1
|
Yamada K. 9-Fluorenylmethyl Chloroformate Labeling for O-Glycan Analysis. Methods Mol Biol 2024; 2763:159-169. [PMID: 38347409 DOI: 10.1007/978-1-0716-3670-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Structural analysis of O-glycans from mucins and characterization of the interaction of these glycans with other biomolecules are essential for a full understanding of mucins. Various techniques have been developed for the structural and functional analysis of glycans. While 9-fluorenylmethyl chloroformate (Fmoc-Cl) is generally used to protect amino groups in peptide synthesis, it can also be used as a glycan-labeling reagent for structural analysis. Fmoc-labeled glycans are strongly fluorescent and can be analyzed with high sensitivity using liquid chromatography-fluorescence detection (LC-FD) analysis as well as being analyzed with high sensitivity by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Fmoc-labeled glycans can be easily delabeled and converted to glycosylamine-form or free (hemiacetal or aldehyde)-form glycans that can be used to fabricate glycan arrays or synthesize glycosyl dendrimers. This derivatization allows for the isolation from biological samples of glycans that are difficult to synthesize chemically, as well as the fabrication of immobilized-glycan devices. The Fmoc labeling method promises to be a tool for accelerating O-glycan structural analysis and an understanding of molecular interactions. In this chapter, we introduce the Fmoc labeling method for analysis of O-glycans and fabrication of O-glycan arrays.
Collapse
Affiliation(s)
- Keita Yamada
- The Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan.
| |
Collapse
|
2
|
Wang C, Gao X, Gong G, Man L, Wei Q, Lan Y, Yang M, Han J, Jin W, Wei M, Huang L, Wang Z. A versatile strategy for high-resolution separation of reducing glycan mixtures as hydrazones by two-dimensional high-performance liquid chromatography. J Chromatogr A 2022; 1685:463599. [DOI: 10.1016/j.chroma.2022.463599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
3
|
Recent advances and trends in sample preparation and chemical modification for glycan analysis. J Pharm Biomed Anal 2022; 207:114424. [PMID: 34653745 DOI: 10.1016/j.jpba.2021.114424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Growing significance of glycosylation in protein functions has accelerated the development of methodologies for detection, identification, and characterization of protein glycosylation. In the past decade, glycobiology research has been advanced by innovative techniques with further progression in the post-genome era. Although significant technical progress has been made in terms of analytical throughput, comprehensiveness, and sensitivity, most methods for glycosylation analysis still require laborious and time-consuming sample preparation tasks. Additionally, sample preparation methods that are focused on specific glycan(s) require an in-depth understanding of various issues in glycobiology. In this review, modern sample preparation and chemical modification methods for the structural and quantitative glycan analyses together with the challenges and advantages of recent sample preparation methods are summarized. The techniques presented herein can facilitate the exploration of biomarkers, understanding of unknown glycan functions, and development of biopharmaceuticals.
Collapse
|
4
|
Zhang YY, Ghirardello M, Wang T, Lu AM, Liu L, Voglmeir J, Galan MC. Imidazolium labelling permits the sensitive mass-spectrometric detection of N-glycosides directly from serum. Chem Commun (Camb) 2021; 57:7003-7006. [PMID: 34159978 PMCID: PMC8280963 DOI: 10.1039/d1cc02100a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022]
Abstract
A novel imidazolium derivative (GITag) shows superior ionisation and consequently allows increased mass spectrometric detection capabilities of oligosaccharides and N-glycans. Here we demonstrate that human serum samples can be directly labelled by GITag on a MALDI target plate, abrogating prevalently required sample pretreatment or clean-up steps.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, UK.
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Ai-Min Lu
- College of Sciences, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, UK.
| |
Collapse
|
5
|
Du H, Zheng C, Aslam M, Xie X, Wang W, Yang Y, Liu X. Endoplasmic Reticulum-Mediated Protein Quality Control and Endoplasmic Reticulum-Associated Degradation Pathway Explain the Reduction of N-glycoprotein Level Under the Lead Stress. FRONTIERS IN PLANT SCIENCE 2021; 11:598552. [PMID: 33519851 PMCID: PMC7838096 DOI: 10.3389/fpls.2020.598552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/04/2020] [Indexed: 05/06/2023]
Abstract
Different anthropogenic activities result in the continuous increase of metal lead (Pb) in the environment and adversely affect living organisms. Therefore, it is important to investigate the tolerance mechanism in a model organism. Chlamydomonas reinhardtii is an important green eukaryotic model microalga for studying different kinds of biological questions. In this study, the responses of C. reinhardtii were revealed via a comprehensive approach, including physiological, genomic, transcriptomic, glycomic, and bioinformatic techniques. Physiological results showed that the growth rate and soluble protein content were significantly reduced under the high lead stress. Also, the results obtained from the genomic and transcriptomic analyses presented that the endoplasmic reticulum-mediated protein quality control (ERQC) system and endoplasmic reticulum-associated degradation (ERAD) pathway were activated under the third day of high lead stress. The unique upregulated protein disulfide isomerase genes on the ERQC system were proposed to be important for the protein level and protein quality control. The accumulation of specific N-glycans indicated that specific N-glycosylation of proteins might alter the biological functions of proteins to alleviate the Pb stress in alga and/or lead to the degradation of incomplete/misfolded proteins. At the same time, it was observed that genes involved in each process of ERAD were upregulated, suggesting that the ERAD pathway was activated to assist the degradation of incomplete/misfolded proteins. Therefore, it is reasonable to speculate that the reduction of protein level under the high lead stress was related to the activated ERQC system and QRAD pathway. Our findings will provide a solid and reliable foundation and a proposed ERAD working model for further in-depth study of the ERQC system and ERAD pathway under the Pb stress and even other biotic and abiotic stresses.
