1
|
Li X, Wang H, Wang Y, Zhang L, Wang Y. Comparison of Metabolic Profiling of Arabidopsis Inflorescences Between Landsberg erecta and Columbia, and Meiosis-Defective Mutants by 1H-NMR Spectroscopy. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:73-89. [PMID: 36939799 PMCID: PMC9590573 DOI: 10.1007/s43657-021-00012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 06/18/2023]
Abstract
UNLABELLED With the rapid development of omics technologies during the last several decades, genomics, transcriptomics, and proteomics have been extensively used to characterize gene or protein functions in many organisms at the cell or tissue level. However, metabolomics has not been conducted in reproductive organs, with a focus on meiosis in plants. In this study, we adopted a nuclear magnetic resonance (NMR)-based metabolomics approach to reveal the metabolic profile of inflorescences from two Arabidopsis accessions, Columbia (Col) and Landsberg erecta (Ler), and several sterile mutants caused by meiosis defects. We identified 68 dominant metabolites in the samples. Col and Ler displayed distinct metabolite profiles. Interestingly, mutants with similar meiotic defects, such as Atrad51-3, Atrfc1-2, and Atpol2a-2, exhibited similar alterations in metabolites, including upregulation of energy metabolites and promotion of compounds related to maintenance of genomic stability, cytoplasmic homeostasis, and membrane integrity. The collective data reveal distinct changes in metabolites in Arabidopsis inflorescences between the Col and Ler wild type accessions. NMR-based metabolomics could be an effective tool for molecular phenotyping in studies of aspects of plant reproductive development such as meiosis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43657-021-00012-3.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Limin Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS, Wuhan, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Laserna AKC, Lai Y, Fang G, Ganapathy R, Atan MSBM, Lu J, Wu J, Uttamchandani M, Moochhala SM, Li SFY. Metabolic Profiling of a Porcine Combat Trauma-Injury Model Using NMR and Multi-Mode LC-MS Metabolomics-A Preliminary Study. Metabolites 2020; 10:metabo10090373. [PMID: 32948079 PMCID: PMC7570375 DOI: 10.3390/metabo10090373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
Profiles of combat injuries worldwide have shown that penetrating trauma is one of the most common injuries sustained during battle. This is usually accompanied by severe bleeding or hemorrhage. If the soldier does not bleed to death, he may eventually succumb to complications arising from trauma hemorrhagic shock (THS). THS occurs when there is a deficiency of oxygen reaching the organs due to excessive blood loss. It can trigger massive metabolic derangements and an overwhelming inflammatory response, which can subsequently lead to the failure of organs and possibly death. A better understanding of the acute metabolic changes occurring after THS can help in the development of interventional strategies, as well as lead to the identification of potential biomarkers for rapid diagnosis of hemorrhagic shock and organ failure. In this preliminary study, a metabolomic approach using the complementary platforms of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography coupled with mass spectrometry (LC-MS) was used to determine the metabolic changes occurring in a porcine model of combat trauma injury comprising of penetrating trauma to a limb with hemorrhagic shock. Several metabolites associated with the acute-phase reaction, inflammation, energy depletion, oxidative stress, and possible renal dysfunction were identified to be significantly changed after a thirty-minute shock period.
Collapse
Affiliation(s)
- Anna Karen Carrasco Laserna
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (A.K.C.L.); (G.F.); (M.U.)
| | - Yiyang Lai
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore; (Y.L.); (R.G.); (J.L.); (J.W.)
| | - Guihua Fang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (A.K.C.L.); (G.F.); (M.U.)
- Forensic Science Division, Health Services Authority, 11 Outram Road, Singapore 169078, Singapore
| | - Rajaseger Ganapathy
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore; (Y.L.); (R.G.); (J.L.); (J.W.)
| | | | - Jia Lu
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore; (Y.L.); (R.G.); (J.L.); (J.W.)
| | - Jian Wu
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore; (Y.L.); (R.G.); (J.L.); (J.W.)
| | - Mahesh Uttamchandani
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (A.K.C.L.); (G.F.); (M.U.)
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore; (Y.L.); (R.G.); (J.L.); (J.W.)
| | - Shabbir M. Moochhala
- School of Applied Sciences, Temasek Polytechnic, 21 Tampines Ave 1, Singapore 529757, Singapore;
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, Singapore 117600, Singapore
- Correspondence: (S.M.M.); (S.F.Y.L.); Tel.: +65-6516-2681 (S.F.Y.L.)
| | - Sam Fong Yau Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (A.K.C.L.); (G.F.); (M.U.)
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
- Correspondence: (S.M.M.); (S.F.Y.L.); Tel.: +65-6516-2681 (S.F.Y.L.)
| |
Collapse
|
3
|
Moore RE, Kirwan J, Doherty MK, Whitfield PD. Biomarker Discovery in Animal Health and Disease: The Application of Post-Genomic Technologies. Biomark Insights 2017. [DOI: 10.1177/117727190700200040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The causes of many important diseases in animals are complex and multifactorial, which present unique challenges. Biomarkers indicate the presence or extent of a biological process, which is directly linked to the clinical manifestations and outcome of a particular disease. Identifying biomarkers or biomarker profiles will be an important step towards disease characterization and management of disease in animals. The emergence of post-genomic technologies has led to the development of strategies aimed at identifying specific and sensitive biomarkers from the thousands of molecules present in a tissue or biological fluid. This review will summarize the current developments in biomarker discovery and will focus on the role of transcriptomics, proteomics and metabolomics in biomarker discovery for animal health and disease.
Collapse
Affiliation(s)
- Rowan E. Moore
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer Kirwan
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Mary K. Doherty
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Phillip D. Whitfield
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Yang Y, Zhang H, Yan B, Zhang T, Gao Y, Shi Y, Le G. Health Effects of Dietary Oxidized Tyrosine and Dityrosine Administration in Mice with Nutrimetabolomic Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6957-6971. [PMID: 28742334 DOI: 10.1021/acs.jafc.7b02003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aims to investigate the health effects of long-term dietary oxidized tyrosine (O-Tyr) and its main product (dityrosine) administration on mice metabolism. Mice received daily intragastric administration of either O-Tyr (320 μg/kg body weight), dityrosine (Dityr, 320 μg/kg body weight), or saline for consecutive 6 weeks. Urine and plasma samples were analyzed by NMR-based metabolomics strategies. Body weight, clinical chemistry, oxidative damage indexes, and histopathological data were obtained as complementary information. O-Tyr and Dityr exposure changed many systemic metabolic processes, including reduced choline bioavailability, led to fat accumulation in liver, induced hepatic injury, and renal dysfunction, resulted in changes in gut microbiota functions, elevated risk factor for cardiovascular disease, altered amino acid metabolism, induced oxidative stress responses, and inhibited energy metabolism. These findings implied that it is absolutely essential to reduce the generation of oxidation protein products in food system through improving modern food processing methods.
Collapse
Affiliation(s)
- Yuhui Yang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Hui Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Biao Yan
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Tianyu Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Ying Gao
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
The Plasma and Serum Metabotyping of Hepatocellular Carcinoma in a Nigerian and Egyptian Cohort using Proton Nuclear Magnetic Resonance Spectroscopy. J Clin Exp Hepatol 2017; 7:83-92. [PMID: 28663670 PMCID: PMC5478965 DOI: 10.1016/j.jceh.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS Previous studies have observed disturbances in the 1H nuclear magnetic resonance (NMR) blood spectral profiles in malignancy. No study has metabotyped serum or plasma of hepatocellular carcinoma (HCC) patients from two diverse populations. We aimed to delineate the HCC patient metabotype from Nigeria (mostly hepatitis B virus infected) and Egypt (mostly hepatitis C virus infected) to explore lipid and energy metabolite alterations that may be independent of disease aetiology, diet and environment. METHODS Patients with HCC (53) and cirrhosis (26) and healthy volunteers (19) were recruited from Nigeria and Egypt. Participants provided serum or plasma samples, which were analysed using 600 MHz 1H NMR spectroscopy with nuclear Overhauser enhancement spectroscopy pulse sequences. Median group spectra comparison and multivariate analysis were performed to identify regions of difference. RESULTS Significant differences between HCC patients and healthy volunteers were detected in levels of low density lipoprotein (P = 0.002), very low density lipoprotein (P < 0.001) and lactate (P = 0.03). N-acetylglycoproteins levels in HCC patients were significantly different from both healthy controls and cirrhosis patients (P < 0.001 and 0.001). CONCLUSION Metabotype differences were present, pointing to disturbed lipid metabolism and a switch from glycolysis to alternative energy metabolites with malignancy, which supports the Warburg hypothesis of tumour metabolism.
