1
|
Zhang C, Liu F, Zhang Y, Song C. Macrocycles and macrocyclization in anticancer drug discovery: Important pieces of the puzzle. Eur J Med Chem 2024; 268:116234. [PMID: 38401189 DOI: 10.1016/j.ejmech.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
Increasing disease-related proteins have been identified as novel therapeutic targets. Macrocycles are emerging as potential solutions, bridging the gap between conventional small molecules and biomacromolecules in drug discovery. Inspired by successful macrocyclic drugs of natural origins, macrocycles are attracting more attention for enhanced binding affinity and target selectivity. Due to the conformation constraint and structure preorganization, macrocycles can reach bioactive conformations more easily than parent acyclic compounds. Also, rational macrocyclization combined with sequent structural modification will help improve oral bioavailability and combat drug resistance. This review introduces various strategies to enhance membrane permeability in macrocyclization and subsequent modification, such as N-methylation, intramolecular hydrogen bonding modulation, isomerization, and reversible bicyclization. Several case studies highlight macrocyclic inhibitors targeting kinases, HDAC, and protein-protein interactions. Finally, some macrocyclic agents targeting tumor microenvironments are illustrated.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Fenfen Liu
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Chun Song
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
2
|
Lamouroux A, Tournier M, Iaculli D, Caufriez A, Rusiecka OM, Martin C, Bes V, Carpio LE, Girardin Y, Loris R, Tabernilla A, Molica F, Gozalbes R, Mayán MD, Vinken M, Kwak BR, Ballet S. Structure-Based Design and Synthesis of Stapled 10Panx1 Analogues for Use in Cardiovascular Inflammatory Diseases. J Med Chem 2023; 66:13086-13102. [PMID: 37703077 PMCID: PMC10544015 DOI: 10.1021/acs.jmedchem.3c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 09/14/2023]
Abstract
Following a rational design, a series of macrocyclic ("stapled") peptidomimetics of 10Panx1, the most established peptide inhibitor of Pannexin1 (Panx1) channels, were developed and synthesized. Two macrocyclic analogues SBL-PX1-42 and SBL-PX1-44 outperformed the linear native peptide. During in vitro adenosine triphosphate (ATP) release and Yo-Pro-1 uptake assays in a Panx1-expressing tumor cell line, both compounds were revealed to be promising bidirectional inhibitors of Panx1 channel function, able to induce a two-fold inhibition, as compared to the native 10Panx1 sequence. The introduction of triazole-based cross-links within the peptide backbones increased helical content and enhanced in vitro proteolytic stability in human plasma (>30-fold longer half-lives, compared to 10Panx1). In adhesion assays, a "double-stapled" peptide, SBL-PX1-206 inhibited ATP release from endothelial cells, thereby efficiently reducing THP-1 monocyte adhesion to a TNF-α-activated endothelial monolayer and making it a promising candidate for future in vivo investigations in animal models of cardiovascular inflammatory disease.
Collapse
Affiliation(s)
- Arthur Lamouroux
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Malaury Tournier
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Debora Iaculli
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Anne Caufriez
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Olga M. Rusiecka
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Charlotte Martin
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Viviane Bes
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Laureano E. Carpio
- ProtoQSAR
SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, Avda. Benjamin Franklin 12, 46980 Paterna, Spain
| | - Yana Girardin
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Centre for
Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Centre for
Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Andrés Tabernilla
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Filippo Molica
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Rafael Gozalbes
- ProtoQSAR
SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, Avda. Benjamin Franklin 12, 46980 Paterna, Spain
- MolDrug
AI Systems SL, c/Olimpia
Arozena 45, 46018 Valencia, Spain
| | - María D. Mayán
- CellCOM
Research Group, Instituto de Investigación Biomédica
de A Coruña, Servizo Galego de Saúde, Universidade da Coruña, 15071 A Coruña, Spain
| | - Mathieu Vinken
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Brenda R. Kwak
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Steven Ballet
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
3
|
Kuethe JT, Lee J, Thaisrivongs D, Yasuda N, Pollack SR, Leone J, DaSilva J, Biba M, Tsay FR, Regalado EL, Qi J, Li H, Poggetto GD, Cohen R. Synthesis of a Complex and Highly Potent PCSK9 Inhibitor. Org Lett 2023; 25:5001-5005. [PMID: 37382389 DOI: 10.1021/acs.orglett.3c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The solution-based gram-scale synthesis of complex and highly potent proprotein convertase subtilisin-like/kexin type 9 (PCSK9) inhibitor 1 is presented. Construction of Northern fragment 2, followed by stepwise installation of Eastern 3, Southern 4, and Western 5 fragments, provided macrocyclic precursor 19. This intermediate was cross-linked via an intramolecular azide-alkyne click reaction, which preceded macrolactamization to afford the core framework of compound 1. Finally, coupling with poly(ethylene glycol) side-chain-based 6 gave the PCSK9 inhibitor 1.