Collapse
Affiliation(s)
- Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Canqi Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Muhmmad Aslam
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water & Marine Sciences, Uthal, Pakistan
| | - Xihui Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Wanna Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yingquan Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
6
|
Zheng Z, Pan X, Xu J, Wu Z, Zhang Y, Wang K. Advances in tracking of polysaccharides in vivo: Labeling strategies, potential factors and applications based on pharmacokinetic characteristics. Int J Biol Macromol 2020; 163:1403-1420. [DOI: 10.1016/j.ijbiomac.2020.07.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
|
7
|
Fmoc N-hydroxysuccinimide ester: A facile and multifunctional role in N-glycan analysis. Anal Chim Acta 2020; 1131:56-67. [PMID: 32928480 DOI: 10.1016/j.aca.2020.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
N-glycans that are fluorescently tagged by glycosylamine acylation have become a promising way for glycan biomarker discovery. Here, we describe a simple and rapid method using Fmoc N-hydroxysuccinimide ester (Fmoc-OSu) to label N-glycans by reacting with their corresponding intermediate glycosylamines produced by microwave-assisted deglycosylation. After optimizing reaction conditions, this derivatization reaction can be effectively achieved under 40 °C for 1 h. Moreover, the comparison of fluorescent intensities for Fmoc-OSu, Fmoc-Cl and 2-AA labeling strategies were also performed. Among which, the fluorescent intensities of Fmoc-OSu labeled glycan derivatives were approximately 5 and 13 times higher than that labeled by Fmoc-Cl and 2-AA respectively. Furthermore, the developed derivatization strategy has also been applied for analyzing serum N-glycans, aiming to screen specific biomarkers for early diagnosis of lung squamous cell cancer. More interestingly, the preparation of free reducing N-glycan standards have been achieved by the combination of HPLC fraction of Fmoc labeled glycan derivatives and Fmoc releasing chemistry. Overall, this proposed method has the potential to be used in functional glycomic study.
Collapse
|
8
|
Zhang Q, Li Z, Song X. Preparation of Complex Glycans From Natural Sources for Functional Study. Front Chem 2020; 8:508. [PMID: 32719769 PMCID: PMC7348041 DOI: 10.3389/fchem.2020.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023] Open
Abstract
One major barrier in glycoscience is the lack of diverse and biomedically relevant complex glycans in sufficient quantities for functional study. Complex glycans from natural sources serve as an important source of these glycans and an alternative to challenging chemoenzymatic synthesis. This review discusses preparation of complex glycans from several classes of glycoconjugates using both enzymatic and chemical release approaches. Novel technologies have been developed to advance the large-scale preparation of complex glycans from natural sources. We also highlight recent approaches and methods developed in functional and fluorescent tagging and high-performance liquid chromatography (HPLC) isolation of released glycans.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhonghua Li
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
9
|
A practical method for preparing fluorescent-labeled glycans with a 9-fluorenylmethyl derivative to simplify a fluorimetric HPLC-based analysis. J Pharm Biomed Anal 2020; 186:113267. [PMID: 32240925 DOI: 10.1016/j.jpba.2020.113267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 01/18/2023]
Abstract
Analysis of glycans in glycoproteins is often performed by liquid chromatography (LC) separation coupled with fluorescence detection and/or mass spectrometric detection. Enzymatically or chemically released glycans from glycoproteins are usually labeled by reductive amination with a fluorophore reagent. Although labeling techniques based on reductive amination have been well-established as sample preparation methods for fluorometric HPLC-based glycan analysis, they often include time-consuming and tedious purification steps. Here, we reported an alternative fluorescent labeling method based on the synthesis of hydrazone and its reduction using 9-fluorenylmethyl carbazate (Fmoc-hydrazine) as a fluorophore reagent. Using isomaltopentaose and N-glycans from human IgG, we optimized the Fmoc-labeling conditions and purification procedure of Fmoc-labeled N-glycans and applied the optimized method for the analysis of N-glycans released from four glycoproteins (bovine RNase B, human fibrinogen, human α1-acid glycoprotein, and bovine fetuin). The complete workflow for preparation of fluorescent-labeled N-glycans takes a total of 3.5 h and is simple to implement. The method presented here lowers the overall cost of a fluorescently labeled N-glycan and will be practically useful for the screening of disease-related glycans or routine analysis at an early stage of development of biopharmaceuticals.
Collapse
|
10
|
Yang X, Bartlett MG. Glycan analysis for protein therapeutics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:29-40. [PMID: 31063953 DOI: 10.1016/j.jchromb.2019.04.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
Abstract
Glycosylation can be a critical quality attribute for protein therapeutics due to its extensive impact on product safety and efficacy. Glycan characterization is important in the process of protein drug development, from early stage candidate selection to late stage regulatory submission. It is also an indispensable part in the evaluation of biosimilarity. This review discusses the effects of glycosylation on the stability and activity of protein therapeutics, regulatory considerations corresponding to manufacturing and structural characterization of glycosylated protein therapeutics, and focuses on mass spectrometry compatible separation methods for glycan characterization of protein therapeutics. These approaches include hydrophilic interaction liquid chromatography, reversed-phase liquid chromatography, capillary electrophoresis, porous graphitic carbon liquid chromatography and two-dimensional liquid chromatography. Advances and novelties in each separation method, as well as associated challenges and limitations, are discussed at the released glycan, glycopeptide, glycoprotein subunit and intact glycoprotein levels.
