1
|
Hostachy S, Wang H, Zong G, Franke K, Riley AM, Schmieder P, Potter BVL, Shears SB, Fiedler D. Fluorination Influences the Bioisostery of Myo-Inositol Pyrophosphate Analogs. Chemistry 2023; 29:e202302426. [PMID: 37773020 PMCID: PMC7615343 DOI: 10.1002/chem.202302426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Inositol pyrophosphates (PP-IPs) are densely phosphorylated messenger molecules involved in numerous biological processes. PP-IPs contain one or two pyrophosphate group(s) attached to a phosphorylated myo-inositol ring. 5PP-IP5 is the most abundant PP-IP in human cells. To investigate the function and regulation by PP-IPs in biological contexts, metabolically stable analogs have been developed. Here, we report the synthesis of a new fluorinated phosphoramidite reagent and its application for the synthesis of a difluoromethylene bisphosphonate analog of 5PP-IP5 . Subsequently, the properties of all currently reported analogs were benchmarked using a number of biophysical and biochemical methods, including co-crystallization, ITC, kinase activity assays and chromatography. Together, the results showcase how small structural alterations of the analogs can have notable effects on their properties in a biochemical setting and will guide in the choice of the most suitable analog(s) for future investigations.
Collapse
Affiliation(s)
- Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
| | - Huanchen Wang
- Inositol Signaling GroupNational Institutes of HealthResearch Triangle ParkNorth Carolina27709USA
| | - Guangning Zong
- Inositol Signaling GroupNational Institutes of HealthResearch Triangle ParkNorth Carolina27709USA
| | - Katy Franke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
| | - Andrew M. Riley
- Medicinal Chemistry & Drug Discovery Department of PharmacologyUniversity of OxfordOxfordOX1 3QTUK
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery Department of PharmacologyUniversity of OxfordOxfordOX1 3QTUK
| | - Stephen B. Shears
- Inositol Signaling GroupNational Institutes of HealthResearch Triangle ParkNorth Carolina27709USA
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
2
|
Ritter K, Jork N, Unmüßig AS, Köhn M, Jessen HJ. Assigning the Absolute Configuration of Inositol Poly- and Pyrophosphates by NMR Using a Single Chiral Solvating Agent. Biomolecules 2023; 13:1150. [PMID: 37509185 PMCID: PMC10377360 DOI: 10.3390/biom13071150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Inositol phosphates constitute a family of highly charged messenger molecules that play diverse roles in cellular processes. The various phosphorylation patterns they exhibit give rise to a vast array of different compounds. To fully comprehend the biological interconnections, the precise molecular identification of each compound is crucial. Since the myo-inositol scaffold possesses an internal mirror plane, enantiomeric pairs can be formed. Most commonly employed methods for analyzing InsPs have been geared towards resolving regioisomers, but they have not been capable of resolving enantiomers. In this study, we present a general approach for enantiomer assignment using NMR measurements. To achieve this goal, we used 31P-NMR in the presence of L-arginine amide as a chiral solvating agent, which enables the differentiation of enantiomers. Using chemically synthesized standard compounds allows for an unambiguous assignment of the enantiomers. This method was applied to highly phosphorylated inositol pyrophosphates, as well as to lowly phosphorylated inositol phosphates and bisphosphonate analogs. Our method will facilitate the assignment of biologically relevant isomers when isolating naturally occurring compounds from biological specimens.
Collapse
Affiliation(s)
- Kevin Ritter
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Anne-Sophie Unmüßig
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Maja Köhn
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- BIOSS-Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Mohanrao R, Manorama R, Ganguli S, Madhusudhanan MC, Bhandari R, Sureshan KM. Novel Substrates for Kinases Involved in the Biosynthesis of Inositol Pyrophosphates and Their Enhancement of ATPase Activity of a Kinase. Molecules 2021; 26:molecules26123601. [PMID: 34208421 PMCID: PMC8231259 DOI: 10.3390/molecules26123601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
IP6K and PPIP5K are two kinases involved in the synthesis of inositol pyrophosphates. Synthetic analogs or mimics are necessary to understand the substrate specificity of these enzymes and to find molecules that can alter inositol pyrophosphate synthesis. In this context, we synthesized four scyllo-inositol polyphosphates-scyllo-IP5, scyllo-IP6, scyllo-IP7 and Bz-scyllo-IP5-from myo-inositol and studied their activity as substrates for mouse IP6K1 and the catalytic domain of VIP1, the budding yeast variant of PPIP5K. We incubated these scyllo-inositol polyphosphates with these kinases and ATP as the phosphate donor. We tracked enzyme activity by measuring the amount of radiolabeled scyllo-inositol pyrophosphate product formed and the amount of ATP consumed. All scyllo-inositol polyphosphates are substrates for both the kinases but they are weaker than the corresponding myo-inositol phosphate. Our study reveals the importance of axial-hydroxyl/phosphate for IP6K1 substrate recognition. We found that all these derivatives enhance the ATPase activity of VIP1. We found very weak ligand-induced ATPase activity for IP6K1. Benzoyl-scyllo-IP5 was the most potent ligand to induce IP6K1 ATPase activity despite being a weak substrate. This compound could have potential as a competitive inhibitor.
