1
|
Wang M, Zhou X, Wang Y, Tian Y, Gou W, Zhang L, Li C. Direct Synthesis of Benzothiazoles and Benzoxazoles from Carboxylic Acids Utilizing ( o-CF 3PhO) 3P as a Coupling Reagent. J Org Chem 2024; 89:16542-16552. [PMID: 39449154 DOI: 10.1021/acs.joc.4c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A general and efficient method for the direct synthesis of benzothiazoles and benzoxazoles from carboxylic acids with 2-aminobenzenethiols or 2-aminophenols using (o-CF3PhO)3P as a simple coupling reagent has been developed. Diverse benzothiazoles and benzoxazoles were synthesized in moderate to excellent yields. And the gram-scale preparation of benzothiazole and benzoxazole also proceeded smoothly under the mild conditions. Moreover, a plausible reaction mechanism was discussed, with (o-CF3PhO)3P and its hydrolysis product (o-CF3PhO)2P(O)H contributing to the formation of the target products as an amide synthesis coupling agent and a cyclization reaction promoter, respectively.
Collapse
Affiliation(s)
- Mei Wang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Xuan Zhou
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Yunhuan Wang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Yu Tian
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Wenchang Gou
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Lin Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Chun Li
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| |
Collapse
|
2
|
Nevels NE, Subera L, Bunce RA. Benzo[ d]oxazoles from Anilides by N-Deprotonation- O-S NAr Cyclization. Molecules 2024; 29:4322. [PMID: 39339317 PMCID: PMC11434243 DOI: 10.3390/molecules29184322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
A synthesis of benzo[d]oxazoles by an N-deprotonation-O-SNAr cyclization sequence from anilide precursors is reported. Anilides derived from 2-fluorobenzaldehydes, activated toward SNAr ring closure by C5 electron-withdrawing groups, were prepared and subjected to deprotonation-cyclization using 2 equiv. of K2CO3 in anhydrous DMF. Following deprotonation at nitrogen, the delocalized anion cyclized from the amide oxygen to give high yields of benzo[d]oxazoles. The temperature required for the cyclization of benzanilides correlated with the potency of the C5 activating group on the SNAr acceptor ring with nitro (most potent) reacting at 90 °C (1 h), cyano reacting at 115 °C (1 h), methoxycarbonyl reacting at 120 °C (2 h), and trifluoromethyl (least potent) reacting at 130 °C (3 h). Acetanilides were more difficult to cyclize but generally required 4-6 h at these same temperatures for completion. Product purification was accomplished by recrystallization or chromatography.
Collapse
Affiliation(s)
- Nash E Nevels
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA
| | - Luke Subera
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA
| | - Richard A Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA
| |
Collapse
|
3
|
Bal M, Köse A, Güngör SA. Investigation of photoluminescence and DNA binding properties of benzimidazole compounds containing benzophenone group. J Biomol Struct Dyn 2024; 42:7847-7859. [PMID: 37526238 DOI: 10.1080/07391102.2023.2242496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
The synthesis of benzimidazole compounds containing benzophenone group in accordance with the literature and the investigation of DNA binding properties of these compounds by using UV-vis and photoluminescence spectroscopy methods constitute the basis of this research. The structures of the compounds were determined by methods such as FT-IR, 1H, 13C NMR, UV-vis, Photoluminescence spectroscopy, and X-ray crystallography. By using methods such as UV-vis, Photoluminescence spectroscopy, and viscosity tests, information were collected about the binding types, binding mode, and binding energies of the compounds with DNA. In addition, the binding interactions of the compounds with DNA were investigated using the molecular docking technique. Using this information, calibration equations, correlation coefficients (r2), and DNA binding constants (Kb) were calculated for their compounds. The binding constants (Kb) calculated for substances A, B, and C were found to be 3.0 × 104, 7.0 × 104, and 3.0 × 104 M-1, respectively. UV-vis, EB competitive binding, and viscosity tests showed that the compounds tended to bind to the DNA structure via the groove binding mode. At the end of molecular docking studies, it was determined that compound B showed the best DNA binding activity in in vitro studies. Compared with the studies in the literature, it is thought that the synthesized compounds can take place in cancer drug research as DNA binding agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustafa Bal
- Department of Materials Science and Engineering, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| | - Ayşegül Köse