Collapse
Affiliation(s)
- Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America.
| |
Collapse
|
11
|
Wu Y, Sha Q, Wang C, Liu BF, Wang S, Liu X. Development of a filter-aided extraction method coupled with glycosylamine labeling to simplify and enhance high performance liquid chromatography-based N-glycan analysis. J Chromatogr A 2019; 1600:105-111. [PMID: 31056268 DOI: 10.1016/j.chroma.2019.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 01/04/2023]
Abstract
Efficient sample pretreatment of N-glycans from glycoproteins is essential but challenging due to the limitations of existing tedious and laborious methods in N-glycomics. This study aimed to establish a filter-aided extraction method coupled with glycosylamine AQC labeling for a simple and rapid direct HPLC-FLD-based analysis of N-glycans. The developed method was demonstrated to be simpler and more sensitive compared to previous HILIC SPE purification method coupled with glycosylamine labeling. It has been validated with wild-type N-glycans from human transferrin and RNase B and then was successfully applied to investigate N-glycan profiles of the transferrin in human serum and a monoclonal antibody (mAb). Results showed good applicability of the method for complex samples. Additionally, this method is compatible with the replicate determination of N-glycan samples to assess the high-throughput analysis of glycan variability in mAb sample.
Collapse
Affiliation(s)
- Yike Wu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiuyue Sha
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chang Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Song Wang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, China.
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
12
|
Kinoshita M, Yamamoto, S, Suzuki S. High-throughput analysis of glycoprotein-derived glycans by using automated microchip electrophoresis system. ACTA ACUST UNITED AC 2019. [DOI: 10.2198/electroph.63.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Zhang Q, Li Z, Wang Y, Zheng Q, Li J. Mass spectrometry for protein sialoglycosylation. MASS SPECTROMETRY REVIEWS 2018; 37:652-680. [PMID: 29228471 DOI: 10.1002/mas.21555] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Sialic acids are a family of structurally unique and negatively charged nine-carbon sugars, normally found at the terminal positions of glycan chains on glycoproteins and glycolipids. The glycosylation of proteins is a universal post-translational modification in eukaryotic species and regulates essential biological functions, in which the most common sialic acid is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid) (Neu5NAc). Because of the properties of sialic acids under general mass spectrometry (MS) conditions, such as instability, ionization discrimination, and mixed adducts, the use of MS in the analysis of protein sialoglycosylation is still challenging. The present review is focused on the application of MS related methodologies to the study of both N- and O-linked sialoglycans. We reviewed MS-based strategies for characterizing sialylation by analyzing intact glycoproteins, proteolytic digested glycopeptides, and released glycans. The review concludes with future perspectives in the field.
Collapse
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Zack Li
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
| | - Jianjun Li
- National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Moldovan RC, Bodoki E, Servais AC, Chankvetadze B, Crommen J, Oprean R, Fillet M. Capillary electrophoresis-mass spectrometry of derivatized amino acids for targeted neurometabolomics - pH mediated reversal of diastereomer migration order. J Chromatogr A 2018; 1564:199-206. [PMID: 29910088 DOI: 10.1016/j.chroma.2018.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 01/08/2023]
Abstract
A targeted CE-MS approach was developed for the chiral analysis of biologically relevant amino acids in artificial cerebrospinal fluid (aCSF). In order to achieve chiral resolution, the five amino acids (Ser, Asn, Asp, Gln and Glu) were derivatized with (+)-1-(9-fluorenyl)ethyl chloroformate ((+)-FLEC). The diastereoselectivity was found to be highly dependent on pH for all analytes and the optimized background electrolyte (BGE) consisted of 150 mM acetic acid, adjusted to pH 3.7 with NH4OH. Furthermore, a reversal of the migration order of Asp derivatives was observed. This phenomenon seems to be caused by intra-molecular interactions affecting the pKa of the second ionizable group (the side chain carboxyl). The applicability of this method was evaluated using aCSF. A solid phase extraction (SPE) protocol was developed for the selective extraction of the FLEC derivatives. A full evaluation of the matrix effect and extraction yield was performed concluding that the matrix effect is marginal and the recoveries are between 46 and 92%. The method offers adequate sensitivity (limits of detection below 1 μM).
Collapse
Affiliation(s)
- Radu-Cristian Moldovan
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium; Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, 400349, Cluj-Napoca, Romania
| | - Ede Bodoki
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, 400349, Cluj-Napoca, Romania
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, Tbilisi, Georgia
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium
| | - Radu Oprean
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, 400349, Cluj-Napoca, Romania
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium.
