1
|
Jiang W, Kong F, Del Rosal I, Li M, Wang K, Maron L, Zhang L. A binuclear guanidinate yttrium carbyne complex: unique reactivity toward unsaturated C-N, C-O and C-S bonds. Chem Sci 2023; 14:9154-9160. [PMID: 37655032 PMCID: PMC10466373 DOI: 10.1039/d3sc03483f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
A guanidinato-stabilized binuclear yttrium carbyne complex [(PhCH2)2NC(NC6H3iPr2-2,6)2]2Y2(μ2-Me)(AlMe3)2(μ4-CH) (1) was synthesized via C-H bond activation and its versatile reactivities were investigated. Complex 1 underwent σ-bond metathesis with PhSSPh and nucleophilic addition with PhCN to form the corresponding yttrium thiolate complex 3 and aza-allyl complex 4 respectively. Additionally, the rare yttrium carbide complex 5 was also prepared by treatment of complex 1 with S8. Interestingly, in the reaction with PhNCS, the C[double bond, length as m-dash]S double bond was cleaved, followed by C-H bond activation to give the yttrium sulfide complex 7 with a ketenimine dianion ligand. Unexpectedly, the reaction of complex 1 with CO (1 atm) resulted in deoxygenative coupling of CO, to afford mono- or dioxo-yttrium complexes at different temperatures. The mechanism of the possible formation processes of complexes 3 and 9 was elucidated by DFT calculations.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | - Feng Kong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | | | - Meng Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | - Kai Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | | | - Lixin Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| |
Collapse
|
2
|
Anga S, Acharya J, Chandrasekhar V. An Unsymmetric Imino-Phosphanamidinate Ligand and its Y(III) Complex: Synthesis, Characterization, and Catalytic Hydroboration of Carbonyl Compounds. J Org Chem 2021; 86:2224-2234. [PMID: 33290079 DOI: 10.1021/acs.joc.0c02383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An imino-phosphanamide ligand, [NHIiPr2Me2P(Ph)NH-2,6-iPr2C6H3] (LH), containing two different N-substituents was prepared by the direct reaction of the lithium salt of N-heterocyclic imine (NHI) with phenylchloro-2,6-diisopropylphenyl phosphanamine, PhP(Cl)NH-2,6-iPr2-C6H3. Reaction of LH with Y(N(SiMe3)2)3 afforded the heteroleptic complex, [{L}Y(N(SiMe3)2)2] (1), by elimination of HN(SiMe3)2. Compound 1 was characterized by multinuclear NMR and X-ray crystallography. In the complex, the Y(III) center was found to be tetracoordinate in a distorted tetrahedral geometry. The ligand, imino-phosphanamidinate, [L]-, functions in a chelating manner, and its coordination to Y(III) results in a distorted 4-membered YPN2 ring. As a proof of principle of its activity, 1 was used as a precatalyst for the hydroboration of various aldehydes and ketones using HBpin as the hydrogen source. The hydroboration reaction was rapid and clean even with low catalyst loadings (0.01-0.1 mol %). In addition, a very good functional group tolerance was observed in these reactions.
Collapse
Affiliation(s)
- Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad, Gopanpally 500046, Hyderabad, India
| | - Joydev Acharya
- Tata Institute of Fundamental Research Hyderabad, Gopanpally 500046, Hyderabad, India.,Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally 500046, Hyderabad, India.,Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| |
Collapse
|
3
|
Casey KC, Brown AM, Robinson JR. Yttrium and lanthanum bis(phosphine-oxide)methanides: structurally diverse, dynamic, and reactive. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01438a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homoleptic yttrium and lanthanum complexes of bis(phosphineoxide) methanides, RE(HPhL)3 and RE2(HMeL)6, promote the first rare-earth mediated Horner-Wittig and acid-base chemistry consistent with multifunctional reactivity (Lewis-acid/Brønstedbase).