- Department of Property Protection and Safety, Elbistan Vocational School, Kahramanmaras Istiklal University, Kahramanmaraş, Turkey
| | - Seyit Ali Güngör
- Department of Chemistry, Faculty of Science, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| |
Collapse
|
4
|
Kumar D, Kuijken PF, van de Poel T, Neumann K, Galimberti DR. Revealing the Unique Role of Water in the Formation of Benzothiazoles: an Experimental and Computational Study. Chemistry 2024; 30:e202302596. [PMID: 37812133 DOI: 10.1002/chem.202302596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/10/2023]
Abstract
We present here a joint experimental and computational study on the formation of benzothiazoles. Our investigation reveals a green protocol for accessing benzothiazoles from acyl chlorides using either water alongside a reducing agent as the reaction medium or in combination with stoichiometric amounts of a weak acid, instead of the harsh conditions and catalysts previously reported. Specifically, we show that a protic solvent, particularly water, enables the formation of 2-substituted benzothiazoles from N-acyl 1,2-aminothiophenols already at room temperature, without the need for strong acids or metal catalysts. DFT Molecular Dynamics simulations coupled with advanced enhanced sampling techniques provide a clear understanding of the catalytic role of water. We demonstrate how bulk water - due to its extended network of hydrogen bonds and an efficient Grotthuss mechanism - provides a reaction path that strongly reduces the reaction barriers compared to aprotic environments, namely more than 80 kJ/mol for the first reaction step and 250 kJ/mol for the second. Finally, we discuss the influence of different aliphatic and aromatic substituents with varying electronic properties on chemical reactivity. Besides providing in-depth mechanistic insights, we believe that our findings pave the way for a greener route toward an important class of bioactive molecules.
Collapse
Affiliation(s)
- Dipanshu Kumar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Peter F Kuijken
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Tjerk van de Poel
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kevin Neumann
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Daria Ruth Galimberti
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Aboonajmi J, Mohammadi M, Panahi F, Aberi M, Sharghi H. One-pot, three-component, iron-catalyzed synthesis of benzimidazoles via domino C-N bond formation. RSC Adv 2023; 13:24789-24794. [PMID: 37608969 PMCID: PMC10440634 DOI: 10.1039/d3ra04450e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
An efficient one-pot, three-component process for the synthesis of benzimidazole derivatives using a catalytic amount of Fe(iii) porphyrin has been developed. The reaction proceeds via domino C-N bond formation and cyclization reactions of benzo-1,2-quinone, aldehydes and ammonium acetate as a nitrogen source to selectively produce benzimidazole. A number of benzimidazole derivatives have been synthesized using this method in high yields under mild reaction conditions.
Collapse
Affiliation(s)
- Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran +98 7132280926 +98 7136137136
| | - Masoumeh Mohammadi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran +98 7132280926 +98 7136137136
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran +98 7132280926 +98 7136137136
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Technical and Vocational University (TVU) Shiraz Branch Shiraz Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran +98 7132280926 +98 7136137136
| |
Collapse
|
6
|
Patel M, Avashthi G, Gacem A, Alqahtani MS, Park HK, Jeon BH. A Review of Approaches to the Metallic and Non-Metallic Synthesis of Benzimidazole (BnZ) and Their Derivatives for Biological Efficacy. Molecules 2023; 28:5490. [PMID: 37513362 PMCID: PMC10384041 DOI: 10.3390/molecules28145490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Heterocyclic compounds are significant lead drug candidates based on their various structure-activity relationships (SAR), and their use in pharmaceutics is constantly developing. Benzimidazole (BnZ) is synthesized by a condensation reaction between benzene and imidazole. The BnZ structure consists of two nitrogen atoms embedded in a five-membered imide ring which is fused with a benzene ring. This review examines the conventional and green synthesis of metallic and non-metallic BnZ and their derivatives, which have several potential SARs, along with a wide range of pharmacological properties, including anti-cancer, anti-inflammatory, anti-microbial, anti-tubercular, and anti-protozoal properties. These compounds have been proven by pharmacological investigations to be efficient against different strains of microbes. Therefore, in this review, the structural variations of BnZ are listed along with various applications, predominantly related to their biological activities.
