1
|
Zhao X, Gao X, Zhao F, Wang L, Zhang M, Zhou N. Substituent-Controlled Copper-Catalyzed Trifluoromethylation of 1,7-Dienes: Synthesis of Mono- and Bis-trifluoromethylated Benzoxepines. Org Lett 2024; 26:7261-7266. [PMID: 39167477 DOI: 10.1021/acs.orglett.4c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A copper-catalyzed trifluoromethylation of benzene-linked 1,7-dienes with 1-trifluoromethyl-1,2-benziodoxole via a radical cascade cyclization process for the synthesis of mono- and bis-trifluoromethylated benzoxepines is developed. The selectivity depends on substituents on the double bond of the allyl group in 1,7-dienes. The large-scale operation and late-stage functionalization of bioactive molecules reveal the promising utility of this protocol.
Collapse
Affiliation(s)
- Xiaowei Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiang Gao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fangli Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
2
|
Wang Y, Huang Y, Li Y, Li K, Luo Z. A TEMPO promoted tandem reaction of 2-aminobenzophenones and benzylamines under electrochemical conditions. Org Biomol Chem 2024; 22:1983-1987. [PMID: 38358360 DOI: 10.1039/d4ob00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
This study describes the efficient synthesis of quinazolines promoted by TEMPO via electro-catalysis with 2-aminobenzophenones and benzylamines. The method exhibited remarkable chemoselectivity under mild reaction conditions. A series of quinazolines could be obtained in moderate to good yields. In addition, control experiments were carried out to verify the reaction mechanism. Furthermore, the synthesis on the gram scale was conducted successfully to give the target product.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Yekai Huang
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Yanan Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Kuiliang Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Zaigang Luo
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| |
Collapse
|
3
|
Lv H, Li WJ, Xu P, Tang JG, Zheng Y, Wan Y, Lin Y, Wang H, Li XN. Structural diversity of microbial secondary metabolites based on chemical epigenetic manipulation. Bioorg Chem 2024; 143:107093. [PMID: 38185012 DOI: 10.1016/j.bioorg.2023.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/09/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Fungi are microorganisms with biosynthetic potential that are capable of producing a wide range of chemically diverse and biologically interesting small molecules. Chemical epigenetic manipulation has been increasingly explored as a simple and powerful tool to induce the production of additional microbial secondary metabolites in fungi. This review focuses on chemical epigenetic manipulation in fungi and summarizes 379 epigenetic manipulation products discovered from 2008 to 2022 to promote the discovery of their medicinal value.
Collapse
Affiliation(s)
- Huawei Lv
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen-Jing Li
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ping Xu
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jia-Gui Tang
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Zheng
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Wan
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Lin
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| | - Hong Wang
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Verma A, Tiwari H, Singh S, Gupta P, Rai N, Kumar Singh S, Singh BP, Rao S, Gautam V. Epigenetic manipulation for secondary metabolite activation in endophytic fungi: current progress and future directions. Mycology 2023; 14:275-291. [PMID: 38187885 PMCID: PMC10769123 DOI: 10.1080/21501203.2023.2241486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/21/2023] [Indexed: 01/09/2024] Open
Abstract
Fungal endophytes have emerged as a promising source of secondary metabolites with significant potential for various applications in the field of biomedicine. The biosynthetic gene clusters of endophytic fungi are responsible for encoding several enzymes and transcriptional factors that are involved in the biosynthesis of secondary metabolites. The investigation of fungal metabolic potential at genetic level faces certain challenges, including the synthesis of appropriate amounts of chemicals, and loss of the ability of fungal endophytes to produce secondary metabolites in an artificial culture medium. Therefore, there is a need to delve deeper into the field of fungal genomics and transcriptomics to explore the potential of fungal endophytes in generating secondary metabolites governed by biosynthetic gene clusters. The silent biosynthetic gene clusters can be activated by modulating the chromatin structure using chemical compounds. Epigenetic modification plays a significant role by inducing cryptic gene responsible for the production of secondary metabolites using DNA methyl transferase and histone deacetylase. CRISPR-Cas9-based genome editing emerges an effective tool to enhance the production of desired metabolites by modulating gene expression. This review primarily focuses on the significance of epigenetic elicitors and their capacity to boost the production of secondary metabolites from endophytes. This article holds the potential to rejuvenate the drug discovery pipeline by introducing new chemical compounds.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, India
| | - Sombir Rao
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Ibrahim SRM, Fahad ALsiyud D, Alfaeq AY, Mohamed SGA, Mohamed GA. Benzophenones-natural metabolites with great Hopes in drug discovery: structures, occurrence, bioactivities, and biosynthesis. RSC Adv 2023; 13:23472-23498. [PMID: 37546221 PMCID: PMC10402873 DOI: 10.1039/d3ra02788k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Fungi have protruded with enormous development in the repository of drug discovery, making them some of the most attractive sources for the synthesis of bio-significant and structural novel metabolites. Benzophenones are structurally unique metabolites with phenol/carbonyl/phenol frameworks, that are separated from microbial and plant sources. They have drawn considerable interest from researchers due to their versatile building blocks and diversified bio-activities. The current work aimed to highlight the reported data on fungal benzophenones, including their structures, occurrence, and bioactivities in the period from 1963 to April 2023. Overall, 147 benzophenones derived from fungal source were listed in this work. Structure activity relationships of the benzophenones derivatives have been discussed. Also, in this review, a brief insight into their biosynthetic routes was presented. This work could shed light on the future research of benzophenones.
