1
|
Medina-Gil T, Sadurní A, Hammarback LA, Echavarren AM. Gold(I)-Catalyzed Intermolecular Aryloxyvinylation with Acetylene Gas. ACS Catal 2023; 13:10751-10755. [PMID: 37614519 PMCID: PMC10442918 DOI: 10.1021/acscatal.3c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Acetylene gas is an important feedstock for chemical production, although it is underutilized in organic synthesis. We have developed an intermolecular gold(I)-catalyzed alkyne/alkene reaction of o-allylphenols with acetylene gas that gives rise to chromanes by a stereospecific aryloxycyclization through the nucleophilic regioselective opening of cyclopropyl gold(I)-carbene intermediates. The synthetic application of this method was demonstrated in the late-stage functionalization of the natural product lapachol.
Collapse
Affiliation(s)
- Tania Medina-Gil
- Institute of Chemical Research
of Catalonia (ICIQ), Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química
Orgànica i Analítica, Universitat
Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Anna Sadurní
- Institute of Chemical Research
of Catalonia (ICIQ), Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química
Orgànica i Analítica, Universitat
Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - L. Anders Hammarback
- Institute of Chemical Research
of Catalonia (ICIQ), Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química
Orgànica i Analítica, Universitat
Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | |
Collapse
|
2
|
Zhang C, Zhang XQ, Nie Y, Wang C, Xu T, Zhang J, Bai L, Feng C, Wang Y. Gold-catalyzed formal (3 + 2) and (4 + 2) cycloaddition reactions using propiolates: assembly of 2,3-dihydrofurans and 3,4-dihydropyrans via a multistep cascade process. Org Chem Front 2022. [DOI: 10.1039/d2qo01084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gold-catalyzed formal dipolar cycloaddition reaction was developed using polarized alkynes as dipolarophiles and butenediol or pentenediol derivatives as formal dipoles. Silyl groups were used to solve the selectivity issue of unsymmetrical diols.
Collapse
Affiliation(s)
- Congdi Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Xiao-Qian Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Yu Nie
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Chao Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Tianyi Xu
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Junjie Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Lu Bai
- Instrumental Analysis Center, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049, P.R. China
| | - Chao Feng
- Instrumental Analysis Center, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049, P.R. China
| | - Youliang Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| |
Collapse
|
3
|
Kuan TH, Kotipalli T, Chen CC, Hou DR. Addition of benzyl ethers to alkynes: a metal-free synthesis of 1 H-isochromenes. Org Biomol Chem 2021; 19:10390-10402. [PMID: 34825694 DOI: 10.1039/d1ob01941d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bromotrimethylsilane (TMSBr)-promoted intramolecular cyclization of (o-arylethynyl)benzyl ethers to form 1H-isochromenes at room temperature is reported. Further studies indicated that vinyl carbocations are the reaction intermediates which are stabilized by the conjugated aryl groups. Thus, O-addition of benzyl ethers/tetrahydropyrans to alkynes was achieved under metal-free, acidic conditions. These reaction conditions were compatible with an alkynyl Prins reaction; therefore, 1H-isochromenes were produced directly from alkynyl benzaldehydes and alkynyl alcohols using a one-pot procedure.