Collapse
Key Words
- 1-D, One-dimensional
- 1H NMR, proton nuclear magnetic resonance
- AFP, α-fetoprotein
- ALP, Alkaline phosphatase
- ALT, Alanine transaminase
- CT, Computed Tomography
- EDTA, Ethylenediaminetetraacetic acid
- ELISA, Enzyme-linked immunosorbent assay
- Egypt
- FID, Free induction decays
- HBV, Hepatitis B virus
- HBsAg, Hepatitis B surface antigen
- HCC, Hepatocellular carcinoma
- HCV, Hepatitis C virus
- IDL, Intermediate density lipoprotein
- IQR, Interquartile ranges
- JUTH, Jos University Teaching Hospital
- LDL, Low density lipoprotein
- MRI, Magnetic resonance imaging
- NOESY, Nuclear Overhauser enhancement spectroscopy
- Nigeria
- PC, Principal component
- PCA, Principal components analysis
- PLS-DA, Partial least squared discriminant analysis
- PPARα, Peroxisome proliferator-activated receptor α
- RD, Relaxation delay
- US, Ultrasonography
- VLDL, Very low density lipoprotein
- WHO, World Health Organisation
- hepatocellular carcinoma
- ppm, Parts per million
- proton nuclear magnetic resonance spectroscopy
- serum metabotype
- tm, Mixing time
Collapse
|
6
|
Rawat A, Chaturvedi S, Singh AK, Guleria A, Dubey D, Keshari AK, Raj V, Rai A, Prakash A, Kumar U, Kumar D, Saha S. Metabolomics approach discriminates toxicity index of pyrazinamide and its metabolic products, pyrazinoic acid and 5-hydroxy pyrazinoic acid. Hum Exp Toxicol 2017; 37:373-389. [PMID: 28425350 DOI: 10.1177/0960327117705426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pyrazinamide (PYZ)-an essential component of primary drug regimen used for the treatment and management of multidrug resistant or latent tuberculosis-is well known for its hepatoxicity. However, the mechanism of PYZ-induced hepatotoxicity is still unknown to researchers. Studies have shown that the drug is metabolized in the liver to pyrazinoic acid (PA) and 5-hydroxy pyrazinoic acid (5-OHPA) which individually may cause different degrees of hepatotoxicity. To evaluate this hypothesis, PYZ, PA, and 5-OHPA were administered to albino Wistar rats orally (respectively, at 250, 125, and 125 mg kg-1 for 28 days). Compared to normal rats, PYZ and its metabolic products decreased the weights of dosed rats and induced liver injury and a status of oxidative stress as assessed by combined histopathological and biochemical analysis. Compared to normal controls, the biochemical and morphological changes were more aberrant in PA- and 5-OHPA-dosed rats with respect to those dosed with PYZ. Finally, the serum metabolic profiles of rats dosed with PYZ, PA, and 5-OHPA were measured and compared with those of normal control rats. With respect to normal control rats, the rats dosed with PYZ and 5-OHPA showed most aberrant metabolic perturbations in their sera as compared to those dosed with PA. Altogether, the study suggests that PYZ-induced hepatotoxicity might be associated with its metabolized products, where 5-OHPA contributes to a higher degree in its overall toxicity than PA.
Collapse
Affiliation(s)
- A Rawat
- 1 Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India.,2 Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - S Chaturvedi
- 3 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India.,4 Division of Pharmacokinetics and Metabolism (PKMD), CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - A K Singh
- 3 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India
| | - A Guleria
- 2 Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - D Dubey
- 1 Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India.,2 Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - A K Keshari
- 3 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India
| | - V Raj
- 3 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India
| | - A Rai
- 3 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India
| | - A Prakash
- 1 Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India
| | - U Kumar
- 2 Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - D Kumar
- 2 Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - S Saha
- 3 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Pan X, Chang Y, Zeng X, Zhou C, Hong J, Yuan C, Cui L, Ma J, Hua X. WITHDRAWN: 1H NMR-based metabolic analysis to investigation of metabolism changes in urine and serum of cynomolgus macaques (acaca fascicularis) subjected to air and road transportation. Res Vet Sci 2016. [DOI: 10.1016/j.rvsc.2016.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Metabolite profiles of rats in repeated dose toxicological studies after oral and inhalative exposure. Toxicol Lett 2016; 255:11-23. [PMID: 27153797 DOI: 10.1016/j.toxlet.2016.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/24/2022]
Abstract
The MetaMap(®)-Tox database contains plasma-metabolome and toxicity data of rats obtained from oral administration of 550 reference compounds following a standardized adapted OECD 407 protocol. Here, metabolic profiles for aniline (A), chloroform (CL), ethylbenzene (EB), 2-methoxyethanol (ME), N,N-dimethylformamide (DMF) and tetrahydrofurane (THF), dosed inhalatively for six hours/day, five days a week for 4 weeks were compared to oral dosing performed daily for 4 weeks. To investigate if the oral and inhalative metabolome would be comparable statistical analyses were performed. Best correlations for metabolome changes via both routes of exposure were observed for toxicants that induced profound metabolome changes. e.g. CL and ME. Liver and testes were correctly identified as target organs. In contrast, route of exposure dependent differences in metabolic profiles were noted for low profile strength e.g. female rats dosed inhalatively with A or THF. Taken together, the current investigations demonstrate that plasma metabolome changes are generally comparable for systemic effects after oral and inhalation exposure. Differences may result from kinetics and first pass effects. For compounds inducing only weak changes, the differences between both routes of exposure are visible in the metabolome.
Collapse
|
9
|
Maternal Weaning Modulates Emotional Behavior and Regulates the Gut-Brain Axis. Sci Rep 2016; 6:21958. [PMID: 26903212 PMCID: PMC4763306 DOI: 10.1038/srep21958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
Evidence shows that nutritional and environmental stress stimuli during postnatal period influence brain development and interactions between gut and brain. In this study we show that in rats, prevention of weaning from maternal milk results in depressive-like behavior, which is accompanied by changes in the gut bacteria and host metabolism. Depressive-like behavior was studied using the forced-swim test on postnatal day (PND) 25 in rats either weaned on PND 21, or left with their mother until PND 25 (non-weaned). Non-weaned rats showed an increased immobility time consistent with a depressive phenotype. Fluorescence in situ hybridization showed non-weaned rats to harbor significantly lowered Clostridium histolyticum bacterial groups but exhibit marked stress-induced increases. Metabonomic analysis of urine from these animals revealed significant differences in the metabolic profiles, with biochemical phenotypes indicative of depression in the non-weaned animals. In addition, non-weaned rats showed resistance to stress-induced modulation of oxytocin receptors in amygdala nuclei, which is indicative of passive stress-coping mechanism. We conclude that delaying weaning results in alterations to the gut microbiota and global metabolic profiles which may contribute to a depressive phenotype and raise the issue that mood disorders at early developmental ages may reflect interplay between mammalian host and resident bacteria.
Collapse
|
10
|
Liu G, Wu X, Jia G, Zhao H, Chen X, Wu C, Wang J. Effects of glutamine against oxidative stress in the metabolome of rats—new insight. RSC Adv 2016. [DOI: 10.1039/c6ra14469a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamine exerts potential functions against the harmful effects of oxidative stress on animals.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - XianJian Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Gang Jia
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Hua Zhao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Xiaoling Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Caimei Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Jing Wang
- Maize Research Institute
- Sichuan Agricultural University
- Chengdu 611130
- China
| |
Collapse
|
11
|
Shariff MI, Tognarelli JM, Lewis MR, Want EJ, Mohamed FEZ, Ladep NG, Crossey MM, Khan SA, Jalan R, Holmes E, Taylor-Robinson SD. Plasma Lipid Profiling in a Rat Model of Hepatocellular Carcinoma: Potential Modulation Through Quinolone Administration. J Clin Exp Hepatol 2015; 5:286-94. [PMID: 26900269 PMCID: PMC4723654 DOI: 10.1016/j.jceh.2015.07.205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS The primary aim of this study was to characterise the blood metabolic profile of hepatocellular carcinoma (HCC) in a rat model, and the secondary aim was to evaluate the effect of the quinolone, norfloxacin on metabolic profiles and exploring the role that gut sterilisation may have on HCC development. METHODS HCC was induced in 10 Fischer rats by administration of intra-peritoneal diethylnitrosamine (DEN) and oral N-nitrosomorpholine. Plasma was collected upon sacrifice. Five of these rats were concomitantly administered oral norfloxacin. Six Fischer non-treated rats acted as healthy controls. Proton nuclear magnetic resonance (NMR) spectra were acquired using a 600 MHz NMR system. RESULTS Control animals were 120 g heavier than diseased counterparts. Proton NMR spectra from diseased rats displayed significant decreases in lipoproteins, unsaturated fatty acids, acetyl-glycoprotein, acetoacetate, and glucose (P ≤ 0.001). Plasma citrate and formate levels were increased (P = 0.02). Norfloxacin appeared to abrogate this effect slightly. CONCLUSION The spectral profiles of plasma in rats with HCC display marked changes with relation to lipid metabolism and cellular turnover. Norfloxacin appears to moderate these metabolic alterations to a small degree.