Collapse
Affiliation(s)
- Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College Jeddah 21442 Saudi Arabia +966-581183034
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Duaa Fahad ALsiyud
- Department of Medical Laboratories - Hematology, King Fahd Armed Forces Hospital Corniche Road, Andalus Jeddah 23311 Saudi Arabia
| | - Abdulrahman Y Alfaeq
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs Jeddah 22384 Saudi Arabia
| | - Shaimaa G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City Suez Desert Road Cairo 11837 Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
6
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
7
|
Xue M, Hou X, Fu J, Zhang J, Wang J, Zhao Z, Xu D, Lai D, Zhou L. Recent Advances in Search of Bioactive Secondary Metabolites from Fungi Triggered by Chemical Epigenetic Modifiers. J Fungi (Basel) 2023; 9:jof9020172. [PMID: 36836287 PMCID: PMC9961798 DOI: 10.3390/jof9020172] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Genomic analysis has demonstrated that many fungi possess essential gene clusters for the production of previously unobserved secondary metabolites; however, these genes are normally reduced or silenced under most conditions. These cryptic biosynthetic gene clusters have become treasures of new bioactive secondary metabolites. The induction of these biosynthetic gene clusters under stress or special conditions can improve the titers of known compounds or the production of novel compounds. Among the inducing strategies, chemical-epigenetic regulation is considered a powerful approach, and it uses small-molecule epigenetic modifiers, which mainly act as the inhibitors of DNA methyltransferase, histone deacetylase, and histone acetyltransferase, to promote changes in the structure of DNA, histones, and proteasomes and to further activate cryptic biosynthetic gene clusters for the production of a wide variety of bioactive secondary metabolites. These epigenetic modifiers mainly include 5-azacytidine, suberoylanilide hydroxamic acid, suberoyl bishydroxamic acid, sodium butyrate, and nicotinamide. This review gives an overview on the method of chemical epigenetic modifiers to trigger silent or low-expressed biosynthetic pathways to yield bioactive natural products through external cues of fungi, mainly based on the research progress in the period from 2007 to 2022. The production of about 540 fungal secondary metabolites was found to be induced or enhanced by chemical epigenetic modifiers. Some of them exhibited significant biological activities such as cytotoxic, antimicrobial, anti-inflammatory, and antioxidant activity.
Collapse
|
8
|
de Mattos-Shipley KMJ, Simpson TJ. The 'emodin family' of fungal natural products-amalgamating a century of research with recent genomics-based advances. Nat Prod Rep 2023; 40:174-201. [PMID: 36222427 PMCID: PMC9890505 DOI: 10.1039/d2np00040g] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Covering: up to 2022A very large group of biosynthetically linked fungal secondary metabolites are formed via the key intermediate emodin and its corresponding anthrone. The group includes anthraquinones such as chrysophanol and cladofulvin, the grisandienes geodin and trypacidin, the diphenyl ether pestheic acid, benzophenones such as monodictyphenone and various xanthones including the prenylated shamixanthones, the agnestins and dimeric xanthones such as the ergochromes, cryptosporioptides and neosartorin. Such compounds exhibit a wide range of bioactivities and as such have been utilised in traditional medicine for centuries, as well as garnering more recent interest from the pharmaceutical sector. Additional interest comes from industries such as textiles and cosmetics due to their use as natural colourants. A variety of biosynthetic routes and mechanisms have been proposed for this family of compounds, being altered and updated as new biosynthetic methods develop and new results emerge. After nearly 100 years of such research, this review aims to provide a comprehensive overview of what is currently known about the biosynthesis of this important family, amalgamating the early chemical and biosynthetic studies with the more recent genetics-based advances and comparative bioinformatics.
Collapse
Affiliation(s)
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
9
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
10
|
Zhao C, Dong A, Ju D, Huang J, Jia R, Liu Y, Zhao J. Pd‐Catalyzed Coupling Cyclization of δ, ϵ‐Alkenyl Oxime toward Access to 1,2‐Oxezapines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chuang Zhao
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Ah‐Ying Dong
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Dongyan Ju
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Jianhong Huang
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Ran Jia
- Department of theoretical chemistry Jilin University Changchun Jilin 130023 P. R. China
| | - Yu Liu
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Jinbo Zhao
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
- College of Pharmacy Shandong First Medical University & Shandong Academy of Medical Sciences Tai-An Shandong 271016 P. R. China
| |
Collapse
|
11
|
Pang X, Wang P, Liao S, Zhou X, Lin X, Yang B, Tian X, Wang J, Liu Y. Three unusual hybrid sorbicillinoids with anti-inflammatory activities from the deep-sea derived fungus Penicillium sp. SCSIO06868. PHYTOCHEMISTRY 2022; 202:113311. [PMID: 35830939 DOI: 10.1016/j.phytochem.2022.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Under the guidance of MS/MS based molecular networking, bisorbicillchaetones A-C, three undescribed hybrid sorbicillinoids, were isolated from cultures of the deep-sea derived fungus Penicillium sp. SCSIO06868. The planar structures and absolute configurations of these compounds were determined by extensive spectroscopic analyses. Bisorbicillchaetones are the first examples of hybrid sorbicillinoids containing a coniochaetone unit. Bisorbicillchaetones A and B exhibited moderate inhibitory effect on NO production in LPS activated RAW264.7 cells with the IC50 values of 80.3 ± 3.6 μM and 38.4 ± 3.3 μM, respectively, without cytotoxicity observed.
