1
|
Jaiswal MK, Gupta A, Ansari FJ, Pandey VK, Tiwari VK. Recent Progress on Synthesis of Functionalized 1,5-Disubstituted Triazoles. Curr Org Synth 2024; 21:513-558. [PMID: 38804327 DOI: 10.2174/1570179420666230418123350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2024]
Abstract
Immediately after the invention of 'Click Chemistry' in 2002, the regioselective 1,2,3- triazole scaffolds resulted from respective organic azides and terminal alkynes under Cu(I) catalysis have been well recognized as the functional heterocyclic core at the centre of modern organic chemistry, medicinal chemistry, and material sciences. This CuAAC reaction has several notable features including excellent regioselectivity, high-to-excellent yields, easy to execute, short reaction time, modular in nature, mild condition, readily available starting materials, etc. Moreover, the resulting regioselective triazoles can serve as amide bond isosteres, a privileged functional group in drug discovery and development. More than hundreds of reviews had been devoted to the 'Click Chemistry' in special reference to 1,4-disubstituted triazoles, while only little efforts were made for an opposite regioisomer i.e., 1,5-disubstituted triazole. Herein, we have presented various classical approaches for an expeditious synthesis of a wide range of biologically relevant 1,5- disubstituted 1,2,3-triazole analogues. The syntheses of such a class of diversly functionalized triazoles have emerged as a crucial investigation in the domain of chemistry and biology. This tutorial review covers the literature assessment on the development of various synthetic protocols for the functionalized 1,5-disubstituted triazoles reported during the last 12 years.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal J Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
2
|
Jaiswal MK, Tiwari VK. Growing Impact of Intramolecular Click Chemistry in Organic Synthesis. CHEM REC 2023; 23:e202300167. [PMID: 37522634 DOI: 10.1002/tcr.202300167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Click Chemistry, a modular, rapid, and one of the most reliable tool for the regioselective 1,2,3-triazole forming [3+2] reaction of organic azide and terimal alkyne is widely explored in various emerging domains of research ranging from chemical biology to catalysis and medicinal chemistry to material science. This regioselective reaction from a diverse range of azido-alkyne scaffolds has been well performed in both intermolecular as well as intramolecular fashions. In comparison to the intermolecular metal (Cu/Ru/Ni) variant of 'Click Chemistry', the intramolecular click tool is little addressed. The intramolecular click chemistry is exemplified as a mordern tool of cyclization which involves metal-catalyzed (CuAAC/RuAAC) cyclization, organo-catalyzed cyclization, and thermal-induced topochemical reaction. Thus, we report herein the recent approaches on intramolecular azide-alkyne cycloaddition 'Click Chemistry' with their wide-spread emerging applications in the developement of a diverse range of molecules including fused-heterocycles, well-defined peptidomemics, and macrocyclic architectures of various notable features.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
3
|
Yang X, Kemmink J, Rijkers DTS, Liskamp RMJ. Synthesis of a tricyclic hexapeptide -via two consecutive ruthenium-catalyzed macrocyclization steps- with a constrained topology to mimic vancomycin's binding properties toward D-Ala-D-Ala dipeptide. Bioorg Med Chem Lett 2022; 73:128887. [PMID: 35835378 DOI: 10.1016/j.bmcl.2022.128887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
A ring-closing metathesis (RCM) - peptide coupling - ruthenium-catalyzed azide alkyne cycloaddition (RuAAC) strategy was developed to synthesize a tricyclic hexapeptide in which the side chain to side chain connectivity pattern resulted in a mimic with a topology that effectively mimics the bioactivity of vancomycin as a potent binder of the bacterial cell wall D-Ala-D-Ala dipeptide sequence and more importantly being an effective inhibitor of bacterial growth.
Collapse
Affiliation(s)
- Xin Yang
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Johan Kemmink
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Dirk T S Rijkers
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | - Rob M J Liskamp
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands; School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom; Maastricht University, Faculty of Medicine, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
4
|
Insights on the Synthesis of N-Heterocycles Containing Macrocycles and Their Complexion and Biological Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072123. [PMID: 35408522 PMCID: PMC9000807 DOI: 10.3390/molecules27072123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
Abstract
Macrocyclic chemistry has been extensively developed over the past several decades. In fact, the architecture of new macrocyclic models has undergone exponential growth to offer molecules with specific properties. In this context, an attempt is made in this study to provide an overview of some synthetic methods allowing the elaboration of N-heterocycles containing macrocycles (imidazole, triazole, tetrazole, and pyrazole), as well as their applications in the complexation of metal cations or as pharmacological agents.