Collapse
Key Words
- 1-D, one-dimensional
- 1H, human proton
- CPMG, Carr-Purcell-Meiboom-Gill 3B
- DEN, diethylnitrosamine
- FID, free induction decay
- HCC, hepatocellular carcinoma
- HDL, high-density lipoprotein
- LDL, low-density lipoprotein
- NMOR, N-nitrosomorpholine
- NMR spectroscopy
- NMR, nuclear magnetic resonance
- NOESY, nuclear overhauser effect spectroscopy
- PCA, principal components analysis
- PLS-DA, partial least squares discriminant analysis
- Q2, goodness of prediction
- R2, goodness of fit
- RD, relaxation delay
- RF, radiofrequency
- SBP, spontaneous bacterial peritonitis
- TLR-4, Toll-like receptor 4
- VLDL, very low-density lipoprotein
- hepatocellular carcinoma
- metabonomics
- norfloxacin
Collapse
Affiliation(s)
- Mohamed I.F. Shariff
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Joshua M. Tognarelli
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom,Address for correspondence: Joshua Tognarelli, Liver Unit, Department Of Medicine, 10th Floor QEQM Wing, St Mary's Hospital Campus, Imperial College London, South Wharf Street, London W2 1NY, United Kingdom. Tel.: +44 207 886 6454; fax: +44 207 724 9369.
| | - Matthew R. Lewis
- Department of Surgery and Cancer, Imperial College London, Division of Computational and Systems Medicine, London SW7 2AZ, United Kingdom
| | - Elizabeth J. Want
- Department of Surgery and Cancer, Imperial College London, Division of Computational and Systems Medicine, London SW7 2AZ, United Kingdom
| | | | - Nimzing G. Ladep
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom,Department of Surgery and Cancer, Imperial College London, Division of Computational and Systems Medicine, London SW7 2AZ, United Kingdom
| | - Mary M.E. Crossey
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom,Department of Surgery and Cancer, Imperial College London, Division of Computational and Systems Medicine, London SW7 2AZ, United Kingdom
| | - Shahid A. Khan
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Rajiv Jalan
- Department of Medicine, University College London, Royal Free Hospital, London NW3 2QG, United Kingdom
| | - Elaine Holmes
- Department of Surgery and Cancer, Imperial College London, Division of Computational and Systems Medicine, London SW7 2AZ, United Kingdom
| | - Simon D. Taylor-Robinson
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Mamtimin B, Xia G, Mijit M, Hizbulla M, Kurbantay N, You L, Upur H. Metabolic differentiation and classification of abnormal Savda Munziq's pharmacodynamic role on rat models with different diseases by nuclear magnetic resonance-based metabonomics. Pharmacogn Mag 2015; 11:698-706. [PMID: 26600713 PMCID: PMC4621637 DOI: 10.4103/0973-1296.165551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Abnormal Savda Munziq (ASMq) is a traditional Uyghur herbal preparation used as a therapy for abnormal Savda-related diseases. In this study, we investigate ASMq's dynamic effects on abnormal Savda rat models under different disease conditions. Materials and Methods: Abnormal Savda rat models with hepatocellular carcinoma (HCC), type 2 diabetes mellitus (T2DM), and asthma dosed of ASMq. Serum samples of each animal tested by nuclear magnetic resonance spectroscopy and analyzed by orthogonal projection to latent structure with discriminant analysis. Results: Compared with healthy controls, HCC rats had higher concentrations of amino acids, fat-related metabolites, lactate, myoinositol, and citrate, but lower concentrations of α-glucose, β-glucose, and glutamine. Following ASMq treatment, the serum acetone very low-density lipoprotein (VLDL), LDL, unsaturated lipids, acetylcysteine, and pyruvate concentration decreased, but α-glucose, β-glucose, and glutamine concentration increased (P < 0.05). T2DM rats had higher concentrations of α- and β-glucose, but lower concentrations of isoleucine, leucine, valine, glutamine, glycoprotein, lactate, tyrosine, creatine, alanine, carnitine, and phenylalanine. After ASMq treated T2DM groups showed reduced α- and β-glucose and increased creatine levels (P < 0.05). Asthma rats had higher acetate, carnitine, formate, and phenylalanine levels, but lower concentrations of glutamine, glycoprotein, lactate, VLDL, LDL, and unsaturated lipids. ASMq treatment showed increased glutamine and reduced carnitine, glycoprotein, formate, and phenylalanine levels (P < 0.05). Conclusion: Low immune function, decreased oxidative defense, liver function abnormalities, amino acid deficiencies, and energy metabolism disorders are common characteristics of abnormal Savda-related diseases. ASMq may improve the abnormal metabolism and immune function of rat models with different diseases combined abnormal Savda.
Collapse
Affiliation(s)
- Batur Mamtimin
- Central Laboratory, Xinjiang Medical University, Urumqi 830011, China
| | - Guo Xia
- Central Laboratory, Xinjiang Medical University, Urumqi 830011, China
| | - Mahmut Mijit
- College of Basic Medicine, Xinjiang Medical University, Urumqi 830011, China
| | - Mawlanjan Hizbulla
- College of Traditional Uyghur Medicine, Xinjiang Medical University, Urumqi 830011, China
| | - Nazuk Kurbantay
- Central Laboratory, Xinjiang Medical University, Urumqi 830011, China
| | - Li You
- College of Traditional Uyghur Medicine, Xinjiang Medical University, Urumqi 830011, China
| | - Halmurat Upur
- College of Traditional Uyghur Medicine, Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
13
|
Yang Y, Wang Y, Zhang J, Han Z, Chen A, Pan S, Liang S, Wang S. System responses to chronic cold stress probed via1H NMR spectroscopy in plasma and urine matrices. MOLECULAR BIOSYSTEMS 2015; 11:1425-33. [DOI: 10.1039/c5mb00033e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The metabolic pathways in plasma and urine revealed the biochemical changes under chronic cold stress from a systematic and holistic view.
Collapse
Affiliation(s)
- Yongxia Yang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Yaling Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Traditional Chinese Medicine
| | - Jingli Zhang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Zhihui Han
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Traditional Chinese Medicine
| | - Ali Chen
- School of Medicine and Chemical Industry
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Sina Pan
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Traditional Chinese Medicine
| | - Shengwang Liang
- School of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Shumei Wang
- School of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| |
Collapse
|
14
|
Tomassini A, Vitalone A, Marini F, Praticò G, Sciubba F, Bevilacqua M, Delfini M, Di Sotto A, Di Giacomo S, Mariani P, Mammola CL, Gaudio E, Miccheli A, Mazzanti G. 1H NMR-based urinary metabolic profiling reveals changes in nicotinamide pathway intermediates due to postnatal stress model in rat. J Proteome Res 2014; 13:5848-59. [PMID: 25299838 DOI: 10.1021/pr500748r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The maternal separation protocol in rodents is a widely recognized model of early life stress allowing acute and chronic physiological consequences to be studied. An (1)H NMR-based metabolomic approach was applied to urines to evaluate the systemic metabolic consequences of maternal separation stress in female rats after the beginning of weaning and 4 weeks later when the rats were reaching adulthood. Furthermore, because maternal separation is considered as a model mimicking the inflammatory bowel syndrome, the lactulose/mannitol test was used to evaluate the influence of postnatal maternal separation on gut permeability and mucosal barrier function by (1)H NMR spectroscopy analysis of urine. The results showed no statistical differences in gut permeability due to maternal separation. The application of ANOVA simultaneous component analysis allowed the contributions of physiological adaptations to the animal's development to be separated from the metabolic consequences due to postnatal stress. Systemic metabolic differences in the maternally separated pups were mainly due to the tryptophan/NAD pathway intermediate levels and to the methyladenosine level. Urinary NMR-based metabolic profiling allowed us to disentangle the metabolic adaptive response of the rats to postnatal stress during the animal's growth, highlighting the metabolic changes induced by weaning, gut closure, and maturity.