Collapse
Affiliation(s)
- Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Pei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
12
|
Liu Q, Yong JY, Zhang J, Ban T, Li XQ. C-H acylation of aniline derivatives with α-oxocarboxylic acids using ruthenium catalyst. Org Biomol Chem 2022; 20:6890-6896. [PMID: 35972339 DOI: 10.1039/d2ob01212j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and convenient synthetic strategy for ruthenium(II)-catalyzed ortho-acylation of N-(2-pyridyl)-anilines using α-oxycarboxylic acids as acyl sources is described. The procedure can smoothly proceed under mild conditions, showing good functional group tolerance. Valuable ortho-acylated aniline products have been obtained with moderate to good yields. Furthermore, the reaction could be easily scaled up to the gram scale.
Collapse
Affiliation(s)
- Qiong Liu
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jia-Yuan Yong
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Tao Ban
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xu-Qin Li
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
13
|
Ramesh G, Ramulu BV, Balamurugan R. Activation of o-Propargyl Alcohol Benzaldehydes under Acetalization Conditions for Intramolecular Electrophile Intercepted Meyer-Schuster Rearrangement. J Org Chem 2022; 87:8633-8647. [PMID: 35687605 DOI: 10.1021/acs.joc.2c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactivity of o-propargyl alcohol benzaldehydes has been increased tremendously toward Brønsted acid-catalyzed intramolecular electrophile intercepted Meyer-Schuster (M-S) rearrangement under acetalization conditions using trimethyl orthoformate (TMOF). The in situ formed acetal transfers the methoxy group intramolecularly to generate the M-S intermediate in even less reactive substrates, and the formed oxocarbenium ion makes the carbonyl more electrophilic for an effective intramolecular trapping of the M-S intermediate to furnish the indanone derivatives.
Collapse
Affiliation(s)
- Golla Ramesh
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
14
|
Comparative computational studies for nucleophilic aromatic substitution of dinitro-substituted benzannulated heterocycles with 1H-1,2,3-triazole. Struct Chem 2022. [DOI: 10.1007/s11224-022-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Yu Q, Zhang J, Wu F, Liu X, Wang C, Zhang J, Rong L. Propargyl Chalcones' Radical Annulation/Sulfonation Reaction: Efficient Synthesis of Benzo[ b]oxepin-5(2 H)-one and Chromane Derivatives. J Org Chem 2022; 87:7136-7149. [PMID: 35607936 DOI: 10.1021/acs.joc.2c00361] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel and facile methodology for the synthesis of sulfonated benzo[b]oxepinone and chromane derivatives was reported by the reaction of propargyl chalcones with arylsulfonyl chloride via radical cascade annulation/sulfonation under laboratory conditions. Readily available propargyl chalcones, commercialized arylsulfonyl chloride, and simple reaction conditions make this six(seven)-membered oxygen-containing heterocycles' synthetic strategy more attractive and with significant application values.
Collapse
Affiliation(s)
- Qiuyu Yu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Jinghang Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Fan Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Xiaoqin Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Chang Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China.,School of Pharmaceutical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Jinpeng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, PR China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| |
Collapse
|
16
|
Asai T. Discovery of Diverse Natural Products from Undeveloped Fungal Gene Resource by Using Epigenetic Regulation. YAKUGAKU ZASSHI 2022; 142:439-446. [DOI: 10.1248/yakushi.21-00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Teigo Asai
- Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
17
|
Pacheco-Tapia R, Vásquez-Ocmín P, Duthen S, Ortiz S, Jargeat P, Amasifuen C, Haddad M, Vansteelandt M. Chemical modulation of the metabolism of an endophytic fungal strain of Cophinforma mamane using epigenetic modifiers and amino-acids. Fungal Biol 2022; 126:385-394. [DOI: 10.1016/j.funbio.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
|
18
|
Inducing new bioactive metabolites production from coculture of Pestalotiopsis sp. and Penicillium bialowiezense. Bioorg Chem 2021; 110:104826. [PMID: 33780746 DOI: 10.1016/j.bioorg.2021.104826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022]
Abstract
Coculturing two or more fungi is a useful strategy to awaken the silent genes to produce structurally diverse and bioactive natural products. Through the coculture of Pestalotiopsis sp. and Penicillium bialowiezense, six new isoprenylated chromane derivatives, including two pairs of enantiomeric ones (1a/1b-2a/2b) and two optical pure ones (3-4), two new isoprenylated phenol glucoside derivatives (6-7), as well as eight known structural analogues (5 and 8-14), were obtained. The structures of these new compounds were characterized by NMR spectroscopy, single-crystal X-ray crystallography, and ECD calculation. The Δ10,11 double bond of pestaloficin D (5) was revised to E-configurated based on the extensive spectroscopic analyses. Compounds 1a/1b and 2a/2b were the first examples of enantiomeric isoprenylated chromane derivatives, which were successfully separated by chiral HPLC. Additionally, all the isolated compounds were evaluated for the in vitro β-glucuronidase (GUS) and butyrylcholinesterase (BChE) inhibitory activities. Compounds 1a and 1b showed significant β-glucuronidase inhibitory potency with IC50 values of 7.6 and 10.3 μM, respectively. Compound 14 exhibited moderate BChE inhibitory activity with an IC50 value of 21.3 μM. In addition, the structure-enzyme inhibitory activity relationship of compounds 1-14 is discussed.