Collapse
Affiliation(s)
- Jeffrey T Kuethe
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Joshua Lee
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - David Thaisrivongs
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Nobuyoshi Yasuda
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Scott R Pollack
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Joseph Leone
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jimmy DaSilva
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mirlinda Biba
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Fuh-Rong Tsay
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Erik L Regalado
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ji Qi
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hongming Li
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Guilherme Dal Poggetto
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ryan Cohen
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
4
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
5
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
6
|
Rai V, Sorabad GS, Maddani MR. Facile and direct halogenation of 1,2,3-triazoles promoted by a KX–oxone system under transition metal free conditions. NEW J CHEM 2021. [DOI: 10.1039/d0nj05170e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A convenient and efficient oxidative halogenation of 4-aryl 1,2,3-triazoles is realized at ambient temperature under transition metal free conditions.
Collapse
Affiliation(s)
- Vishakha Rai
- Department of Chemistry
- Mangalore University
- Mangalore
- India
| | | | | |
Collapse
|
7
|
Rivera DG, Ojeda-Carralero GM, Reguera L, Van der Eycken EV. Peptide macrocyclization by transition metal catalysis. Chem Soc Rev 2020; 49:2039-2059. [PMID: 32142086 DOI: 10.1039/c9cs00366e] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptide macrocyclization has traditionally relied on lactam, lactone and disulfide bond-forming reactions that aim at introducing conformational constraints into small peptide sequences. With the advent of ruthenium-catalyzed ring-closing metathesis and copper-catalyzed alkyne-azide cycloaddition, peptide chemists embraced transition metal catalysis as a powerful macrocyclization tool with relevant applications in chemical biological and peptide drug discovery. This article provides a comprehensive overview of the reactivity and methodological diversification of metal-catalyzed peptide macrocyclization as a special class of late-stage peptide derivatization method. We report the evolution from classic palladium-catalyzed cross-coupling approaches to more modern oxidative versions based on C-H activation, heteroatom alkylation/arylation and annulation processes, in which aspects such as chemoselectivity and diversity generation at the ring-closing moiety became dominant over the last years. The transit from early cycloadditions and alkyne couplings as ring-closing steps to very recent 3d metal-catalyzed macrocyclization methods is highlighted. Similarly, the new trends in decarboxylative radical macrocyclizations and the interplay between photoredox and transition metal catalysis are included. This review charts future perspectives in the field hoping to encourage further progress and applications, while bringing attention to the countless possibilities available by diversifying not only the metal, but also the reactivity modes and tactics to bring peptide functional groups together and produce structurally diverse macrocycles.
Collapse
Affiliation(s)
- Daniel G Rivera
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Gerardo M Ojeda-Carralero
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Leslie Reguera
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| |
Collapse
|
8
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
9
|
Usmanova L, Dar'in D, Novikov MS, Gureev M, Krasavin M. Bicyclic Piperazine Mimetics of the Peptide β-Turn Assembled via the Castagnoli-Cushman Reaction. J Org Chem 2018; 83:5859-5868. [PMID: 29701467 DOI: 10.1021/acs.joc.8b00811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
5-Oxopiperazine-2-carboxamides and respective carboxylic acids (obtained by the Castagnoli-Cushman reaction of protected iminodiacetic anhydride) were converted into cis- and trans-configured bicyclic piperazines containing two stereogenic centers. The latter are not only well-established mimetics of peptide β-turn but also attractive, high-Fsp3 cores for drug design in general. The methodology was applied to the preparation of ring-expanded version of bicyclic piperazines not described in the literature.