Collapse
Affiliation(s)
- Alberta Tomassini
- Department of Chemistry, ‡Department of Physiology and Pharmacology "V. Erspamer, §Department of General and Specialized Surgery "P. Stefanini", and ∥Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome , P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu G, Fang T, Yan T, Jia G, Zhao H, Huang Z, Chen X, Wang J, Xue B. Metabolomic strategy for the detection of metabolic effects of spermine supplementation in weaned rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9035-9042. [PMID: 25162370 DOI: 10.1021/jf500882t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The purpose of this study is to examine the effects of spermine supplementation on weaned rat metabolism. A metabolomic strategy employing high-resolution (1)H NMR spectroscopy and multivariate data analysis was used to investigate rat biological responses to spermine ingestion. Rats received intragastric administration of either 0.2 or 0.4 μmol/g body weight of spermine or saline for 3 days. Plasma samples taken 48 h after the last spermine ingestion were analyzed. Spermine supplementation significantly increased the plasma levels of 1-methylhistidine, 3-hydroxybutyrate, alanine, glutamate, glycerolphosphocholine, phosphorylcholine, myo-inositol, phenylalanine, lysine, glutamine, trimethylanine, tyrosine, valine, formate, glucose, and lipids. These results suggest that spermine ingestion can alter common systemic metabolic processes, including cell membrane metabolism, lipid metabolism, glucose-alanine cycle metabolism, amino acid metabolism, and gut microbiota metabolism. This study also shows the important role of spermine administration in modulating the metabolism of weaned rats.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu 611130, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chao J, Huo TI, Cheng HY, Tsai JC, Liao JW, Lee MS, Qin XM, Hsieh MT, Pao LH, Peng WH. Gallic acid ameliorated impaired glucose and lipid homeostasis in high fat diet-induced NAFLD mice. PLoS One 2014; 9:e96969. [PMID: 24918580 PMCID: PMC4053315 DOI: 10.1371/journal.pone.0096969] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 02/07/2014] [Indexed: 12/19/2022] Open
Abstract
Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help our further understanding of the effect of GA in hepatosteatosis mice.
Collapse
Affiliation(s)
- Jung Chao
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Oncology and Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Yuan Cheng
- Department of Nursing, Chung Jen College of Nursing, Health Sciences and Management, Chia-Yi, Taiwan
| | - Jen-Chieh Tsai
- Department of Health and Nutrition Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Shiou Lee
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, China
| | - Ming-Tsuen Hsieh
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Li-Heng Pao
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
- * E-mail: (WHP); (LHP)
| | - Wen-Huang Peng
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung, Taiwan
- * E-mail: (WHP); (LHP)
| |
Collapse
|
17
|
Metabonomic study of biochemical changes in urinary of type 2 diabetes mellitus patients after the treatment of sulfonylurea antidiabetic drugs based on ultra-performance liquid chromatography/mass spectrometry. Biomed Chromatogr 2014; 29:115-22. [DOI: 10.1002/bmc.3247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 01/09/2023]
|
18
|
Ala-Korpela M. Potential role of body fluid1H NMR metabonomics as a prognostic and diagnostic tool. Expert Rev Mol Diagn 2014; 7:761-73. [DOI: 10.1586/14737159.7.6.761] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
You R, Pang Q, Li L. A Metabolic Phenotyping Approach to Characterize the Effects of Cantonese Herbal Tea on Restraint Stressed Rats. Biol Pharm Bull 2014; 37:1466-74. [DOI: 10.1248/bpb.b14-00203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Rong You
- College of Life Sciences, South China Normal University
- Mitochodria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington
| | - Qihua Pang
- College of Life Sciences, South China Normal University
| | - Lin Li
- College of Light Industry and Food Sciences, South China University of Technology
| |
Collapse
|
20
|
Liu G, Yan T, Wang J, Huang Z, Chen X, Jia G, Wu C, Zhao H, Xue B, Xiao L, Tang J. Biological system responses to zearalenone mycotoxin exposure by integrated metabolomic studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11212-11221. [PMID: 24164354 DOI: 10.1021/jf403401v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study aims to investigate the effect of zearalenone supplementation on rat metabolism. Rats received biweekly intragastric administration of zearalenone mycotoxin (3 mg/kg body weight) for 2 weeks. Urine and plasma samples after zearalenone administration were analyzed by NMR-based metabolomics. Zearalenone exposure significantly elevated the plasma levels of glucose, lactate, N-acetyl glycoprotein, O-acetyl glycoprotein, and propionate but reduced the plasma levels of tyrosine, branched-chain amino acids, and choline metabolites. Zearalenone supplementation decreased the urine levels of butyrate, lactate, and nicotinate. However, it increased the urine levels of allantoin, choline, and N-methylnicotinamide at 0-8 h after the last zearalenone administration and those of 1-methylhistidine, acetoacetate, acetone, and indoxyl sulfate at 8-24 h after the last zearalenone administration. These results suggest that zearalenone exposure can cause oxidative stress and change common systemic metabolic processes, including cell membrane metabolism, protein biosynthesis, glycolysis, and gut microbiota metabolism.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu 611130, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
An Y, Xu W, Li H, Lei H, Zhang L, Hao F, Duan Y, Yan X, Zhao Y, Wu J, Wang Y, Tang H. High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. J Proteome Res 2013; 12:3755-68. [PMID: 23746045 DOI: 10.1021/pr400398b] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a condition resulting from the interactions of individual biology and environmental factors causing multiple complications. To understand the system's metabolic changes associated with the obesity development and progression, we systematically analyzed the dynamic metabonomic changes induced by a high-fat diet (HFD) in multiple biological matrices of rats using NMR and GC-FID/MS techniques. Clinical chemistry and histopathological data were obtained as complementary information. We found that HFD intakes caused systematic metabolic changes in blood plasma, liver, and urine samples involving multiple metabolic pathways including glycolysis, TCA cycle, and gut microbiota functions together with the metabolisms of fatty acids, amino acids, choline, B-vitamins, purines, and pyrimidines. The HFD-induced metabolic variations were detectable in rat urine a week after HFD intake and showed clear dependence on the intake duration. B-vitamins and gut microbiota played important roles in the obesity development and progression together with changes in TCA cycle intermediates (citrate, α-ketoglutarate, succinate, and fumarate). 83-day HFD intakes caused significant metabolic alterations in rat liver highlighted with the enhancements in lipogenesis, lipid accumulation and lipid oxidation, suppression of glycolysis, up-regulation of gluconeogenesis and glycogenesis together with altered metabolisms of choline, amino acids and nucleotides. HFD intakes reduced the PUFA-to-MUFA ratio in both plasma and liver, indicating the HFD-induced oxidative stress. These findings provided essential biochemistry information about the dynamic metabolic responses to the development and progression of HFD-induced obesity. This study also demonstrated the combined metabonomic analysis of multiple biological matrices as a powerful approach for understanding the molecular basis of pathogenesis and disease progression.