Collapse
|
4
|
Fayoumi A, Lyubov DM, Tolpygin AO, Shavyrin AS, Cherkasov AV, Ob'edkov AM, Trifonov AA. Sc and Y Heteroalkyl Complexes with a NC
sp3
N Pincer‐Type Diphenylmethanido Ligand: Synthesis, Structure, and Reactivity. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmad Fayoumi
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP‐445 603950 Nizhny Novgorod Russia
| | - Dmitry M. Lyubov
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP‐445 603950 Nizhny Novgorod Russia
| | - Alexey O. Tolpygin
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP‐445 603950 Nizhny Novgorod Russia
| | - Andrey S. Shavyrin
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP‐445 603950 Nizhny Novgorod Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP‐445 603950 Nizhny Novgorod Russia
| | - Anatoly M. Ob'edkov
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP‐445 603950 Nizhny Novgorod Russia
| | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP‐445 603950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova Street 28 119334 Moscow Russia
| |
Collapse
|
5
|
Fustier-Boutignon M, Nebra N, Mézailles N. Geminal Dianions Stabilized by Main Group Elements. Chem Rev 2019; 119:8555-8700. [PMID: 31194516 DOI: 10.1021/acs.chemrev.8b00802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review is dedicated to the chemistry of stable and isolable species that bear two lone pairs at the same C center, i.e., geminal dianions, stabilized by main group elements. Three cases can thus be considered: the geminal-dilithio derivative, for which the two substituents at C are neutral, the yldiide derivatives, for which one substituent is neutral while the other is charged, and finally the geminal bisylides, for which the two substituents are positively charged. In this review, the syntheses and electronic structures of the geminal dianions are presented, followed by the studies dedicated to their reactivity toward organic substrates and finally to their coordination chemistry and applications.
Collapse
Affiliation(s)
- Marie Fustier-Boutignon
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| | - Noel Nebra
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| | - Nicolas Mézailles
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| |
Collapse
|
6
|
Yan F, Li S, Li L, Zhang W, Cui D, Wang M, Dou Y. Lutetium‐Methanediide‐Alkyl Complexes: Unique Reactivity toward Carbodiimide and Pyridine. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fangbin Yan
- Key Laboratory of Automobile Materials of Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130025 P. R. China
| | - Shihui Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Lei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Wanxi Zhang
- Key Laboratory of Automobile Materials of Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130025 P. R. China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Meiyan Wang
- Institute of Theoretical Chemistry Jilin University Changchun 130021 P. R. China
| | - Yanli Dou
- Key Laboratory of Automobile Materials of Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130025 P. R. China
| |
Collapse
|
7
|
Wang C, Mao W, Xiang L, Yang Y, Fang J, Maron L, Leng X, Chen Y. Monomeric Rare-Earth Metal Silyl-Thiophosphinoyl-Alkylidene Complexes: Synthesis, Structure, and Reactivity. Chemistry 2018; 24:13903-13917. [DOI: 10.1002/chem.201802791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Wang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| | - Weiqing Mao
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| | - Li Xiang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| | - Yan Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization; Gansu Province School of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Jian Fang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization; Gansu Province School of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Laurent Maron
- LPCNO, CNRS, & INSA; Université Paul Sabatier; 135 Avenue de Rangueil 31077 Toulouse France
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| |
Collapse
|
8
|
Dianionic Carbon-Bridged Scandium-Copper/Silver Heterobimetallic Complexes: Synthesis, Bonding, and Reactivity. Chemistry 2018; 24:5637-5643. [DOI: 10.1002/chem.201706147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 11/07/2022]
|
9
|
Feichtner KS, Gessner VH. Cooperative bond activation reactions with carbene complexes. Chem Commun (Camb) 2018; 54:6540-6553. [DOI: 10.1039/c8cc02198h] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent advances in the application of carbene complexes in bond activation reactions via metal–ligand cooperation.
