1
|
Neururer F, Huter K, Seidl M, Hohloch S. Reactivity and Structure of a Bis-phenolate Niobium NHC Complex. ACS ORGANIC & INORGANIC AU 2022; 3:59-71. [PMID: 36748079 PMCID: PMC9896488 DOI: 10.1021/acsorginorgau.2c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
We report the facile synthesis of a rare niobium(V) imido NHC complex with a dianionic OCO-pincer benzimidazolylidene ligand (L 1 ) with the general formula [NbL 1 (N t Bu)PyCl] 1-Py. We achieved this by in situ deprotonation of the corresponding azolium salt [H 3 L 1 ][Cl] and subsequent reaction with [Nb(N t Bu)Py 2 Cl 3 ]. The pyridine ligand in 1-Py can be removed by the addition of B(C6F5)3 as a strong Lewis acid leading to the formation of the pyridine-free complex 1. In contrast to similar vanadium(V) complexes, complex 1-Py was found to be a good precursor for various salt metathesis reactions, yielding a series of chalcogenido and pnictogenido complexes with the general formula [ NbL 1 (N t Bu)Py(EMes)] (E = O (2), S (3), NH (4), and PH (5)). Furthermore, complex 1-Py can be converted to alkyl complex (6) with 1 equiv of neosilyl lithium as a transmetallation agent. Addition of a second equivalent yields a new trianionic supporting ligand on the niobium center (7) in which the benzimidazolylidene ligand is alkylated at the former carbene carbon atom. The latter is an interesting chemically "noninnocent" feature of the benzimidazolylidene ligand potentially useful in catalysis and atom transfer reactions. Addition of mesityl lithium to 1-Py gives the pyridine-free aryl complex 8, which is stable toward "overarylation" by an additional equivalent of mesityl lithium. Electrochemical investigation revealed that complexes 1-Py and 1 are inert toward reduction in dichloromethane but show two irreversible reduction processes in tetrahydrofuran as a solvent. However, using standard reduction agents, e.g., KC8, K-mirror, and Na/Napht, no reduced products could be isolated. All complexes have been thoroughly studied by various techniques, including 1H-, 13C{1H}-, and 1H-15N HMBC NMR spectroscopy, IR spectroscopy, and X-ray diffraction analysis.
Collapse
|
2
|
Hong D, Rajeshkumar T, Zhu S, Huang Z, Zhou S, Zhu X, Maron L, Wang S. Unusual selective reactivity of the rare-earth metal complexes bearing a ligand with multiple functionalities. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Neururer F, Liu S, Leitner D, Baltrun M, Fisher KR, Kopacka H, Wurst K, Daumann LJ, Munz D, Hohloch S. Mesoionic Carbenes in Low- to High-Valent Vanadium Chemistry. Inorg Chem 2021; 60:15421-15434. [PMID: 34590834 PMCID: PMC8527456 DOI: 10.1021/acs.inorgchem.1c02087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/12/2022]
Abstract
We report the synthesis of vanadium(V) oxo complex 1 with a pincer-type dianionic mesoionic carbene (MIC) ligand L1 and the general formula [VOCl(L1)]. A comparison of the structural (SC-XRD), electronic (UV-vis), and electrochemical (cyclic voltammetry) properties of 1 with the benzimidazolinylidene congener 2 (general formula [VOCl(L2)]) shows that the MIC is a stronger donor also for early transition metals with low d-electron population. Since electrochemical studies revealed both complexes to be reversibly reduced, the stronger donor character of MICs was not only demonstrated for the vanadium(V) but also for the vanadium(IV) oxidation state by isolating the reduced vanadium(IV) complexes [Co(Cp*)2][1] and [Co(Cp*)2][2] ([Co(Cp*)2] = decamethylcobaltocenium). The electronic structures of the compounds were investigated by computational methods. Complex 1 was found to be a moderate precursor for salt metathesis reactions, showing selective reactivity toward phenolates or secondary amides, but not toward primary amides and phosphides, thiophenols, or aryls/alkyls donors. Deoxygenation with electron-rich phosphines failed to give the desired vanadium(III) complex. However, treatment of the deprotonated ligand precursor with vanadium(III) trichloride resulted in the clean formation of the corresponding MIC vanadium(III) complex 6, which undergoes a clean two-electron oxidation with organic azides yielding the corresponding imido complexes. The reaction with TMS-N3 did not afford a nitrido complex, but instead the imido complex 10. This study reveals that, contrary to popular belief, MICs are capable of supporting early transition-metal complexes in a variety of oxidation states, thus making them promising candidates for the activation of small molecules and redox catalysis.