Collapse
Affiliation(s)
- Muhammad Patel
- School of Sciences, P P Savani University, NH 8, GETCO, Near Biltech, Dhamdod, Kosamba, Surat 394125, Gujarat, India
| | - Gopal Avashthi
- School of Sciences, P P Savani University, NH 8, GETCO, Near Biltech, Dhamdod, Kosamba, Surat 394125, Gujarat, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955 Skikda, Skikda 21000, Algeria;
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
- Bioimaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
7
|
1-{(1S,2S,4R)-7,7-Dimethyl-1-[(pyrrolidin-1-yl)methyl]bicyclo [2.2.1]heptan-2-yl}-1H-benzo[d]imidazole. MOLBANK 2023. [DOI: 10.3390/m1538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A three-step synthesis of 1-{(1S,2S,4R)-7,7-dimethyl-1-[(pyrrolidin-1-yl)methyl]bicyclo[2.2.1]heptan-2-yl}-1H-benzo[d]imidazole, prepared from camphor derived diamine, is disclosed. The absolute configuration at the chiral center bearing benzo[d]imidazole moiety was confirmed by NOESY. The structure of a newly synthesized compound was confirmed by 1H- and 13C-NMR, 2D NMR, IR spectroscopy, and high resolution mass-spectrometry.
Collapse
|
8
|
Sharma J, Mishra P, Bhadoria J. 2-aminophenol as a leading reactant for the one pot synthetic strategies towards benzoxazole derivatives: A systematic review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Oliaei S, Habibi D, Heydari S, Karamian R, Ranjbar N. Design, preparation, biological investigations and application of a benzoguanamine-based nickel complex for the synthesis of benzimidazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Sadhukhan S, Mondal S, Baire B. An unexpected Formation of 2‐Arylbenzimidazoles from α,α‐diiodo‐α’‐acetoxyketones and o‐Phenylenediamines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Beeraiah Baire
- Indian Institute of Technology, Madras Chemistry CY 209C, Department of ChemsitryIIT Madras, AdyarChennaiIndia 600036 Chennai INDIA
| |
Collapse
|
11
|
Li Y, Wu P, Yang Z. Synthesis of 2-Aryl Benzoxazoles from Benzoxazoles and α-Ketoic Acids by Photoredox Catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Alter N, Link S, Heuser S. Microwave-Assisted One-Pot Synthesis of 2-Substituted Benzoxazoles from Nitrophenol and Carboxylic Acids. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Qadir T, Amin A, Salhotra A, Sharma PK, Jeelani I, Abe H. Recent advances in the synthesis of benzothiazole and its derivatives. CURR ORG CHEM 2021. [DOI: 10.2174/1385272826666211229144446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Benzothiazoles have recognized pharmacophores in the field of research, predominantly in synthetic and medicinal chemistry, on account of their significant pharmaceutical properties. This important class of derivatives endows an extensive range of biological activities like anti-inflammatory, antidiabetic, anticancer, anticonvulsant, antibacterial, antiviral, antioxidant, antituberculosis, enzyme inhibitors, etc. Hence, various methodologies have been accomplished to synthesize benzothiazole compounds considering the purity, yield, and selectivity of the products. This review provides different reaction methods that are involved in the synthesis of a variety of benzothiazole derivatives.
Collapse
Affiliation(s)
- Tanzeela Qadir
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Andleeb Amin
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Alka Salhotra
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Praveen Kumar Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ishtiaq Jeelani
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku 930-8555, Japan
| | - Hitoshi Abe
- Faculty of Engineering, University of Toyama, 3190 Gofuku 930-8555, Japan
| |
Collapse
|
14
|
Benzothiazoles from Condensation of o-Aminothiophenoles with Carboxylic Acids and Their Derivatives: A Review. Molecules 2021; 26:molecules26216518. [PMID: 34770926 PMCID: PMC8587170 DOI: 10.3390/molecules26216518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 01/27/2023] Open
Abstract
Nowadays, organic chemists are interested in the field of heterocyclic chemistry due to its use in the synthesis of a great variety of biologically active compounds. Heterocyclic compounds are widely found in nature and are essential for life. Among these, some natural nitrogen containing heterocyclic compounds have been used as chemotherapeutic agents. Their attachment to sugar molecules either as thioglycosides or as nucleosides analogues plays an important role in vital biological processes as well as in synthetic organic chemistry. Molecules containing benzothiazole (BT) nuclei are of this interesting class of compounds because some of them have been found to have a wide variety of biological activities. In this sense, we selected this topic to review and to then summarize the procedures related to the condensation reactions of o-aminothiophenoles (ATPs) as well as their disulfides with carboxylic acids, esters, orthoesters, acyl chlorides, amides, and nitriles. The condensation reactions with carbon dioxide (CO2) are included. Conventional methods with the use of acid and metal catalysts as well as recent green techniques, such as microwave irradiation, the use of ionic liquids, and ultrasound (US) chemistry, which have proven to have many advantages, were found in the review.
