1
|
Krajczy P, Meyners C, Repity ML, Hausch F. Structure-Based Design of Ultrapotent Tricyclic Ligands for FK506-Binding Proteins. Chemistry 2024:e202401405. [PMID: 38837733 DOI: 10.1002/chem.202401405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Access to small, rigid, and sp3-rich molecules is a major limitation in the drug discovery for challenging protein targets. FK506-binding proteins hold high potential as drug targets or enablers of molecular glues but are fastidious in the chemotypes accepted as ligands. We here report an enantioselective synthesis of a highly rigidified pipecolate-mimicking tricyclic scaffold that precisely positions functional groups for interacting with FKBPs. This was enabled by a 14-step gram-scale synthesis featuring anodic oxidation, stereospecific vinylation, and N-acyl iminium cyclization. Structure-based optimization resulted in the discovery of FKBP inhibitors with picomolar biochemical and subnanomolar cellular activity that represent the most potent FKBP ligands known to date.
Collapse
Affiliation(s)
- Patryk Krajczy
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Maximilian L Repity
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, 64283, Germany
| |
Collapse
|
2
|
Deutscher RCE, Safa Karagöz M, Purder PL, Kolos JM, Meyners C, Oki Sugiarto W, Krajczy P, Tebbe F, Geiger TM, Ünal C, Hellmich UA, Steinert M, Hausch F. [4.3.1]Bicyclic FKBP Ligands Inhibit Legionella Pneumophila Infection by LpMip-Dependent and LpMip-Independent Mechanisms. Chembiochem 2023; 24:e202300442. [PMID: 37489700 DOI: 10.1002/cbic.202300442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Legionella pneumophila is the causative agent of Legionnaires' disease, a serious form of pneumonia. Its macrophage infectivity potentiator (Mip), a member of a highly conserved family of FK506-binding proteins (FKBPs), plays a major role in the proliferation of the gram-negative bacterium in host organisms. In this work, we test our library of >1000 FKBP-focused ligands for inhibition of LpMip. The [4.3.1]-bicyclic sulfonamide turned out as a highly preferred scaffold and provided the most potent LpMip inhibitors known so far. Selected compounds were non-toxic to human cells, displayed antibacterial activity and block bacterial proliferation in cellular infection-assays as well as infectivity in human lung tissue explants. The results confirm [4.3.1]-bicyclic sulfonamides as anti-legionellal agents, although their anti-infective properties cannot be explained by inhibition of LpMip alone.
Collapse
Affiliation(s)
- Robin C E Deutscher
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - M Safa Karagöz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Patrick L Purder
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Jürgen M Kolos
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Wisely Oki Sugiarto
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Patryk Krajczy
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Frederike Tebbe
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Germany, Humboldtstraße 10, 07743, Jena, Germany
| | - Thomas M Geiger
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Can Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Germany, Humboldtstraße 10, 07743, Jena, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 9, 60438, Frankurt/Main, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Helmholtz Centre for Infection Research, 38106, Braunschweig, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| |
Collapse
|
3
|
Purder P, Meyners C, Sugiarto WO, Kolos J, Löhr F, Gebel J, Nehls T, Dötsch V, Lermyte F, Hausch F. Deconstructing Protein Binding of Sulfonamides and Sulfonamide Analogues. JACS AU 2023; 3:2478-2486. [PMID: 37772190 PMCID: PMC10523370 DOI: 10.1021/jacsau.3c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 09/30/2023]
Abstract
Sulfonamides are one of the most important pharmacophores in medicinal chemistry, and sulfonamide analogues have gained substantial interest in recent years. However, the protein interactions of sulfonamides and especially of their analogues are underexplored. Using FKBP12 as a model system, we describe the synthesis of optically pure sulfenamide, sulfinamide, and sulfonimidamide analogues of a well characterized sulfonamide ligand. This allowed us to precisely determine the binding contributions of each sulfonamide oxygen atom and the consequences of nitrogen replacements. We also present high-resolution cocrystal structures of sulfonamide analogues buried in the pocket of a protein target. This revealed intimate contacts with the protein including an unprecedented hydrogen bond acceptor of sulfonimidamides. The use of sulfonamide analogues enabled new exit vectors that allowed remodeling of a subpocket in FKBP12. Our results illuminate the protein interaction potential of sulfonamides/sulfonamide analogues and will aid in their rational design.