Collapse
Affiliation(s)
- Liliia Usmanova
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation
| | - Mikhail S Novikov
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation
| | - Maxim Gureev
- Saint Petersburg State Institute of Technology (Technical University) , Saint Petersburg 190013 , Russian Federation
| | - Mikhail Krasavin
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation
| |
Collapse
|
10
|
Kaldas SJ, Yudin AK. Achieving Skeletal Diversity in Peptide Macrocycles through The Use of Heterocyclic Grafts. Chemistry 2018; 24:7074-7082. [DOI: 10.1002/chem.201705418] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Sherif J. Kaldas
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
11
|
Hubert JG, Stepek IA, Noda H, Bode JW. Synthetic fermentation of β-peptide macrocycles by thiadiazole-forming ring-closing reactions. Chem Sci 2018; 9:2159-2167. [PMID: 29719689 PMCID: PMC5896468 DOI: 10.1039/c7sc05057g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/05/2018] [Indexed: 01/12/2023] Open
Abstract
A new thiadiazole-forming macrocyclization reaction enables the one-pot synthesis of cyclic β-peptide libraries from readily accessible building blocks without additional reagents.
Macrocyclic β-peptides were efficiently prepared using a thiadiazole-forming cyclization reaction between an α-ketoacid and a thiohydrazide. The linear β-peptide precursors were assembled from isoxazolidine monomers by α-ketoacid-hydroxylamine (KAHA) ligations with a bifunctional initiator – a process we have termed ‘synthetic fermentation’ due to the analogy of producing natural product-like molecules from simpler building blocks. The linear synthetic fermentation products underwent Boc-deprotection/thiadiazole-forming macrocyclization under aqueous, acidic conditions to provide the cyclic products in a one-pot process. This reaction sequence proceeds from easily accessed initiator and monomer building blocks without the need for additional catalysts or reagents, enabling facile production of macrocyclic β-peptides, a relatively underexplored structural class.
Collapse
Affiliation(s)
- Jonathan G Hubert
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , Zürich , Switzerland 8093 . ; http://www.bode.ethz.ch
| | - Iain A Stepek
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , Zürich , Switzerland 8093 . ; http://www.bode.ethz.ch
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (Bikaken) , 3-14-23 Kamiosaki, Shinagawa-ku , Tokyo 141-0021 , Japan
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , Zürich , Switzerland 8093 . ; http://www.bode.ethz.ch
| |
Collapse
|
12
|
Soethoudt M, Stolze SC, Westphal MV, van Stralen L, Martella A, van Rooden EJ, Guba W, Varga ZV, Deng H, van Kasteren SI, Grether U, IJzerman AP, Pacher P, Carreira EM, Overkleeft HS, Ioan-Facsinay A, Heitman LH, van der Stelt M. Selective Photoaffinity Probe That Enables Assessment of Cannabinoid CB 2 Receptor Expression and Ligand Engagement in Human Cells. J Am Chem Soc 2018; 140:6067-6075. [PMID: 29420021 PMCID: PMC5958339 DOI: 10.1021/jacs.7b11281] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Chemical
tools and methods that report on G protein-coupled receptor
(GPCR) expression levels and receptor occupancy by small molecules
are highly desirable. We report the development of LEI121 as a photoreactive
probe to study the type 2 cannabinoid receptor (CB2R),
a promising GPCR to treat tissue injury and inflammatory diseases.
LEI121 is the first CB2R-selective bifunctional probe that
covalently captures CB2R upon photoactivation. An incorporated
alkyne serves as ligation handle for the introduction of reporter
groups. LEI121 enables target engagement studies and visualization
of endogenously expressed CB2R in HL-60 as well as primary
human immune cells using flow cytometry. Our findings show that strategically
functionalized probes allow monitoring of endogenous GPCR expression
and engagement in human cells using tandem photoclick chemistry and
hold promise as biomarkers in translational drug discovery.