Collapse
|
15
|
Lin S, Chen Y, Luo X, Li Y. Sustainable Cascades to Difluoroalkylated Polycyclic Imidazoles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sheng‐Nan Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education and Yunnan Province School of Chemical Science and Technology Yunnan University Kunming 650091 China
| | - Yu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiao‐Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education and Yunnan Province School of Chemical Science and Technology Yunnan University Kunming 650091 China
| | - Yi Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
16
|
Hassan M, van Klaveren S, Håkansson M, Diehl C, Kovačič R, Baussière F, Sundin AP, Dernovšek J, Walse B, Zetterberg F, Leffler H, Anderluh M, Tomašič T, Jakopin Ž, Nilsson UJ. Benzimidazole-galactosides bind selectively to the Galectin-8 N-Terminal domain: Structure-based design and optimisation. Eur J Med Chem 2021; 223:113664. [PMID: 34225180 DOI: 10.1016/j.ejmech.2021.113664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/13/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
We have obtained the X-ray crystal structure of the galectin-8 N-terminal domain (galectin-8N) with a previously reported quinoline-galactoside ligand at a resolution of 1.6 Å. Based on this X-ray structure, a collection of galactosides derivatised at O3 with triazole, benzimidazole, benzothiazole, and benzoxazole moieties were designed and synthesised. This led to the discovery of a 3-O-(N-methylbenzimidazolylmethyl)-galactoside with a Kd of 1.8 μM for galectin-8N, the most potent selective synthetic galectin-8N ligand to date. Molecular dynamics simulations showed that benzimidazole-galactoside derivatives bind the non-conserved amino acid Gln47, accounting for the higher selectivity for galectin-8N. Galectin-8 is a carbohydrate-binding protein that plays a key role in pathological lymphangiogenesis, modulation of the immune system, and autophagy. Thus, the benzimidazole-derivatised galactosides represent promising compounds for studies of the pathological implications of galectin-8, as well as a starting point for the development of anti-tumour and anti-inflammatory therapeutics targeting galectin-8.
Collapse
Affiliation(s)
- Mujtaba Hassan
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Sjors van Klaveren
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Maria Håkansson
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Carl Diehl
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Rebeka Kovačič
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Floriane Baussière
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Anders P Sundin
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Björn Walse
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Fredrik Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46, Gothenburg, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - Marko Anderluh
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Žiga Jakopin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden.
| |
Collapse
|
17
|
Kadagathur M, Sigalapalli DK, Patra S, Tangellamudi ND. Microwave-assisted hydrogen peroxide-mediated synthesis of benzoxazoles and related heterocycles via cyclodesulfurization. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1928217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Manasa Kadagathur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sandip Patra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Neelima D. Tangellamudi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
18
|
Vargas-Oviedo D, Portilla J, Macías MA. Influence of the haloaryl moiety over the molecular packing in N-phenacylbenzimidazoles crystallizing in the same space group. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Dai DT, Xu JL, Chen ZY, Wang ZL, Xu YH. Synthesis of Enynic and Allenic Orthoesters via Defluoromethoxylation of 2-Trifluoromethyl-1,3-enynes. Org Lett 2021; 23:1898-1903. [PMID: 33624501 DOI: 10.1021/acs.orglett.1c00311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this protocol, the chemoselective defluoromethoxylation reactions of 2-trifluoromethyl-1,3-enynes were developed. The enynic and allenic orthoesters were selectively produced in good to excellent yields via multiple substitution processes under mild reaction conditions, respectively. The enynic orthoester products were proved capable of acting as efficient "platform molecules" to access various functionalized allenyl compounds.
Collapse
Affiliation(s)
- Dong-Ting Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian-Lin Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhi-Yuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
20
|
Knippel JL, Ye Y, Buchwald SL. Enantioselective C2-Allylation of Benzimidazoles Using 1,3-Diene Pronucleophiles. Org Lett 2021; 23:2153-2157. [PMID: 33646778 DOI: 10.1021/acs.orglett.1c00306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although substituted benzimidazoles are common substructures in bioactive small molecules, synthetic methods for their derivatization are still limited. Previously, several enantioselective allylation reactions of benzimidazoles were reported that functionalize the nucleophilic nitrogen atom. Herein we describe a reversal of this inherent selectivity toward N-allylation by using electrophilic N-OPiv benzimidazoles with readily available 1,3-dienes as nucleophile precursors. This CuH-catalyzed approach utilizes mild reaction conditions, exhibits broad functional-group compatibility, and exclusively forms the C2-allylated product with excellent stereoselectivity.