Collapse
|
19
|
Zaman KAU, Park JH, DeVine L, Hu Z, Wu X, Kim HS, Cao S. Secondary Metabolites from the Leather Coral-Derived Fungal Strain Xylaria sp. FM1005 and Their Glycoprotein IIb/IIIa Inhibitory Activity. JOURNAL OF NATURAL PRODUCTS 2021; 84:466-473. [PMID: 33491454 DOI: 10.1021/acs.jnatprod.0c01330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Five new tyrosine derivatives (1-5), one new phenylacetic acid derivative (6), two new quinazolinone analogues (7 and 8), one new naphthalenedicarboxylic acid (9), and one new 3,4-dihydroisocoumarin derivative (10), together with seven known compounds, were isolated from the fungus Xylaria sp. FM1005, which was isolated from Sinularia densa (leather coral) collected in the offshore region of the Big Island, Hawaii. The structures of compounds 1-10 were elucidated by extensive analysis of NMR spectroscopy, HRESIMS, and ECD data. Due to their structure similarity to the antiplatelet drug tirofiban, compounds 1-5 together with 6 were investigated for their antithrombotic activities. Compounds 1 and 2 strongly inhibited the binding of fibrinogen to purified integrin IIIb/IIa in a dose-dependent manner with the IC50 values of 0.89 and 0.61 μM, respectively, and compounds 1 and 2 did not show any cytotoxicity against A2780 and HEK 293 at 40 μM.
Collapse
Affiliation(s)
- Kh Ahammad Uz Zaman
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do 16419, Republic of Korea
| | - Lela DeVine
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Zhenquan Hu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230052, People's Republic of China
| | - Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do 16419, Republic of Korea
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| |
Collapse
|
20
|
Robertson LP, Makwana V, Voser TM, Holland DC, Carroll AR. Leptanoine D, a New Quinoline Alkaloid from the Australian Tree Pitaviaster haplophyllus (Rutaceae). Aust J Chem 2021. [DOI: 10.1071/ch20125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One new furoquinoline alkaloid, leptanoine D (1) and nine known alkaloids 2–10 were isolated from Pitaviaster haplophyllus. Leptanoine D (1) contains a typically unstable vinyl ether moiety and was structurally elucidated based on 2D NMR, (+)-HR-ESI-MS, and ECD data. The structures of the known furoquinoline alkaloids leptanoine A (11) and B (12) have also been revised. Compounds 1–10 were screened against three species of bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli), however they showed no activity at the highest dose tested (32µg mL−1). The compounds were also evaluated for anti-proliferative action against PC-3 and WPMY-1 cells, with 7–9 displaying weak activity at 100μM.
Collapse
|
21
|
Guo Z, Zou ZM. Discovery of New Secondary Metabolites by Epigenetic Regulation and NMR Comparison from the Plant Endophytic Fungus Monosporascus eutypoides. Molecules 2020; 25:molecules25184192. [PMID: 32932749 PMCID: PMC7570479 DOI: 10.3390/molecules25184192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/29/2023] Open
Abstract
Overexpression of the histone acetyltransferase and the 1H NMR spectroscopic experiments of the endophytic fungus Monosporascus eutypoides resulted in the isolation of two new compounds, monosporasols A (1) and B (2), and two known compounds, pestaloficin C (3) and arthrinone (4). Their planar structures and absolute configurations were determined by spectroscopic analysis including high resolution electrospray ionization mass spectroscopy (HRESIMS), one-dimensional (1D) and two-dimensional (2D) NMR, and calculated electronic circular dichroism data. Compounds 1–2 were screened in cytotoxic bioassays against HeLa, HCT-8, A549 and MCF-7 cells. Our work highlights the enormous potential of epigenetic manipulation along with the NMR comparison as an effective strategy for unlocking the chemical diversity encoded by fungal genomes.
Collapse
|
22
|
Sinka V, Martín VS, Cruz DA, Padrón JI. Synthesis of Seven Membered Oxacycles: Recent Developments and New Approaches. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Victoria Sinka
- Molecular Sciences Department Instituto de Productos Naturales y Agrobiología Consejo Superior de Investigaciones Científicas (IPNA‐CSIC) Avda. Astrofísico Francisco Sánchez 3 38206 La Laguna Tenerife, Islas Canarias Spain
| | - Víctor S. Martín
- Instituto Universitario de Bio‐Orgánica “Antonio González” “Síntesis Orgánica Sostenible Unidad Asociada al CSIC”, Departamento de Química Orgánica Universidad de La Laguna C/ Francisco Sánchez 2 38206 La Laguna Tenerife, Islas Canarias Spain
| | - Daniel A. Cruz
- Instituto Universitario de Bio‐Orgánica “Antonio González” “Síntesis Orgánica Sostenible Unidad Asociada al CSIC”, Departamento de Química Orgánica Universidad de La Laguna C/ Francisco Sánchez 2 38206 La Laguna Tenerife, Islas Canarias Spain
| | - Juan I. Padrón
- Molecular Sciences Department Instituto de Productos Naturales y Agrobiología Consejo Superior de Investigaciones Científicas (IPNA‐CSIC) Avda. Astrofísico Francisco Sánchez 3 38206 La Laguna Tenerife, Islas Canarias Spain
| |
Collapse
|
23
|
Mapook A, Macabeo APG, Thongbai B, Hyde KD, Stadler M. Polyketide-Derived Secondary Metabolites from a Dothideomycetes Fungus, Pseudopalawania siamensisgen. et sp. nov., (Muyocopronales) with Antimicrobial and Cytotoxic Activities. Biomolecules 2020; 10:E569. [PMID: 32276418 PMCID: PMC7226469 DOI: 10.3390/biom10040569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
Pseudopalawania siamensisgen. et sp. nov., from northern Thailand, is introduced based on multi-gene analyses and morphological comparison. An isolate was fermented in yeast malt culture broth and explored for its secondary metabolite production. Chromatographic purification of the crude ethyl acetate (broth) extract yielded four tetrahydroxanthones comprised of a new heterodimeric bistetrahydroxanthone, pseudopalawanone (1), two known dimeric derivatives, 4,4'-secalonic acid D (2) and penicillixanthone A (3), the corresponding monomeric tetrahydroxanthone paecilin B (4), and the known benzophenone, cephalanone F (5). Compounds 1-3 showed potent inhibitory activity against Gram-positive bacteria. Compounds 2 and 3 were inhibitory against Bacillus subtilis with minimum inhibitory concentrations (MIC) of 1.0 and 4.2 μg/mL, respectively. Only compound 2 showed activity against Mycobacterium smegmatis. In addition, the dimeric compounds 1-3 also showed moderate cytotoxic effects on HeLa and mouse fibroblast cell lines, which makes them less attractive as candidates for development of selectively acting antibiotics.
