, Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|