Collapse
Affiliation(s)
- Florian
R. Neururer
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Shenyu Liu
- Faculty
of Science, Department of Chemistry, University
of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Daniel Leitner
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Marc Baltrun
- Faculty
of Science, Department of Chemistry, University
of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Katherine R. Fisher
- Department
Chemie, Ludwigs-Maximilians-University Munich, Butenandtstraße 5-13 Haus D, 81377 Munich, Germany
| | - Holger Kopacka
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Lena J. Daumann
- Department
Chemie, Ludwigs-Maximilians-University Munich, Butenandtstraße 5-13 Haus D, 81377 Munich, Germany
| | - Dominik Munz
- Fakultät
NT, Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Stephan Hohloch
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Speelman AL, Skubi KL, Mercado BQ, Holland PL. Synthesis and Reactivity of Iron Complexes with a Biomimetic SCS Pincer Ligand. Inorg Chem 2021; 60:1965-1974. [PMID: 33443404 DOI: 10.1021/acs.inorgchem.0c03427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent experimental evidence suggests that the FeMoco of nitrogenase undergoes structural rearrangement during N2 reduction, which may result in the generation of coordinatively unsaturated iron sites with two sulfur donors and a carbon donor. In an effort to synthesize and study small-molecule model complexes with a one-carbon/two-sulfur coordination environment, we have designed two new SCS pincer ligands containing a central NHC donor accompanied by thioether- or thiolate-functionalized aryl groups. Metalation of the thioether ligand with Fe(OTf)2 gives 6-coordinate complexes in which the SCS ligand binds meridionally. In contrast, metalation of the thiolate ligand with Fe(HMDS)2 gives a four-coordinate pseudotetrahedral amide complex in which the ligand binds facially, illustrating the potential structural flexibility of these ligands. Reaction of the amide complex with a bulky monothiol gives a four-coordinate complex with a one-carbon/three-sulfur coordination environment that resembles the resting state of nitrogenase. Reaction of the amide complex with phenylhydrazine gives a product with a rare κ1-bound phenylhydrazido group which undergoes N-N cleavage to give a phenylamido complex.
Collapse
Affiliation(s)
- Amy L Speelman
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Kazimer L Skubi
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
5
|
Nicholls TP, Williams JR, Willans CE. Reactivities of N-heterocyclic carbenes at metal centers. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Taakili R, Canac Y. NHC Core Pincer Ligands Exhibiting Two Anionic Coordinating Extremities. Molecules 2020; 25:molecules25092231. [PMID: 32397416 PMCID: PMC7248942 DOI: 10.3390/molecules25092231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
The chemistry of NHCcore pincer ligands of LX2 type bearing two pending arms, identical or not, whose coordinating center is anionic in nature, is here reviewed. In this family, the negative charge of the coordinating atoms can be brought either by a carbon atom via a phosphonium ylide (R3P+-CR2-) or by a heteroatom through amide (R2N-), oxide (RO-), or thio(seleno)oxide (RS-, RSe-) donor functionalities. Through selected examples, the synthetic methods, coordination properties, and applications of such tridentate systems are described. Particular emphasis is placed on the role of the donor ends in the chemical behavior of these species.