Collapse
Affiliation(s)
| | | | - Matthias V Westphal
- Laboratorium für Organische Chemie , Eidgenössische Technische Hochschule Zürich , Vladimir-Prelog-Weg 3 , Zürich 8093 , Switzerland
| | - Luuk van Stralen
- Department of Rheumatology , Leiden University Medical Center , Albinusdreef 2 , Leiden 2333 ZA , The Netherlands
| | | | | | - Wolfgang Guba
- Roche Innovation Center Basel , F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124 , Basel 4070 , Switzerland
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury , National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , 5625 Fishers Lane , Rockville , Maryland 20852 , United States
| | | | | | - Uwe Grether
- Roche Innovation Center Basel , F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124 , Basel 4070 , Switzerland
| | | | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury , National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , 5625 Fishers Lane , Rockville , Maryland 20852 , United States
| | - Erick M Carreira
- Laboratorium für Organische Chemie , Eidgenössische Technische Hochschule Zürich , Vladimir-Prelog-Weg 3 , Zürich 8093 , Switzerland
| | | | - Andreea Ioan-Facsinay
- Department of Rheumatology , Leiden University Medical Center , Albinusdreef 2 , Leiden 2333 ZA , The Netherlands
| | | | | |
Collapse
|
13
|
Strack M, Billard É, Chatenet D, Lubell WD. Urotensin core mimics that modulate the biological activity of urotensin-II related peptide but not urotensin-II. Bioorg Med Chem Lett 2017. [DOI: 10.1016/j.bmcl.2017.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Berthet M, Lebrun A, Martel A, Cheviet T, Martinez J, Parrot I. Oxa-diketopiperazines: Access and Conformational Analysis of Potential Turn Inducers. ChemistrySelect 2017. [DOI: 10.1002/slct.201701393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mathéo Berthet
- Institut des Biomolécules Max Mousseron, IBMM UMR-5247 CNRS; Université de Montpellier; ENSCM, CC17-03; Pl. E. Bataillon 34095 Montpellier Cedex 5 France
| | - Aurélien Lebrun
- Institut des Biomolécules Max Mousseron, IBMM UMR-5247 CNRS; Université de Montpellier; ENSCM, CC17-03; Pl. E. Bataillon 34095 Montpellier Cedex 5 France
| | - Arnaud Martel
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS; Université du Maine; Av. O. Messiaen 72085 LE MANS CEDEX 9 France
| | - Thomas Cheviet
- Institut des Biomolécules Max Mousseron, IBMM UMR-5247 CNRS; Université de Montpellier; ENSCM, CC17-03; Pl. E. Bataillon 34095 Montpellier Cedex 5 France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, IBMM UMR-5247 CNRS; Université de Montpellier; ENSCM, CC17-03; Pl. E. Bataillon 34095 Montpellier Cedex 5 France
| | - Isabelle Parrot
- Institut des Biomolécules Max Mousseron, IBMM UMR-5247 CNRS; Université de Montpellier; ENSCM, CC17-03; Pl. E. Bataillon 34095 Montpellier Cedex 5 France
| |
Collapse
|
15
|
Abstract
The synthesis and utilization of all carbon-chain 'carbocontiguous' azidoalkynyl precursors for an intramolecular click reaction is described. The substrates contain both azidoalkyl and ethynylmethyl groups which are conjoined by a 2-(phenylsulfonylmethyl)-4,5-diphenyloxazole lynchpin and are suitably disposed for ring closure. On promotion by copper salts, a number of cyclic click products having the 1,4-disubstituted endo-fused triazole component and the 4,5-diphenyloxazole component are obtained. In one case, removal of the phenylsulfonylmethyl group from the substrate prior to cyclization gave the 1,5-disubstituted exo-fused triazole. The utilization of CuSO4/sodium ascorbate system appears to be the optimal conditions for closure/cyclization and afforded the cyclized products in yields of 84-95%.