Collapse
Affiliation(s)
- Patrick
L. Purder
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Christian Meyners
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Wisely Oki Sugiarto
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Jürgen Kolos
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Frank Löhr
- Institute
of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Jakob Gebel
- Institute
of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Thomas Nehls
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Volker Dötsch
- Institute
of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Frederik Lermyte
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Felix Hausch
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
- Centre
for Synthetic Biology, Technical University
of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Dupommier D, Boisbrun M, Monard G, Comoy C. Unexplored Vinylic-Substituted 5-Benzylidenethiazolidine-2,4-diones: Synthesis and DFT/NMR Stereochemical Assignment. J Org Chem 2023; 88:3724-3739. [PMID: 36847759 DOI: 10.1021/acs.joc.2c02996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
By exploring an efficient and versatile method for the 6-functionalization of its scaffold, we investigated the opening of a new chemical space around benzylidenethiazolidine-2,4-dione (BTZD). The 6-chloro- and 6-formyl BTZD obtained in two steps starting from 5-lithioTZD were selected as key intermediates and involved in a Pd-catalyzed cross-coupling or Wittig olefination. A variety of aryl, heteroaryl, or alkenyl substituents was successfully introduced on the vinylic position of BTZD, and particular attention was paid to elucidate the stereochemistry of the benzylidene derivatives by using a combined DFT/NMR study.
Collapse
Affiliation(s)
| | | | - Gerald Monard
- Université de Lorraine, CNRS, LPCT, Nancy F-54000, France
| | - Corinne Comoy
- Université de Lorraine, CNRS, L2CM, Nancy F-54000, France
| |
Collapse
|
5
|
Buffa V, Knaup FH, Heymann T, Springer M, Schmidt MV, Hausch F. Analysis of the Selective Antagonist SAFit2 as a Chemical Probe for the FK506-Binding Protein 51. ACS Pharmacol Transl Sci 2023; 6:361-371. [PMID: 36926456 PMCID: PMC10012253 DOI: 10.1021/acsptsci.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 02/16/2023]
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as an important regulator of the mammalian stress response and is involved in persistent pain states and metabolic pathways. The FK506 analog SAFit2 (short for selective antagonist of FKBP51 by induced fit) was the first potent and selective FKBP51 ligand with an acceptable pharmacokinetic profile. At present, SAFit2 represents the gold standard for FKBP51 pharmacology and has been extensively used in numerous biological studies. Here we review the current knowledge on SAFit2 as well as guidelines for its use.
Collapse
Affiliation(s)
- Vanessa Buffa
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Fabian H. Knaup
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Tim Heymann
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Margherita Springer
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mathias V. Schmidt
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Felix Hausch
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
6
|
He J, Yang L, Zhang X, Xu W, Wang H, Lang M, Wang J, Peng S. Stereodivergent Syntheses of N-heterocycles by Catalyst-Controlled Reaction of Imidazolidines with Allenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jieyin He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Liangliang Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Xue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Wendi Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Haiyang Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Ming Lang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Jian Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| |
Collapse
|
7
|
Lerma Romero JA, Meyners C, Christmann A, Reinbold LM, Charalampidou A, Hausch F, Kolmar H. Binding pocket stabilization by high-throughput screening of yeast display libraries. Front Mol Biosci 2022; 9:1023131. [DOI: 10.3389/fmolb.2022.1023131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Protein dynamics have a great influence on the binding pockets of some therapeutic targets. Flexible protein binding sites can result in transient binding pocket formation which might have a negative impact on drug screening efforts. Here, we describe a protein engineering strategy with FK506-binding protein 51 (FKBP51) as a model protein, which is a promising target for stress-related disorders. High-throughput screening of yeast display libraries of FKBP51 resulted in the identification of variants exhibiting higher affinity binding of conformation-specific FKBP51 selective inhibitors. The gene libraries of a random mutagenesis and site saturation mutagenesis of the FK1 domain of FKBP51 encoding sequence were used to create a yeast surface display library. Fluorescence-activated cell sorting for FKBP51 variants that bind conformation-specific fluorescently labeled ligands with high affinity allowed for the identification of 15 different protein variants with improved binding to either, or both FKBP51-specific ligands used in the screening, with improved affinities up to 34-fold compared to the wild type. These variants will pave the way to a better understanding of the conformational flexibility of the FKBP51 binding pocket and may enable the isolation of new selective ligands that preferably and selectively bind the active site of the protein in its open conformation state.