Collapse
Affiliation(s)
- James Levi Knippel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuxuan Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Ying P, Yu J, Su W. Liquid‐Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001245] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ping Ying
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
22
|
Heterocyclic reaction inducted by Brønsted–Lewis dual acidic Hf-MOF under microwave irradiation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Zheng M, Hou J, Zhan LW, Huang Y, Chen L, Hua LL, Li Y, Tang WY, Li BD. Visible-Light-Driven, Metal-Free Divergent Difunctionalization of Alkenes Using Alkyl Formates. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04332] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ming Zheng
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Huang
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ling Chen
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Li-Li Hua
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China
| | - Wan-Ying Tang
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
24
|
Krajčovičová S, Jorda R, Vanda D, Soural M, Kryštof V. 1,4,6-Trisubstituted imidazo[4,5-c]pyridines as inhibitors of Bruton's tyrosine kinase. Eur J Med Chem 2020; 211:113094. [PMID: 33340912 DOI: 10.1016/j.ejmech.2020.113094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Herein, we report an efficient synthetic approach towards trisubstituted imidazo [4,5-c]pyridines designed as inhibitors of Bruton's tyrosine kinase (BTK). Two alternative synthetic routes for the simple preparation of desired compounds with variable substitutions at the N1, C4, C6 positions were introduced with readily available building blocks. Further, the developed synthetic approach was feasible for isomeric compounds bearing imidazo [4,5-b]pyridine scaffolds. In contrast to expectations based on previous studies, the imidazo [4,5-c]pyridine inhibitor exhibited a significantly higher activity against BTK compared to its imidazo [4,5-b]pyridine isomer. An inherent SAR study in the series of imidazo [4,5-c]pyridine compounds revealed a remarkably high tolerance of C6 substitutions for both hydrophobic and hydrophilic substituents. Preliminary cellular experiments indicated selective BTK targeting in Burkitt lymphoma and mantle cell lymphoma cell lines. The inhibitors could thus serve as starting points for further development, eventually leading to BTK inhibitors that could be used after ibrutinib failure.
Collapse
Affiliation(s)
- Soňa Krajčovičová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 77146, Olomouc, Czech Republic
| | - Radek Jorda
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - David Vanda
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 77146, Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 77146, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900, Olomouc, Czech Republic.
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900, Olomouc, Czech Republic.
| |
Collapse
|
25
|
Parvathi EVK, Pinapati SR, Tamminana R, Rudraraju RR. Iron‐Promoted Synthesis of (2‐Oxy/Thio)benzothiazole. ChemistrySelect 2020. [DOI: 10.1002/slct.202003747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Ramana Tamminana
- Department of Chemistry GITAM Deemed to be University 562163 Bengaluru India
| | - Ramesh raju Rudraraju
- Department of Chemistry Acharya Nagarjuna University, Nagarjuna Nagar Guntur AP 522510 India
| |
Collapse
|
26
|
Bhavsar ZA, Acharya PT, Jethava DJ, Patel DB, Vasava MS, Rajani DP, Pithawala E, Patel HD. Microwave assisted synthesis, biological activities, and in silico investigation of some benzimidazole derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zeel A. Bhavsar
- Department of Chemistry, School of Sciences Gujarat University Ahmedabad India
| | - Prachi T. Acharya
- Department of Chemistry, School of Sciences Gujarat University Ahmedabad India
| | - Divya J. Jethava
- Department of Chemistry, School of Sciences Gujarat University Ahmedabad India
| | - Dhaval B. Patel
- Department of Chemistry, School of Sciences Gujarat University Ahmedabad India
| | - Mahesh S. Vasava
- Institute of Research and Development Gujarat Forensic Science University Sector‐9 Gandhinagar India
| | - Dhanji P. Rajani
- Microcare Laboratory and Tuberculosis Research Center Surat India
| | - Edwin Pithawala
- Department of Microbiology and Biotechnology Khyati Institute of Science Ahmedabad India
| | - Hitesh D. Patel
- Department of Chemistry, School of Sciences Gujarat University Ahmedabad India
| |
Collapse
|
27
|
Raja D, Philips A, Palani P, Lin WY, Devikala S, Senadi GC. Metal-Free Synthesis of Benzimidazoles via Oxidative Cyclization of d-Glucose with o-Phenylenediamines in Water. J Org Chem 2020; 85:11531-11540. [PMID: 32786645 DOI: 10.1021/acs.joc.0c01053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
d-Glucose has been identified as an efficient C1 synthon in the synthesis of benzimidazoles from o-phenylenediamines via an oxidative cyclization strategy. Isotopic studies with 13C6-d-glucose and D2O unambiguously confirmed the source of methine. The notable features of this method include the following: broad functional group tolerance, a biorenewable methine source, excellent reaction yields, a short reaction time, water as an environmentally benign solvent, and the synthesis of vitamin B12 component on the gram scale.