Collapse
|
5
|
Synthetic and computational efforts towards the development of peptidomimetics and small-molecule SARS-CoV 3CLpro inhibitors. Bioorg Med Chem 2021; 46:116301. [PMID: 34332853 PMCID: PMC8254399 DOI: 10.1016/j.bmc.2021.116301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) is a severe febrile respiratory disease caused by the beta genus of human coronavirus, known as SARS-CoV. Last year, 2019-n-CoV (COVID-19) was a global threat for everyone caused by the outbreak of SARS-CoV-2. 3CLpro, chymotrypsin-like protease, is a major cysteine protease that substantially contributes throughout the viral life cycle of SARS-CoV and SARS-CoV-2. It is a prospective target for the development of SARS-CoV inhibitors by applying a repurposing strategy. This review focuses on a detailed overview of the chemical synthesis and computational chemistry perspectives of peptidomimetic inhibitors (PIs) and small-molecule inhibitors (SMIs) targeting viral proteinase discovered from 2004 to 2020. The PIs and SMIs are one of the primary therapeutic inventions for SARS-CoV. The journey of different analogues towards the evolution of SARS-CoV 3CLpro inhibitors and complete synthetic preparation of nineteen derivatives of PIs and ten derivatives of SMIs and their computational chemistry perspectives were reviewed. From each class of derivatives, we have identified and highlighted the most compelling PIs and SMIs for SARS-CoV 3CLpro. The protein-ligand interaction of 29 inhibitors were also studied that involved with the 3CLpro inhibition, and the frequent amino acid residues of the protease were also analyzed that are responsible for the interactions with the inhibitors. This work will provide an initiative to encourage further research for the development of effective and drug-like 3CLpro inhibitors against coronaviruses in the near future.
Collapse
|
6
|
Aneja B, Queen A, Khan P, Shamsi F, Hussain A, Hasan P, Rizvi MMA, Daniliuc CG, Alajmi MF, Mohsin M, Hassan MI, Abid M. Design, synthesis & biological evaluation of ferulic acid-based small molecule inhibitors against tumor-associated carbonic anhydrase IX. Bioorg Med Chem 2020; 28:115424. [DOI: 10.1016/j.bmc.2020.115424] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
|
7
|
A decade of advances in the reaction of nitrogen sources and alkynes for the synthesis of triazoles. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213217] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Duan X, Huang X, Fu C, Ma S. Palladium‐Catalyzed Selective Three‐Component Tandem Reaction to Bicyclic 1,2,3‐Triazole Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901284] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xinyu Duan
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| | - Xin Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| |
Collapse
|
9
|
Ahmed SA, El Guesmi N, Althagafi II, Khairou KS, Altass HM, Abdel-Wahab AMA, Asghar BH, Katouah HA, Abourehab MA. Photochromism of dihydroindolizines. Part XXIV: Exploiting “Click” chemistry strategy in the synthesis of fluorenyldihydroindolizines with multiaddressable photochromic properties. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Yang X, Beroske LP, Kemmink J, Rijkers DT, Liskamp RM. Synthesis of bicyclic tripeptides inspired by the ABC-ring system of vancomycin through ruthenium-based cyclization chemistries. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.10.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Barlow TMA, Tourwé D, Ballet S. Cyclisation To Form Small, Medium and Large Rings by Use of Catalysed and Uncatalysed Azide-Alkyne Cycloadditions (AACs). European J Org Chem 2017. [DOI: 10.1002/ejoc.201700521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Thomas M. A. Barlow
- Research Group of Organic Chemistry; Departments of Bioengineering Sciences and Chemistry; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry; Departments of Bioengineering Sciences and Chemistry; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry; Departments of Bioengineering Sciences and Chemistry; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| |
Collapse
|
12
|
Baud LG, Manning MA, Arkless HL, Stephens TC, Unsworth WP. Ring-Expansion Approach to Medium-Sized Lactams and Analysis of Their Medicinal Lead-Like Properties. Chemistry 2017; 23:2225-2230. [PMID: 27935197 DOI: 10.1002/chem.201605615] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 12/20/2022]
Abstract
Medium-sized rings are widely considered to be under-represented in biological screening libraries for lead identification in medicinal chemistry. To help address this, a library of medium-sized lactams has been generated by using a simple, scalable and versatile ring-expansion protocol. Analysis of the library by using open-access computational tool LLAMA suggested that these lactams and their derivatives have highly promising physicochemical and 3D spatial properties and thus have much potential in drug discovery.