Collapse
Affiliation(s)
- Yanpeng An
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang L, Wang L, Hu Y, Liu Z, Tian Y, Wu X, Zhao Y, Tang H, Chen C, Wang Y. Selective metabolic effects of gold nanorods on normal and cancer cells and their application in anticancer drug screening. Biomaterials 2013; 34:7117-26. [PMID: 23787109 DOI: 10.1016/j.biomaterials.2013.05.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/22/2013] [Indexed: 01/16/2023]
Abstract
Cetyltrimethylammonim bromide coated gold nanorods (Au NRs) has a potential to become anti-cancer nano-drugs. Previously, the comparative responses of human alveolar adenocarcinoma epithelial cells (A549) and normal bronchial epithelial cells (16HBE) exposed to Au NRs have been characterized. It has been shown that Au NRs are translocated from the lysosome to the mitochondria in A549 cells but not in normal 16HBE cell lines. However, the molecular information during this cellular translocation remains largely undetermined. Here, we have used a metabonomic technique to comparatively analyze the time-dependent metabolic changes in Au NRs-induced A549 and 16HBE. We found that Au NRs exposure caused a disruption in the intracellular environment of both A549 and 16HBE cells, which metabolically manifested in the reduction of lactate levels in both cell lines. In addition, Au NRs induced oxidative stress in both cells lines. However, the 16HBE cells are more able to offset the oxidative stress than the A549 cells; this is because de novo GSH synthesis is triggered in Au NRs treated 16HBE cells but not in A549 cells, and the conversion of GSH to GSSG is more profound in 16HBE cells compared to A549 cells. The severe oxidative stress induces damage to mitochondria in A549 cells, leading to cell death, which is evident in the marked reduction in the levels of nucleosides and nucleotides. Furthermore, significantly elevated levels of amino acids are likely due to stress hormones being produced in Au NRs treated cells. These findings provide comprehensive molecular information on the distinctive intracellular localization, cellular uptake and translocation of Au NRs in normal and tumor cells, highlighting the value of metabonomics in assessing biological effects of nano-drugs.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kuang H, Li Z, Peng C, Liu L, Xu L, Zhu Y, Wang L, Xu C. Metabonomics Approaches and the Potential Application in Foodsafety Evaluation. Crit Rev Food Sci Nutr 2012; 52:761-74. [DOI: 10.1080/10408398.2010.508345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Zhao XJ, Hao F, Huang C, Rantalainen M, Lei H, Tang H, Wang Y. Systems responses of rats to mequindox revealed by metabolic and transcriptomic profiling. J Proteome Res 2012; 11:4712-21. [PMID: 22845897 DOI: 10.1021/pr300533a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mequindox is used as an antibiotic drug in livestock; however, its toxicity remains largely unclear. Previously, we investigated metabolic responses of mice to mequindox exposure. In order to evaluate dependences of animal species in response to mequindox insult, we present the metabolic consequences of mequindox exposure in a rat model, by employing the combination of metabonomics and transcriptomics. Metabolic profiling of urine revealed that metabolic recovery is achieved for rats exposed to a low or moderate dose of mequindox, whereas high levels of mequindox exposure trigger liver dysfunction, causing no such recovery. We found that mequindox exposure causes suppression of the tricarboxylic acid cycle and stimulation of glycolysis, which is in contrast to a mouse model previously investigated. In addition, mequindox dosage induces promotion of β-oxidation of fatty acids, which was confirmed by elevated expressions of acox1, hsd17b2, and cpt1a in liver. Furthermore, altered levels of N-methylnicotinate, 1-methylnicotinamide, and glutathione disulfide highlighted the promotion of vitamin B3 antioxidative cycle in rats exposed to mequindox. Moreover, mequindox exposure altered levels of gut microbiotal related co-metabolites, suggesting a perturbation of the gut microflora of the host. Our work provides a comprehensive view of the toxicological effects of mequindox, which is important in the usage of mequindox in animal and human food safety.
Collapse
Affiliation(s)
- Xiu-Ju Zhao
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China
| | | | | | | | | | | | | |
Collapse
|
25
|
Jiang L, Huang J, Wang Y, Tang H. Eliminating the dication-induced intersample chemical-shift variations for NMR-based biofluid metabonomic analysis. Analyst 2012; 137:4209-19. [PMID: 22858594 DOI: 10.1039/c2an35392j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR-based urinary metabonomic analysis is an essential aspect of systems biology for understanding mammalian physiology and pathophysiology though intersample chemical-shift variations can cause serious problems. Here, we report two optimized and validated methods to eliminate such variations resulting from intersample differences in pH and dication concentration. We found that the Ca(2+) concentration was 7.41 ± 3.48, 1.03 ± 0.34 and 0.87 ± 0.52 mM whereas the Mg(2+) concentration was 3.02 ± 1.41, 2.65 ± 1.20 and 0.80 ± 0.59 mM in rat, mouse and human urine samples, respectively; urinary Ca-EDTA, Mg-EDTA and free EDTA had spin-lattice relaxation time values (600.13 MHz) of 0.38, 0.41 and 0.55 s, respectively. We also found that the combined treatments with potassium fluoride, phosphate buffer and a small amount of K(3)EDTA eliminated intersample chemical-shift variations for all metabolites. EDTA treatment followed with phosphate buffer also achieved similar results although resonances from EDTA and its complexes obscured some metabolite signals. We systematically optimized the amount of additives for rat, mouse and human urine samples taking into consideration the pH control, signal-to-noise ratio and intersample uniformity for metabolite chemical-shifts. Based on thorough validation, we established some optimized procedures for rat, mouse and human urine, respectively. By eliminating both pH and dication effects, these methods enable the reduction of intersample chemical-shift variations to 1.5 Hz for all metabolites. The methods will offer ensured data quality for high-throughput, especially robotic urinary metabonomics studies with no need for peak alignments or corrections.
Collapse
Affiliation(s)
- Limiao Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Center for Biospectroscopy and Metabonomics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, PR China
| | | | | | | |
Collapse
|
26
|
Ye Y, Wang X, Zhang L, Lu Z, Yan X. Unraveling the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress by ¹H NMR-based metabolomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1314-1324. [PMID: 22437205 DOI: 10.1007/s10646-012-0885-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
Nicotine can cause oxidative damage to organisms; however, some bacteria, for example Pseudomonas sp. HF-1, are resistant to such oxidative stress. In the present study, we analyzed the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress using ¹H NMR spectroscopy coupled with multivariate data analysis. We found that the dominant metabolites in Pseudomonas sp. HF-1 were eight aliphatic organic acids, six amino acids, three sugars and 11 nucleotides. After 18 h of cultivation, 1 g/L nicotine caused significant elevation of sugar (glucose, trehalose and maltose), succinate and nucleic acid metabolites (cytidine, 5'-CMP, guanine 2',3'-cyclic phosphate and adenosine 2',3'-cyclic phosphate), but decrease of glutamate, putrescine, pyrimidine, 2-propanol, diethyl ether and acetamide levels. Similar metabolomic changes were induced by 2 g/L nicotine, except that no significant change in trehalose, 5'-UMP levels and diethyl ether were found. However, 3 g/L nicotine led to a significant elevation in the two sugars (trehalose and maltose) levels and decrease in the levels of glutamate, putrescine, pyrimidine and 2-propanol. Our findings indicated that nicotine resulted in the enhanced nucleotide biosynthesis, decreased glucose catabolism, elevated succinate accumulation, severe disturbance in osmoregulation and complex antioxidant strategy. And a further increase of nicotine level was a critical threshold value that triggered the change of metabolic flow in Pseudomonas sp. HF-1. These findings revealed the comprehensive insights into the metabolic response of nicotine-degrading bacteria to nicotine-induced oxidative toxicity.
Collapse
Affiliation(s)
- Yangfang Ye
- School of Marine Science, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | | | | | | | | |
Collapse
|
27
|
Comparative study on effects of Xiaoyao Powder (逍遥散) and its modified prescription on plasma metabolomics of rats with chronic immobilization stress. Chin J Integr Med 2012; 19:610-5. [DOI: 10.1007/s11655-012-1092-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Indexed: 01/12/2023]
|
28
|
Xu W, Wu J, An Y, Xiao C, Hao F, Liu H, Wang Y, Tang H. Streptozotocin-induced dynamic metabonomic changes in rat biofluids. J Proteome Res 2012; 11:3423-35. [PMID: 22563680 DOI: 10.1021/pr300280t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a complex polygenic disease caused by gene-environment interactions with multiple complications, and metabonomic analysis is crucial for pathogenesis, early diagnosis, and timely interventions. Here, we comprehensively analyzed the dynamic metabolic changes in rat urine and plasma, which were induced by the well-known diabetogenic chemical streptozotocin (STZ), using (1)H NMR spectroscopy in conjunction with multivariate data analysis. The results showed that a single intraperitoneal injection of STZ with a moderate dosage (55 mg/kg) induced significant urinary metabonomic changes within 24 h. These changes showed time-dependence and heterogeneity among the treated animals with an animal recovered within 11 days. STZ-induced metabonomic alterations were related to suppression of glycolysis and TCA cycle, promotion of gluconeogenesis and oxidation of amino acids, alterations in metabolisms of basic amino acids associated with diabetic complications, and disruption of lipid metabolism and gut microbiota functions. With diffusion-edited NMR spectral data, we further observed the STZ-induced significant elevation of monounsaturated fatty acids and total unsaturated fatty acids together with reductions in PUFA-to-MUFA ratio in the blood plasma. These findings provided details of the time-dependent metabonomic changes in the progressive development of the STZ-induced diabetes mellitus and showed the possibility of detecting the biochemical changes in the early stage of type 1 diabetic genesis.