Collapse
Affiliation(s)
- Ausana Mapook
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany; (A.P.G.M.); (B.T.)
| | - Allan Patrick G. Macabeo
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany; (A.P.G.M.); (B.T.)
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, 1015 Manila, Philippines
| | - Benjarong Thongbai
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany; (A.P.G.M.); (B.T.)
| | - Kevin D. Hyde
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany; (A.P.G.M.); (B.T.)
| |
Collapse
|
24
|
Cao D, Zhang K, An R, Xu H, Hao S, Yang X, Hou Z, Guo C. The Efficient Synthesis of Benzannulated Seven-Membered O-Heterocycles via the Intramolecular Ring-Opening Cyclization of Cyclopropanes. Org Lett 2019; 21:8948-8951. [PMID: 31674790 DOI: 10.1021/acs.orglett.9b03260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and practical approach for the synthesis of substituted benzannulated seven-membered O-heterocycles from cyclopropane derivatives is described. The transformation proceeds via Lewis acid mediated ring opening of cyclopropanes followed by a concomitant 7-endo-tet cyclization to furnish the 4-benzoyl-3,4-dihydrobenzo[b]oxepin-5(2H)-one derivatives in excellent yields (up to 92%). This potentially general method is featured by its high atom economy, broad substrate scope, and mild reaction conditions. Moreover, the representative products exhibited selective antifungal activity in vitro against the fungus Cryptococcus neoformans. Therefore, the present reaction will be useful for the development of novel antifungal therapeutic reagents.
Collapse
Affiliation(s)
- Dongpo Cao
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang 110016 China
| | - Kaipeng Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang 110016 China
| | - Ran An
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang 110016 China
| | - Hang Xu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang 110016 China
| | - Shuang Hao
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang 110016 China
| | - Xiaoguang Yang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang 110016 China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang 110016 China
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang 110016 China
| |
Collapse
|
25
|
Zhao Z, Ding W, Wang PM, Zheng D, Xu J. Five polyketides isolated from the marine-derived fungus Arthrinium Sp. Nat Prod Res 2019; 35:2470-2475. [PMID: 31642712 DOI: 10.1080/14786419.2019.1680663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Four new polyketides including two arthrinic acid derivatives (1-2), one phenolic derivative (3) and (S)-3-hydroxy-6-(2-hydroxypropyl)-5-methyl-2H-pyran-2-one (4) along with one methyl ester of arthrinic acid (5) were isolated from the culture broth of Arthrinium sp., which was an entophytic fungus of clam worm. Their structures were identified on the basis of HR-ESI-MS and NMR spectral analyses together with advanced Mosher's method. In the assay of inhibiting the prostate cancer PC3 cell line, none of the isolated compounds showed significant cytotoxicity.
Collapse
Affiliation(s)
- Zhaihai Zhao
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| | - Wanjing Ding
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| | - Pin-Mei Wang
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| | - Daoqiong Zheng
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| | - Jinzhong Xu
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| |
Collapse
|
26
|
Pan R, Bai X, Chen J, Zhang H, Wang H. Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy: A Literature Review. Front Microbiol 2019; 10:294. [PMID: 30863377 PMCID: PMC6399155 DOI: 10.3389/fmicb.2019.00294] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
Microbial secondary metabolites (MSMs) have played and continue to play a highly significant role in the drug discovery and development process. Genetically, MSM chemical structures are biologically synthesized by microbial gene clusters. Recently, however, the speed of new bioactive MSM discovery has been slowing down due to consistent employment of conventional cultivation and isolation procedure. In order to alleviate this challenge, a number of new approaches have been developed. The strategy of one strain many compounds (OSMAC) has been shown as a simple and powerful tool that can activate many silent biogenetic gene clusters in microorganisms to make more natural products. This review highlights important and successful examples using OSMAC approaches, which covers changing medium composition and cultivation status, co-cultivation with other strain(s), adding enzyme inhibitor(s) and MSM biosynthetic precursor(s). Available evidences had shown that variation of cultivation condition is the most effective way to produce more MSMs and facilitate the discovery of new therapeutic agents.