Collapse
|
7
|
Baltrun M, Watt FA, Schoch R, Hohloch S. Dioxo-, Oxo-imido-, and Bis-imido-Molybdenum(VI) Complexes with a Bis-phenolate-NHC Ligand. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marc Baltrun
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Fabian A. Watt
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Roland Schoch
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stephan Hohloch
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
8
|
Lubitz K, Radius U. The Coupling of N-Heterocyclic Carbenes to Terminal Alkynes at Half Sandwich Cobalt NHC Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Katharina Lubitz
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
9
|
Taakili R, Lepetit C, Duhayon C, Valyaev DA, Lugan N, Canac Y. Palladium(ii) pincer complexes of a C,C,C-NHC, diphosphonium bis(ylide) ligand. Dalton Trans 2019; 48:1709-1721. [DOI: 10.1039/c8dt04316g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The preparation, characterization, and reactivity of Pd(ii) complexes of the C,C,C-NHC, diphosphonium bis(ylide) pincer ligand of LX2-type are here described.
Collapse
Affiliation(s)
| | | | | | | | - Noël Lugan
- LCC-CNRS
- Université de Toulouse
- CNRS
- Toulouse
- France
| | - Yves Canac
- LCC-CNRS
- Université de Toulouse
- CNRS
- Toulouse
- France
| |
Collapse
|
10
|
Hameury S, de Frémont P, Braunstein P. Metal complexes with oxygen-functionalized NHC ligands: synthesis and applications. Chem Soc Rev 2018; 46:632-733. [PMID: 28083579 DOI: 10.1039/c6cs00499g] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ligand design has met with considerable success with both categories of hybrid ligands, which are characterized by chemically different donor groups, and of N-heterocyclic carbenes (NHCs). Their spectacular development and diversity are attracting worldwide interest and offers almost unlimited diversity and potential in e.g. coordination/organometallic main group and transition metal chemistry, catalysis, medicinal chemistry and materials science. This review aims at providing a comprehensive update on a specific class of ligands that has enjoyed much attention in the past few years, at the intersection between the two categories mentioned above, that of hybrid NHC ligands in which the functionality associated with the carbene donor is of the oxygen-donor type. For each type of oxygen-donor present in such chelating (Section 1) or bridging (Section 2) hybrid ligands, we will examine the synthesis, structures and reactivity of their metal complexes and their applications, with a special focus on homogeneous catalysis (Section 3). Thus, hydrogenation, C-H bond activation, C-C, C-N, C-O bond formation, hydrolysis of silanes, oligomerization, polymerization, metathesis, hydrosilylation, C-C bond cleavage, acceptorless dehydrogenation, dehalogenation/hydrogen transfer, oxidation and reduction reactions will be successively presented in a tabular manner, to facilitate an overview and a rapid identification of the relevant publications describing which metals associated with a given oxygen functionality are most suitable. The literature coverage includes the year 2015.
Collapse
Affiliation(s)
- Sophie Hameury
- Université de Strasbourg, CNRS, CHIMIE UMR 7177, Laboratoire de Chimie de Coordination, 4 rue Blaise Pascal, 67081 Strasbourg, France. and Universität Freiburg, Makromolekulare Chemie, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Pierre de Frémont
- Université de Strasbourg, CNRS, CHIMIE UMR 7177, Laboratoire de Chimie de Coordination, 4 rue Blaise Pascal, 67081 Strasbourg, France. and Université de Strasbourg, CNRS, CHIMIE UMR 7177, Laboratoire de Synthèse, Réactivité et Catalyse Organométalliques, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Pierre Braunstein
- Université de Strasbourg, CNRS, CHIMIE UMR 7177, Laboratoire de Chimie de Coordination, 4 rue Blaise Pascal, 67081 Strasbourg, France.