Collapse
|
13
|
Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem Rev 2016; 116:14726-14768. [DOI: 10.1021/acs.chemrev.6b00466] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan R. Johansson
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-43183 Mölndal, Sweden
| | - Tamás Beke-Somfai
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
krt. 2, H-1117 Budapest, Hungary
| | - Anna Said Stålsmeden
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nina Kann
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
14
|
Photochromism of dihydroindolizines. Part XX: Synthesis and photophysical behavior of fluorenyldihydroindolizines photochromes based “Click” chemistry strategy. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Synthetic Strategy and Anti-Tumor Activities of Macrocyclic Scaffolds Based on 4-Hydroxyproline. Molecules 2016; 21:molecules21020212. [PMID: 26891283 PMCID: PMC6274554 DOI: 10.3390/molecules21020212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/13/2023] Open
Abstract
A series of novel 13- to 15-member hydroxyproline-based macrocycles, which contain alkyl-alkyl ether and alkyl-aryl ether moieties, have been synthesized by the strategy of macrocyclization utilising azide-alkyne cycloaddition, Mitsunobu protocol and amide formation. Their anti-tumor activities towards A549, MDA-MB-231 and Hep G2 cells were screened in vitro by an MTT assay. The results indicated that 13-member macrocycle 33 containing alkene chain showed the best results, exhibiting the highest inhibitory effects towards lung cancer cell line A549, which was higher than that of the reference cisplatin (IC50 value = 2.55 µmol/L).
Collapse
|
16
|
Kitsiou C, Hindes JJ, I'Anson P, Jackson P, Wilson TC, Daly EK, Felstead HR, Hearnshaw P, Unsworth WP. The Synthesis of Structurally Diverse Macrocycles By Successive Ring Expansion. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Kitsiou C, Hindes JJ, I'Anson P, Jackson P, Wilson TC, Daly EK, Felstead HR, Hearnshaw P, Unsworth WP. The Synthesis of Structurally Diverse Macrocycles By Successive Ring Expansion. Angew Chem Int Ed Engl 2015; 54:15794-8. [PMID: 26768697 DOI: 10.1002/anie.201509153] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/28/2015] [Indexed: 11/10/2022]
Abstract
Structurally diverse macrocycles and medium-sized rings (9-24 membered scaffolds, 22 examples) can be generated through a telescoped acylation/ring-expansion sequence, leading to the insertion of linear fragments into cyclic β-ketoesters without performing a discrete macrocyclization step. The key β-ketoester motif is regenerated in the ring-expanded product, meaning that the same sequence of steps can then be repeated (in theory indefinitely) with other linear fragments, allowing macrocycles with precise substitution patterns to be "grown" from smaller rings using the successive ring-expansion (SuRE) method.
Collapse
|
18
|
Slimi R, Kalhor-Monfared S, Plancq B, Girard C. A-21·CuI as a catalyst for Huisgen’s reaction: about iodination as a side-reaction. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Isidro-Llobet A, Hadje Georgiou K, Galloway WRJD, Giacomini E, Hansen MR, Méndez-Abt G, Tan YS, Carro L, Sore HF, Spring DR. A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds. Org Biomol Chem 2015; 13:4570-80. [PMID: 25778821 PMCID: PMC4441267 DOI: 10.1039/c5ob00371g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/11/2015] [Indexed: 01/23/2023]
Abstract
Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity.