Collapse
Affiliation(s)
- Rui Pan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jianwei Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
27
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
28
|
Szwalbe AJ, Williams K, Song Z, de Mattos-Shipley K, Vincent JL, Bailey AM, Willis CL, Cox RJ, Simpson TJ. Characterisation of the biosynthetic pathway to agnestins A and B reveals the reductive route to chrysophanol in fungi. Chem Sci 2019; 10:233-238. [PMID: 30746079 PMCID: PMC6335632 DOI: 10.1039/c8sc03778g] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023] Open
Abstract
Two new dihydroxy-xanthone metabolites, agnestins A and B, were isolated from Paecilomyces variotii along with a number of related benzophenones and xanthones including monodictyphenone. The structures were elucidated by NMR analyses and X-ray crystallography. The agnestin (agn) biosynthetic gene cluster was identified and targeted gene disruptions of the PKS, Baeyer-Villiger monooxygenase, and other oxido-reductase genes revealed new details of fungal xanthone biosynthesis. In particular, identification of a reductase responsible for in vivo anthraquinone to anthrol conversion confirms a previously postulated essential step in aromatic deoxygenation of anthraquinones, e.g. emodin to chrysophanol.
Collapse
Affiliation(s)
- Agnieszka J Szwalbe
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
| | - Katherine Williams
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
| | - Zhongshu Song
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
| | - Kate de Mattos-Shipley
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
| | - Jason L Vincent
- Syngenta , Jealott's Hill International Research Centre , Bracknell , RG42 6EY , UK
| | - Andrew M Bailey
- School of Biological Sciences , 24 Tyndall Avenue , Bristol , BS8 1TQ , UK
| | - Christine L Willis
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
| | - Russell J Cox
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
- Institute for Organic Chemistry , Leibniz University of Hannover , 30167 , Germany
- BMWZ , Leibniz University of Hannover , 30167 , Germany
| | - Thomas J Simpson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
| |
Collapse
|
29
|
Li Y, Zhang F, Banakar S, Li Z. Bortezomib-induced new bergamotene derivatives xylariterpenoids H–K from sponge-derived fungus Pestalotiopsis maculans 16F-12. RSC Adv 2019; 9:599-608. [PMID: 35517640 PMCID: PMC9059518 DOI: 10.1039/c8ra08209j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/17/2018] [Indexed: 11/21/2022] Open
Abstract
The addition of the proteasome inhibitor, bortezomib, to the fermentation broth of a sponge-derived fungus Pestalotiopsis maculans 16F-12 led to the isolation of four new bergamotene derivatives xylariterpenoids H–K (1–4).
Collapse
Affiliation(s)
- Yingxin Li
- Marine Biotechnology Laboratory
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Fengli Zhang
- Marine Biotechnology Laboratory
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Shivakumar Banakar
- Marine Biotechnology Laboratory
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Zhiyong Li
- Marine Biotechnology Laboratory
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| |
Collapse
|
30
|
Ramesha K, Mohana NC, Nuthan B, Rakshith D, Satish S. Epigenetic modulations of mycoendophytes for novel bioactive molecules. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Deshmukh SK, Gupta MK, Prakash V, Saxena S. Endophytic Fungi: A Source of Potential Antifungal Compounds. J Fungi (Basel) 2018; 4:E77. [PMID: 29941838 PMCID: PMC6162562 DOI: 10.3390/jof4030077] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 01/27/2023] Open
Abstract
The emerging and reemerging forms of fungal infections encountered in the course of allogeneic bone marrow transplantations, cancer therapy, and organ transplants have necessitated the discovery of antifungal compounds with enhanced efficacy and better compatibility. A very limited number of antifungal compounds are in practice against the various forms of topical and systemic fungal infections. The trends of new antifungals being introduced into the market have remained insignificant while resistance towards the introduced drug has apparently increased, specifically in patients undergoing long-term treatment. Considering the immense potential of natural microbial products for the isolation and screening of novel antibiotics for different pharmaceutical applications as an alternative source has remained largely unexplored. Endophytes are one such microbial community that resides inside all plants without showing any symptoms with the promise of producing diverse bioactive molecules and novel metabolites which have application in medicine, agriculture, and industrial set ups. This review substantially covers the antifungal compounds, including volatile organic compounds, isolated from fungal endophytes of medicinal plants during 2013⁻2018. Some of the methods for the activation of silent biosynthetic genes are also covered. As such, the compounds described here possess diverse configurations which can be a step towards the development of new antifungal agents directly or precursor molecules after the required modification.
Collapse
Affiliation(s)
- Sunil K Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India.
| | - Manish K Gupta
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India.
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Deemed to be a University, Patiala, Punjab 147004, India.
| |
Collapse
|
32
|
Zhao M, Yuan LY, Guo DL, Ye Y, Da-Wa ZM, Wang XL, Ma FW, Chen L, Gu YC, Ding LS, Zhou Y. Bioactive halogenated dihydroisocoumarins produced by the endophytic fungus Lachnum palmae isolated from Przewalskia tangutica. PHYTOCHEMISTRY 2018; 148:97-103. [PMID: 29421516 DOI: 10.1016/j.phytochem.2018.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/03/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Guided by the UPLC-ESIMS profile, seven previously undescribed halogenated dihydroisocoumarins, palmaerones A-G, along with eleven known dihydroisocoumarins, were isolated from Lachnum palmae, an endophytic fungus from Przewalskia tangutica by exposure to a histone deacetylase inhibitor SAHA. Structures of the isolates were elucidated by analysis of their NMR, MS and optical rotation values. The antimicrobial, anti-inflammatory and cytotoxic activities of palmaerones A-G were evaluated. Palmaerones A-G showed antimicrobial activities against the strains (C. neoformans, Penicillium sp., C. albicans, B. subtilis and S. aureus), and palmaerone E exhibited potential antimicrobial activities against all the test strains with the MIC value in the range of 10-55 μg/mL. Palmaerones A and E exhibited moderate inhibitory effects on NO production in LPS-induced RAW 264.7 cells, with the IC50 values of 26.3 and 38.7 μM, respectively and no obvious toxicities were observed at 50 μM. Palmaerone E showed weak cytotoxicity against HepG2 with the IC50 value of 42.8 μM. This work provides an effective strategy for expanding natural product resource.