Collapse
Affiliation(s)
- Kai-Stephan Feichtner
- Inorganic Chemistry II
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Viktoria H. Gessner
- Inorganic Chemistry II
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- 44801 Bochum
- Germany
| |
Collapse
|
10
|
Gardner BM, Kefalidis CE, Lu E, Patel D, McInnes EJL, Tuna F, Wooles AJ, Maron L, Liddle ST. Evidence for single metal two electron oxidative addition and reductive elimination at uranium. Nat Commun 2017; 8:1898. [PMID: 29196691 PMCID: PMC5711956 DOI: 10.1038/s41467-017-01363-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022] Open
Abstract
Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.
Collapse
Affiliation(s)
- Benedict M Gardner
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Christos E Kefalidis
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Erli Lu
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Dipti Patel
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Eric J L McInnes
- EPSRC National UK EPR Facility, School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Floriana Tuna
- EPSRC National UK EPR Facility, School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ashley J Wooles
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse, 31077, France.
| | - Stephen T Liddle
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
11
|
Ortu F, Gregson M, Wooles AJ, Mills DP, Liddle ST. Yttrium Methanide and Methanediide Bis(silyl)amide Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fabrizio Ortu
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Matthew Gregson
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ashley J. Wooles
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David P. Mills
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Stephen T. Liddle
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
12
|
Mao W, Xiang L, Alvarez Lamsfus C, Maron L, Leng X, Chen Y. Highly Reactive Scandium Phosphinoalkylidene Complex: C-H and H-H Bonds Activation. J Am Chem Soc 2017; 139:1081-1084. [PMID: 28068074 DOI: 10.1021/jacs.6b13081] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first scandium phosphinoalkylidene complex was synthesized and structurally characterized. The complex has the shortest Sc-C bond lengths reported to date (2.089(3) Å). DFT calculations reveal the presence of a three center π interaction in the complex. This scandium phosphinoalkylidene complex undergoes intermolecular C-H bond activation of pyridine, 4-dimethylamino pyridine and 1,3-dimethylpyrazole at room temperature. Furthermore, the complex rapidly activates H2 under mild conditions. DFT calculations also demonstrate that the C-H activation of 1,3-dimethylpyrazole is selective for thermodynamic reasons and the relatively slow reaction is due to the need of fully breaking the chelating effect of the phosphino group to undergo the reaction whereas this is not the case for H2.
Collapse
Affiliation(s)
- Weiqing Mao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, P. R. China
| | - Li Xiang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, P. R. China
| | - Carlos Alvarez Lamsfus
- LPCNO, CNRS & INSA, Université Paul Sabatier , 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier , 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
13
|
Bayram M, Naglav D, Wölper C, Schulz S. Synthesis and Structure of Bis(diphenylphosphinimino)methanide and Bis(diphenylphosphinimino)methanediide Beryllium Complexes. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Melike Bayram
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Dominik Naglav
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Christoph Wölper