Collapse
Affiliation(s)
- Pravin C Patil
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292 USA
| | - Frederick A Luzzio
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292 USA
| |
Collapse
|
16
|
Godin É, Bédard AC, Raymond M, Collins SK. Phase Separation Macrocyclization in a Complex Pharmaceutical Setting: Application toward the Synthesis of Vaniprevir. J Org Chem 2017; 82:7576-7582. [DOI: 10.1021/acs.joc.7b01308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Éric Godin
- Département de Chimie,
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
| | - Anne-Catherine Bédard
- Département de Chimie,
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
| | - Michaël Raymond
- Département de Chimie,
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
| | - Shawn K. Collins
- Département de Chimie,
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
| |
Collapse
|
17
|
Hopkins BA, Smith GF, Sciammetta N. Synthesis of Cyclic Peptidomimetics via a Pd-Catalyzed Macroamination Reaction. Org Lett 2016; 18:4072-5. [DOI: 10.1021/acs.orglett.6b01961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brett A. Hopkins
- Discovery Chemistry, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Graham F. Smith
- Discovery Chemistry, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Nunzio Sciammetta
- Discovery Chemistry, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
18
|
Morejón MC, Laub A, Westermann B, Rivera DG, Wessjohann LA. Solution- and Solid-Phase Macrocyclization of Peptides by the Ugi-Smiles Multicomponent Reaction: Synthesis of N-Aryl-Bridged Cyclic Lipopeptides. Org Lett 2016; 18:4096-9. [PMID: 27505031 DOI: 10.1021/acs.orglett.6b02001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new multicomponent methodology for the solution- and solid-phase macrocyclization of peptides is described. The approach comprises the utilization of the Ugi-Smiles reaction for the cyclization of 3-nitrotyrosine-containing peptides either by the N-terminus or the lysine side-chain amino groups. Both the on-resin and solution cyclizations took place with good to excellent efficiency in the presence of an aldehyde and a lipidic isocyanide, while the use of paraformaldehyde required an aminocatalysis-mediated imine formation prior to the on-resin Ugi-Smiles ring closure. The introduction of a turn motif in the peptide sequence facilitated the cyclization step, shortened the reaction time, and delivered crude products with >90% purity. This powerful method provided a variety of structurally novel N-aryl-bridged cyclic lipopeptides occurring as single atropisomers.
Collapse
Affiliation(s)
- Micjel C Morejón
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle/Saale, Germany.,Center for Natural Products Research, Faculty of Chemistry, University of Havana , Zapata y G, 10400 Havana, Cuba
| | - Annegret Laub
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle/Saale, Germany
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle/Saale, Germany
| | - Daniel G Rivera
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle/Saale, Germany.,Center for Natural Products Research, Faculty of Chemistry, University of Havana , Zapata y G, 10400 Havana, Cuba
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle/Saale, Germany
| |
Collapse
|
19
|
Mendive-Tapia L, Bertran A, García J, Acosta G, Albericio F, Lavilla R. Constrained Cyclopeptides: Biaryl Formation through Pd-Catalyzed C−H Activation in Peptides-Structural Control of the Cyclization vs. Cyclodimerization Outcome. Chemistry 2016; 22:13114-9. [DOI: 10.1002/chem.201601832] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Lorena Mendive-Tapia
- Institute for Research in Biomedicine, Barcelona Science Park; Baldiri Reixac 10-12 08028 Barcelona Spain
| | - Alexandra Bertran
- Institute for Research in Biomedicine, Barcelona Science Park; Baldiri Reixac 10-12 08028 Barcelona Spain
| | - Jesús García
- Institute for Research in Biomedicine, Barcelona Science Park; Baldiri Reixac 10-12 08028 Barcelona Spain
| | - Gerardo Acosta
- CIBER-BBN; Networking Centre in Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10-12 08028 Barcelona Spain
| | - Fernando Albericio
- CIBER-BBN; Networking Centre in Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10-12 08028 Barcelona Spain
- Department of Organic Chemistry; University of Barcelona; Martí i Franqués 1-11 08028 Barcelona Spain
- School of Chemistry; University of KwaZulu-Natal; 4001- Durban South Africa
| | - Rodolfo Lavilla
- CIBER-BBN; Networking Centre in Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10-12 08028 Barcelona Spain
- Laboratory of Organic Chemistry; Faculty of Pharmacy; University of Barcelona, Barcelona Science Park; Baldiri Reixac 10-12 08028 Barcelona Spain
| |
Collapse
|
20
|
Bag SS, Jana S, Pradhan MK. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA. Bioorg Med Chem 2016; 24:3579-95. [DOI: 10.1016/j.bmc.2016.05.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/29/2016] [Accepted: 05/30/2016] [Indexed: 02/03/2023]
|
21
|
Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem Rev 2016; 116:3086-240. [PMID: 26796328 DOI: 10.1021/acs.chemrev.5b00408] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Xi Chen
- Department of Chemistry, One Shields Avenue, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
22
|
Martí-Centelles V, Pandey MD, Burguete MI, Luis SV. Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem Rev 2015; 115:8736-834. [DOI: 10.1021/acs.chemrev.5b00056] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Mrituanjay D. Pandey