Collapse
|
8
|
Kolos JM, Pomplun S, Jung S, Rieß B, Purder PL, Voll AM, Merz S, Gnatzy M, Geiger TM, Quist-Løkken I, Jatzlau J, Knaus P, Holien T, Bracher A, Meyners C, Czodrowski P, Krewald V, Hausch F. Picomolar FKBP inhibitors enabled by a single water-displacing methyl group in bicyclic [4.3.1] aza-amides. Chem Sci 2021; 12:14758-14765. [PMID: 34820091 PMCID: PMC8597852 DOI: 10.1039/d1sc04638a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/22/2021] [Indexed: 01/30/2023] Open
Abstract
Methyl groups can have profound effects in drug discovery but the underlying mechanisms are diverse and incompletely understood. Here we report the stereospecific effect of a single, solvent-exposed methyl group in bicyclic [4.3.1] aza-amides, robustly leading to a 2 to 10-fold increase in binding affinity for FK506-binding proteins (FKBPs). This resulted in the most potent and efficient FKBP ligands known to date. By a combination of co-crystal structures, isothermal titration calorimetry (ITC), density-functional theory (DFT), and 3D reference interaction site model (3D-RISM) calculations we elucidated the origin of the observed affinity boost, which was purely entropically driven and relied on the displacement of a water molecule at the protein-ligand-bulk solvent interface. The best compounds potently occupied FKBPs in cells and enhanced bone morphogenic protein (BMP) signaling. Our results show how subtle manipulation of the solvent network can be used to design atom-efficient ligands for difficult, solvent-exposed binding pockets.
Collapse
Affiliation(s)
- Jürgen M Kolos
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany .,Max Planck Institute of Psychiatry Kraepelinstr. 2-10 80804 München Germany
| | - Sebastian Pomplun
- Max Planck Institute of Psychiatry Kraepelinstr. 2-10 80804 München Germany
| | - Sascha Jung
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Benedikt Rieß
- Max Planck Institute of Psychiatry Kraepelinstr. 2-10 80804 München Germany
| | - Patrick L Purder
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Andreas M Voll
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Stephanie Merz
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Monika Gnatzy
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Thomas M Geiger
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Ingrid Quist-Løkken
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology 7491 Trondheim Norway.,Department of Immunology and Transfusion Medicine, St. Olav's University Hospital 7030 Trondheim Norway.,Department of Hematology, St. Olav's University Hospital 7030 Trondheim Norway
| | - Jerome Jatzlau
- Institute for Chemistry and Biochemistry, Freie Universität Berlin 14195 Berlin Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin 14195 Berlin Germany
| | - Toril Holien
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology 7491 Trondheim Norway.,Department of Immunology and Transfusion Medicine, St. Olav's University Hospital 7030 Trondheim Norway.,Department of Hematology, St. Olav's University Hospital 7030 Trondheim Norway
| | - Andreas Bracher
- Research Department Cellular Biochemistry, Max Planck Institute of Biochemistry Am Klopferspitz 18, 82152 Planegg Germany
| | - Christian Meyners
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Paul Czodrowski
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Vera Krewald
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Felix Hausch
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| |
Collapse
|
9
|
Garbacz M, Stecko S. Synthesis of chiral branched allylamines through dual photoredox/nickel catalysis. Org Biomol Chem 2021; 19:8578-8585. [PMID: 34553201 DOI: 10.1039/d1ob01624e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Allylamines are versatile building blocks in the synthesis of various naturally occurring products and pharmaceuticals. In contrast to terminal allylamines, the methods of synthesis of their branched congeners with internal, stereodefined double bonds are less explored. This work describes a new approach for the preparation of allylamines via cross-coupling of alkyl bromides with simple 3-bromoallylamines by merging the photoredox approach and Ni catalysis. The reaction proceeds under mild conditions, under blue light irradiation, and in the presence of an organic dye, 4CzIPN, as a photocatalyst. The scope of suitable reaction partners is broad, including alkyl bromides bearing reactive functionalities (e.g., esters, nitriles, aldehydes, ketones, epoxides) and N-protected allylamines, as well as N-allylated secondary and tertiary amines and heterocycles. The employment of non-racemic starting materials allows for rapid and easy construction of complex multifunctional allylamine derivatives without the loss of enantiomeric purity.