Collapse
Affiliation(s)
- Raja Mohanrao
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India; (R.M.); (M.C.M.)
| | - Ruth Manorama
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; (R.M.); (S.G.)
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; (R.M.); (S.G.)
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Mithun C. Madhusudhanan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India; (R.M.); (M.C.M.)
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; (R.M.); (S.G.)
- Correspondence: (R.B.); (K.M.S.)
| | - Kana M. Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India; (R.M.); (M.C.M.)
- Correspondence: (R.B.); (K.M.S.)
| |
Collapse
|
4
|
Harmel RK, Puschmann R, Nguyen Trung M, Saiardi A, Schmieder P, Fiedler D. Harnessing 13C-labeled myo-inositol to interrogate inositol phosphate messengers by NMR. Chem Sci 2019; 10:5267-5274. [PMID: 31191882 PMCID: PMC6540952 DOI: 10.1039/c9sc00151d] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
The analysis of inositol poly- and pyrophosphates, an important group of eukaryotic messengers, is enabled by applying 13C-labeled inositol.
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are an important group of metabolites and mediate a wide range of processes in eukaryotic cells. To elucidate the functions of these molecules, robust techniques for the characterization of inositol phosphate metabolism are required, both at the biochemical and the cellular level. Here, a new tool-set is reported, which employs uniformly 13C-labeled compounds ([13C6]myo-inositol, [13C6]InsP5, [13C6]InsP6, and [13C6]5PP-InsP5), in combination with commonly accessible NMR technology. This approach permitted the detection and quantification of InsPs and PP-InsPs within complex mixtures and at physiological concentrations. Specifically, the enzymatic activity of IP6K1 could be monitored in vitro in real time. Metabolic labeling of mammalian cells with [13C6]myo-inositol enabled the analysis of cellular pools of InsPs and PP-InsPs, and uncovered high concentrations of 5PP-InsP5 in HCT116 cells, especially in response to genetic and pharmacological perturbation. The reported method greatly facilitates the analysis of this otherwise spectroscopically silent group of molecules, and holds great promise to comprehensively analyze inositol-based signaling molecules under normal and pathological conditions.
Collapse
Affiliation(s)
- Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany . .,Institute of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Robert Puschmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany . .,Institute of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Minh Nguyen Trung
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany . .,Institute of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology , University College London , London , UK
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany .
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany . .,Institute of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| |
Collapse
|
5
|
Silva S, Ascenso OS, Lourenço EC, Archer M, Maycock CD, Ventura MR. Syntheses of the plant auxin conjugate 2-O-(indole-3-acetyl)-myo-inositol IAInos. Org Biomol Chem 2018; 16:6860-6864. [DOI: 10.1039/c8ob02096e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two first chemical syntheses of IAInos (2-O-(indole-3-acetyl)-myo-inositol), an important plant hormone, are described.