Collapse
Affiliation(s)
- Albert Isidro-Llobet
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Irfan M, Aneja B, Yadava U, Khan SI, Manzoor N, Daniliuc CG, Abid M. Synthesis, QSAR and anticandidal evaluation of 1,2,3-triazoles derived from naturally bioactive scaffolds. Eur J Med Chem 2015; 93:246-54. [DOI: 10.1016/j.ejmech.2015.02.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 11/26/2022]
|
21
|
Chavez-Acevedo L, Miranda LD. Synthesis of novel tryptamine-based macrocycles using an Ugi 4-CR/microwave assisted click-cycloaddition reaction protocol. Org Biomol Chem 2015; 13:4408-12. [DOI: 10.1039/c5ob00067j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A practical synthesis of novel tryptamine-based macrocycles using an Ugi 4-CR/click-cycloaddition sequential reaction protocol is described.
Collapse
Affiliation(s)
- Lizbeth Chavez-Acevedo
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior S.N
- Ciudad Universitaria
- Coyoacán
| | - Luis D. Miranda
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior S.N
- Ciudad Universitaria
- Coyoacán
| |
Collapse
|
22
|
Beckmann HSG, Nie F, Hagerman CE, Johansson H, Tan YS, Wilcke D, Spring DR. A strategy for the diversity-oriented synthesis of macrocyclic scaffolds using multidimensional coupling. Nat Chem 2013; 5:861-7. [PMID: 24056343 DOI: 10.1038/nchem.1729] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
Abstract
A prerequisite for successful screening campaigns in drug discovery or chemical genetics is the availability of structurally and thus functionally diverse compound libraries. Diversity-oriented synthesis (DOS) provides strategies for the generation of such libraries, of which the build/couple/pair (B/C/P) algorithm is the most frequently used. We have developed an advanced B/C/P strategy that incorporates multidimensional coupling. In this approach, structural diversity is not only defined by the nature of the building blocks employed, but also by the linking motif installed during the coupling reaction. We applied this step-efficient approach in a DOS of a library that consisted of 73 macrocyclic compounds based around 59 discrete scaffolds. The macrocycles prepared cover a broad range of different molecular shapes, as illustrated by principal moment-of-inertia analysis. This demonstrates the capability of the advanced B/C/P strategy using multidimensional coupling for the preparation of structurally diverse compound collections.
Collapse
Affiliation(s)
- Henning S G Beckmann
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Jogula S, Dasari B, Khatravath M, Chandrasekar G, Kitambi SS, Arya P. Building a Macrocyclic Toolbox fromC-Linked Carbohydrates Identifies Antiangiogenesis Agents from Zebrafish Assay. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Mandadapu SR, Weerawarna PM, Prior AM, Uy RAZ, Aravapalli S, Alliston KR, Lushington GH, Kim Y, Hua DH, Chang KO, Groutas WC. Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus. Bioorg Med Chem Lett 2013; 23:3709-12. [PMID: 23727045 PMCID: PMC3750990 DOI: 10.1016/j.bmcl.2013.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/18/2022]
Abstract
The design, synthesis, and in vitro evaluation of the first macrocyclic inhibitor of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus are reported. The in vitro inhibitory activity (50% effective concentration) of the macrocyclic inhibitor toward enterovirus 3C protease (CVB3 Nancy strain), and coronavirus (SARS-CoV) and norovirus 3C-like proteases, was determined to be 1.8, 15.5 and 5.1 μM, respectively.
Collapse
Affiliation(s)
| | | | - Allan M. Prior
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | - Sridhar Aravapalli
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Kevin R. Alliston
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | - Yunjeong Kim
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Duy H. Hua
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| |
Collapse
|
25
|
Safe and highly efficient syntheses of triazole drugs using Cu2O nanoparticle in aqueous solutions. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.04.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Painter TO, Bunn JR, Schoenen FJ, Douglas JT, Day VW, Santini C. Skeletal diversification via heteroatom linkage control: preparation of bicyclic and spirocyclic scaffolds from N-substituted homopropargyl alcohols. J Org Chem 2013; 78:3720-30. [PMID: 23510238 DOI: 10.1021/jo400077m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The discovery and application of a new branching pathway synthesis strategy that rapidly produces skeletally diverse scaffolds is described. Two different scaffold types, one a bicyclic iodo-vinylidene tertiary amine/tertiary alcohol and the other, a spirocyclic 3-furanone, are each obtained using a two-step sequence featuring a common first step. Both scaffold types lead to intermediates that can be orthogonally diversified using the same final components. One of the scaffold types was obtained in sufficiently high yield that it was immediately used to produce a 97-compound library.