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - M. Isabel Burguete
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - Santiago V. Luis
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
23
|
Salvador CEM, Pieber B, Neu PM, Torvisco A, Kleber Z Andrade C, Kappe CO. A sequential Ugi multicomponent/Cu-catalyzed azide-alkyne cycloaddition approach for the continuous flow generation of cyclic peptoids. J Org Chem 2015; 80:4590-602. [PMID: 25842982 DOI: 10.1021/acs.joc.5b00445] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of a continuous flow multistep strategy for the synthesis of linear peptoids and their subsequent macrocyclization via Click chemistry is described. The central transformation of this process is an Ugi four-component reaction generating the peptidomimetic core structure. In order to avoid exposure to the often toxic and malodorous isocyanide building blocks, the continuous approach was telescoped by the dehydration of the corresponding formamide. In a concurrent operation, the highly energetic azide moiety required for the subsequent intramolecular copper-catalyzed azide-alkyne cycloaddition (Click reaction) was installed by nucleophilic substitution from a bromide precursor. All steps yielding to the linear core structures can be conveniently coupled without the need for purification steps resulting in a single process generating the desired peptidomimetics in good to excellent yields within a 25 min reaction time. The following macrocyclization was realized in a coil reactor made of copper without any additional additive. A careful process intensification study demonstrated that this transformation occurs quantitatively within 25 min at 140 °C. Depending on the resulting ring strain, either a dimeric or a monomeric form of the cyclic product was obtained.
Collapse
Affiliation(s)
- Carlos Eduardo M Salvador
- †Institute of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria.,‡Laboratório de Química Metodológica e Orgânica Sintética, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, C.P. 4478, 70904-970, Brasília-DF, Brazil
| | - Bartholomäus Pieber
- †Institute of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Philipp M Neu
- †Institute of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Ana Torvisco
- §Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Carlos Kleber Z Andrade
- ‡Laboratório de Química Metodológica e Orgânica Sintética, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, C.P. 4478, 70904-970, Brasília-DF, Brazil
| | - C Oliver Kappe
- †Institute of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
24
|
Bédard AC, Collins SK. Advanced Strategies for Efficient Macrocyclic Cu(I)-Catalyzed Cycloaddition of Azides. Org Lett 2014; 16:5286-9. [DOI: 10.1021/ol502415a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anne-Catherine Bédard
- Department
of Chemistry and
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec Canada, H3C 3J7
| | - Shawn K. Collins
- Department
of Chemistry and
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec Canada, H3C 3J7
| |
Collapse
|
25
|
Kokan Z, Glasovac Z, Majerić Elenkov M, Gredičak M, Jerić I, Kirin SI. “Backdoor Induction” of Chirality: Asymmetric Hydrogenation with Rhodium(I) Complexes of Triphenylphosphane-Substituted β-Turn Mimetics. Organometallics 2014. [DOI: 10.1021/om5005385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zoran Kokan
- Ruđer Bošković Institute, Bijenička
cesta 54, HR-10000 Zagreb, Croatia
| | - Zoran Glasovac
- Ruđer Bošković Institute, Bijenička
cesta 54, HR-10000 Zagreb, Croatia
| | | | - Matija Gredičak
- Ruđer Bošković Institute, Bijenička
cesta 54, HR-10000 Zagreb, Croatia
| | - Ivanka Jerić
- Ruđer Bošković Institute, Bijenička
cesta 54, HR-10000 Zagreb, Croatia
| | - Srećko I. Kirin
- Ruđer Bošković Institute, Bijenička
cesta 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
26
|
Bag SS, Jana S, Yashmeen A, Senthilkumar K, Bag R. Triazolyl-donor-acceptor chromophore-decorated unnatural amino acids and peptides: FRET events in a β-turn conformation. Chem Commun (Camb) 2014; 50:433-5. [PMID: 24253679 DOI: 10.1039/c3cc47488g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The β-turn conformation and FRET process were established in the designed tripeptide containing fluorescent triazolyl donor and acceptor-decorated unnatural amino acids separated by a natural alanine.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bio-organic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | | | |
Collapse
|
27
|
Nair RV, Baravkar SB, Ingole TS, Sanjayan GJ. Synthetic turn mimetics and hairpin nucleators: Quo Vadimus? Chem Commun (Camb) 2014; 50:13874-84. [PMID: 25051222 DOI: 10.1039/c4cc03114h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Structural mimicry of peptides has witnessed perceptible progress in the last three decades. Reverse turn and β-hairpin units are the smallest secondary structural motifs that are some of the most scrutinized functional cores of peptides and proteins. The practice of mimicking, without altering the function of the bioactive core, ranges from conformational locking of the basic skeleton to total replacement of structural architecture using synthetic analogues. Development of heterogeneous backbones--using unnatural residues in place of natural ones--has broadened further opportunities for efficient structural rigidification. This feature article endeavours to trail the path of progress achieved hitherto and envisage the possibilities that lie ahead in the development of synthetic turn mimetics and hairpin nucleators.