Collapse
Affiliation(s)
| | | | | | - Margarida Archer
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
| | - Christopher D. Maycock
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
- Faculdade de Ciências da Universidade de Lisboa
| | - M. Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
| |
Collapse
|
6
|
Zhu Q, Ghoshal S, Rodrigues A, Gao S, Asterian A, Kamenecka TM, Barrow JC, Chakraborty A. Adipocyte-specific deletion of Ip6k1 reduces diet-induced obesity by enhancing AMPK-mediated thermogenesis. J Clin Invest 2016; 126:4273-4288. [PMID: 27701146 DOI: 10.1172/jci85510] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/29/2016] [Indexed: 12/15/2022] Open
Abstract
Enhancing energy expenditure (EE) is an attractive strategy to combat obesity and diabetes. Global deletion of Ip6k1 protects mice from diet-induced obesity (DIO) and insulin resistance, but the tissue-specific mechanism by which IP6K1 regulates body weight is unknown. Here, we have demonstrated that IP6K1 regulates fat accumulation by modulating AMPK-mediated adipocyte energy metabolism. Cold exposure led to downregulation of Ip6k1 in murine inguinal and retroperitoneal white adipose tissue (IWAT and RWAT) depots. Adipocyte-specific deletion of Ip6k1 (AdKO) enhanced thermogenic EE, which protected mice from high-fat diet-induced weight gain at ambient temperature (23°C), but not at thermoneutral temperature (30°C). AdKO-induced increases in thermogenesis also protected mice from cold-induced decreases in body temperature. UCP1, PGC1α, and other markers of browning and thermogenesis were elevated in IWAT and RWAT of AdKO mice. Cold-induced activation of sympathetic signaling was unaltered, whereas AMPK was enhanced, in AdKO IWAT. Moreover, beige adipocytes from AdKO IWAT displayed enhanced browning, which was diminished by AMPK depletion. Furthermore, we determined that IP6 and IP6K1 differentially regulate upstream kinase-mediated AMPK stimulatory phosphorylation in vitro. Finally, treating mildly obese mice with the IP6K inhibitor TNP enhanced thermogenesis and inhibited progression of DIO. Thus, IP6K1 regulates energy metabolism via a mechanism that could potentially be targeted in obesity.
Collapse
|
7
|
Pavlovic I, Thakor DT, Vargas JR, McKinlay CJ, Hauke S, Anstaett P, Camuña RC, Bigler L, Gasser G, Schultz C, Wender PA, Jessen HJ. Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces PH-domain translocation in cellulo. Nat Commun 2016; 7:10622. [PMID: 26842801 PMCID: PMC4743007 DOI: 10.1038/ncomms10622] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Inositol pyrophosphates, such as diphospho-myo-inositol pentakisphosphates (InsP7), are an important family of signalling molecules, implicated in many cellular processes and therapeutic indications including insulin secretion, glucose homeostasis and weight gain. To understand their cellular functions, chemical tools such as photocaged analogues for their real-time modulation in cells are required. Here we describe a concise, modular synthesis of InsP7 and caged InsP7. The caged molecule is stable and releases InsP7 only on irradiation. While photocaged InsP7 does not enter cells, its cellular uptake is achieved using nanoparticles formed by association with a guanidinium-rich molecular transporter. This novel synthesis and unprecedented polyphosphate delivery strategy enable the first studies required to understand InsP7 signalling in cells with controlled spatiotemporal resolution. It is shown herein that cytoplasmic photouncaging of InsP7 leads to translocation of the PH-domain of Akt, an important signalling-node kinase involved in glucose homeostasis, from the membrane into the cytoplasm. Photocaged inositol-pyrophosphates offer a tool to study cellular signalling, but their challenging synthesis has precluded any biological studies so far. Here, the authors report the synthesis and cellular delivery of a photocaged analogue, and show that it mediates protein translocation in cellulo.
Collapse
Affiliation(s)
- Igor Pavlovic
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Divyeshsinh T Thakor
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Jessica R Vargas
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Colin J McKinlay
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Sebastian Hauke
- European Molecular Biology Laboratory (EMBL), Cell Biology &Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Philipp Anstaett
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Rafael C Camuña
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, Malaga 29071, Spain
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology &Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | - Henning J Jessen
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Pavlovic I, Thakor DT, Jessen HJ. Synthesis of 2-diphospho-myo-inositol 1,3,4,5,6-pentakisphosphate and a photocaged analogue. Org Biomol Chem 2016; 14:5559-62. [DOI: 10.1039/c6ob00094k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diphosphoinositol polyphosphates (inositol pyrophosphates, X-InsP7) are a family of second messengers with important roles in eukaryotic biology. A new approach targeting 2-InsP7 and a photocaged analogue is described.