Collapse
Affiliation(s)
- Mateusz Garbacz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Sebastian Stecko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
10
|
Wakchaure PD, Ganguly B. Tuning the electronic effects in designing ligands for the inhibition of rotamase activity of FK506 binding protein. Theor Chem Acc 2021. [DOI: 10.1007/s00214-020-02717-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
de la Sierra-Gallay IL, Belnou M, Chambraud B, Genet M, van Tilbeurgh H, Aumont-Nicaise M, Desmadril M, Baulieu EE, Jacquot Y, Byrne C. Bioinspired Hybrid Fluorescent Ligands for the FK1 Domain of FKBP52. J Med Chem 2020; 63:10330-10338. [PMID: 32866001 DOI: 10.1021/acs.jmedchem.0c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The protein FKBP52 is a steroid hormone receptor coactivator likely involved in neurodegenerative disease. A series of small, water-soluble, bioinspired, pseudopeptidic fluorescent ligands for the FK1 domain of this protein are described. The design is such that engulfing of the ligand in the pocket of this domain is accompanied by hydrogen-bonding of the dansyl chromophore which functions as both an integral part of the ligand and a fluorescent reporter. Binding is concomitant with a significant wavelength shift and an enhancement of the ligand fluorescence signal. Excitation of FK1 domain native tryptophan residues in the presence of bound ligand results in Förster resonance energy transfer. Variation of key ligand residues within the short sequence was undertaken, and the interaction of the resulting library with the protein was measured by techniques including isothermal calorimetry analysis, fluorescence, and FRET quenching, and a range of Kd values were determined. Cocrystallization of a protein ligand complex at 2.30 Å resolution provided detailed information at the atomic scale, while also providing insight into native substrate binding.
Collapse
Affiliation(s)
- Inès Li de la Sierra-Gallay
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS UMR9198, Université Paris-Saclay, Université Paris-Sud, 91405 Orsay, France
| | - Mathilde Belnou
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | | | - Melanie Genet
- Institut Baulieu, INSERM UMR 1195, Neuroprotection et Neurorégénération, Université Paris-Saclay, 94270Le Kremlin Bicêtre, France
| | - Herman van Tilbeurgh
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS UMR9198, Université Paris-Saclay, Université Paris-Sud, 91405 Orsay, France
| | - Magali Aumont-Nicaise
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS UMR9198, Université Paris-Saclay, Université Paris-Sud, 91405 Orsay, France
| | - Michel Desmadril
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS UMR9198, Université Paris-Saclay, Université Paris-Sud, 91405 Orsay, France
| | - Etienne-Emile Baulieu
- Institut Baulieu, INSERM UMR 1195, Neuroprotection et Neurorégénération, Université Paris-Saclay, 94270Le Kremlin Bicêtre, France
| | - Yves Jacquot
- Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), CNRS UMR 8038, INSERM U1268, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 75270 Paris Cedex 06, France
| | - Cillian Byrne
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France.,Institut Baulieu, INSERM UMR 1195, Neuroprotection et Neurorégénération, Université Paris-Saclay, 94270Le Kremlin Bicêtre, France
| |
Collapse
|
12
|
Bischoff M, Mayer P, Meyners C, Hausch F. Enantioselective Synthesis of a Tricyclic, sp 3 -Rich Diazatetradecanedione: an Amino Acid-Based Natural Product-Like Scaffold. Chemistry 2020; 26:4677-4681. [PMID: 31846111 PMCID: PMC7187416 DOI: 10.1002/chem.201905144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/06/2019] [Indexed: 01/21/2023]
Abstract
6-, 7-, and 8-membered rings are assembled from a linear precursor by successive cyclisation reactions to construct a tricyclic diazatricyclo[6.5.1.04, 9 ]-tetradecanedione scaffold. Advanced building blocks based on d-aspartic acid and l-pyroglutamic acid were combined by a sp3 -sp2 Negishi coupling. A carbamate-guided syn-diastereoselective epoxidation followed by an intramolecular epoxide opening allowed the construction of the piperidine ring. An efficient one-pot hydroxyl-group protection twofold deprotection reaction prepared the ground for the cyclisation to the bicycle. A final deprotection of the orthogonal protecting groups and lactamisation led to the novel, sp3 -rich tricycle. The final compound is a substrate mimic of peptidyl-prolyl cis-trans isomerases featuring a locked trans-amide bond. Cheminformatic analysis of 179 virtual derivatives indicates favourable physicochemical properties and drug-like characteristics. As proof of concept we, show a low micromolar activity in a fluorescence polarisation assay towards the FK506-binding protein 12.