| |
Collapse
|
15
|
Liu Y, Wang C, Wang R, Wu Y, Zhang L, Liu BF, Cheng L, Liu X. Isomer-specific profiling of N-glycans derived from human serum for potential biomarker discovery in pancreatic cancer. J Proteomics 2018; 181:160-169. [DOI: 10.1016/j.jprot.2018.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 02/03/2023]
|
16
|
Determination of N-glycans by high performance liquid chromatography using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as the glycosylamine labeling reagent. J Chromatogr A 2018; 1535:114-122. [DOI: 10.1016/j.chroma.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/26/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022]
|
17
|
Li C, Zhu S, Ma C, Wang LX. Designer α1,6-Fucosidase Mutants Enable Direct Core Fucosylation of Intact N-Glycopeptides and N-Glycoproteins. J Am Chem Soc 2017; 139:15074-15087. [PMID: 28990779 DOI: 10.1021/jacs.7b07906] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Core fucosylation of N-glycoproteins plays a crucial role in modulating the biological functions of glycoproteins. Yet, the synthesis of structurally well-defined, core-fucosylated glycoproteins remains a challenging task due to the complexity in multistep chemical synthesis or the inability of the biosynthetic α1,6-fucosyltransferase (FUT8) to directly fucosylate full-size mature N-glycans in a chemoenzymatic approach. We report in this paper the design and generation of potential α1,6-fucosynthase and fucoligase for direct core fucosylation of intact N-glycoproteins. We found that mutation at the nucleophilic residue (D200) did not provide a typical glycosynthase from this bacterial enzyme, but several mutants with mutation at the general acid/base residue E274 of the Lactobacillus casei α1,6-fucosidase, including E274A, E274S, and E274G, acted as efficient glycoligases that could fucosylate a wide variety of complex N-glycopeptides and intact glycoproteins by using α-fucosyl fluoride as a simple donor substrate. Studies on the substrate specificity revealed that the α1,6-fucosidase mutants could introduce an α1,6-fucose moiety specifically at the Asn-linked GlcNAc moiety not only to GlcNAc-peptide but also to high-mannose and complex-type N-glycans in the context of N-glycopeptides, N-glycoproteins, and intact antibodies. This discovery opens a new avenue to a wide variety of homogeneous, core-fucosylated N-glycopeptides and N-glycoproteins that are hitherto difficult to obtain for structural and functional studies.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Biochemistry, University of Maryland , 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Shilei Zhu
- Department of Chemistry and Biochemistry, University of Maryland , 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Christopher Ma
- Department of Chemistry and Biochemistry, University of Maryland , 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland , 8051 Regents Drive, College Park, Maryland 20742, United States
| |
Collapse
|
18
|
Wu Y, Wang C, Luo J, Liu Y, Zhang L, Xia Y, Feng X, Liu BF, Lin Y, Liu X. Microwave-assisted deglycosylation for rapid and sensitive analysis of N-glycans via glycosylamine derivatization. Anal Bioanal Chem 2017; 409:4027-4036. [DOI: 10.1007/s00216-017-0346-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/19/2017] [Accepted: 03/28/2017] [Indexed: 11/28/2022]
|
19
|
Gao W, Li H, Liu Y, Liu Y, Feng X, Liu BF, Liu X. Rapid and sensitive analysis of N-glycans by MALDI-MS using permanent charge derivatization and methylamidation. Talanta 2016; 161:554-559. [PMID: 27769447 DOI: 10.1016/j.talanta.2016.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 11/25/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become an important technology for glycan analysis due to its ease of operation, short analysis time and impurity tolerance. However, the low ionization efficiency of N-glycans led to the difficulty in analyzing glycans of low abundance in complex biological samples due to the lack of basic site for protonation. Therefore, highly sensitive method for the glycans analysis is in urgent demand. Here we report a new strategy to introduce a permanent charge at the reducing end of N-linked glycans by a one pot reaction, where glycosylamines that were obtained by rapid deglycosylation within 5min were labeled with N-succinimidyloxycarbonylmethyl tris (2,4,6- trimethoxyphenyl) phosphonium bromide (TMPP-Ac-OSu). With TMPP-Ac labeling, more than 50 fold enhancement in the sensitivity of method was achieved for neutral glycans from ribonuclease B (RNase B) in comparison to their native counterparts. In combination with methylamidation of sialic acid residues, this novel developed strategy could also be used for sialylated glycans analysis from sialoglycoproteins and complex serum sample. As a result, more than 50 glycans were detected with only 25nL human serum sample.
Collapse
Affiliation(s)
- Wenjie Gao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Henghui Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanyan Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuhong Liu
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
20
|
Highly sensitive derivatization reagents possessing positively charged structures for the determination of oligosaccharides in glycoproteins by high-performance liquid chromatography electrospray ionization tandem mass spectrometry. J Chromatogr A 2016; 1465:79-89. [DOI: 10.1016/j.chroma.2016.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 11/16/2022]
|
21
|
Yamamoto S, Kinoshita M, Suzuki S. Current landscape of protein glycosylation analysis and recent progress toward a novel paradigm of glycoscience research. J Pharm Biomed Anal 2016; 130:273-300. [PMID: 27461579 DOI: 10.1016/j.jpba.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 12/25/2022]
Abstract
This review covers the basics and some applications of methodologies for the analysis of glycoprotein glycans. Analytical techniques used for glycoprotein glycans, including liquid chromatography (LC), capillary electrophoresis (CE), mass spectrometry (MS), and high-throughput analytical methods based on microfluidics, were described to supply the essentials about biopharmaceutical and biomarker glycoproteins. We will also describe the MS analysis of glycoproteins and glycopeptides as well as the chemical and enzymatic releasing methods of glycans from glycoproteins and the chemical reactions used for the derivatization of glycans. We hope the techniques have accommodated most of the requests from glycoproteomics researchers.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
22
|
Yang Q, Wang LX. Mammalian α-1,6-Fucosyltransferase (FUT8) Is the Sole Enzyme Responsible for the N-Acetylglucosaminyltransferase I-independent Core Fucosylation of High-mannose N-Glycans. J Biol Chem 2016; 291:11064-71. [PMID: 27008861 DOI: 10.1074/jbc.m116.720789] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/19/2023] Open
Abstract
Understanding the biosynthetic pathway of protein glycosylation in various expression cell lines is important for controlling and modulating the glycosylation profiles of recombinant glycoproteins. We found that expression of erythropoietin (EPO) in a HEK293S N-acetylglucosaminyltransferase I (GnT I)(-/-) cell line resulted in production of the Man5GlcNAc2 glycoforms, in which more than 50% were core-fucosylated, implicating a clear GnT I-independent core fucosylation pathway. Expression of GM-CSF and the ectodomain of FcγIIIA receptor led to ∼30% and 3% core fucosylation, suggesting that the level of core fucosylation also depends on the nature of the recombinant proteins. To elucidate the GnT I-independent core fucosylation pathway, we generated a stable HEK293S GnT I(-/-) cell line with either knockdown or overexpression of FUT8 by a highly efficient lentivirus-mediated gene transfer approach. We found that the EPO produced from the FUT8 knockdown cell line was the pure Man5GlcNAc2 glycoform, whereas that produced from the FUT8-overexpressing cell line was found to be fully core-fucosylated oligomannose glycan (Man5GlcNAc2Fuc). These results provide direct evidence that FUT8, the mammalian α1,6-fucosyltransferase, is the sole enzyme responsible for the GnT I-independent core fucosylation pathway. The production of the homogeneous core-fucosylated Man5GlcNAc2 glycoform of EPO in the FUT8-overexpressed HEK293S GnT I(-/-) cell line represents the first example of production of fully core-fucosylated high-mannose glycoforms.