Collapse
Affiliation(s)
- Tzu-Hsuan Kuan
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| | - Trimurtulu Kotipalli
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| | - Cheng-Chun Chen
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| | - Duen-Ren Hou
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| |
Collapse
|
4
|
Qi LJ, Shi CY, Chen PF, Li L, Fang G, Qian PC, Deng C, Zhou JM, Ye LW. Gold-Catalyzed 1,1-Carboalkoxylation of Oxetane-Ynamides via Exocyclic Metal Carbenes: Divergent and Atom-Economical Synthesis of Tricyclic N-Heterocycles. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lin-Jun Qi
- Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chong-Yang Shi
- Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peng-Fei Chen
- Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long Li
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Gang Fang
- Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peng-Cheng Qian
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Mei Zhou
- Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long-Wu Ye
- Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Zimin DP, Dar’in DV, Kukushkin VY, Dubovtsev AY. Oxygen Atom Transfer as Key To Reverse Regioselectivity in the Gold(I)-Catalyzed Generation of Aminooxazoles from Ynamides. J Org Chem 2020; 86:1748-1757. [DOI: 10.1021/acs.joc.0c02584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dmitry P. Zimin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V. Dar’in
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- South Ural State University, 76, Lenin Av., Chelyabinsk 454080, Russian Federation
| | - Alexey Yu. Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
6
|
Kim H, Jang J, Shin S. Gold-Catalyzed Asymmetric Thioallylation of Propiolates via Charge-Induced Thio-Claisen Rearrangement. J Am Chem Soc 2020; 142:20788-20795. [PMID: 33206513 DOI: 10.1021/jacs.0c09783] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A gold(I)-catalyzed enantioselective thioallylation of propiolates with allyl sulfides is described. The key mechanistic element is a sulfonium-induced Claisen rearrangement which helps minimize the allyl dissociation and render higher enantioselectivity. This protocol features remarkable scope of the allyl moiety, allowing enantiocontrolled synthesis of all-carbon quaternary centers, and exhibits exceptional functional group compatibility with many Lewis bases and π-bonds. This intermolecular variant of Claisen rearrangement forges both C-S and C-C bonds concomitantly, providing efficient access to interesting optically active organosulfur compounds which can be transformed further through the vinyl sulfide as a functional handle. The rate of the reaction was zeroth order with respect to allyl sulfides, which suggested a reversible inhibition, providing a resting state for the catalyst. The Hammett plot displayed a correlation with σp values, suggesting a turnover-limiting sigmatropic rearrangement where decreased electron-density on sulfur accelerated the rearrangement.
Collapse
Affiliation(s)
- Hanbyul Kim
- Department of Chemistry, Research Institute of Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Jiwon Jang
- Department of Chemistry, Research Institute of Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute of Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| |
Collapse
|
7
|
Li L, Zhu XQ, Zhang YQ, Bu HZ, Yuan P, Chen J, Su J, Deng X, Ye LW. Metal-free alkene carbooxygenation following tandem intramolecular alkoxylation/Claisen rearrangement: stereocontrolled access to bridged [4.2.1] lactones. Chem Sci 2019; 10:3123-3129. [PMID: 30996895 PMCID: PMC6429610 DOI: 10.1039/c9sc00079h] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Alkene carbooxygenation has attracted considerable attention over the past few decades as this approach provides an efficient access to various oxygen-containing molecules, especially the valuable O-heterocycles. However, examples of catalytic alkene carbooxygenation via a direct C-O cleavage are quite scarce, and the C-O cleavage in these cases is invariably initiated by transition metal-catalyzed oxidative addition. We report here a novel Brønsted acid-catalyzed intramolecular alkoxylation-initiated tandem sequence, which represents the first metal-free intramolecular alkoxylation/Claisen rearrangement. Significantly, an unprecedented Brønsted acid-catalyzed intramolecular alkene insertion into the C-O bond via a carbocation pathway was discovered. This method allows the stereocontrolled synthesis of valuable indole-fused bridged [4.2.1] lactones, providing ready access to biologically relevant scaffolds in a single synthetic step from an acyclic precursor. Moreover, such an asymmetric cascade cyclization has also been realized by employing a traceless chiral directing group. Control experiments favor the feasibility of a carbocation pathway for the process. In addition, biological tests showed that some of these newly synthesized indole-fused lactones exhibited their bioactivity as antitumor agents against different breast cancer cells, melanoma cells, and esophageal cancer cells.