Collapse
Affiliation(s)
- Wenxin Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
He Q, Tang H, Ren P, Kong X, Wu G, Yin Y, Wang Y. Dietary supplementation with l-arginine partially counteracts serum metabonome induced by weaning stress in piglets. J Proteome Res 2011; 10:5214-21. [PMID: 21942754 DOI: 10.1021/pr200688u] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Arginine plays an important role in preventing intestinal dysfunction and metabolic disorders caused by early weaning stress. However, little is known about how arginine mitigates early weaning stress. This study was conducted to evaluate the effects of weaning stress and dietary arginine supplementation on the metabonome in the serum of piglets using (1)H NMR spectroscopy in conjunction with multivariate data analysis. Thirty castrated male piglets aged 21 d were evenly divided into three groups and fed in three different regimes: sow-fed (SF), weaned with l-alanine supplementation (ALA), and weaned with arginine supplementation (ARG). We found that early weaning stress led to a significantly reduced bodyweight gain (15.6%) and that supplementation with arginine can improve growth rates in piglets by 5.6% (P < 0.05). The early weaning stress was associated with marked alterations in lipid and amino acid metabolisms and perturbations in population and/or activities of gut microorganisms, which were manifested in increased levels of organic acids, amino acids, and acetyl-glycoproteins and reduced levels of choline metabolism and lipoproteins. Dietary supplementation with arginine could partially counteract the changes of metabolites induced by weaning stress, such as lipid and amino acid metabolisms. However, arginine was not able to restore disturbed gut microbiota. These results demonstrate the central role of arginine supplementation in regulating the metabolisms of weaned piglets.
Collapse
Affiliation(s)
- Qinghua He
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhao XJ, Huang C, Lei H, Nie X, Tang H, Wang Y. Dynamic Metabolic Response of Mice to Acute Mequindox Exposure. J Proteome Res 2011; 10:5183-90. [DOI: 10.1021/pr2006457] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xiu-Ju Zhao
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049
| | - Chongyang Huang
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049
| | - Hehua Lei
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Huiru Tang
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Yulan Wang
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|
31
|
Michl J, Modarai M, Edwards S, Heinrich M. Metabolomic analysis of Ranunculus spp. as potential agents involved in the etiology of equine grass sickness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10388-10393. [PMID: 21842884 DOI: 10.1021/jf201430k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Identification of toxic or harmful agents continues to be a key goal in agricultural chemistry. This paper reports a metabolomic analysis of Ranunculus repens and related species, which were recently postulated to be cocausative agents in the etiology of equine grass sickness (EGS). Specifically, samples collected at EGS sites were compared with those from non-EGS sites. Furthermore, interspecific and seasonal variations and the species' response to edaphic and climatic factors were investigated. (1)H NMR spectroscopy in combination with multivariate data analysis was applied to the crude methanol extracts of the Ranunculus samples, as well as their chloroform fractions. Samples from EGS sites were significantly different from control samples. The metabolite composition varied greatly between different Ranunculus species. No significant changes could be observed between samples collected in different seasons. This work provides strong evidence that Ranunculus is involved in the etiology of EGS and has implications for agricultural management of pastures.
Collapse
Affiliation(s)
- Johanna Michl
- Centre for Pharmacognosy and Phytotherapy, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | | | | | |
Collapse
|
32
|
Mellert W, Kapp M, Strauss V, Wiemer J, Kamp H, Walk T, Looser R, Prokoudine A, Fabian E, Krennrich G, Herold M, van Ravenzwaay B. Nutritional impact on the plasma metabolome of rats. Toxicol Lett 2011; 207:173-81. [PMID: 21907771 DOI: 10.1016/j.toxlet.2011.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
Abstract
Metabolite profiling (metabolomics) elucidates changes in biochemical pathways under various conditions, e.g., different nutrition scenarios or compound administration. BASF and metanomics have obtained plasma metabolic profiles of approximately 500 compounds (agrochemicals, chemicals and pharmaceuticals) from 28-day rat studies. With these profiles the establishment of a database (MetaMap(®)Tox) containing specific metabolic patterns associated with many toxicological modes of action was achieved. To evaluate confounding factors influencing metabolome patterns, the effect of fasting vs. non-fasting prior to blood sampling, the influence of high caloric diet and caloric restriction as well as the administration of corn oil and olive oil was studied for its influence on the metabolome. All mentioned treatments had distinct effects: triacylglycerol, phospholipids and their degradation product levels (fatty acids, glycerol, lysophosphatidylcholine) were often altered depending on the nutritional status. Also some amino acid and related compounds were changed. Some metabolites derived from food (e.g. alpha-tocopherol, ascorbic acid, beta-sitosterol, campesterol) were biomarkers related to food consumption, whereas others indicated a changed energy metabolism (e.g. hydroxybutyrate, pyruvate). Strikingly, there was a profound difference in the metabolite responses to diet restriction in male and female rats. Consequently, when evaluating the metabolic profile of a compound, the effect of nutritional status should be taken into account.
Collapse
Affiliation(s)
- W Mellert
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Swann JR, Tuohy KM, Lindfors P, Brown DT, Gibson GR, Wilson ID, Sidaway J, Nicholson JK, Holmes E. Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J Proteome Res 2011; 10:3590-603. [PMID: 21591676 DOI: 10.1021/pr200243t] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The interaction between the gut microbiota and their mammalian host is known to have far-reaching consequences with respect to metabolism and health. We investigated the effects of eight days of oral antibiotic exposure (penicillin and streptomycin sulfate) on gut microbial composition and host metabolic phenotype in male Han-Wistar rats (n = 6) compared to matched controls. Early recolonization was assessed in a third group exposed to antibiotics for four days followed by four days recovery (n = 6). Fluorescence in situ hybridization analysis of the intestinal contents collected at eight days showed a significant reduction in all bacterial groups measured (control, 10(10.7) cells/g feces; antibiotic-treated, 10(8.4)). Bacterial suppression reduced the excretion of mammalian-microbial urinary cometabolites including hippurate, phenylpropionic acid, phenylacetylglycine and indoxyl-sulfate whereas taurine, glycine, citrate, 2-oxoglutarate, and fumarate excretion was elevated. While total bacterial counts remained notably lower in the recolonized animals (10(9.1) cells/g faeces) compared to the controls, two cage-dependent subgroups emerged with Lactobacillus/Enterococcus probe counts dominant in one subgroup. This dichotomous profile manifested in the metabolic phenotypes with subgroup differences in tricarboxylic acid cycle metabolites and indoxyl-sulfate excretion. Fecal short chain fatty acids were diminished in all treated animals. Antibiotic treatment induced a profound effect on the microbiome structure, which was reflected in the metabotype. Moreover, the recolonization process was sensitive to the microenvironment, which may impact on understanding downstream consequences of antibiotic consumption in human populations.
Collapse
Affiliation(s)
- Jonathan R Swann
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu C, Hao F, Hu J, Zhang W, Wan L, Zhu L, Tang H, He G. Revealing different systems responses to brown planthopper infestation for pest susceptible and resistant rice plants with the combined metabonomic and gene-expression analysis. J Proteome Res 2010; 9:6774-85. [PMID: 20936879 DOI: 10.1021/pr100970q] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Brown planthopper (BPH) is a notorious pest of rice plants attacking leaf sheaths and seriously affecting global rice production. However, how rice plants respond against BPH remains to be fully understood. To understand systems metabolic responses of rice plants to BPH infestation, we analyzed BPH-induced metabolic changes in leaf sheaths of both BPH-susceptible and resistant rice varieties using NMR-based metabonomics and measured expression changes of 10 relevant genes using quantitative real-time PCR. Our results showed that rice metabonome was dominated by more than 30 metabolites including sugars, organic acids, amino acids, and choline metabolites. BPH infestation caused profound metabolic changes for both BPH-susceptible and resistant rice plants involving transamination, GABA shunt, TCA cycle, gluconeogenesis/glycolysis, pentose phosphate pathway, and secondary metabolisms. BPH infestation caused more drastic overall metabolic changes for BPH-susceptible variety and more marked up-regulations for key genes regulating GABA shunt and biosynthesis of secondary metabolites for BPH-resistant variety. Such observations indicated that activation of GABA shunt and shikimate-mediated secondary metabolisms was vital for rice plants to resist BPH infestation. These findings filled the gap of our understandings in the mechanistic aspects of BPH resistance for rice plants and demonstrated the combined metabonomic and qRT-PCR analysis as an effective approach for understanding plant-herbivore interactions.