Collapse
Affiliation(s)
- Thomas O Painter
- Center for Chemical Methodologies and Library Development, The University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chouhan G, James K. Efficient Construction of Proline-Containing β-Turn Mimetic Cyclic Tetrapeptides via CuAAC Macrocyclization. Org Lett 2013; 15:1206-9. [DOI: 10.1021/ol303572t] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Gagan Chouhan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Keith James
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
28
|
Oakdale JS, Fokin VV, Umezaki S, Fukuyama T. Preparation of 1,5-Disubstituted 1,2,3-Triazoles via Ruthenium-catalyzed Azide Alkyne Cycloaddition. ACTA ACUST UNITED AC 2013; 90:96-104. [PMID: 25253916 DOI: 10.15227/orgsyn.090.0096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Yamamoto Y. Syntheses of Heterocycles via Alkyne Cycloadditions Catalyzed by Cyclopentadienylruthenium-Type Complexes. HETEROCYCLES 2013. [DOI: 10.3987/rev-13-783] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Sokolova NV, Nenajdenko VG. Recent advances in the Cu(i)-catalyzed azide–alkyne cycloaddition: focus on functionally substituted azides and alkynes. RSC Adv 2013. [DOI: 10.1039/c3ra42482k] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
31
|
Brehm E, Breinbauer R. Investigation of the origin and synthetic application of the pseudodilution effect for Pd-catalyzed macrocyclisations in concentrated solutions with immobilized catalysts. Org Biomol Chem 2013; 11:4750-6. [DOI: 10.1039/c3ob41020j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Zhang J, Kemmink J, Rijkers DTS, Liskamp RMJ. Synthesis of 1,5-triazole bridged vancomycin CDE-ring bicyclic mimics using RuAAC macrocyclization. Chem Commun (Camb) 2013; 49:4498-500. [DOI: 10.1039/c3cc40628h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Ajay A, Sharma S, Gupt MP, Bajpai V, Hamidullah, Kumar B, Kaushik MP, Konwar R, Ampapathi RS, Tripathi RP. Diversity Oriented Synthesis of Pyran Based Polyfunctional Stereogenic Macrocyles and Their Conformational Studies. Org Lett 2012; 14:4306-9. [DOI: 10.1021/ol3022275] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arya Ajay
- Medicinal and Process Chemistry Division, Sophisticated Analytical Instrumentation Facility, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow-226001, U.P., India, and Process Technology Division, Defence and Research Development Establishment, Jhansi Road, Gwalior-474011, M. P., India
| | - Shrikant Sharma
- Medicinal and Process Chemistry Division, Sophisticated Analytical Instrumentation Facility, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow-226001, U.P., India, and Process Technology Division, Defence and Research Development Establishment, Jhansi Road, Gwalior-474011, M. P., India
| | - Munna Prasad Gupt
- Medicinal and Process Chemistry Division, Sophisticated Analytical Instrumentation Facility, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow-226001, U.P., India, and Process Technology Division, Defence and Research Development Establishment, Jhansi Road, Gwalior-474011, M. P., India
| | - Vikas Bajpai
- Medicinal and Process Chemistry Division, Sophisticated Analytical Instrumentation Facility, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow-226001, U.P., India, and Process Technology Division, Defence and Research Development Establishment, Jhansi Road, Gwalior-474011, M. P., India
| | - Hamidullah
- Medicinal and Process Chemistry Division, Sophisticated Analytical Instrumentation Facility, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow-226001, U.P., India, and Process Technology Division, Defence and Research Development Establishment, Jhansi Road, Gwalior-474011, M. P., India
| | - Brijesh Kumar
- Medicinal and Process Chemistry Division, Sophisticated Analytical Instrumentation Facility, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow-226001, U.P., India, and Process Technology Division, Defence and Research Development Establishment, Jhansi Road, Gwalior-474011, M. P., India
| | - Mahabir Prasad Kaushik
- Medicinal and Process Chemistry Division, Sophisticated Analytical Instrumentation Facility, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow-226001, U.P., India, and Process Technology Division, Defence and Research Development Establishment, Jhansi Road, Gwalior-474011, M. P., India
| | - Rituraj Konwar
- Medicinal and Process Chemistry Division, Sophisticated Analytical Instrumentation Facility, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow-226001, U.P., India, and Process Technology Division, Defence and Research Development Establishment, Jhansi Road, Gwalior-474011, M. P., India