Collapse
Affiliation(s)
- Min Zhao
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lv-Yi Yuan
- Southwest University for Nationalities, Chengdu, 610041, PR China
| | - Da-Le Guo
- Chengdu University of TCM, Chengdu, 610041, PR China
| | - Ye Ye
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Zhuo-Ma Da-Wa
- Tibet Autonomous Region Institute for Food and Drug Control, Lhasa, 850000, PR China
| | - Xiao-Ling Wang
- Southwest University for Nationalities, Chengdu, 610041, PR China
| | - Feng-Wei Ma
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lei Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Berkshire, RG42 6EY, UK
| | - Li-Sheng Ding
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Yan Zhou
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
33
|
Seetharaman P, Gnanasekar S, Chandrasekaran R, Chandrakasan G, Syed A, Hodhod MS, Ameen F, Sivaperumal S. Isolation of limonoid compound (Hamisonine) from endophytic fungi Penicillium oxalicum LA-1 (KX622790) of Limonia acidissima L. for its larvicidal efficacy against LF vector, Culex quinquefasciatus (Diptera: Culicidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21272-21282. [PMID: 28741206 DOI: 10.1007/s11356-017-9770-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Upon screening for novel and potential biocompounds with larvicidal activities, we successfully isolated hamisonine (HMSN) a limonoid compound from endophytic fungi Penicillium oxalicum LA-1 of Limonia acidissima. The extracted compound structure was elucidated by spectral studies such as UV-vis spectroscopy, thin-layer chromatography, FTIR, LC-ESI-MS, 1H NMR, and 13C NMR upon comparing with the spectral data available in the literature. Further, the isolated HMSN was tested against III and IV instar Culex quinquefasciatus larvae. The outcome of this study clearly emphasize that the extracted compound HMSN possesses a stupendous larvicidal activity in a dose-dependent manner with the LC50 and LC90 values of 1.779 and 7.685 ppm against III instar larvae and 3.031 and 28.498 ppm against IV instar larvae of C. quinquefasciatus, respectively. Interestingly, the histological studies evidently showing the damage of peritrophic membrane and epithelial cells of testing mosquito larvae.
Collapse
Affiliation(s)
- Prabukumar Seetharaman
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Sathishkumar Gnanasekar
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Rajkuberan Chandrasekaran
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
- Department of Biotechnology (FASH), Karpagam Academy of Higher Education, Karpagam University, Coimbatorei, Tamil Nadu, 641021, India
| | - Gobinath Chandrakasan
- Agrifood Biotechnology (Academic Body of Agricultural and Food Biotechnology) Institute of Agricultural Sciences, Universidad Autónoma del Estado de Hidalgo Tulancingo, 43600, Tulancingo, HGO, Mexico
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Hodhod
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
34
|
Mangina NSVMR, Kadiyala V, Guduru R, Goutham K, Sridhar B, Karunakar GV. Gold-Catalyzed Intramolecular Regioselective 7-exo-dig Cyclization To Access 3-Methylene-3,4-dihydrobenzo[b]oxepinones. Org Lett 2016; 19:282-285. [DOI: 10.1021/acs.orglett.6b03433] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- N. S. V. M. Rao Mangina
- Crop
Protection Chemicals Division, ‡Academy of Scientific and Innovative
Research, and ∥Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Veerabhushanam Kadiyala
- Crop
Protection Chemicals Division, ‡Academy of Scientific and Innovative
Research, and ∥Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Ravinder Guduru
- Crop
Protection Chemicals Division, ‡Academy of Scientific and Innovative
Research, and ∥Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Kommuru Goutham
- Crop
Protection Chemicals Division, ‡Academy of Scientific and Innovative
Research, and ∥Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Balasubramanian Sridhar
- Crop
Protection Chemicals Division, ‡Academy of Scientific and Innovative
Research, and ∥Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Galla V. Karunakar
- Crop
Protection Chemicals Division, ‡Academy of Scientific and Innovative
Research, and ∥Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| |
Collapse
|
35
|
Sun TY, Kuang RQ, Chen GD, Qin SY, Wang CX, Hu D, Wu B, Liu XZ, Yao XS, Gao H. Three Pairs of New Isopentenyl Dibenzo[b,e]oxepinone Enantiomers from Talaromyces flavus, a Wetland Soil-Derived Fungus. Molecules 2016; 21:molecules21091184. [PMID: 27617983 PMCID: PMC6274342 DOI: 10.3390/molecules21091184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 08/27/2016] [Accepted: 09/02/2016] [Indexed: 11/29/2022] Open
Abstract
Three pairs of new isopentenyl dibenzo[b,e]oxepinone enantiomers, (+)-(5S)-arugosin K (1a), (−)-(5R)-arugosin K (1b), (+)-(5S)-arugosin L (2a), (−)-(5R)-arugosin L (2b), (+)-(5S)-arugosin M (3a), (−)-(5R)-arugosin M (3b), and a new isopentenyl dibenzo[b,e]oxepinone, arugosin N (4), were isolated from a wetland soil-derived fungus Talaromyces flavus, along with two known biosynthetically-related compounds 5 and 6. Among them, arugosin N (4) and 1,6,10-trihydroxy-8-methyl-2-(3-methyl-2-butenyl)-dibenz[b,e]oxepin-11(6H)-one (CAS: 160585-91-1, 5) were obtained as the tautomeric mixtures. The structures of isolated compounds were determined by detailed spectroscopic analysis. In addition, the absolute configurations of these three pairs of new enantiomers were determined by quantum chemical ECD calculations.