Collapse
Affiliation(s)
- Caixiang Liu
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Jiang Z, Liang Q, Wang Y, Zheng X, Pei L, Zhang T, Wang Y, Luo G. Metabonomic study on women of reproductive age treated with nutritional intervention: screening potential biomarkers related to neural tube defects occurrence. Biomed Chromatogr 2010; 25:767-74. [DOI: 10.1002/bmc.1512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 12/15/2022]
|
36
|
XU JL, YAN XJ, CHEN DY, XU SL, LUO QJ, WANG YJ. Metabolite Changes of Cage-farming Pseudosciaena crocea during Recovery Process after Typhoon. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60065-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Wang Y, Xiao SH, Xue J, Singer BH, Utzinger J, Holmes E. Systems metabolic effects of a necator americanus infection in Syrian hamster. J Proteome Res 2010; 8:5442-50. [PMID: 19810771 DOI: 10.1021/pr900711j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hookworms (Ancylostoma duodenale and Necator americanus) are blood-feeding intestinal nematodes that infect approximately 700 million people worldwide. To further our understanding of the systems metabolic response of the mammalian host to hookworm infection, we employed a metabolic profiling strategy involving the combination of (1)H NMR spectroscopic analysis of urine and serum and multivariate data analysis techniques to investigate the biochemical consequences of a N. americanus infection in the hamster. The infection was characterized by altered energy metabolism, consistent with hookworm-induced anemia. Additionally, disturbance of gut microbiotal activity was associated with a N. americanus infection, manifested in the alterations of microbial-mammalian cometabolites, including phenylacetylglycine, p-cresol glucuronide, 4-hydroxy-3-methyl-phenylpropionic acid, hippurate, 4-hydroxyphenylactate, and dimethylamine. The correlation between worm burden and metabolite concentrations also reflected a changed energy metabolism and gut microbial state. Furthermore, elevated levels of urinary 2-aminoadipate was a characteristic feature of the infection, which may be associated with the documented neurological consequences of hookworm infection.
Collapse
Affiliation(s)
- Yulan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
38
|
Zhang X, Wang Y, Hao F, Zhou X, Han X, Tang H, Ji L. Human serum metabonomic analysis reveals progression axes for glucose intolerance and insulin resistance statuses. J Proteome Res 2010; 8:5188-95. [PMID: 19697961 DOI: 10.1021/pr900524z] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding the metabolic basis of glucose intolerances and insulin resistance is essential to facilitate early diagnosis, satisfactory therapies and personalized treatments of type 2 diabetes (T2DM). Here, we analyzed the serum metabolic variations from 231 human participants with normal glucose tolerance (NGT, n = 80, M/F = 34/46, mean age 53 +/- 10 years), impaired glucose regulation (IGR, n = 77, M/F = 33/44, mean age 51 +/- 10 years) and T2DM (n = 74, M/F = 32/42, mean age 51 +/- 9 years) to establish the relationship between the serum metabolite compositions and the development of diabetes. By using the proton nuclear magnetic resonance spectroscopy in conjunction with the multivariate data analysis, we found that the development of both glucose intolerances and insulin resistances are closely correlated with the progressive changes of human serum metabonome. Compared with NGT subjects, the IGR and T2DM participants showed clear dysfunctions of choline metabolism, glucose metabolism, lipid and amino acid metabolisms, and disruptions of TCA cycle. The insulin resistance statuses were closely associated with the serum metabonomic changes in terms of glucose, fatty acid and protein/amino acid metabolisms. We also found greater metabonomic heterogeneity among the populations with T2DM and high insulin resistance status. These findings provide useful information to bridge the gaps in our understandings to the metabolic alterations associated with the progression of glucose intolerances and insulin resistance status.
Collapse
Affiliation(s)
- Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Dai H, Xiao C, Liu H, Tang H. Combined NMR and LC-MS Analysis Reveals the Metabonomic Changes in Salvia miltiorrhiza Bunge Induced by Water Depletion. J Proteome Res 2010; 9:1460-75. [DOI: 10.1021/pr900995m] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hui Dai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R.China, College of Life Sciences, Northwest University, Xi’an 710069, P.R. China, and Graduate University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chaoni Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R.China, College of Life Sciences, Northwest University, Xi’an 710069, P.R. China, and Graduate University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hongbing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R.China, College of Life Sciences, Northwest University, Xi’an 710069, P.R. China, and Graduate University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huiru Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R.China, College of Life Sciences, Northwest University, Xi’an 710069, P.R. China, and Graduate University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
40
|
Effect of mitiglinide on Streptozotocin-induced experimental type 2 diabetic rats: A urinary metabonomics study based on ultra-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3619-24. [DOI: 10.1016/j.jchromb.2009.08.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/20/2009] [Accepted: 08/30/2009] [Indexed: 11/19/2022]
|
41
|
Mao H, Wang H, Wang B, Liu X, Gao H, Xu M, Zhao H, Deng X, Lin D. Systemic Metabolic Changes of Traumatic Critically Ill Patients Revealed by an NMR-Based Metabonomic Approach. J Proteome Res 2009; 8:5423-30. [PMID: 19835422 DOI: 10.1021/pr900576y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hailei Mao
- Affiliated Hospital of Nantong University, Nantong 226001, PR China, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China, Changhai Hospital, Secondary Military Medical University, Shanghai 200433, PR China, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China, and Xiamen University, Xiamen 361005, PR China
| | - Huimin Wang
- Affiliated Hospital of Nantong University, Nantong 226001, PR China, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China, Changhai Hospital, Secondary Military Medical University, Shanghai 200433, PR China, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China, and Xiamen University, Xiamen 361005, PR China
| | - Bin Wang
- Affiliated Hospital of Nantong University, Nantong 226001, PR China, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China, Changhai Hospital, Secondary Military Medical University, Shanghai 200433, PR China, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China, and Xiamen University, Xiamen 361005, PR China
| | - Xia Liu
- Affiliated Hospital of Nantong University, Nantong 226001, PR China, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China, Changhai Hospital, Secondary Military Medical University, Shanghai 200433, PR China, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China, and Xiamen University, Xiamen 361005, PR China
| | - Hongchang Gao
- Affiliated Hospital of Nantong University, Nantong 226001, PR China, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China, Changhai Hospital, Secondary Military Medical University, Shanghai 200433, PR China, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China, and Xiamen University, Xiamen 361005, PR China
| | - Min Xu
- Affiliated Hospital of Nantong University, Nantong 226001, PR China, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China, Changhai Hospital, Secondary Military Medical University, Shanghai 200433, PR China, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China, and Xiamen University, Xiamen 361005, PR China
| | - Hongsheng Zhao
- Affiliated Hospital of Nantong University, Nantong 226001, PR China, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China, Changhai Hospital, Secondary Military Medical University, Shanghai 200433, PR China, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China, and Xiamen University, Xiamen 361005, PR China
| | - Xiaoming Deng
- Affiliated Hospital of Nantong University, Nantong 226001, PR China, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China, Changhai Hospital, Secondary Military Medical University, Shanghai 200433, PR China, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China, and Xiamen University, Xiamen 361005, PR China
| | - Donghai Lin
- Affiliated Hospital of Nantong University, Nantong 226001, PR China, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China, Changhai Hospital, Secondary Military Medical University, Shanghai 200433, PR China, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China, and Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
42
|
Rezzi S, Martin FP, Alonso C, Guilarte M, Vicario M, Ramos L, Martínez C, Lobo B, Saperas E, Malagelada JR, Santos J, Kochhar S. Metabotyping of Biofluids Reveals Stress-Based Differences in Gut Permeability in Healthy Individuals. J Proteome Res 2009; 8:4799-809. [DOI: 10.1021/pr900525w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Serge Rezzi
- Bioanalytical Science Department, Metabonomics & Biomarkers Group, Nestlé Research Center, Lausanne, Switzerland, and Digestive Diseases Research Unit, Institut de Recerca, Department of Gastroenterology; Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - François-Pierre Martin
- Bioanalytical Science Department, Metabonomics & Biomarkers Group, Nestlé Research Center, Lausanne, Switzerland, and Digestive Diseases Research Unit, Institut de Recerca, Department of Gastroenterology; Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Carmen Alonso