Collapse
Affiliation(s)
- I. Pavlovic
- Department of Chemistry
- University of Zürich
- 8057 Zürich
- Switzerland
| | - D. T. Thakor
- Department of Chemistry
- University of Zürich
- 8057 Zürich
- Switzerland
| | - H. J. Jessen
- Department of Chemistry and Pharmacy
- Albert-Ludwigs University Freiburg
- 79104 Freiburg
- Germany
| |
Collapse
|
9
|
Gurale BP, Sardessai RS, Shashidhar MS. myo-Inositol 1,3-acetals as early intermediates during the synthesis of cyclitol derivatives. Carbohydr Res 2014; 399:8-14. [PMID: 25216930 DOI: 10.1016/j.carres.2014.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Synthetic sequences starting from commercially available myo-inositol necessarily involve protection-deprotection strategies of its six hydroxyl groups. Several strategies have been developed/attempted over the last several decades leading to the synthesis of naturally occurring phosphoinositols, their analogs, and cyclitol derivatives. Of late, myo-inositol 1,3-acetals, which can be obtained by the reductive cleavage of myo-inositol orthoesters have emerged as early intermediates for the synthesis of phosphorylated and other inositol derivatives. This mini-review is an attempt to illustrate the economy and convenience of using myo-inositol 1,3-acetals as early intermediates during syntheses from myo-inositol.
Collapse
Affiliation(s)
- Bharat P Gurale
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pashan Road, Pune 411 008, India
| | - Richa S Sardessai
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pashan Road, Pune 411 008, India
| | - Mysore S Shashidhar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pashan Road, Pune 411 008, India.
| |
Collapse
|
10
|
Shears SB. Inositol pyrophosphates: why so many phosphates? Adv Biol Regul 2014; 57:203-16. [PMID: 25453220 DOI: 10.1016/j.jbior.2014.09.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a specialized group of "energetic" signaling molecules found in yeasts, plants and animals. PP-InsPs boast the most crowded three dimensional phosphate arrays found in Nature; multiple phosphates and diphosphates are crammed around the six-carbon, inositol ring. Yet, phosphate esters are also a major energy currency in cells. So the synthesis of PP-InsPs, and the maintenance of their levels in the face of a high rate of ongoing turnover, all requires significant bioenergetic input. What are the particular properties of PP-InsPs that repay this investment of cellular energy? Potential answers to that question are discussed here, against the backdrop of a recent hypothesis that signaling by PP-InsPs is evolutionarily ancient. The latter idea is extended herein, with the proposal that the primordial origins of PP-InsPs is reflected in the apparent lack of isomeric specificity of certain of their actions. Nevertheless, there are other aspects of signaling by these polyphosphates that are more selective for a particular PP-InsP isomer. Consideration of the nature of both specific and non-specific effects of PP-InsPs can help rationalize why such molecules possess so many phosphates.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHHS, PO Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
11
|
Discovery of InsP6-kinases as InsP6-dephosphorylating enzymes provides a new mechanism of cytosolic InsP6 degradation driven by the cellular ATP/ADP ratio. Biochem J 2014; 462:173-84. [PMID: 24865181 DOI: 10.1042/bj20130992] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
InsP6 (inositol hexakisphosphate), the most abundant inositol phosphate in metazoa, is pyrophosphorylated to InsP7 [5PP-InsP5 (diphosphoinositol pentakisphosphate)] by cytosolic and nuclear IP6Ks (InsP6 kinases) and to 1PP-InsP5 by another InsP6/InsP7 kinase family. MINPP1 (multiple inositol-polyphosphate phosphatase 1), the only known InsP6 phosphatase, is localized in the ER (endoplasmic reticulum) and lysosome lumina. A mechanism of cytosolic InsP6 dephosphorylation has remained enigmatic so far. In the present study, we demonstrated that IP6Ks change their kinase activity towards InsP6 at a decreasing ATP/ADP ratio to an ADP phosphotransferase activity and dephosphorylate InsP6. Enantio-selective analysis revealed that Ins(2,3,4,5,6)P5 is the main InsP5 product of the IP6K reaction, whereas the exclusive product of MINPP1 activity is the enantiomer Ins(1,2,4,5,6)P5. Whereas lentiviral RNAi-based depletion of MINPP1 at falling cellular ATP/ADP ratios had no significant impact on Ins(2,3,4,5,6)P5 production, the use of the selective IP6K inhibitor TNP [N2-(m-trifluorobenzyl),N6-(p-nitrobenzyl)purine] abolished the production of this enatiomer in different types of cells. Furthermore, by analysis of rat tissue and human blood samples all (main and minor) dephosphorylation products of InsP6 were detected in vivo. In summary, we identified IP6Ks as novel nuclear and cytosolic InsP6- (and InsP5-) dephosphorylating enzymes whose activity is sensitively driven by a decrease in the cellular ATP/ADP ratio, thus suggesting a role for IP6Ks as cellular adenylate energy 'sensors'.