| |
Collapse
|
11
|
Uwizeyimana H, Wang M, Chen W, Khan K. Ecotoxicological effects of binary mixtures of siduron and Cd on mRNA expression in the earthworm Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:657-665. [PMID: 28822934 DOI: 10.1016/j.scitotenv.2017.07.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/03/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to investigate the eco-toxicological responses of earthworm (Eisenia fetida) exposed to combined siduron (herbicide) and cadmium (Cd). Eisenia fetida gene expressions including metallothionein (MT) and heat shock protein70 (Hsp70) were analyzed using real-time Polymerase Chain Reaction after individual and combined siduron (0.90, 1.80, 3.60 and 7.20μgcm-2) and Cd (0.225, 0.45, 0.90 and 1.80μgcm-2) sublethal exposures. Where, the nature of the toxicological interactions between siduron and Cd in inducing or suppressing MT and Hsp70 expression was determined by applying the Combination index (CI)-isobologram model. The results revealed significant variations in MT and weak changes in Hsp70 expression when the earthworms were exposed to individual Cd. The individual siduron exposure exhibited a significant down-regulation (p<0.01) in MT during all treatments and in Hsp70 expression only at 7.20μgcm-2 concentration; while the mixtures of siduron and Cd exposures resulted a significant down regulation (p<0.05) in both MT and Hsp70 expressions. Moreover, the combined siduron and Cd exposure revealed nearly additive effect (CI=1) at the lower effect levels and significant synergistic effect (CI<1) at the higher effect levels for both MT and Hsp70 expression. The synergistic effects of combined siduron and Cd suggest that there might be a potential risk connected to the co-occurrence of these chemicals in the environment.
Collapse
Affiliation(s)
- Herman Uwizeyimana
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Meie Wang
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Weiping Chen
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Department of Environmental and Conservation Sciences, University of Swat, Swat 19130, Pakistan
| |
Collapse
|
12
|
Quadri CC, Lalrempuia R, Hessevik J, Törnroos KW, Le Roux E. Structural Characterization of Tridentate N-Heterocyclic Carbene Titanium(IV) Benzyloxide, Silyloxide, Acetate, and Azide Complexes and Assessment of Their Efficacies for Catalyzing the Copolymerization of Cyclohexene Oxide with CO2. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00705] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Coralie C. Quadri
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Ralte Lalrempuia
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Julie Hessevik
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Karl W. Törnroos
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Erwan Le Roux
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| |
Collapse
|
13
|
Uwizeyimana H, Wang M, Chen W. Evaluation of combined noxious effects of siduron and cadmium on the earthworm Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5349-5359. [PMID: 28013463 DOI: 10.1007/s11356-016-8220-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Environmental contaminants do not often occur as individual chemicals but rather in complex mixtures whose joint effects can create a strong toxicity to surrounding organisms. To determine the combined harmful effects of siduron (herbicide) and cadmium (heavy metal) toward Eisenia fetida earthworms, samples of worm's coelomocytes were subjected to siduron and cadmium (Cd) at sublethal concentrations (lower than LC50)-siduron 0, 0.8, 2.4, and 7.2 μg cm-2 Cd 0, 0.4, 0.8, and 1.6 μg cm-2 in filter paper contact assay, both as individual compounds and combinations. The CI-isobologram model was utilized to reveal the types of toxicological interactions between siduron and cadmium in inducing DNA damage toward earthworms. The results indicated that tail DNA percentage (TDNA %) at individual siduron and cadmium concentrations (with the exception of the lowest concentration of Cd 0.04 μgcm -2) were highly significant compared to those of the control (p < 0.01). Tail moments (TM) at individual Cd concentrations (0.8 and 1.6 μg cm -2) were highly significant compared to those of the control (p < 0.05), while the increase of TM for individual siduron was only significant (p < 0.05) at 7.2 μg cm -2 which is the highest dose/concentration of siduron used in this study. The combinations of siduron and Cd indicated a significant synergism (CI < 1) at the lower effect levels and a significant antagonism (CI > 1) at the higher effect levels. The synergistic effect for a particular combination of chemicals suggests that there might be a possible risk connected to the coincidence of these chemicals.