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Stephan Schulz
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
14
|
Wang C, Zhou J, Zhao X, Maron L, Leng X, Chen Y. Non-Pincer-Type Mononuclear Scandium Alkylidene Complexes: Synthesis, Bonding, and Reactivity. Chemistry 2015; 22:1258-61. [DOI: 10.1002/chem.201504725] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Chen Wang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| | - Jiliang Zhou
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| | - Xuefei Zhao
- LPCNO, CNRS & INSA; Université Paul Sabatier; 135 Avenue de Rangueil 31077 Toulouse France
| | - Laurent Maron
- LPCNO, CNRS & INSA; Université Paul Sabatier; 135 Avenue de Rangueil 31077 Toulouse France
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
15
|
Selective [2+2] Cycloaddition Reactions of Isocyanates and Thioisocyanates across the M=C Bond in a Ruthenium Carbene Complex. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Cooper OJ, Mills DP, Lewis W, Blake AJ, Liddle ST. Reactivity of the uranium(IV) carbene complex [U(BIPM(TMS))(Cl)(μ-Cl)₂Li(THF)₂] (BIPM(TMS) = {C(PPh₂NSiMe₃)₂}) towards carbonyl and heteroallene substrates: metallo-Wittig, adduct formation, C-F bond activation, and [2 + 2]-cycloaddition reactions. Dalton Trans 2015; 43:14275-83. [PMID: 24798878 DOI: 10.1039/c4dt00909f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The reactivity of the uranium(IV) carbene complex [U(BIPM(TMS))(Cl)(μ-Cl)2Li(THF)2] (1, BIPM(TMS) = {C(PPh2NSiMe3)2}) towards carbonyl and heteroallene substrates is reported. Reaction of 1 with benzophenone proceeds to give the metallo-Wittig terminal alkene product Ph2C=C(PPh2NSiMe3)2 (2); the likely "UOCl2" byproduct could not be isolated. Addition of the bulky ketone PhCOBu(t) to 1 resulted in loss of LiCl, coordination of the ketone, and dimerisation to give [U(BIPM(TMS))(Cl)(μ-Cl){OC(Ph)(Bu(t))}]2 (3). The reaction of 1 with coumarin resulted in ring opening of the cyclic ester and a metallo-Wittig-type reaction to afford [U{BIPM(TMS)[C(O)(CHCHC6H4O-2)]-κ(3)-N,O,O'}(Cl)2(THF)] (4) where the enolate product remains coordinated to uranium. The reaction of PhCOF with 1 resulted in C-F bond activation and oxidation resulting in isolation of [U(O)2(Cl)2(μ-Cl)2{(μ-LiDME)OC(Ph)=C(PPh2NSiMe3)(PPh2NHSiMe3)}2] (5) along with [U(Cl)2(F)2(py)4] (6). The reactions of 1 with tert-butylisocyanate or dicyclohexylcarbodiimide resulted in the isolation of the [2 + 2]-cycloaddition products [U{BIPM(TMS)[C(NBu(t)){OLi(THF)2(μ-Cl)Li(THF)3}]-κ(4)-C,N,N',N''}(Cl)3] (7) and [U{BIPM(TMS)[C(NCy)2]-κ(4)-C,N,N',N''}(Cl)(μ-Cl)2Li(THF)2] (8). Complexes 2-8 have been variously characterised by single crystal X-ray diffraction, multi-nuclear NMR and FTIR spectroscopies, Evans method solution magnetic moments, variable temperature SQUID magnetometry, and elemental analyses.
Collapse
Affiliation(s)
- Oliver J Cooper
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Gessner VH, Becker J, Feichtner KS. Carbene Complexes Based on Dilithium Methandiides. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500051] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Edelmann FT. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2013. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Weismann J, Gessner VH. Si–H activation by means of metal ligand cooperation in a methandiide derived carbene complex. Chem Commun (Camb) 2015; 51:14909-12. [DOI: 10.1039/c5cc05201g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Si–H bond activation of a series of silanes by means of metal ligand cooperation is reported.