Collapse
|
12
|
Capolicchio S, Wang H, Thakor DT, Shears SB, Jessen HJ. Synthesis of densely phosphorylated bis-1,5-diphospho-myo-inositol tetrakisphosphate and its enantiomer by bidirectional P-anhydride formation. Angew Chem Int Ed Engl 2014; 53:9508-11. [PMID: 25044992 PMCID: PMC4153399 DOI: 10.1002/anie.201404398] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/23/2014] [Indexed: 11/06/2022]
Abstract
The ubiquitous mammalian signaling molecule bis-diphosphoinositol tetrakisphosphate (1,5-(PP)2 -myo-InsP4 , or InsP8 ) displays the most congested three-dimensional array of phosphate groups found in nature. The high charge density, the accumulation of unstable P-anhydrides and P-esters, the lack of UV absorbance, and low levels of optical rotation constitute severe obstacles to its synthesis, characterization, and purification. Herein, we describe the first procedure for the synthesis of enantiopure 1,5-(PP)2 -myo-InsP4 and 3,5-(PP)2 -myo-InsP4 utilizing a C2 -symmetric P-amidite for desymmetrization and concomitant phosphitylation followed by a one-pot bidirectional P-anhydride-forming reaction that combines sixteen chemical transformations with high efficiency. The configuration of these materials is unambiguously shown by subsequent X-ray analyses of both enantiomers after being individually soaked into crystals of the kinase domain of human diphosphoinositol pentakisphosphate kinase 2.
Collapse
Affiliation(s)
- Samanta Capolicchio
- Department of Chemistry, University of Zürich (UZH), Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Huanchen Wang
- Inositol Signaling Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (USA)
| | - Divyeshsinh T. Thakor
- Department of Chemistry University of Zürich (UZH) Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Stephen B. Shears
- Inositol Signaling Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (USA)
| | - Henning J. Jessen
- Department of Chemistry University of Zürich (UZH) Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| |
Collapse
|
13
|
Capolicchio S, Wang H, Thakor DT, Shears SB, Jessen HJ. Synthesis of Densely Phosphorylated Bis-1,5-Diphospho-myo-Inositol Tetrakisphosphate and its Enantiomer by Bidirectional P-Anhydride Formation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. Mol Cell 2014; 54:119-132. [PMID: 24657168 DOI: 10.1016/j.molcel.2014.02.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/16/2013] [Accepted: 02/13/2014] [Indexed: 11/20/2022]
Abstract
The apoptotic actions of p53 require its phosphorylation by a family of phosphoinositide-3-kinase-related-kinases (PIKKs), which include DNA-PKcs and ATM. These kinases are stabilized by the TTT (Tel2, Tti1, Tti2) cochaperone family, whose actions are mediated by CK2 phosphorylation. The inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks), of which IP6K2 has been implicated in p53-associated cell death. In the present study we report an apoptotic signaling cascade linking CK2, TTT, the PIKKs, and p53. We demonstrate that IP7, formed by IP6K2, binds CK2 to enhance its phosphorylation of the TTT complex, thereby stabilizing DNA-PKcs and ATM. This process stimulates p53 phosphorylation at serine 15 to activate the cell death program in human cancer cells and in murine B cells.