Collapse
Affiliation(s)
- Matthias Bischoff
- Compound Management and Screening Center (COMAS)Max Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Peter Mayer
- Department of ChemistryLudwig-Maximilians-University MünchenButenandtstrasse 5–1381377MünchenGermany
| | - Christian Meyners
- Department of ChemistryInstitute of Chemistry and BiochemistryDarmstadt University of TechnologyAlarich-Weiss-Strasse 464287DarmstadtGermany
| | - Felix Hausch
- Department of ChemistryInstitute of Chemistry and BiochemistryDarmstadt University of TechnologyAlarich-Weiss-Strasse 464287DarmstadtGermany
| |
Collapse
|
13
|
Feng X, Sippel C, Knaup FH, Bracher A, Staibano S, Romano MF, Hausch F. A Novel Decalin-Based Bicyclic Scaffold for FKBP51-Selective Ligands. J Med Chem 2019; 63:231-240. [PMID: 31800244 DOI: 10.1021/acs.jmedchem.9b01157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective inhibition of FKBP51 has emerged as possible novel treatment for diseases like major depressive disorder, obesity, chronic pain, and certain cancers. The current FKBP51 inhibitors are rather large, flexible, and have to be further optimized. By using a structure-based rigidification strategy, we hereby report the design and synthesis of a novel promising bicyclic scaffold for FKBP51 ligands. The structure-activity analysis revealed the decalin scaffold as the best moiety for the selectivity-enabling subpocket of FBKP51. The resulting compounds retain high potency for FKBP51 and excellent selectivity over the close homologue FKBP52. With the cocrystal structure of an advanced ligand in this novel series, we show how the decalin locks the key selectivity-inducing cyclohexyl moiety of the ligand in a conformation typical for FKBP51-selective binding. The best compound 29 produces cell death in a HeLa-derived KB cell line, a cellular model of cervical adenocarcinoma, where FKBP51 is highly overexpressed. Our results show how FKBP51 inhibitors can be rigidified and extended while preserving FKBP51 selectivity. Such inhibitors might be novel tools in the treatment of human cancers with deregulated FKBP51.
Collapse
Affiliation(s)
- Xixi Feng
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Kraepelinstrasse 2 , 80804 Munich , Germany
| | - Claudia Sippel
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Kraepelinstrasse 2 , 80804 Munich , Germany
| | - Fabian H Knaup
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| | - Andreas Bracher
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| | - Stefania Staibano
- Department of Advanced Biomedical Sciences , Federico II University of Naples , 80131 Naples , Italy
| | - Maria F Romano
- Department of Molecular Medicine and Medical Biotechnologies , Federico II University , 80131 Naples , Italy
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| |
Collapse
|
14
|
Hähle A, Geiger TM, Merz S, Meyners C, Tianqi M, Kolos J, Hausch F. FKBP51 and FKBP12.6-Novel and tight interactors of Glomulin. PLoS One 2019; 14:e0221926. [PMID: 31490997 PMCID: PMC6730887 DOI: 10.1371/journal.pone.0221926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022] Open
Abstract
The protein factor Glomulin (Glmn) is a regulator of the SCF (Skp1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex. Mutations of Glmn lead to glomuvenous malformations. Glmn has been reported to be associated with FK506-binding proteins (FKBP). Here we present in vitro binding analyses of the FKBP—Glmn interaction. Interestingly, the previously described interaction of Glmn and FKBP12 was found to be comparatively weak. Instead, the closely related FKBP12.6 and FKBP51 emerged as novel binding partners. We show different binding affinities of full length and truncated FKBP51 and FKBP52 mutants. Using FKBP51 as a model system, we show that two amino acids lining the FK506-binding site are essential for binding Glmn and that the FKBP51-Glmn interaction is blocked by FKBP ligands. This data suggest FKBP inhibition as a pharmacological approach to regulate Glmn and Glmn-controlled processes.