| | - Ravi Sankar Ampapathi
- Medicinal and Process Chemistry Division, Sophisticated Analytical Instrumentation Facility, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow-226001, U.P., India, and Process Technology Division, Defence and Research Development Establishment, Jhansi Road, Gwalior-474011, M. P., India
| | - Rama Pati Tripathi
- Medicinal and Process Chemistry Division, Sophisticated Analytical Instrumentation Facility, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow-226001, U.P., India, and Process Technology Division, Defence and Research Development Establishment, Jhansi Road, Gwalior-474011, M. P., India
| |
Collapse
|
34
|
Liu PN, Li J, Su FH, Ju KD, Zhang L, Shi C, Sung HHY, Williams ID, Fokin VV, Lin Z, Jia G. Selective Formation of 1,4-Disubstituted Triazoles from Ruthenium-Catalyzed Cycloaddition of Terminal Alkynes and Organic Azides: Scope and Reaction Mechanism. Organometallics 2012. [DOI: 10.1021/om300513w] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pei Nian Liu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, People's Republic of China
- Shanghai Key Laboratory of Functional
Materials Chemistry and Institute of Fine Chemicals, East China University of Science and Technology, Meilong
Road 130, Shanghai, People's Republic of China
| | - Juan Li
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, People's Republic of China
| | - Fu Hai Su
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, People's Republic of China
| | - Kun Dong Ju
- Shanghai Key Laboratory of Functional
Materials Chemistry and Institute of Fine Chemicals, East China University of Science and Technology, Meilong
Road 130, Shanghai, People's Republic of China
| | - Li Zhang
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, People's Republic of China
| | - Chuan Shi
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, People's Republic of China
| | - Herman H. Y. Sung
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, People's Republic of China
| | - Ian D. Williams
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, People's Republic of China
| | - Valery V. Fokin
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla,
California 92037, United States
| | - Zhenyang Lin
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, People's Republic of China
| | - Guochen Jia
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, People's Republic of China
| |
Collapse
|
35
|
Liu PN, Siyang HX, Zhang L, Tse SKS, Jia G. RuH2(CO)(PPh3)3 Catalyzed Selective Formation of 1,4-Disubstituted Triazoles from Cycloaddition of Alkynes and Organic Azides. J Org Chem 2012; 77:5844-9. [DOI: 10.1021/jo3008572] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Pei Nian Liu
- Shanghai Key Laboratory of Functional
Materials Chemistry and Institute of Fine Chemicals, East China University of Science and Technology, Meilong
Road 130, Shanghai, China
| | - Hai Xiao Siyang
- Shanghai Key Laboratory of Functional
Materials Chemistry and Institute of Fine Chemicals, East China University of Science and Technology, Meilong
Road 130, Shanghai, China
| | - Li Zhang
- Department of Chemistry, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Sunny Kai San Tse
- Department of Chemistry, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Guochen Jia
- Department of Chemistry, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
36
|
Bahulayan D, Arun S. An easy two step synthesis of macrocyclic peptidotriazoles via a four-component reaction and copper catalyzed intramolecular azide–alkyne [3+2] click cycloaddition. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.03.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Fitzgerald ME, Mulrooney CA, Duvall JR, Wei J, Suh BC, Akella LB, Vrcic A, Marcaurelle LA. Build/couple/pair strategy for the synthesis of stereochemically diverse macrolactams via head-to-tail cyclization. ACS COMBINATORIAL SCIENCE 2012; 14:89-96. [PMID: 22252910 DOI: 10.1021/co200161z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A build/couple/pair (B/C/P) strategy was employed to generate a library of 7936 stereochemically diverse 12-membered macrolactams. All 8 stereoisomers of a common linear amine precursor were elaborated to form the corresponding 8 stereoisomers of two regioisomeric macrocyclic scaffolds via head-to-tail cyclization. Subsequently, these 16 scaffolds were further diversified via capping of two amine functionalities on SynPhase Lanterns. Reagents used for solid-phase diversification were selected using a sparse matrix design strategy with the aim of maximizing coverage of chemical space while adhering to a preset range of physicochemical properties.