Collapse
|
15
|
Vasconcelos MG, Briggs RH, Aguiar LC, Freire DM, Simas AB. Efficient desymmetrization of 4,6-di-O-benzyl-myo-inositol by Lipozyme TL-IM. Carbohydr Res 2014; 386:7-11. [DOI: 10.1016/j.carres.2013.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/27/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
|
16
|
Capolicchio S, Thakor DT, Linden A, Jessen HJ. Synthesis of unsymmetric diphospho-inositol polyphosphates. Angew Chem Int Ed Engl 2013; 52:6912-6. [PMID: 23712702 DOI: 10.1002/anie.201301092] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/29/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Samanta Capolicchio
- Organic Chemistry Institute, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
17
|
Capolicchio S, Thakor DT, Linden A, Jessen HJ. Synthesis of Unsymmetric Diphospho-Inositol Polyphosphates. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
The kinetic properties of a human PPIP5K reveal that its kinase activities are protected against the consequences of a deteriorating cellular bioenergetic environment. Biosci Rep 2013; 33:e00022. [PMID: 23240582 PMCID: PMC3564036 DOI: 10.1042/bsr20120115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We obtained detailed kinetic characteristics--stoichiometry, reaction rates, substrate affinities and equilibrium conditions--of human PPIP5K2 (diphosphoinositol pentakisphosphate kinase 2). This enzyme synthesizes 'high-energy' PP-InsPs (diphosphoinositol polyphosphates) by metabolizing InsP₆ (inositol hexakisphosphate) and 5-InsP₇ (5-diphosphoinositol 1,2,3,4,6-pentakisphosphate) to 1-InsP₇ (1-diphosphoinositol 2,3,4,5,6-pentakisphosphate) and InsP₈ (1,5-bis-diphosphoinositol 2,3,4,6-tetrakisphosphate), respectively. These data increase our insight into the PPIP5K2 reaction mechanism and clarify the interface between PPIP5K catalytic activities and cellular bioenergetic status. For example, stochiometric analysis uncovered non-productive, substrate-stimulated ATPase activity (thus, approximately 2 and 1.2 ATP molecules are utilized to synthesize each molecule of 1-InsP₇ and InsP₈, respectively). Impaired ATPase activity of a PPIP5K2-K248A mutant increased atomic-level insight into the enzyme's reaction mechanism. We found PPIP5K2 to be fully reversible as an ATP-synthase in vitro, but our new data contradict previous perceptions that significant 'reversibility' occurs in vivo. PPIP5K2 was insensitive to physiological changes in either [AMP] or [ATP]/[ADP] ratios. Those data, together with adenine nucleotide kinetics (ATP Km=20-40 μM), reveal how insulated PPIP5K2 is from cellular bioenergetic challenges. Finally, the specificity constants for PPIP5K2 revise upwards by one-to-two orders of magnitude the inherent catalytic activities of this enzyme, and we show its equilibrium point favours 80-90% depletion of InsP₆/₅-InsP₇.
Collapse
|
19
|
Vidyasagar A, Pathigoolla A, Sureshan KM. Chemoselective alcoholysis/acetolysis of trans-ketals over cis-ketals and its application in the total synthesis of the cellular second messenger, d-myo-inositol-1,4,5-trisphosphate. Org Biomol Chem 2013; 11:5443-53. [DOI: 10.1039/c3ob40789f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Adiyala Vidyasagar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, India
| | | | | |
Collapse
|
20
|
Wu M, Dul BE, Trevisan AJ, Fiedler D. Synthesis and characterization of non-hydrolysable diphosphoinositol polyphosphate second messengers. Chem Sci 2013; 4:405-410. [PMID: 23378892 DOI: 10.1039/c2sc21553e] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The diphosphoinositol polyphosphates (PP-IPs) are a central group of eukaryotic second messengers. They regulate numerous processes, including cellular energy homeostasis and adaptation to environmental stresses. To date, most of the molecular details in PP-IP signalling have remained elusive, due to a lack of appropriate methods and reagents. Here we describe the expedient synthesis of methylene-bisphosphonate PP-IP analogues. Their characterization revealed that the analogues exhibit significant stability and mimic their natural counterparts very well. This was further confirmed in two independent biochemical assays, in which our analogues potently inhibited phosphorylation of the protein kinase Akt and hydrolytic activity of the Ddp1 phosphohydrolase. The non-hydrolysable PP-IPs thus emerge as important tools and hold great promise for a variety of applications.
Collapse
Affiliation(s)
- Mingxuan Wu
- Department of Chemistry, Princeton University, Washington Rd., 85 Princeton, NJ, 08544, USA. Tel: +1 609 258 1025
| | | | | | | |
Collapse
|
21
|
Riley AM, Wang H, Weaver JD, Shears SB, Potter BVL. First synthetic analogues of diphosphoinositol polyphosphates: interaction with PP-InsP5 kinase. Chem Commun (Camb) 2012; 48:11292-4. [PMID: 23032903 PMCID: PMC3923271 DOI: 10.1039/c2cc36044f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/14/2012] [Indexed: 12/27/2022]
Abstract
We synthesised analogues of diphosphoinositol polyphosphates (PP-InsPs) in which the diphosphate is replaced by an α-phosphonoacetic acid (PA) ester. Structural analysis revealed that 5-PA-InsP(5) mimics 5-PP-InsP(5) binding to the kinase domain of PPIP5K2; both molecules were phosphorylated by the enzyme. PA-InsPs are promising candidates for further studies into the biology of PP-InsPs.