Collapse
Affiliation(s)
- Andreas Hähle
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Thomas M. Geiger
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stephanie Merz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Mao Tianqi
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Kolos
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
15
|
Jagtap PKA, Asami S, Sippel C, Kaila VRI, Hausch F, Sattler M. Selective Inhibitors of FKBP51 Employ Conformational Selection of Dynamic Invisible States. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Lehrstuhl für Biomolekulare NMR-SpektroskopieTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| | - Sam Asami
- Lehrstuhl für Biomolekulare NMR-SpektroskopieTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| | - Claudia Sippel
- Max Planck Institute of Psychiatry Kraepelinstr. 2–10 80804 Munich Germany
| | - Ville R. I. Kaila
- Department ChemieTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| | - Felix Hausch
- Max Planck Institute of Psychiatry Kraepelinstr. 2–10 80804 Munich Germany
- Present address: Structure-Based Drug ResearchTechnische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Michael Sattler
- Lehrstuhl für Biomolekulare NMR-SpektroskopieTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| |
Collapse
|
16
|
Catalani E, Buonanno F, Lupidi G, Bongiorni S, Belardi R, Zecchini S, Giovarelli M, Coazzoli M, De Palma C, Perrotta C, Clementi E, Prantera G, Marcantoni E, Ortenzi C, Fausto AM, Picchietti S, Cervia D. The Natural Compound Climacostol as a Prodrug Strategy Based on pH Activation for Efficient Delivery of Cytotoxic Small Agents. Front Chem 2019; 7:463. [PMID: 31316972 PMCID: PMC6609918 DOI: 10.3389/fchem.2019.00463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
We synthesized and characterized MOMO as a new small molecule analog of the cytotoxic natural product climacostol efficiently activated in mild extracellular acidosis. The synthesis of MOMO had a key step in the Wittig olefination for the construction of the carbon-carbon double bond in the alkenyl moiety of climacostol. The possibility of obtaining the target (Z)-alkenyl MOMO derivative in very good yield and without presence of the less active (E)-diastereomer was favored from the methoxymethyl ether (MOM)-protecting group of hydroxyl functions in aromatic ring of climacostol aldehyde intermediate. Of interest, the easy removal of MOM-protecting group in a weakly acidic environment allowed us to obtain a great quantity of climacostol in biologically active (Z)-configuration. Results obtained in free-living ciliates that share the same micro-environment of the climacostol natural producer Climacostomum virens demonstrated that MOMO is well-tolerated in a physiological environment, while its cytotoxicity is rapidly and efficiently triggered at pH 6.3. In addition, the cytostatic vs. cytotoxic effects of acidified-MOMO can be modulated in a dose-dependent manner. In mouse melanoma cells, MOMO displayed a marked pH-sensitivity since its cytotoxic and apoptotic effects become evident only in mild extracellular acidosis. Data also suggested MOMO being preferentially activated in the unique extra-acidic microenvironment that characterizes tumoural cells. Finally, the use of the model organism Drosophila melanogaster fed with an acidic diet supported the efficient activity and oral delivery of MOMO molecule in vivo. MOMO affected oviposition of mating adults and larvae eclosion. Reduced survival of flies was due to lethality during the larval stages while emerging larvae retained their ability to develop into adults. Interestingly, the gut of eclosed larvae exhibited an extended damage (cell death by apoptosis) and the brain tissue was also affected (reduced mitosis), demonstrating that orally activated MOMO efficiently targets different tissues of the developing fly. These results provided a proof-of-concept study on the pH-dependence of MOMO effects. In this respect, MOM-protection emerges as a potential prodrug strategy which deserves to be further investigated for the generation of efficient pH-sensitive small organic molecules as pharmacologically active cytotoxic compounds.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems, Università degli Studi della Tuscia, Viterbo, Italy
| | - Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage and Tourism, Università degli Studi di Macerata, Macerata, Italy
| | - Gabriele Lupidi
- School of Sciences and Technologies, Section of Chemistry, Università degli Studi di Camerino, Camerino, Italy
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences, Università degli Studi della Tuscia, Viterbo, Italy
| | - Riccardo Belardi
- Department for Innovation in Biological, Agro-Food and Forest Systems, Università degli Studi della Tuscia, Viterbo, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Marco Coazzoli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Clara De Palma
- Unit of Clinical Pharmacology, University Hospital “Luigi Sacco”-ASST Fatebenefratelli Sacco, Milan, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Milan, Italy
- Scientific Institute IRCCS “Eugenio Medea”, Bosisio Parini, Italy
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences, Università degli Studi della Tuscia, Viterbo, Italy
| | - Enrico Marcantoni
- School of Sciences and Technologies, Section of Chemistry, Università degli Studi di Camerino, Camerino, Italy
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage and Tourism, Università degli Studi di Macerata, Macerata, Italy