Collapse
Affiliation(s)
- Julia Weismann
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| | - Viktoria H. Gessner
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| |
Collapse
|
21
|
Lafage M, Heuclin H, Le Goff XF, Saffon-Merceron N, Mézailles N. Phosphorus-Stabilized Titanium Carbene Complexes: Synthesis, Reactivity and DFT Studies. Chemistry 2014; 20:16995-7003. [DOI: 10.1002/chem.201403708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Indexed: 11/10/2022]
|
22
|
Li S, Wang M, Liu B, Li L, Cheng J, Wu C, Liu D, Liu J, Cui D. Lutetium-methanediide-alkyl complexes: synthesis and chemistry. Chemistry 2014; 20:15493-8. [PMID: 25284379 DOI: 10.1002/chem.201404809] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Indexed: 11/11/2022]
Abstract
The first four-coordinate methanediide/alkyl lutetium complex (BODDI)Lu2 (CH2 SiMe3 )2 (μ2 -CHSiMe3 )(THF)2 (BODDI=ArNC(Me)CHCOCHC(Me)NAr, Ar=2,6-iPr2 C6 H3 ) (1) was synthesized by a thermolysis methodology through α-H abstraction from a Lu-CH2 SiMe3 group. Complex 1 reacted with equimolar 2,6-iPrC6 H3 NH2 and Ph2 C+O to give the corresponding lutetium bridging imido and oxo complexes (BODDI)Lu2 (CH2 SiMe3 )2 (μ2 -N-2,6-iPr2 C6 H3 )(THF)2 (2) and (BODDI)Lu2 (CH2 SiMe3 )2 (μ2 -O)(THF)2 (3). Treatment of 3 with Ph2 C=O (4 equiv) caused a rare insertion of Lu-μ2 -O bond into theC=O group to afford a diphenylmethyl diolate complex 4. Reaction of 1 with PhN=C=O (2 equiv) led to the migration of SiMe3 to the amido nitrogen atom to give complex (BODDI)Lu2 (CH2 SiMe3 )2 -μ-{PhNC(O)CHC(O)NPh(SiMe3 )-κ(3) N,O,O}(THF) (5). Reaction of 1 withtBuN=C formed an unprecedented product (BODDI)Lu2 (CH2 SiMe3 ){μ2 -[η(2) :η(2) -tBuN=C(=CH2 )SiMe2 CHC=NtBu-κ(1) N]}(tBuN=C)2 (6) through a cascade reaction of N=C bond insertion, sequential cyclometalative γ-(sp(3) )-H activation, C=C bond formation, and rearrangement of the newly formed carbene intermediate. The possible mechanistic pathways between 1, PhN=C=O, and tBuN=C were elucidated by DFT calculations.
Collapse
Affiliation(s)
- Shihui Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P.R. China)
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lu E, Lewis W, Blake AJ, Liddle ST. The ketimide ligand is not just an inert spectator: heteroallene insertion reactivity of an actinide-ketimide linkage in a thorium carbene amide ketimide complex. Angew Chem Int Ed Engl 2014; 53:9356-9. [PMID: 25044515 PMCID: PMC4464536 DOI: 10.1002/anie.201404898] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/02/2014] [Indexed: 11/07/2022]
Abstract
The ketimide anion R2C=N(-) is an important class of chemically robust ligand that binds strongly to metal ions and is considered ideal for supporting reactive metal fragments due to its inert spectator nature; this contrasts with R2N(-) amides that exhibit a wide range of reactivities. Here, we report the synthesis and characterization of a rare example of an actinide ketimide complex [Th(BIPM(TMS)){N(SiMe3)2}(N=CPh2)] [2, BIPM(TMS)=C(PPh2NSiMe3)2]. Complex 2 contains Th=C(carbene), Th-N(amide) and Th-N(ketimide) linkages, thereby presenting the opportunity to probe the preferential reactivity of these linkages. Importantly, reactivity studies of 2 with unsaturated substrates shows that insertion reactions occur preferentially at the Th-N(ketimide) bond rather than at the Th=C(carbene) or Th-N(amide) bonds. This overturns the established view that metal-ketimide linkages are purely inert spectators.