Collapse
Affiliation(s)
- Qiang Yang
- From the Department of Chemistry and Biochemistry, University of Maryland College Park, College Park, Maryland 20742
| | - Lai-Xi Wang
- From the Department of Chemistry and Biochemistry, University of Maryland College Park, College Park, Maryland 20742
| |
Collapse
|
23
|
Etxebarria J, Reichardt NC. Methods for the absolute quantification of N-glycan biomarkers. Biochim Biophys Acta Gen Subj 2016; 1860:1676-87. [PMID: 26953846 DOI: 10.1016/j.bbagen.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Many treatment options especially for cancer show a low efficacy for the majority of patients demanding improved biomarker panels for patient stratification. Changes in glycosylation are a hallmark of many cancers and inflammatory diseases and show great potential as clinical disease markers. The large inter-subject variability in glycosylation due to hereditary and environmental factors can complicate rapid transfer of glycan markers into the clinical practice but also presents an opportunity for personalized medicine. SCOPE OF REVIEW This review discusses opportunities of glycan biomarkers in personalized medicine and reviews the methodology for N-glycan analysis with a specific focus on methods for absolute quantification. MAJOR CONCLUSIONS The entry into the clinical practice of glycan markers is delayed in large part due to a lack of adequate methodology for the precise and robust quantification of protein glycosylation. Only absolute glycan quantification can provide a complete picture of the disease related changes and will provide the method robustness required by clinical applications. GENERAL SIGNIFICANCE Glycan biomarkers have a huge potential as disease markers for personalized medicine. The use of stable isotope labeled glycans as internal standards and heavy-isotope labeling methods will provide the necessary method precision and robustness acceptable for clinical use. This article is part of a Special Issue entitled "Glycans in personalized medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Juan Etxebarria
- CIC biomaGUNE, Paseo Miramon 182, 20009 San Sebastian, Spain
| | - Niels-Christian Reichardt
- CIC biomaGUNE, Paseo Miramon 182, 20009 San Sebastian, Spain; CIBER-BBN, Paseo Miramon 182, 20009 San Sebastian, Spain.
| |
Collapse
|
24
|
Gao W, Ou G, Feng X, Liu BF, Zhang H, Liu X. Matrix-assisted laser desorption/ionization mass spectrometry analysis of glycans with co-derivatization of asparaginyl-oligosaccharides. Anal Chim Acta 2015; 896:102-10. [DOI: 10.1016/j.aca.2015.09.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/08/2015] [Accepted: 09/12/2015] [Indexed: 12/13/2022]
|
25
|
Zhang Q, Feng X, Li H, Liu BF, Lin Y, Liu X. Methylamidation for isomeric profiling of sialylated glycans by nanoLC-MS. Anal Chem 2014; 86:7913-9. [PMID: 25022802 DOI: 10.1021/ac501844b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The analysis of isomeric glycans is a challenging task. In this work, a new strategy was developed for isomer-specific glycan profiling using nanoLC-MS with PGC as the stationary phase. Native glycans were derivatized in the presence of methylamine and trispyrrolidinophosphonium hexafluorophosphate and reduced by the ammonia-borane complex. Methylamidation stabilized the retention time and peak width and improved the detection sensitivity of sialylated glycans to 2-80-fold in comparison to previous ESI-MS methods using the positive-ion mode. Up to 19 tetrasialylated glycan species were identified in the derivatized human serum sample, which were difficult to detect in the sample without derivatization. Furthermore, due to high detection sensitivity and chromatographic resolution, more isomeric glycans could be identified from the model glycoprotein Fetuin and the human serum sample. As a result, up to seven isomers were observed for the disialylated biantennary glycan released from Fetuin, and three of them were identified for the first time in this study. Using the developed analytical strategy, a total of 293 glycan species were obtained from the human serum sample, representing an increase of over 100 peaks in comparison to the underivatized sample. The strategy greatly facilitates the profiling of isomeric glycans and the analysis of trace-level samples.
Collapse
Affiliation(s)
- Qiwei Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
26
|
Iwatsuka K, Iwamoto H, Kinoshita M, Inada K, Yasueda SI, Kakehi K. Comparative Studies ofN-Glycans and Glycosaminoglycans Present in SIRC (Statens Seruminstitut Rabbit Cornea) Cells and Corneal Epithelial Cells from Rabbit Eyes. Curr Eye Res 2014; 39:686-94. [DOI: 10.3109/02713683.2013.863940] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Burnina I, Hoyt E, Lynaugh H, Li H, Gong B. A cost-effective plate-based sample preparation for antibody N-glycan analysis. J Chromatogr A 2013; 1307:201-6. [DOI: 10.1016/j.chroma.2013.07.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 07/27/2013] [Accepted: 07/30/2013] [Indexed: 12/26/2022]
|
28
|
N-glycosylamine-mediated isotope labeling for mass spectrometry-based quantitative analysis of N-linked glycans. Anal Bioanal Chem 2013; 405:5825-31. [PMID: 23670280 DOI: 10.1007/s00216-013-6988-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 01/21/2023]
Abstract
N-linked glycosylation is a major protein modification involved in many essential cellular functions. Methods capable of quantitative glycan analysis are highly valuable and have been actively pursued. Here we describe a novel N-glycosylamine-based strategy for isotopic labeling of N-linked glycans for quantitative analysis by use of mass spectrometry (MS). This strategy relies on the primary amine group on the reducing end of freshly released N-linked glycans for labeling, and eliminates the need for the harsh labeling reaction conditions and/or tedious cleanup procedures required by existing methods. By using NHS-ester amine chemistry we used this strategy to label N-linked glycans from a monoclonal antibody with commercially available tandem mass tags (TMT). Only duplex experiments can be performed with currently available TMT reagents, because quantification is based on the intensity of intact labeled glycans. Under mild reaction conditions, greater than 95% derivatization was achieved in 30 min and the labeled glycans, when kept at -20 °C, were stable for more than 10 days. By performing glycan release, TMT labeling, and LC-MS analysis continuously in a single volatile aqueous buffer without cleanup steps, we were able to complete the entire analysis in less than 2 h. Quantification was highly accurate and the dynamic range was large. Compared with previously established methods, N-glycosylamine-mediated labeling has the advantages of experimental simplicity, efficient labeling, and preserving glycan integrity.