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-Food and Forest Systems, Università degli Studi della Tuscia, Viterbo, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems, Università degli Studi della Tuscia, Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems, Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
17
|
Jagtap PKA, Asami S, Sippel C, Kaila VRI, Hausch F, Sattler M. Selective Inhibitors of FKBP51 Employ Conformational Selection of Dynamic Invisible States. Angew Chem Int Ed Engl 2019; 58:9429-9433. [PMID: 31100184 DOI: 10.1002/anie.201902994] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Indexed: 12/26/2022]
Abstract
The recently discovered SAFit class of inhibitors against the Hsp90 co-chaperone FKBP51 show greater than 10 000-fold selectivity over its closely related paralogue FKBP52. However, the mechanism underlying this selectivity remained unknown. By combining NMR spectroscopy, biophysical and computational methods with mutational analysis, we show that the SAFit molecules bind to a transient pocket in FKBP51. This represents a weakly populated conformation resembling the inhibitor-bound state of FKBP51, suggesting conformational selection rather than induced fit as the major binding mechanism. The inhibitor-bound conformation of FKBP51 is stabilized by an allosteric network of residues located away from the inhibitor-binding site. These residues stabilize the Phe67 side chain in a dynamic outward conformation and are distinct in FKBP52, thus rationalizing the basis for the selectivity of SAFit inhibitors. Our results represent a paradigm for the selective inhibition of transient binding pockets.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Lehrstuhl für Biomolekulare NMR-Spektroskopie, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Sam Asami
- Lehrstuhl für Biomolekulare NMR-Spektroskopie, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Claudia Sippel
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Ville R I Kaila
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Felix Hausch
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany.,Present address: Structure-Based Drug Research, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Michael Sattler
- Lehrstuhl für Biomolekulare NMR-Spektroskopie, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
18
|
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as a key regulator of endocrine stress responses in mammals and as a potential therapeutic target for stress-related disorders (depression, post-traumatic stress disorder), metabolic disorders (obesity and diabetes) and chronic pain. Recently, FKBP51 has been implicated in several cellular pathways and numerous interacting protein partners have been reported. However, no consensus on the underlying molecular mechanisms has yet emerged. Here, we review the protein interaction partners reported for FKBP51, the proposed pathways involved, their relevance to FKBP51’s physiological function(s), the interplay with other FKBPs, and implications for the development of FKBP51-directed drugs.
Collapse
|
19
|
Kolos JM, Voll AM, Bauder M, Hausch F. FKBP Ligands-Where We Are and Where to Go? Front Pharmacol 2018; 9:1425. [PMID: 30568592 PMCID: PMC6290070 DOI: 10.3389/fphar.2018.01425] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, many members of the FK506-binding protein (FKBP) family were increasingly linked to various diseases. The binding domain of FKBPs differs only in a few amino acid residues, but their biological roles are versatile. High-affinity ligands with selectivity between close homologs are scarce. This review will give an overview of the most prominent ligands developed for FKBPs and highlight a perspective for future developments. More precisely, human FKBPs and correlated diseases will be discussed as well as microbial FKBPs in the context of anti-bacterial and anti-fungal therapeutics. The last section gives insights into high-affinity ligands as chemical tools and dimerizers.
Collapse
Affiliation(s)
| | | | | | - Felix Hausch
- Department of Chemistry, Institute of Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
20
|
Pomplun S, Sippel C, Hähle A, Tay D, Shima K, Klages A, Ünal CM, Rieß B, Toh HT, Hansen G, Yoon HS, Bracher A, Preiser P, Rupp J, Steinert M, Hausch F. Chemogenomic Profiling of Human and Microbial FK506-Binding Proteins. J Med Chem 2018; 61:3660-3673. [PMID: 29578710 DOI: 10.1021/acs.jmedchem.8b00137] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
FK506-binding proteins (FKBPs) are evolutionarily conserved proteins that display peptidyl-prolyl isomerase activities and act as coreceptors for immunosuppressants. Microbial macrophage-infectivity-potentiator (Mip)-type FKBPs can enhance infectivity. However, developing druglike ligands for FKBPs or Mips has proven difficult, and many FKBPs and Mips still lack biologically useful ligands. To explore the scope and potential of C5-substituted [4.3.1]-aza-bicyclic sulfonamides as a broadly applicable class of FKBP inhibitors, we developed a new synthesis method for the bicyclic core scaffold and used it to prepare an FKBP- and Mip-focused library. This allowed us to perform a systematic structure-activity-relationship analysis across key human FKBPs and microbial Mips, yielding highly improved inhibitors for all the FKBPs studied. A cocrystal structure confirmed the molecular-binding mode of the core structure and explained the affinity gained as a result of the preferred substituents. The best FKBP and Mip ligands showed promising antimalarial, antileginonellal, and antichlamydial properties in cellular models of infectivity, suggesting that substituted [4.3.1]-aza-bicyclic sulfonamides could be a novel class of anti-infectives.