Collapse
Affiliation(s)
- Long Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Ying-Qi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Hao-Zhen Bu
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Peng Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Jinyu Chen
- State Key Laboratory of Cellular Stress Biology , School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Jingyi Su
- State Key Laboratory of Cellular Stress Biology , School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology , School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
- State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
8
|
Alyabyev SB, Beletskaya IP. Gold as a catalyst. Part II. Alkynes in the reactions of carbon–carbon bond formation. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4815] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Wiemann J, Karasch J, Loesche A, Heller L, Brandt W, Csuk R. Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase. Eur J Med Chem 2017; 139:222-231. [PMID: 28802122 DOI: 10.1016/j.ejmech.2017.07.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
Abstract
Piperlongumine B (19), an alkaloid previously isolated from long pepper (Piper longum) has been synthesized for the first time in a short sequence and in good yield together with 19 analogs. Screening of these compounds in Ellman's assays showed several of them to be good inhibitors of acetylcholinesterase while being less active for butyrylcholinesterase. Activity of the compounds increased with the ring size of the heterocycle, and a maximum of activity was observed for an analog holding 12 methylene groups in the aliphatic side chain. These compounds may be regarded as promising candidates for the development of efficient inhibitors of acetylcholinesterase being useful for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jana Wiemann
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Julia Karasch
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Anne Loesche
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Lucie Heller
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Leibniz Institute of Plant Biochemistry, Bioorganic Chemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - René Csuk
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
10
|
Affiliation(s)
- Arianna Quintavalla
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum-University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Marco Bandini
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum-University of Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
11
|
Dorel R, Echavarren AM. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem Rev 2015; 115:9028-72. [PMID: 25844920 PMCID: PMC4580024 DOI: 10.1021/cr500691k] [Citation(s) in RCA: 1311] [Impact Index Per Article: 145.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Ruth Dorel
- Institute of Chemical
Research of Catalonia (ICIQ), Av. Països
Catalans 16, 43007 Tarragona, Spain
| | - Antonio M. Echavarren
- Institute of Chemical
Research of Catalonia (ICIQ), Av. Països
Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
12
|
Abstract
Metal carbenes are highly versatile species that mediate various transformations. Recent advances in gold catalysis have allowed catalytic access to α-oxo metal carbenes from the alkyne functionality. Compared with traditional methods that rely upon metal-catalyzed decomposition of diazo precursors, the generation of this synthon occurs in an environmentally more appealing fashion by gold-catalyzed alkyne oxygenation. Hydroxylamine derivatives are typically prepared from hydroxylamine salts that are cheap and can be handled without special precaution. In reactions with an alkyne activated by gold, relatively stable nitrones and related reagents undergo efficient O-atom transfer to form putative α-oxo gold carbenes. The highly reactive nature of these species could be utilized in a variety of cascade transformations. Herein, recent synthetic methods based on this reactivity as well as the currently available mechanistic and structural studies through computational and experimental methods have been discussed. A variety of tandem reactions performed by our laboratory and others have demonstrated the synthetic utility of catalytically generated α-oxo gold carbenes and enabled access to various heterocycles. For example, a reaction between nitrones and alkynes led to azomethine ylides for the [3 + 2] dipolar cycloaddition. Alternatively, α-oxo gold carbenes can be transformed into enolate equivalents through a 1,2-pinacol shift. The addition of hydroxylamine derivatives across triple bonds led to oxoamination, providing α-aminocarbonyl compounds or regioselective Fisher indole-type synthesis. N-O bond cleaving redox chemistry paved the way for intermolecular redox processes, most notably by use of pyridine-N-oxide derivatives with expanding synthetic applications. In closing, other metal-based oxygenations using N-O bond oxidants will be highlighted. One particularly interesting aspect is the process leading to metal vinylidene complexes. Trapping of this intermediate resulted in opposite regioselectivity from gold catalysis in alkyne oxygenation and led to ketene intermediates for use in subsequent cascade transformations.