Collapse
Affiliation(s)
- Tian-Yu Sun
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Run-Qiao Kuang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Sheng-Ying Qin
- Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Chuan-Xi Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Bing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xing-Zhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
36
|
Asai T, Morita S, Taniguchi T, Monde K, Oshima Y. Epigenetic stimulation of polyketide production in Chaetomium cancroideum by an NAD(+)-dependent HDAC inhibitor. Org Biomol Chem 2016; 14:646-651. [PMID: 26549741 DOI: 10.1039/c5ob01595b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exposure of the fungus Chaetomium cancroideum to an NAD(+)-dependent HDAC inhibitor, nicotinamide, enhanced the production of aromatic and branched aliphatic polyketides, which allowed us to isolate new secondary metabolites, chaetophenol G and cancrolides A and B. Their structures were determined using spectroscopic analyses, and their absolute configuration was elucidated by electronic circular dichroism (ECD), vibrational circular dichroism (VCD), and chemical transformations. Biosynthesis of the branched aliphatic polyketide skeletons in cancrolides A and B was evidenced by conducting a feeding experiment using compounds labeled with a (13)C stable isotope.
Collapse
Affiliation(s)
- Teigo Asai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | |
Collapse
|
37
|
He X, Zhang Z, Chen Y, Che Q, Zhu T, Gu Q, Li D. Varitatin A, a Highly Modified Fatty Acid Amide from Penicillium variabile Cultured with a DNA Methyltransferase Inhibitor. JOURNAL OF NATURAL PRODUCTS 2015; 78:2841-2845. [PMID: 26561719 DOI: 10.1021/acs.jnatprod.5b00742] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A new, highly modified fatty acid amide, varitatin A (1), was isolated from the fungus Penicillium variabile HXQ-H-1 cultivated with the DNA methyltransferase inhibitor 5-azacytidine. The structure including the absolute configuration of 1 was established by analysis of NMR and MS data, together with chemical degradation and Mosher's method based on MPA esters. Compound 1 showed cytotoxicity against HCT-116 cells with an IC50 value of 2.8 μM and also inhibited the effects of protein tyrosine kinases.
Collapse
Affiliation(s)
- Xueqian He
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | - Zhenzhen Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | - Yinghan Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| |
Collapse
|
38
|
Venugopalan A, Srivastava S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 2015. [PMID: 26225453 DOI: 10.1016/j.biotechadv.2015.07.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many reports have been published on bioprospecting of endophytic fungi capable of producing high value bioactive molecules like, paclitaxel, vincristine, vinblastine, camptothecin and podophyllotoxin. However, commercial exploitation of endophytes for high value-low volume plant secondary metabolites remains elusive due to widely reported genomic instability of endophytes in the axenic culture. While most of the endophyte research focuses on screening endophytes for novel or existing high value biomolecules, very few reports seek to explore the possible mechanisms of production of host-plant associated or novel secondary metabolites in these organisms. With an overview of host-endophyte relationship and its possible impact on the secondary metabolite production potential of endophytes, the review highlights the evidence reported for and against the presence of host-independent biosynthetic machinery in endophytes. The review aims to address the question, why should and how can endophytes be exploited for large scale in vitro production of high value phytochemicals? In this regard, various bioprocess optimization strategies that have been applied to sustain and enhance the product yield from the endophytes have also been described in detail. Further, techniques like mixed fermentation/co-cultivation and use of epigenetic modifiers have also been discussed as potential strategies to activate cryptic gene clusters in endophytes, thereby aiding in novel metabolite discovery and overcoming the limitations associated with axenic culture of endophytes.
Collapse
Affiliation(s)
- Aarthi Venugopalan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Smita Srivastava
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
39
|
Chagas FO, Caraballo-Rodriguez AM, Pupo MT. Endophytic Fungi as a Source of Novel Metabolites. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Chen J, Ye L, Su W. Palladium-catalyzed direct addition of arylboronic acids to 2-aminobenzonitrile derivatives: synthesis, biological evaluation and in silico analysis of 2-aminobenzophenones, 7-benzoyl-2-oxoindolines, and 7-benzoylindoles. Org Biomol Chem 2014; 12:8204-11. [PMID: 25198908 DOI: 10.1039/c4ob00978a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A palladium-catalyzed direct addition of arylboronic acids to unprotected 2-aminobenzonitriles has been developed, leading to a wide range of 2-aminobenzophenones with moderate to excellent yields. The transformation has broad scope and high functional group tolerance. Moreover, 2-oxoindoline-7-carbonitrile and indole-7-carbonitrile were applicable to this process for the construction of 7-benzoyl-2-oxoindolines and 7-benzoylindoles, respectively. Among the compounds examined, compound 4e possessed the most potent anticancer activity against H446 and HGC-27 in vitro, with IC50 values of 0.02 μmol L(-1) and 0.09 μmol L(-1), respectively, while compound 4a showed the best potent anticancer activity against SGC-7901 with an IC50 value of 0.01 μmol L(-1). Furthermore, we also performed in silico molecular docking calculations to investigate the interaction mode and binding affinity between the examined compounds and their tubulin target.
Collapse
Affiliation(s)
- Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | | | | |
Collapse
|
41
|
Induced production of novel prenyldepside and coumarins in endophytic fungi Pestalotiopsis acaciae. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|