Collapse
|
29
|
Alley WR, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 2013; 113:2668-732. [PMID: 23531120 PMCID: PMC3992972 DOI: 10.1021/cr3003714] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- William R. Alley
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Benjamin F. Mann
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
- Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
30
|
Yamada K, Hirabayashi J, Kakehi K. Analysis of O-glycans as 9-fluorenylmethyl derivatives and its application to the studies on glycan array. Anal Chem 2013; 85:3325-33. [PMID: 23406169 DOI: 10.1021/ac303771q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method is proposed for the analysis of O-glycans as 9-fluorenylmethyl (Fmoc) derivatives. After releasing the O-glycans from the protein backbone in the presence of ammonia-based media, the glycosylamines thus formed are conveniently labeled with Fmoc-Cl and analyzed by HPLC and MALDI-TOF MS after easy purification. Fmoc labeled O-glycans showed 3.5 times higher sensitivities than those labeled with 2-aminobenzoic acid in fluorescent detection. Various types of O-glycans having sialic acids, fucose, and/or sulfate residues were successfully labeled with Fmoc and analyzed by HPLC and MALDI-TOF MS. The method was applied to the comprehensive analysis of O-glycans expressed on MKN45 cells (human gastric adenocarcinoma). In addition, Fmoc-derivatized O-glycans were easily converted to free hemiacetal or glycosylamine-form glycans that are available for fabrication of glycan array and neoglycoproteins. To demonstrate the availability of our methods, we fabricate the glycan array with Fmoc labeled glycans derived from mucin samples and cancer cells. The model studies using the glycan array showed clear interactions between immobilized glycans and some lectins.
Collapse
Affiliation(s)
- Keita Yamada
- School of Pharmacy, Kinki University, Higashi-Osaka, Japan
| | | | | |
Collapse
|
31
|
|
32
|
SUZUKI S. Recent Developments in Liquid Chromatography and Capillary Electrophoresis for the Analysis of Glycoprotein Glycans. ANAL SCI 2013; 29:1117-28. [DOI: 10.2116/analsci.29.1117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Maeda E, Kita S, Kinoshita M, Urakami K, Hayakawa T, Kakehi K. Analysis of nonhuman N-glycans as the minor constituents in recombinant monoclonal antibody pharmaceuticals. Anal Chem 2012; 84:2373-9. [PMID: 22394092 DOI: 10.1021/ac300234a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Minor N-linked glycans containing N-glycolylneuraminic acid residues and/or α-Gal epitopes (i.e., galactose-α1,3-galactose residues) have been reported to be present in recombinant monoclonal antibody (mAb) therapeutics. These contaminations are due to their production processes using nonhuman mammalian cell lines in culture media containing animal-derived materials. In case of the treatment of tumors, we inevitably use such mAbs by careful risk-benefit considerations to prolong patients' lives. However, expanding their clinical applications such as for rheumatism, asthma, and analgesia demands more careful evaluation of the product characteristics. The present work for detailed evaluations of N-glycans demonstrates the methods using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) and a combination of high-performance liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The CE-LIF method provides excellent separation of both major and minor N-glycans from six commercial mAb pharmaceuticals within 30 min and clearly indicates that a possible trigger of immunogenicity in humans due to the presence of nonhuman N-glycans is present. We strongly believe that the proposed method will be a powerful tool for the analysis of N-glycans of recombinant mAb products in various development stages, such as clone selection, process control, and routine release testing to ensure safety and efficacy of the products.
Collapse
Affiliation(s)
- Eiki Maeda
- Analytical Development Laboratories, CMC Center, Takeda Pharmaceutical Company Limited, Jusohonmachi 2-17-85, Yodogawa-ku, Osaka 532-8686, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Ijiri S, Todoroki K, Yoshida H, Yoshitake T, Nohta H, Yamaguchi M. Highly sensitive capillary electrophoresis analysis of N-linked oligosaccharides in glycoproteins following fluorescence derivatization with rhodamine 110 and laser-induced fluorescence detection. Electrophoresis 2011; 32:3499-509. [DOI: 10.1002/elps.201100258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
One-pot characterization of cancer cells by the analysis of mucin-type glycans and glycosaminoglycans. Anal Biochem 2011; 421:595-606. [PMID: 22212498 DOI: 10.1016/j.ab.2011.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 01/07/2023]
Abstract
We developed an automated apparatus for rapid releasing of O-glycans from mucin-type glycoproteins [Anal. Biochem. 371 (2007) 52-61; Anal. Chem. 82 (2010) 7436-7443] and applied the device to analyze them in some cancer cell lines [J. Proteome Res. 8 (2009) 521-537]. We also found that the device is useful to release glycosaminoglycans from proteoglycans [Anal. Biochem. 362 (2007) 245-251]. Based on these studies, we developed a method for one-pot analysis of mucin-type glycans and glycosaminoglycans after releasing them from total protein pool obtained from some cancer cell lines. Mucin-type glycans were analyzed by a combination of high-performance liquid chromatography and mass spectrometry techniques, and glycosaminoglycans were analyzed by capillary electrophoresis as fluorescent-labeled unsaturated disaccharides after digestion with specific eliminases followed by fluorescent labeling. Ten cancer cell lines, including blood cancer cells as well as epithelial cancer cells, were used to assess the method. The results clearly revealed that both mucin-type glycans and glycosaminoglycans showed quite interesting profiles. Thus, the current technique will be a powerful tool for discovery of glycan markers of diseases.