Collapse
Affiliation(s)
- Mark E. Fitzgerald
- Chemical Biology Platform, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts
02142, United States
| | - Carol A. Mulrooney
- Chemical Biology Platform, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts
02142, United States
| | - Jeremy R. Duvall
- Chemical Biology Platform, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts
02142, United States
| | - Jingqiang Wei
- Chemical Biology Platform, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts
02142, United States
| | - Byung-Chul Suh
- Chemical Biology Platform, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts
02142, United States
| | - Lakshmi B. Akella
- Chemical Biology Platform, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts
02142, United States
| | - Anita Vrcic
- Chemical Biology Platform, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts
02142, United States
| | - Lisa A. Marcaurelle
- Chemical Biology Platform, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts
02142, United States
| |
Collapse
|
38
|
Fang F, Vogel M, Hines JV, Bergmeier SC. Fused ring aziridines as a facile entry into triazole fused tricyclic and bicyclic heterocycles. Org Biomol Chem 2012; 10:3080-91. [DOI: 10.1039/c2ob07042a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Duan X, Zhang Y, Ding Y, Lin J, Kong X, Zhang Q, Dong C, Luo G, Chen Y. Synthesis of Triazole-Epothilones by Using Cu2O Nanoparticles to Catalyze 1,3-Dipolar Cycloaddition. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Buysse K, Farard J, Nikolaou A, Vanderheyden P, Vauquelin G, Pedersen DS, Tourwé D, Ballet S. Amino triazolo diazepines (Ata) as constrained histidine mimics. Org Lett 2011; 13:6468-71. [PMID: 22087642 DOI: 10.1021/ol202767k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two synthetic routes for the synthesis of amino-triazolodiazepine (Ata) scaffolds are presented. The scope of both of these proceeding through key intra- and intermolecular Huisgen cycloaddition reactions is discussed. The replacement of the His-Pro dipeptide segment in angiotensin IV by the dipeptide mimetic Ata-Gly and subsequent biological evaluation in two inhibitory enzyme assays validated the use of the Ata moiety as a His mimic given the equipotency of both peptidic analogs.
Collapse
Affiliation(s)
- Koen Buysse
- Laboratory of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Krause MR, Goddard R, Kubik S. Anion-Binding Properties of a Cyclic Pseudohexapeptide Containing 1,5-Disubstituted 1,2,3-Triazole Subunits. J Org Chem 2011; 76:7084-95. [DOI: 10.1021/jo201024r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Martin R. Krause
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany,
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, Germany
| | - Stefan Kubik
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany,
| |
Collapse
|
42
|
Zhang J, Kemmink J, Rijkers DTS, Liskamp RMJ. Cu(I)- and Ru(II)-mediated "click" cyclization of tripeptides toward vancomycin-inspired mimics. Org Lett 2011; 13:3438-41. [PMID: 21615166 DOI: 10.1021/ol201184b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Structural mimics comprising 1,4- and 1,5-disubstituted triazole-containing cyclic tripeptides with excellent resemblance toward the DE-ring of vancomycin are conveniently accessible using Cu(I)- or Ru(II)-assisted "click" cyclization.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Division of Medicinal Chemistry & Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | |
Collapse
|
43
|
Empting M, Avrutina O, Meusinger R, Fabritz S, Reinwarth M, Biesalski M, Voigt S, Buntkowsky G, Kolmar H. "Triazole bridge": disulfide-bond replacement by ruthenium-catalyzed formation of 1,5-disubstituted 1,2,3-triazoles. Angew Chem Int Ed Engl 2011; 50:5207-11. [PMID: 21544910 DOI: 10.1002/anie.201008142] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/21/2011] [Indexed: 12/20/2022]
Affiliation(s)
- Martin Empting
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Empting M, Avrutina O, Meusinger R, Fabritz S, Reinwarth M, Biesalski M, Voigt S, Buntkowsky G, Kolmar H. “Triazolbrücke”: ein Disulfidbrückenersatz durch Ruthenium- katalysierte Bildung von 1,5-disubstituierten 1,2,3-Triazolen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008142] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
45
|
Chouhan G, James K. CuAAC Macrocyclization: High Intramolecular Selectivity through the Use of Copper–Tris(triazole) Ligand Complexes. Org Lett 2011; 13:2754-7. [DOI: 10.1021/ol200861f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Gagan Chouhan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92014, United States