Collapse
Affiliation(s)
- Hyun-Suk Yeom
- Department of Chemistry and Institute for Natural Sciences, Hanyang University, Seoul 133-791 Korea
| | - Seunghoon Shin
- Department of Chemistry and Institute for Natural Sciences, Hanyang University, Seoul 133-791 Korea
| |
Collapse
|
13
|
Obradors C, Echavarren AM. Intriguing mechanistic labyrinths in gold(I) catalysis. Chem Commun (Camb) 2014; 50:16-28. [PMID: 24176910 PMCID: PMC4162457 DOI: 10.1039/c3cc45518a] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/16/2013] [Indexed: 12/14/2022]
Abstract
Many mechanistically intriguing reactions have been developed in the last decade using gold(I) as catalyst. Here we review the main mechanistic proposals in gold-catalysed activation of alkynes and allenes, in which this metal plays a central role by stabilising a variety of complex cationic intermediates.
Collapse
Affiliation(s)
- Carla Obradors
- Institute of Chemical Research of Catalonia (ICIQ) , Av. Països Catalans 16 , 43007 Tarragona , Spain .
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ) , Av. Països Catalans 16 , 43007 Tarragona , Spain .
- Departament de Química Analítica i Química Orgànica , Universitat Rovira i Virgili , C/Marcel. li Domingo s/n , 43007 Tarragona , Spain
| |
Collapse
|
14
|
Jun J, Yeom HS, An JH, Shin S. Gold-catalyzed intermolecular coupling of sulfonylacetylene with allyl ethers: [3,3]- and [1,3]-rearrangements. Beilstein J Org Chem 2013; 9:1724-9. [PMID: 24062834 PMCID: PMC3778381 DOI: 10.3762/bjoc.9.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/06/2013] [Indexed: 11/23/2022] Open
Abstract
Gold-catalyzed intermolecular couplings of sulfonylacetylenes with allyl ethers are reported. A cooperative polarization of alkynes both by a gold catalyst and a sulfonyl substituent resulted in an efficient intermolecular tandem carboalkoxylation. Reactions of linear allyl ethers are consistent with the [3,3]-sigmatropic rearrangement mechanism, while those of branched allyl ethers provided [3,3]- and [1,3]-rearrangement products through the formation of a tight ion-dipole pair.
Collapse
Affiliation(s)
- Jungho Jun
- Department of Chemistry and Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| | - Hyu-Suk Yeom
- Department of Chemistry and Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| | - Jun-Hyun An
- Department of Chemistry and Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| | - Seunghoon Shin
- Department of Chemistry and Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| |
Collapse
|
15
|
Gupta S, Koley D, Ravikumar K, Kundu B. Counter Ion Effect in Au/Ag-Catalyzed Chemoselective 6-endo-dig N- and O-Cyclizations of Enyne–Urea System: Diversity-Oriented Synthesis of Annulated Indoles. J Org Chem 2013; 78:8624-33. [DOI: 10.1021/jo4013332] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sahaj Gupta
- Medicinal and Process
Chemistry
Division, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | - Dipankar Koley
- Medicinal and Process
Chemistry
Division, CSIR-Central Drug Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Krishnan Ravikumar
- X-ray Crystallography Division, CSIR-Indian Institute of Chemical Technology, Tarnaka,
Hyderabad 500607, India
| | - Bijoy Kundu
- Medicinal and Process
Chemistry
Division, CSIR-Central Drug Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
16
|
Teo WT, Rao W, Koh MJ, Chan PWH. Gold-Catalyzed Domino Aminocyclization/1,3-Sulfonyl Migration of N-Substituted N-Sulfonyl-aminobut-3-yn-2-ols to 1-Substituted 3-Sulfonyl-1H-pyrroles. J Org Chem 2013; 78:7508-17. [DOI: 10.1021/jo401083m] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wan Teng Teo
- Division of Chemistry and
Biological Chemistry, School
of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Weidong Rao
- Division of Chemistry and
Biological Chemistry, School
of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Ming Joo Koh
- Division of Chemistry and
Biological Chemistry, School
of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Philip Wai Hong Chan
- Division of Chemistry and
Biological Chemistry, School
of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|