Collapse
|
36
|
A cross-linked polymer possessing a high density of hydrazide groups: high-throughput glycan purification and labeling for high-performance liquid chromatography analysis. Polym J 2011. [DOI: 10.1038/pj.2011.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Morooka N, Nagata S, Shirai K, Kiguchi K, Nagasawa H. A hemolymph major anionic peptide, HemaP, motivates feeding behavior in the sweetpotato hornworm, Agrius convolvuli. FEBS J 2011; 279:168-79. [PMID: 22035292 DOI: 10.1111/j.1742-4658.2011.08408.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently identified a novel feeding-modulating peptide, hemolymph major anionic peptide (HemaP), designated Bommo-HemaP (B-HemaP), from hemolymph of the silkworm Bombyx mori. B-HemaP has a unique biological activity in modulating the regular frequency of feeding motivation, which is accompanied by increased foraging behaviors. To confirm the conservation of the HemaP-regulated feeding mechanism in lepidopteran species, we purified and sequenced two candidate peptides from the hemolymph of larvae of the sweet potato hornworm Agrius convolvuli. Unlike B. mori, A. convolvuli had two forms of HemaP, which were designated Agrco-HemaP-1 (A-HemaP-1) and Agrco-HemaP-2 (A-HemaP-2). The amino acid sequence of A-HemaP-2 was identical with that of A-HemaP-1, except for O-glycosylation on the fifth amino acid, threonine, within the N-terminal region. The amino acid sequence of A-HemaP-1/A-HemaP-2 had only 32% identity with B-HemaP. Structural analysis revealed that the carbohydrate moiety of A-HemaP-2 was an α-GalNAc residue. Injection of A-HemaP-1, A-HemaP-2 and recombinant A-HemaP-1 (rA-HemaP-1) individually caused a significant increase in foraging behaviors in A. convolvuli larvae, and no significant differences were observed among these three A-HemaPs. The CD spectra of these three A-HemaPs were quite similar, and all had α-helix-rich secondary structures. Although A-HemaP-1 and B-HemaP did not exhibit cross-reactivity at any injection doses examined, HemaP might be a conserved molecule among lepidopteran species that can modulate feeding motivation through the fluctuation of peptide levels in hemolymph.
Collapse
Affiliation(s)
- Nobukatsu Morooka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
38
|
Ghadban A, Albertin L, Moussavou Mounguengui RW, Peruchon A, Heyraud A. Synthesis of β-d-glucopyranuronosylamine in aqueous solution: kinetic study and synthetic potential. Carbohydr Res 2011; 346:2384-93. [DOI: 10.1016/j.carres.2011.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
|
39
|
Rapid and sensitive analyses of glycoprotein-derived oligosaccharides by liquid chromatography and laser-induced fluorometric detection capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2928-34. [DOI: 10.1016/j.jchromb.2011.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 07/29/2011] [Accepted: 08/21/2011] [Indexed: 11/19/2022]
|
40
|
Glycoproteomics-based identification of cancer biomarkers. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2011:601937. [PMID: 22084691 PMCID: PMC3195811 DOI: 10.1155/2011/601937] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/16/2011] [Indexed: 01/06/2023]
Abstract
Protein glycosylation is one of the most common posttranslational modifications in mammalian cells. It is involved in many biological pathways and molecular functions and is well suited for proteomics-based disease investigations. Aberrant protein glycosylation may be associated with disease processes. Specific glycoforms of glycoproteins may serve as potential biomarkers for the early detection of disease or as biomarkers for the evaluation of therapeutic efficacy for treatment of cancer, diabetes, and other diseases. Recent technological developments, including lectin affinity chromatography and mass spectrometry, have provided researchers the ability to obtain detailed information concerning protein glycosylation. These in-depth investigations, including profiling and quantifying glycoprotein expression, as well as comprehensive glycan structural analyses may provide important information leading to the development of disease-related biomarkers. This paper describes methodologies for the detection of cancer-related glycoprotein and glycan structural alterations and briefly summarizes several current cancer-related findings.
Collapse
|
41
|
Ghadban A, Albertin L, Condamine E, Mounguengui RWM, Heyraud A. NMR and MS study of the formation of β-d-glucopyranosylamine uronic acid in aqueous solution. CAN J CHEM 2011. [DOI: 10.1139/v11-064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The products of the reaction of d-glucuronic acid with various combinations of ammonia and volatile ammonium salts in water were studied by NMR and MS spectroscopy. For long reaction times (~24 h), the expected products β-d-glucopyranosylamine uronic acid and ammonium N-(β-d-glucopyranosyluronic acid)carbamate were obtained in good-to-high yield, whereas seven intermediate species were identified in samples taken at earlier reaction times. 1H–1H homonuclear and 1H–13C heteronuclear correlation experiments enabled a complete assignment of the 1H and 13C NMR spectra of the starting and final compounds, and a partial assignment of the peaks of intermediate species. Based on these results, a 1H NMR protocol for the quantification of the different compounds taking part in the reaction was developed, which was used to monitor the evolution of the composition of an early reaction sample redissolved in D2O. It was thus established that two of the observed intermediate species are actually the α anomer of the main products, whereas the others are precursors to the formation of α/β-d-glucopyranosylamine uronic acid and ammonium N-(α/β-d-glucopyranosyluronic acid)carbamate. The correct assignments for the 1H and 13C spectra of d-glucuronic acid in D2O are also reported.