Collapse
Affiliation(s)
- Dineshkumar Raja
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Abigail Philips
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Pushbaraj Palani
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan First Road, Sanmin District, Kaohsiung City 807, Taiwan
| | - Sundaramurthy Devikala
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Gopal Chandru Senadi
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
28
|
Kim J, Oh K. Copper‐Catalyzed Aerobic Oxidation of Amines to Benzothiazoles via Cross Coupling of Amines and Arene Thiolation Sequence. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jihyeon Kim
- Center for Metareceptome Research, Graduate School of Pharmaceutical SciencesChung-Ang University, 84 Heukseok-ro, Dongjak Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical SciencesChung-Ang University, 84 Heukseok-ro, Dongjak Seoul 06974, Republic of Korea
| |
Collapse
|
29
|
Garcia AD, Leech MC, Petti A, Denis C, Goodall ICA, Dobbs AP, Lam K. Anodic Oxidation of Dithiane Carboxylic Acids: A Rapid and Mild Way to Access Functionalized Orthoesters. Org Lett 2020; 22:4000-4005. [DOI: 10.1021/acs.orglett.0c01324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Anthony D. Garcia
- School of Science, University of Greenwich, Chatham, Kent, Chatham Maritime ME4 4TB, United Kingdom
| | - Matthew C. Leech
- School of Science, University of Greenwich, Chatham, Kent, Chatham Maritime ME4 4TB, United Kingdom
| | - Alessia Petti
- School of Science, University of Greenwich, Chatham, Kent, Chatham Maritime ME4 4TB, United Kingdom
| | - Camille Denis
- School of Science, University of Greenwich, Chatham, Kent, Chatham Maritime ME4 4TB, United Kingdom
| | - Iain C. A. Goodall
- School of Science, University of Greenwich, Chatham, Kent, Chatham Maritime ME4 4TB, United Kingdom
| | - Adrian P. Dobbs
- School of Science, University of Greenwich, Chatham, Kent, Chatham Maritime ME4 4TB, United Kingdom
| | - Kevin Lam
- School of Science, University of Greenwich, Chatham, Kent, Chatham Maritime ME4 4TB, United Kingdom
| |
Collapse
|
30
|
Affiliation(s)
- Zohreh Nazarian
- Faculty of Chemistry and Petroleum SciencesShahid Beheshti University, District 1 Daneshjou Boulevard 1983969411 Tehran Tehran Province Iran P.O. Box: 1983963113
| | - Minoo Dabiri
- Faculty of Chemistry and Petroleum SciencesShahid Beheshti University, District 1 Daneshjou Boulevard 1983969411 Tehran Tehran Province Iran P.O. Box: 1983963113
| |
Collapse
|
31
|
Layek S, Agrahari B, Kumar A, Dege N, Pathak DD. Synthesis and X-ray crystal structures of three new nickel(II) complexes of benzoylhydrazones: Catalytic applications in the synthesis of 2-arylbenzoxazoles. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Yang Z, Zhou L, Liu Y, Lu H, Wu F, Xie Y, Liu J. Base‐Promoted Metal‐Free Arylation of Benzoxazoles with Phenylglyoxylic Acids. ChemistrySelect 2019. [DOI: 10.1002/slct.201903641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhiyong Yang
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| | - Liang Zhou
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| | - Ying Liu
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| | - Hongwen Lu
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| | - Fengxuan Wu
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| | - Yuxin Xie
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| | - Jianle Liu
- School of Chemical EngineeringGuizhou Institute of Technology Guizhou Province Guiyang 550003 P. R. China
| |
Collapse
|
33
|
Novel benzothiazole containing 4H-pyrimido[2,1-b]benzothiazoles derivatives: One pot, solvent-free microwave assisted synthesis and their biological evaluation. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
34
|
Shaik BV, Seelam M, Tamminana R, Kammela PR. Copper promoted C-S and C-N cross-coupling Reactions:The synthesis of 2-(N-Aryolamino)benzothiazoles and 2-(N-Aryolamino)benzimidazoles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Metal-free selective synthesis of 2-substituted benzimidazoles catalyzed by Brönsted acidic ionic liquid: Convenient access to one-pot synthesis of N-alkylated 1,2-disubstituted benzimidazoles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Mishra N, Singh AS, Agrahari AK, Singh SK, Singh M, Tiwari VK. Synthesis of Benz-Fused Azoles via C-Heteroatom Coupling Reactions Catalyzed by Cu(I) in the Presence of Glycosyltriazole Ligands. ACS COMBINATORIAL SCIENCE 2019; 21:389-399. [PMID: 30943366 DOI: 10.1021/acscombsci.9b00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosyl triazoles are conveniently accessible and contain multiple metal-binding units that may assist in metal-mediated catalysis. Azide derivatives of d-glucose have been converted to their respective aryltriazoles and screened as ligands for the synthesis of 2-substituted benz-fused azoles and benzimidazoquinazolinones by Cu-catalyzed intramolecular Ullmann type C-heteroatom coupling. Good to excellent yields for a variety of benz-fused heterocyles were obtained for this readily accessible catalytic system.