| | - Keith James
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92014, United States
| |
Collapse
|
46
|
Isidro-Llobet A, Murillo T, Bello P, Cilibrizzi A, Hodgkinson JT, Galloway WRJD, Bender A, Welch M, Spring DR. Diversity-oriented synthesis of macrocyclic peptidomimetics. Proc Natl Acad Sci U S A 2011; 108:6793-8. [PMID: 21383137 PMCID: PMC3084124 DOI: 10.1073/pnas.1015267108] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structurally diverse libraries of novel small molecules represent important sources of biologically active agents. In this paper we report the development of a diversity-oriented synthesis strategy for the generation of diverse small molecules based around a common macrocyclic peptidomimetic framework, containing structural motifs present in many naturally occurring bioactive compounds. Macrocyclic peptidomimetics are largely underrepresented in current small-molecule screening collections owing primarily to synthetic intractability; thus novel molecules based around these structures represent targets of significant interest, both from a biological and a synthetic perspective. In a proof-of-concept study, the synthesis of a library of 14 such compounds was achieved. Analysis of chemical space coverage confirmed that the compound structures indeed occupy underrepresented areas of chemistry in screening collections. Crucial to the success of this approach was the development of novel methodologies for the macrocyclic ring closure of chiral α-azido acids and for the synthesis of diketopiperazines using solid-supported N methylmorpholine. Owing to their robust and flexible natures, it is envisaged that both new methodologies will prove to be valuable in a wider synthetic context.
Collapse
Affiliation(s)
- Albert Isidro-Llobet
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Madsen CM, Clausen MH. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis. European J Org Chem 2011. [DOI: 10.1002/ejoc.201001715] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Charlotte M. Madsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 201, 2800 Kgs. Lyngby, Denmark, Fax: +45‐45933968
| | - Mads H. Clausen
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 201, 2800 Kgs. Lyngby, Denmark, Fax: +45‐45933968
| |
Collapse
|
48
|
Bogdan AR, James K. Efficient access to new chemical space through flow--construction of druglike macrocycles through copper-surface-catalyzed azide-alkyne cycloaddition reactions. Chemistry 2011; 16:14506-12. [PMID: 21038332 DOI: 10.1002/chem.201002215] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A series of 12- to 22-membered macrocycles, with druglike functionality and properties, have been generated by using a simple and efficient copper-catalyzed azide-acetylene cycloaddition reaction, conducted in flow in high-temperature copper tubing, under environmentally friendly conditions. The triazole-containing macrocycles have been generated in up to 90 % yield in a 5 min reaction, without resorting to the high-dilution conditions typical of macrocyclization reactions. This approach represents a very efficient method for constructing this important class of molecules, in terms of yield, concentration, and environmental considerations.
Collapse
Affiliation(s)
- Andrew R Bogdan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
49
|
Johansson JR, Lincoln P, Nordén B, Kann N. Sequential one-pot ruthenium-catalyzed azide-alkyne cycloaddition from primary alkyl halides and sodium azide. J Org Chem 2011; 76:2355-9. [PMID: 21388208 DOI: 10.1021/jo200134a] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An experimentally simple sequential one-pot RuAAC reaction, affording 1,5-disubstituted 1H-1,2,3-triazoles in good to excellent yields starting from an alkyl halide, sodium azide, and an alkyne, is reported. The organic azide is formed in situ by treating the primary alkyl halide with sodium azide in DMA under microwave heating. Subsequent addition of [RuClCp*(PPh(3))(2)] and the alkyne yielded the desired cycloaddition product after further microwave irradiation.
Collapse
Affiliation(s)
- Johan R Johansson
- Division of Chemistry and Biochemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | | | | | | |
Collapse
|
50
|
Lin PT, Salunke DB, Chen LH, Sun CM. Soluble polymer supported divergent synthesis of tetracyclic benzene-fused pyrazino/diazepino indoles: an advanced synthetic approach to bioactive scaffolds. Org Biomol Chem 2011; 9:2925-37. [DOI: 10.1039/c0ob01126f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|