Collapse
Affiliation(s)
- Herman Uwizeyimana
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| |
Collapse
|
14
|
Wan L, Zhang D. Brønsted Base-Induced Rearrangement and Nucleophilic Addition of O/N-Functionalized NHCs and Relative Group 4 Metal Complexes for Ethylene Polymerization Catalysis. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b00862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Wan
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, People’s Republic of China
| | - Dao Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
15
|
Würtemberger-Pietsch S, Radius U, Marder TB. 25 years of N-heterocyclic carbenes: activation of both main-group element-element bonds and NHCs themselves. Dalton Trans 2015; 45:5880-95. [PMID: 26675582 DOI: 10.1039/c5dt04106f] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
N-Heterocyclic carbenes (NHCs) are widely used ligands and reagents in modern inorganic synthesis as well as in homogeneous catalysis and organocatalysis. However, NHCs are not always innocent bystanders. In the last few years, more and more examples were reported of reactions of NHCs with main-group elements which resulted in modification of the NHC. Many of these reactions lead to ring expansion and the formation of six-membered heterocyclic rings involving insertion of the heteroatom into the C-N bond and migration of hydrides, phenyl groups or boron-containing fragments. Furthermore, a few related NHC rearrangements were observed some decades ago. In this Perspective, we summarise the history of NHC ring expansion reactions from the 1960s till the present.
Collapse
Affiliation(s)
- Sabrina Würtemberger-Pietsch
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. u.radius@uni-wuerzburg
| | | | | |
Collapse
|
16
|
Romain C, Specklin D, Miqueu K, Sotiropoulos JM, Fliedel C, Bellemin-Laponnaz S, Dagorne S. Unusual Benzyl Migration Reactivity in NHC-Bearing Group 4 Metal Chelates: Synthesis, Characterization, and Mechanistic Investigations. Organometallics 2015. [DOI: 10.1021/om501143t] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Charles Romain
- Institut
de chimie de Strasbourg, UMR 7177, CNRS-Université de Strasbourg, 1 rue
Blaise Pascal, F-67000 Strasbourg, France
| | - David Specklin
- Institut
de chimie de Strasbourg, UMR 7177, CNRS-Université de Strasbourg, 1 rue
Blaise Pascal, F-67000 Strasbourg, France
| | - Karinne Miqueu
- Institut
des Sciences Analytiques et de Physico-Chimie pour l’Environnement
et les Matériaux, UMR 5254, Université de Pau et des Pays de l’Adour, Technopôle Hélioparc, 2 avenue du Président Angot, F-64053 Pau cedex 09, France
| | - Jean-Marc Sotiropoulos
- Institut
des Sciences Analytiques et de Physico-Chimie pour l’Environnement
et les Matériaux, UMR 5254, Université de Pau et des Pays de l’Adour, Technopôle Hélioparc, 2 avenue du Président Angot, F-64053 Pau cedex 09, France
| | - Christophe Fliedel
- Institut
de chimie de Strasbourg, UMR 7177, CNRS-Université de Strasbourg, 1 rue
Blaise Pascal, F-67000 Strasbourg, France
| | - Stéphane Bellemin-Laponnaz
- Institut
de Physique et Chimie des Matériaux de Strasbourg UMR 7504, CNRS-Université de Strasbourg, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex
2, France and
| | - Samuel Dagorne
- Institut
de chimie de Strasbourg, UMR 7177, CNRS-Université de Strasbourg, 1 rue
Blaise Pascal, F-67000 Strasbourg, France
| |
Collapse
|
17
|
Despagnet-Ayoub E, Takase MK, Labinger JA, Bercaw JE. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an N-Heterocyclic Carbene–Zirconium Complex. J Am Chem Soc 2015; 137:10500-3. [DOI: 10.1021/jacs.5b06695] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emmanuelle Despagnet-Ayoub
- Arnold and Mabel Beckman
Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael K. Takase
- Arnold and Mabel Beckman
Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Jay A. Labinger
- Arnold and Mabel Beckman
Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - John E. Bercaw
- Arnold and Mabel Beckman
Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Zhang M, Zhang J, Ni X, Shen Z. Bis(phenolate) N-heterocyclic carbene rare earth metal complexes: synthesis, characterization and applications in the polymerization of n-hexyl isocyanate. RSC Adv 2015. [DOI: 10.1039/c5ra16447h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyhexyl isocyanantes catalyzed by N-heterocyclic carbene rare earth metal complexes show high molecular weight with narrow molecular weight distribution.