Collapse
Affiliation(s)
- Roshna V Nair
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.
| | | | | | | |
Collapse
|
28
|
Echemendía R, Concepción O, Morales FE, Paixão MW, Rivera DG. The CuI-catalyzed alkyne–azide cycloaddition as direct conjugation/cyclization method of peptides to steroids. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.10.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Xu L, Li Y, Li Y. Application of “Click” Chemistry to the Construction of Supramolecular Functional Systems. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201300245] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Li L, Hao G, Zhu A, Liu S, Zhang G. Three-component assembly of 5-halo-1,2,3-triazoles via aerobic oxidative halogenation. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Duarte CJ, Cormanich RA, Ducati LC, Rittner R. 1H NMR and theoretical studies on the conformational equilibrium of tryptophan methyl ester. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Pasini D. The click reaction as an efficient tool for the construction of macrocyclic structures. Molecules 2013; 18:9512-30. [PMID: 23966075 PMCID: PMC6270095 DOI: 10.3390/molecules18089512] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/24/2022] Open
Abstract
The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC, known as the click reaction) is an established tool used for the construction of complex molecular architectures. Given its efficiency it has been widely applied for bioconjugation, polymer and dendrimer synthesis. More recently, this reaction has been utilized for the efficient formation of rigid or shape-persistent, preorganized macrocyclic species. This strategy also allows the installment of useful functionalities, in the form of polar and function-rich 1,2,3-triazole moieties, directly embedded in the macrocyclic structures. This review analyzes the state of the art in this context, and provides some elements of perspective for future applications.
Collapse
Affiliation(s)
- Dario Pasini
- Department of Chemistry, University of Pavia, Viale Taramelli, 10-27100 Pavia, Italy.
| |
Collapse
|
33
|
Yu X, Sun D. Macrocyclic drugs and synthetic methodologies toward macrocycles. Molecules 2013; 18:6230-68. [PMID: 23708234 PMCID: PMC4374646 DOI: 10.3390/molecules18066230] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 01/02/2023] Open
Abstract
Macrocyclic scaffolds are commonly found in bioactive natural products and pharmaceutical molecules. So far, a large number of macrocyclic natural products have been isolated and synthesized. The construction of macrocycles is generally considered as a crucial and challenging step in the synthesis of macrocyclic natural products. Over the last several decades, numerous efforts have been undertaken toward the synthesis of complex naturally occurring macrocycles and great progresses have been made to advance the field of total synthesis. The commonly used synthetic methodologies toward macrocyclization include macrolactonization, macrolactamization, transition metal-catalyzed cross coupling, ring-closing metathesis, and click reaction, among others. Selected recent examples of macrocyclic synthesis of natural products and druglike macrocycles with significant biological relevance are highlighted in each class. The primary goal of this review is to summarize currently used macrocyclic drugs, highlight the therapeutic potential of this underexplored drug class and outline the general synthetic methodologies for the synthesis of macrocycles.
Collapse
Affiliation(s)
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA; E-Mail:
| |
Collapse
|