Collapse
Affiliation(s)
- Sebastian Pomplun
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany
| | - Claudia Sippel
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany
| | - Andreas Hähle
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany.,Technical University Darmstadt , Alarich-Weiss-Straße 4 , 64287 Darmstadt , Germany
| | - Donald Tay
- School of Biological Sciences , Nanyang Technological University , 639798 Singapore
| | - Kensuke Shima
- Department of Infectious Diseases and Microbiology , University of Lübeck , 23562 Lübeck , Germany
| | - Alina Klages
- Technische Universität Braunschweig , 38106 Braunschweig , Germany
| | - Can Murat Ünal
- Technische Universität Braunschweig , 38106 Braunschweig , Germany
| | - Benedikt Rieß
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany
| | - Hui Ting Toh
- School of Biological Sciences , Nanyang Technological University , 639798 Singapore
| | | | - Ho Sup Yoon
- School of Biological Sciences , Nanyang Technological University , 639798 Singapore
| | - Andreas Bracher
- Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Peter Preiser
- School of Biological Sciences , Nanyang Technological University , 639798 Singapore
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology , University of Lübeck , 23562 Lübeck , Germany
| | - Michael Steinert
- Department of Infectious Diseases and Microbiology , University of Lübeck , 23562 Lübeck , Germany.,Helmholtz Centre for Infection Research , 38124 Braunschweig , Germany
| | - Felix Hausch
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany.,Technical University Darmstadt , Alarich-Weiss-Straße 4 , 64287 Darmstadt , Germany
| |
Collapse
|
21
|
Gaali S, Feng X, Hähle A, Sippel C, Bracher A, Hausch F. Rapid, Structure-Based Exploration of Pipecolic Acid Amides as Novel Selective Antagonists of the FK506-Binding Protein 51. J Med Chem 2016; 59:2410-22. [PMID: 26954324 DOI: 10.1021/acs.jmedchem.5b01355] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The FK506-binding protein 51 (FKBP51) is a key regulator of stress hormone receptors and an established risk factor for stress-related disorders. Drug development for FKBP51 has been impaired by the structurally similar but functionally opposing homologue FKBP52. High selectivity between FKBP51 and FKBP52 can be achieved by ligands that stabilize a recently discovered FKBP51-favoring conformation. However, drug-like parameters for these ligands remained unfavorable. In the present study, we replaced the potentially labile pipecolic ester group of previous FKBP51 ligands by various low molecular weight amides. This resulted in the first series of pipecolic acid amides, which had much lower molecular weights without affecting FKBP51 selectivity. We discovered a geminally substituted cyclopentyl amide as a preferred FKBP51-binding motif and elucidated its binding mode to provide a new lead structure for future drug optimization.
Collapse
Affiliation(s)
- Steffen Gaali
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| | - Xixi Feng
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| | - Andreas Hähle
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| | - Claudia Sippel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Felix Hausch
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| |
Collapse
|
22
|
Feng X, Sippel C, Bracher A, Hausch F. Structure–Affinity Relationship Analysis of Selective FKBP51 Ligands. J Med Chem 2015; 58:7796-806. [DOI: 10.1021/acs.jmedchem.5b00785] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xixi Feng
- Department
of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany
| | - Claudia Sippel
- Department
of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany
| | - Andreas Bracher
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Felix Hausch
- Department
of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany
| |
Collapse
|
23
|
Hausch F. FKBPs and their role in neuronal signaling. Biochim Biophys Acta Gen Subj 2015; 1850:2035-40. [PMID: 25615537 DOI: 10.1016/j.bbagen.2015.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ligands for FK506-binding proteins, also referred to as neuroimmunophilin ligands, have repeatedly been described as neuritotrophic, neuroprotective or neuroregenerative agents. However, the precise molecular mechanism of action underlying the observed effects has remained elusive, which eventually led to a reduced interest in FKBP ligand development. SCOPE OF REVIEW A survey is presented on the pharmacology of neuroimmunophilin ligands, of the current understanding of individual FKBP homologs in neuronal processes and an assessment of their potential as drug targets for CNS disorders. MAJOR CONCLUSIONS FKBP51 is the major target accounting for the neuritotrophic effect of neuroimmunophilin ligands. Selectivity against the homolog FKBP52 is essential for optimal neuritotrophic efficacy. GENERAL SIGNIFICANCE Selectivity within the FKBP family, in particular selective inhibition of FKBP12 or FKBP51, is possible. FKBP51 is a pharmacologically tractable target for stress-related disorders. The role of FKBPs in neurodegeneration remains to be clarified. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Felix Hausch
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|