Collapse
Affiliation(s)
- Andrew M. Riley
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , BA2 7AY , UK . ; Fax: +44 (0)1225 386114 ; Tel: +44 (0)1225 386639
| | - Huanchen Wang
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Jeremy D. Weaver
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Stephen B. Shears
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Barry V. L. Potter
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , BA2 7AY , UK . ; Fax: +44 (0)1225 386114 ; Tel: +44 (0)1225 386639
| |
Collapse
|
22
|
Mart A, Shashidhar MS. Elaboration of the ether cleaving ability and selectivity of the classical Pearlman's catalyst [Pd(OH)2/C]: concise synthesis of a precursor for a myo-inositol pyrophosphate. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Abstract
Inositol pyrophosphates are highly energetic inositol polyphosphate molecules present in organisms from slime molds and yeast to mammals. Distinct classes of enzymes generate different forms of inositol pyrophosphates. The biosynthesis of these substances principally involves phosphorylation of inositol hexakisphosphate (IP₆) to generate the pyrophosphate IP₇. Initial insights into functions of these substances derived primarily from yeast, which contain a single isoform of IP₆ kinase (yIP₆K), as well as from the slime mold Dictyostelium. Mammalian functions for inositol pyrophosphates have been investigated by using cell lines to establish roles in various processes, including insulin secretion and apoptosis. More recently, mice with targeted deletion of IP₆K isoforms as well as the related inositol polyphosphate multikinase (IPMK) have substantially enhanced our understanding of inositol polyphosphate physiology. Phenotypic alterations in mice lacking inositol hexakisphosphate kinase 1 (IP₆K1) reveal signaling roles for these molecules in insulin homeostasis, obesity, and immunological functions. Inositol pyrophosphates regulate these processes at least in part by inhibiting activation of the serine-threonine kinase Akt. Similar studies of IP₆K2 establish this enzyme as a cell death inducer acting by stimulating the proapoptotic protein p53. IPMK is responsible for generating the inositol phosphate IP₅ but also has phosphatidylinositol 3-kinase activity--that participates in activation of Akt. Here, we discuss recent advances in understanding the physiological functions of the inositol pyrophosphates based in substantial part on studies in mice with deletion of IP₆K isoforms. These findings highlight the interplay of IPMK and IP₆K in regulating growth factor and nutrient-mediated cell signaling.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
24
|
Best MD, Zhang H, Prestwich GD. Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: Structure, synthesis, and development of probes for studying biological activity. Nat Prod Rep 2010; 27:1403-30. [DOI: 10.1039/b923844c] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Morrison BH, Haney R, Lamarre E, Drazba J, Prestwich GD, Lindner DJ. Gene deletion of inositol hexakisphosphate kinase 2 predisposes to aerodigestive tract carcinoma. Oncogene 2009; 28:2383-92. [PMID: 19430495 DOI: 10.1038/onc.2009.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inositol hexakisphosphate kinase 2 (IP6K2), a member of the inositol hexakisphosphate kinase family, functions as a growth suppressive and apoptosis-enhancing kinase during cell stress. We created mice with a targeted deletion of IP6K2; these mice display normal embryogenesis, development, growth and fertility. Chronic exposure to the carcinogen 4-nitroquinoline 1-oxide (4-NQO, a UV-mimetic compound) in drinking water resulted in fourfold increased incidence of invasive squamous cell carcinoma (SCC) formation in the oral cavity and esophagus of the knockout (KO) mice compared to the wild-type (WT) littermates. Paradoxically, KO mice displayed relative resistance to ionizing radiation and exhibit enhanced survival following 8-10 Gy total body irradiation. Primary KO fibroblasts displayed resistance to antiproliferative effects of interferon-beta and increased colony forming units following ionizing radiation. Radioresistance of KO fibroblasts was associated with accelerated DNA repair measured by comet assay. Direct microinjection of 5-PP-Ins(1,2,3,4,6)P(5) (the enzymatic product of IP6K2), but not InsP(6) (the substrate of IP6K2) induced cell death in SCC22A squamous carcinoma cells.
Collapse
Affiliation(s)
- B H Morrison
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|