Collapse
Affiliation(s)
- Ali Ghadban
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP53, 38041 Grenoble CEDEX 9, France
| | - Luca Albertin
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP53, 38041 Grenoble CEDEX 9, France
| | - Eric Condamine
- Institut de Biologie Structurale “Jean-Pierre Ebel”, UMR5075 (CEA/CNRS/UJF), 41 rue Jules Horowitz, 38027 Grenoble, France
| | | | - Alain Heyraud
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP53, 38041 Grenoble CEDEX 9, France
| |
Collapse
|
42
|
Recent advances in the analysis of carbohydrates for biomedical use. J Pharm Biomed Anal 2011; 55:702-27. [DOI: 10.1016/j.jpba.2011.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 02/06/2023]
|
43
|
Harvey DJ. Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1196-225. [DOI: 10.1016/j.jchromb.2010.11.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/01/2010] [Accepted: 11/06/2010] [Indexed: 12/21/2022]
|
44
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
45
|
Liu X, Zhang G, Chan K, Li J. Microwave-assisted Kochetkov amination followed by permanent charge derivatization: a facile strategy for glycomics. Chem Commun (Camb) 2010; 46:7424-6. [DOI: 10.1039/c0cc01732a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
An HJ, Kronewitter SR, de Leoz MLA, Lebrilla CB. Glycomics and disease markers. Curr Opin Chem Biol 2009; 13:601-7. [PMID: 19775929 PMCID: PMC2788081 DOI: 10.1016/j.cbpa.2009.08.015] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 01/28/2023]
Abstract
Glycomics is the comprehensive study of all glycans expressed in biological systems. The biosynthesis of glycan relies on a number of highly competitive processes involving glycosyl transferases. Glycosylation is therefore highly sensitive to the biochemical environment and has been implicated in many diseases including cancer. Recently, interest in profiling the glycome has increased owing to the potential of glycans for disease markers. In this regard, mass spectrometry is emerging as a powerful technique for profiling the glycome. Global glycan profiling of human serum based on mass spectrometry has already led to several potentially promising markers for several types of cancer and diseases.
Collapse
Affiliation(s)
- Hyun Joo An
- Department of Chemistry, University of California, Davis, CA 95616
| | | | | | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616
| |
Collapse
|
47
|
Carbohydrate analysis throughout the development of a protein therapeutic. Glycoconj J 2009; 27:211-25. [PMID: 19888650 PMCID: PMC2821524 DOI: 10.1007/s10719-009-9261-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/26/2009] [Accepted: 09/23/2009] [Indexed: 10/25/2022]
Abstract
This review discusses the challenges involved in the characterization of the glycosylation of therapeutic glycoproteins. The focus is on methods that are most commonly used in regulatory filings and lot release testing of therapeutic glycoproteins. The different types of assays for carbohydrate analysis are reviewed, including the distinction between assays appropriate for lot release or better suited to testing during early drug development or in-depth characterization of the glycosylation. Characteristics of the glycoprotein and production process that should be considered when determining the amount of testing, the number of different methods to employ and when the testing should be performed during development of protein therapeutics is also discussed.
Collapse
|
48
|
Min JZ, Kurihara T, Hirata A, Toyo'oka T, Inagaki S. Identification ofN-linked oligosaccharide labeled with 1-pyrenesulfonyl chloride by quadrupole time-of-flight tandem mass spectrometry after separation by micro- and nanoflow liquid chromatography. Biomed Chromatogr 2009; 23:912-21. [DOI: 10.1002/bmc.1201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Yamada K, Kinoshita M, Hayakawa T, Nakaya S, Kakehi K. Comparative studies on the structural features of O-glycans between leukemia and epithelial cell lines. J Proteome Res 2009; 8:521-37. [PMID: 19154102 DOI: 10.1021/pr800710f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, we developed an automated apparatus for rapid releasing of O-glycans from mucin-type glycoproteins and proteoglycans ( Anal. Biochem. 2007 , 362 , 245 - 251 ; 2007 , 371 , 52 - 61 ). In the present paper, we released O-glycans from some leukemia and epithelial cells using the apparatus, and compared the profiles of O-glycans among these cells after fluorescent labeling of the released glycans with 2-aminobenzoic acid. The fluorescent labeled glycans were analyzed using a combination of HPLC and off-line MALDI-(QIT)TOF mass spectrometry We found that leukemia cells generally showed simple glycan profiles and commonly contained sialyl-T (NeuAcalpha2-3Galbeta1-3GalNAc) and disialyl-T (NeuAcalpha2-3Galbeta1-3(NeuAcalpha2-6)GalNAc) antigens as major O-glycans. In contrast, epithelial cancer cell lines usually showed extremely complex profiles. We found that polylactosamine-type O-glycans were abundantly present in MKN45 cells. Especially, we found characteristic glycans, of which Galbeta1-3 residue of core1 structure is modified with biantennary polylactosamine units. In contrast, this cell line did not contain polylactosamine-type N-glycans ( J. Proteome Res. 2006 , 5 , 88 - 97 ). These results suggest that the different biosynthetic pathways for N- and O-glycans are proposed. The method presented here will accelerate the speed for comprehensive analysis of O-glycans in biological samples and will be a powerful tool for clinical/biochemical analysis in cancer biology.
Collapse
Affiliation(s)
- Keita Yamada
- School of Pharmacy, Kinki University, Higashi-Osaka, 577-8502 Japan
| | | | | | | | | |
Collapse
|
50
|
|