Collapse
Affiliation(s)
- Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anoop S. Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anand K. Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sumit K. Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Mala Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Vinod K. Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
37
|
Rapolu T, K. V. P. PK, Babu KR, Dende SK, Nimmareddy RR, Reddy LK. Microwave assisted one pot synthesis of 2-ethylamino benzimidazole, benzoxazole and benzothiazole derivatives. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1599952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Thirupathi Rapolu
- Medicinal Chemistry Division, GVK Biosciences Private Limited, Hyderabad, India
- Department of Engineering Chemistry, Andhra University College of Engineering (A), Visakhapatnam, India
| | | | - Korupolu Raghu Babu
- Department of Engineering Chemistry, Andhra University College of Engineering (A), Visakhapatnam, India
| | - Satheesh Kumar Dende
- Medicinal Chemistry Division, GVK Biosciences Private Limited, Hyderabad, India
- Department of Engineering Chemistry, Andhra University College of Engineering (A), Visakhapatnam, India
| | - Rajashekar Reddy Nimmareddy
- Medicinal Chemistry Division, GVK Biosciences Private Limited, Hyderabad, India
- Department of Engineering Chemistry, Andhra University College of Engineering (A), Visakhapatnam, India
| | | |
Collapse
|
38
|
Dochain S, Nshimyumuremyi JB, Dewez DF, Body JF, Elias B, Singleton ML, Markó IE. Electrochemical and photochemical approaches for the synthesis of the C28–C38 fragment of okadaic acid. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.02.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Venu Saranya T, Rajan Sruthi P, Anas S. Facile synthesis of 2-benzoxazoles via CuI/2,2'-bipyridine catalyzed intramolecular C-O coupling of 2-haloanilides. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1554147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Saithalavi Anas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
- Advanced Molecular Materials Research Centre, Mahatma Gandhi University, Kottayam, India
| |
Collapse
|
40
|
Kaldhi D, Vodnala N, Gujjarappa R, Nayak S, Ravichandiran V, Gupta S, Hazra CK, Malakar CC. Organocatalytic oxidative synthesis of C2-functionalized benzoxazoles, naphthoxazoles, benzothiazoles and benzimidazoles. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Qin H, Miao Y, Xu J, Bi Q, Qu W, Liu W, Feng F, Sun H. A facile and efficient [4 + 2] annulation reaction of sulfur ylides: access to N-fused benzimidazoles. Org Chem Front 2019. [DOI: 10.1039/c8qo01133h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of N-fused benzimidazoles via sulfur ylides is first reported. The reaction system is facile and mild without a metal catalyst.
Collapse
Affiliation(s)
- Hui Qin
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Yuanyuan Miao
- State Key Laboratory of Natural Medicines
- Department of TCMs Pharmaceuticals
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Jian Xu
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Qirui Bi
- State Key Laboratory of Natural Medicines
- Department of TCMs Pharmaceuticals
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Wei Qu
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
- Key Laboratory of Biomedical Functional Materials
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Feng Feng
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
- Key Laboratory of Biomedical Functional Materials
| | - Haopeng Sun
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| |
Collapse
|
42
|
Kazi I, Sekar G. An efficient synthesis of benzothiazole using tetrabromomethane as a halogen bond donor catalyst. Org Biomol Chem 2019; 17:9743-9756. [DOI: 10.1039/c9ob02125f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A CBr4 catalyzed simple, mild, and efficient protocol has been developed for the synthesis of 2-substituted benzothiazole from 2-aminothiophenols and N-methylthioamides under solvent free conditions.