Collapse
Affiliation(s)
- Erli Lu
- School of Chemistry, University of Nottingham, University ParkNottingham, NG7 2RD (UK)
| | - William Lewis
- School of Chemistry, University of Nottingham, University ParkNottingham, NG7 2RD (UK)
| | - Alexander J Blake
- School of Chemistry, University of Nottingham, University ParkNottingham, NG7 2RD (UK)
| | - Stephen T Liddle
- School of Chemistry, University of Nottingham, University ParkNottingham, NG7 2RD (UK)
| |
Collapse
|
24
|
Lu E, Lewis W, Blake AJ, Liddle ST. The Ketimide Ligand is Not Just an Inert Spectator: Heteroallene Insertion Reactivity of an Actinide-Ketimide Linkage in a Thorium Carbene Amide Ketimide Complex. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Molitor S, Feichtner KS, Kupper C, Gessner VH. Substitution effects on the formation of T-shaped palladium carbene and thioketone complexes from Li/Cl carbenoids. Chemistry 2014; 20:10752-62. [PMID: 24664573 DOI: 10.1002/chem.201304927] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 11/05/2022]
Abstract
The preparation of palladium thioketone and T-shaped carbene complexes by treatment of thiophosphoryl substituted Li/Cl carbenoids with a Pd(0) precursor is reported. Depending on the steric demand, the anion-stabilizing ability of the silyl moiety (by negative hyperconjugation effects) and the remaining negative charge at the carbenic carbon atom, isolation of a three-coordinate, T-shaped palladium carbene complex is possible. In contrast, insufficient charge stabilization results in the transfer of the sulfur of the thiophosphoryl moiety and thus in the formation of a thioketone complex. While the thioketones are stable compounds the carbene complexes are revealed to be highly reactive and decompose under elimination of Pd metal. Computational studies revealed that both complexes are formed by a substitution mechanism. While the ketone turned out to be the thermodynamically favored product, the carbene is kinetically favored and thus preferentially formed at low reaction temperatures.
Collapse
Affiliation(s)
- Sebastian Molitor
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany)
| | | | | | | |
Collapse
|
26
|
Becker J, Gessner VH. Synthesis and Electronic Structure of Carbene Complexes Based on a Sulfonyl-Substituted Dilithio Methandiide. Organometallics 2014. [DOI: 10.1021/om5001277] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Julia Becker
- Institut für Anorganische
Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Viktoria H. Gessner
- Institut für Anorganische
Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
27
|
Stable Geminal Dianions as Precursors for Gem-Diorganometallic and Carbene Complexes. TOP ORGANOMETAL CHEM 2014. [DOI: 10.1007/3418_2014_74] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Synthesis and Characterisation of Lanthanide N-Trimethylsilyl and -Mesityl Functionalised Bis(iminophosphorano)methanides and -Methanediides. INORGANICS 2013. [DOI: 10.3390/inorganics1010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Wang K, Luo G, Hong J, Zhou X, Weng L, Luo Y, Zhang L. Homometallic Rare-Earth Metal Phosphinidene Clusters: Synthesis and Reactivity. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Wang K, Luo G, Hong J, Zhou X, Weng L, Luo Y, Zhang L. Homometallic Rare-Earth Metal Phosphinidene Clusters: Synthesis and Reactivity. Angew Chem Int Ed Engl 2013; 53:1053-6. [DOI: 10.1002/anie.201307422] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/15/2013] [Indexed: 11/09/2022]
|
31
|
Gessner VH, Meier F, Uhrich D, Kaupp M. Synthesis and bonding in carbene complexes of an unsymmetrical dilithio methandiide: a combined experimental and theoretical study. Chemistry 2013; 19:16729-39. [PMID: 24150833 DOI: 10.1002/chem.201303115] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Indexed: 11/10/2022]
Abstract
Herein, we report the preparation of a new unsymmetrical, bis(thiophosphinoyl)-substituted dilithio methandiide and its application for the synthesis of zirconium- and palladium-carbene complexes. These complexes were found to exhibit remarkably shielded (13)C NMR shifts, which are much more highfield-shifted than those of "normal" carbene complexes. DFT calculations were performed to determine the origin of these observations and to distinguish the electronic structure of these and related carbene complexes compared with the classical Fischer and Schrock-type complexes. Various methods show that these systems are best described as highly polarized Schrock-type complexes, in which the metal-carbon bond possesses more electrostatic contributions than in the prototype Schrock systems, or even as "masked" methandiides. As such, geminal dianions represent a kind of "extreme" Schrock-type ligands favoring the ionic resonance structure M(+)-CR2(-) as often used in textbooks to explain the nucleophilic nature of Schrock complexes.
Collapse
Affiliation(s)
- Viktoria H Gessner
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany).
| | | | | | | |
Collapse
|