Collapse
Affiliation(s)
- Min Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jingjing Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xufeng Ni
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
19
|
Zhang D, Zi G. N-heterocyclic carbene (NHC) complexes of group 4 transition metals. Chem Soc Rev 2015; 44:1898-921. [DOI: 10.1039/c4cs00441h] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the progress in the synthesis and catalytic activity of group 4 NHC–metal complexes.
Collapse
Affiliation(s)
- Dao Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
20
|
Lee CS, Park JH, Hwang EY, Park GH, Go MJ, Lee J, Lee BY. Preparation of [bis(amido)-phosphine] and [amido-phosphine sulfide or oxide] hafnium and zirconium complexes for olefin polymerization. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Quadri CC, Le Roux E. Copolymerization of cyclohexene oxide with CO2 catalyzed by tridentate N-heterocyclic carbene titanium(IV) complexes. Dalton Trans 2014; 43:4242-6. [PMID: 24292280 DOI: 10.1039/c3dt52804a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of complexes based on titanium(IV) bearing a bisanionic mer-tridentate N-heterocyclic carbene ligand were investigated for the copolymerization of cyclohexene oxide with CO2. Upon addition of [PPN]X' salts, all complexes were found to be active and highly selective toward the formation of poly(cyclohexene oxide-alt-carbon dioxide).
Collapse
Affiliation(s)
- Coralie C Quadri
- Kjemisk Institutt, Universitetet i Bergen, Allégaten 41, N-5007, Bergen, Norway.
| | | |
Collapse
|
22
|
Bellemin-Laponnaz S, Dagorne S. Group 1 and 2 and early transition metal complexes bearing N-heterocyclic carbene ligands: coordination chemistry, reactivity, and applications. Chem Rev 2014; 114:8747-74. [PMID: 25144918 DOI: 10.1021/cr500227y] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stéphane Bellemin-Laponnaz
- IPCMS (Institut de Physique et Chimie des Matériaux de Strasbourg), CNRS-Université de Strasbourg , 23 rue du Loess BP 43, F-67034 Strasbourg, France
| | | |
Collapse
|
23
|
Barroso S, de Aguiar SR, Munhá RF, Martins AM. New zirconium complexes supported by N-heterocyclic carbene (NHC) ligands: Synthesis and assessment of hydroamination catalytic properties. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.11.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Despagnet-Ayoub E, Henling LM, Labinger JA, Bercaw JE. Addition of a phosphine ligand switches an N-heterocyclic carbene-zirconium catalyst from oligomerization to polymerization of 1-hexene. Dalton Trans 2014; 42:15544-7. [PMID: 24061616 DOI: 10.1039/c3dt52342j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalyst for the oligomerization of 1-hexene, generated by the activation of a benzimidazolylidene zirconium dibenzyl complex, switches to a polymerization catalyst on addition of a trialkylphosphine.
Collapse
Affiliation(s)
- Emmanuelle Despagnet-Ayoub
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|
25
|
Jun SH, Park JH, Lee CS, Park SY, Go MJ, Lee J, Lee BY. Preparation of Phosphine-Amido Hafnium and Zirconium Complexes for Olefin Polymerization. Organometallics 2013. [DOI: 10.1021/om400899g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sung Hae Jun
- Department
of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Ji Hae Park
- Department
of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Chun Sun Lee
- Department
of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Seong Yeon Park
- Department
of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Min Jeong Go
- Department
of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Junseong Lee
- Department
of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Bun Yeoul Lee
- Department
of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| |
Collapse
|
26
|
Fuku-en SI, Yamamoto J, Minoura M, Kojima S, Yamamoto Y. Synthesis of New Dipyrido-Annulated N-Heterocyclic Carbenes with Ortho Substituents. Inorg Chem 2013; 52:11700-2. [DOI: 10.1021/ic402301u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shin-ichi Fuku-en
- Department of Chemistry,
Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Junki Yamamoto
- Department of Chemistry,
Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Mao Minoura
- Department of Chemistry, Graduate School
of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Satoshi Kojima
- Department of Chemistry,
Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Yohsuke Yamamoto
- Department of Chemistry,
Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|