Collapse
Affiliation(s)
- Imran Kazi
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai
- India
| | - Govindasamy Sekar
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai
- India
| |
Collapse
|
43
|
Ma D, Ji X, Wu Z, Cheng C, Zhou B, Zhang Y. Synthesis of Benzimidazoles through Palladium-Catalyzed Amination of 2-Iodobenzimines with Diaziridinone. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ding Ma
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Xiaoming Ji
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Zhuo Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Cang Cheng
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Bo Zhou
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 People's Republic of China
| |
Collapse
|
44
|
MgO NPs Catalyzed Eco‐friendly Reaction: A Highly Effective and Green Approach for the Multicomponent One‐pot Synthesis of Polysubstituted Pyridines using 2‐Aminobenzothiazole. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Barasa L, Yoganathan S. An efficient one-pot conversion of carboxylic acids into benzimidazoles via an HBTU-promoted methodology. RSC Adv 2018; 8:35824-35830. [PMID: 35547918 PMCID: PMC9088178 DOI: 10.1039/c8ra07773h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/15/2018] [Indexed: 11/27/2022] Open
Abstract
Benzimidazole is a privileged, and routinely used pharmacophore in the drug discovery process. Herein, we report a mild, acid-free and one-pot synthesis of indole, alkyl and alpha-amino benzimidazoles through a novel HBTU-promoted methodology. An extensive library of indole-carboxylic acids, alkyl carboxylic acids and N-protected alpha-amino acids has been converted into the corresponding benzimidazoles in 80-99% yield. Since alpha-aminobenzimidazoles are highly useful synthons as chiral ligands for chemical catalysis, as well as for drug discovery endeavors, our reported method provides direct access to this scaffold in a simple, one-pot operation from commercially available carboxylic acids.
Collapse
Affiliation(s)
- Leonard Barasa
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University Queens NY 11439 USA +1-718-990-5215
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University Queens NY 11439 USA +1-718-990-5215
| |
Collapse
|
46
|
Selim Y, Abd El-Azim MH. Conventional and Microwave-Activated the Synthesis of a Novel Series of Imidazoles, Pyrimidines, and Thiazoles Candidates. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yasser Selim
- Faculty of Specific Education; Zagazig University; Zagazig 44519 Egypt
| | | |
Collapse
|
47
|
Patil MR, Bhanushali JT, Nagaraja BM, Keri RS. TiO 2 ZrO 2 composite: Synthesis, characterization and application as a facile, expeditious and recyclable catalyst for the synthesis of 2-aryl substituted benzoxazole derivatives. CR CHIM 2018. [DOI: 10.1016/j.crci.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Li B, Mai S, Song Q. Synthesis of fused benzimidazoles via successive nucleophilic additions of benzimidazole derivatives to arynes under transition metal-free conditions. Org Chem Front 2018. [DOI: 10.1039/c8qo00251g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An expedient and efficient strategy was developed for the synthesis of benzimidazole derivatives from aryne precursors under transition metal-free conditions.
Collapse
Affiliation(s)
- Bingnan Li
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering & Material Sciences Engineering at Huaqiao University
- Xiamen
- P. R. China
| | - Shaoyu Mai
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering & Material Sciences Engineering at Huaqiao University
- Xiamen
- P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering & Material Sciences Engineering at Huaqiao University
- Xiamen
- P. R. China
| |
Collapse
|
49
|
Sweeney M, Gurry M, Keane LAJ, Aldabbagh F. Greener synthesis using hydrogen peroxide in ethyl acetate of alicyclic ring-fused benzimidazoles and anti-tumour benzimidazolequinones. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Nguyen TB, Retailleau P. Elemental Sulfur-Promoted Oxidative Rearranging Coupling between o-Aminophenols and Ketones: A Synthesis of 2-Alkyl benzoxazoles under Mild Conditions. Org Lett 2017; 19:3887-3890. [DOI: 10.1021/acs.orglett.7b01775] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thanh Binh Nguyen
- Institut de Chimie des Substances
Naturelles, CNRS UPR 2301, Université Paris-Sud, Université
Paris-Saclay, 1, avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Pascal Retailleau
- Institut de Chimie des Substances
Naturelles, CNRS UPR 2301, Université Paris-Sud, Université
Paris-Saclay, 1, avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|