- Bioanalytical Science Department, Metabonomics & Biomarkers Group, Nestlé Research Center, Lausanne, Switzerland, and Digestive Diseases Research Unit, Institut de Recerca, Department of Gastroenterology; Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Mar Guilarte
- Bioanalytical Science Department, Metabonomics & Biomarkers Group, Nestlé Research Center, Lausanne, Switzerland, and Digestive Diseases Research Unit, Institut de Recerca, Department of Gastroenterology; Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - María Vicario
- Bioanalytical Science Department, Metabonomics & Biomarkers Group, Nestlé Research Center, Lausanne, Switzerland, and Digestive Diseases Research Unit, Institut de Recerca, Department of Gastroenterology; Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Laura Ramos
- Bioanalytical Science Department, Metabonomics & Biomarkers Group, Nestlé Research Center, Lausanne, Switzerland, and Digestive Diseases Research Unit, Institut de Recerca, Department of Gastroenterology; Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Cristina Martínez
- Bioanalytical Science Department, Metabonomics & Biomarkers Group, Nestlé Research Center, Lausanne, Switzerland, and Digestive Diseases Research Unit, Institut de Recerca, Department of Gastroenterology; Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Beatriz Lobo
- Bioanalytical Science Department, Metabonomics & Biomarkers Group, Nestlé Research Center, Lausanne, Switzerland, and Digestive Diseases Research Unit, Institut de Recerca, Department of Gastroenterology; Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Esteban Saperas
- Bioanalytical Science Department, Metabonomics & Biomarkers Group, Nestlé Research Center, Lausanne, Switzerland, and Digestive Diseases Research Unit, Institut de Recerca, Department of Gastroenterology; Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Juan Ramón Malagelada
- Bioanalytical Science Department, Metabonomics & Biomarkers Group, Nestlé Research Center, Lausanne, Switzerland, and Digestive Diseases Research Unit, Institut de Recerca, Department of Gastroenterology; Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Javier Santos
- Bioanalytical Science Department, Metabonomics & Biomarkers Group, Nestlé Research Center, Lausanne, Switzerland, and Digestive Diseases Research Unit, Institut de Recerca, Department of Gastroenterology; Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Sunil Kochhar
- Bioanalytical Science Department, Metabonomics & Biomarkers Group, Nestlé Research Center, Lausanne, Switzerland, and Digestive Diseases Research Unit, Institut de Recerca, Department of Gastroenterology; Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| |
Collapse
|
43
|
Xiao C, Hao F, Qin X, Wang Y, Tang H. An optimized buffer system for NMR-based urinary metabonomics with effective pH control, chemical shift consistency and dilution minimization. Analyst 2009; 134:916-25. [PMID: 19381385 DOI: 10.1039/b818802e] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NMR-based metabonomics has been widely employed to understand the stressor-induced perturbations to mammalian metabolism. However, inter-sample chemical shift variations for metabolites remain an outstanding problem for effective data mining. In this work, we systematically investigated the effects of pH and ionic strength on the chemical shifts for a mixture of 9 urinary metabolites. We found that the chemical shifts were decreased with the rise of pH but increased with the increase of ionic strength, which probably resulted from the pH- and ionic strength-induced alteration to the ionization equilibrium for the function groups. We also found that the chemical shift variations for most metabolites were reduced to less than 0.004 ppm when the pH was 7.1-7.7 and the salt concentration was less than 0.15 M. Based on subsequent optimization to minimize chemical shift variation, sample dilution and maximize the signal-to-noise ratio, we proposed a new buffer system consisting of K(2)HPO(4) and NaH(2)PO(4) (pH 7.4, 1.5 M) with buffer-urine volume ratio of 1 : 10 for human urinary metabonomic studies; we suggest that the chemical shifts for the proton signals of citrate and aromatic signals of histidine be corrected prior to multivariate data analysis especially when high resolution data were employed. Based on these, an optimized sample preparation method has been developed for NMR-based urinary metabonomic studies.
Collapse
Affiliation(s)
- Chaoni Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | |
Collapse
|
44
|
Zhang S, Nagana Gowda GA, Asiago V, Shanaiah N, Barbas C, Raftery D. Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. Anal Biochem 2008; 383:76-84. [PMID: 18775407 DOI: 10.1016/j.ab.2008.07.041] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/21/2008] [Accepted: 07/31/2008] [Indexed: 02/03/2023]
Abstract
Type 1 diabetes was induced in Sprague-Dawley rats using streptozotocin. Rat urine samples (8 diabetic and 10 control) were analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy. The derived metabolites using univariate and multivariate statistical analysis were subjected to correlative analysis. Plasma metabolites were measured by a series of bioassays. A total of 17 urinary metabolites were identified in the 1H NMR spectra and the loadings plots after principal components analysis. Diabetic rats showed significantly increased levels of glucose (P < 0.00001), alanine (P < 0.0002), lactate (P < 0.05), ethanol (P < 0.05), acetate (P < 0.05), and fumarate (P < 0.05) compared with controls. Plasma assays showed higher amounts of glucose, urea, triglycerides, and thiobarbituric acid-reacting substances in diabetic rats. Striking differences in the Pearson's correlation of the 17 NMR-detected metabolites were observed between control and diabetic rats. Detailed analysis of the altered metabolite levels and their correlations indicate a significant disturbance in the glucose metabolism and tricarboxylic acid (TCA) cycle and a contribution from gut microbial metabolism. Specific perturbed metabolic pathways include the glucose-alanine and Cori cycles, the acetate switch, and choline metabolism. Detection of the altered metabolic pathways and bacterial metabolites using this correlative and quantitative NMR-based metabolomics approach should help to further the understanding of diabetes-related mechanisms.
Collapse
Affiliation(s)
- Shucha Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ni Y, Su M, Lin J, Wang X, Qiu Y, Zhao A, Chen T, Jia W. Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Lett 2008; 582:2627-36. [PMID: 18586036 DOI: 10.1016/j.febslet.2008.06.040] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/11/2008] [Accepted: 06/20/2008] [Indexed: 02/02/2023]
Abstract
Chronic stress is closely linked to clinical depression, which could be assessed by a chronic unpredictable mild stress (CUMS) animal model. We present here a GC/MS-based metabolic profiling approach to investigate neurochemical changes in the cerebral cortex, hippocampus, thalamus, and remaining brain tissues. Multi-criteria assessment for multivariate statistics could identify differential metabolites between the CUMS-model rats versus the healthy controls. This study demonstrates that the significantly perturbed metabolites mainly involving amino acids play an indispensable role in regulating neural activity in the brain. Therefore, results obtained from such metabolic profiling strategy potentially provide a unique perspective on molecular mechanisms of chronic stress.
Collapse
Affiliation(s)
- Yan Ni
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Fardet A, Llorach R, Martin JF, Besson C, Lyan B, Pujos-Guillot E, Scalbert A. A liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomic approach reveals new metabolic effects of catechin in rats fed high-fat diets. J Proteome Res 2008; 7:2388-98. [PMID: 18484765 DOI: 10.1021/pr800034h] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unbalanced diets generate oxidative stress commonly associated with the development of diabetes, atherosclerosis, obesity and cancer. Dietary flavonoids have antioxidant properties and may limit this stress and reduce the risk of these diseases. We used a metabolomic approach to study the influence of catechin, a common flavonoid naturally occurring in various fruits, wine or chocolate, on the metabolic changes induced by hyperlipidemic diets. Male Wistar rats ( n = 8/group) were fed during 6 weeks normolipidemic (5% w/w) or hyperlipidemic (15 and 25%) diets with or without catechin supplementation (0.2% w/w). Urines were collected at days 17 and 38 and analyzed by reverse-phase liquid chromatography-mass spectrometry (LC-QTOF). Hyperlipidic diets led to a significant increase of oxidative stress in liver and aorta, upon which catechin had no effect. Multivariate analyses (PCA and PLS-DA) of the urine fingerprints allowed discrimination of the different diets. Variables were then classified according to their dependence on lipid and catechin intake (ANOVA). Nine variables were identified as catechin metabolites of tissular or microbial origin. Around 1000 variables were significantly affected by the lipid content of the diet, and 76 were fully reversed by catechin supplementation. Four variables showing an increase in urinary excretion in rats fed the high-fat diets were identified as deoxycytidine, nicotinic acid, dihydroxyquinoline and pipecolinic acid. After catechin supplementation, the excretion of nicotinic acid was fully restored to the level found in the rats fed the low-fat diet. The physiological significance of these metabolic changes is discussed.
Collapse
Affiliation(s)
- Anthony Fardet
- UMR 1019, Unité de Nutrition Humaine, INRA, Centre de Recherche de Clermont-Ferrand/Theix, F-63122 S -Genès-Champanelle, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Kussmann M, Rezzi S, Daniel H. Profiling techniques in nutrition and health research. Curr Opin Biotechnol 2008; 19:83-99. [DOI: 10.1016/j.copbio.2008.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 12/13/2022]
|
48
|
|
49
|
Lopes LV, Marvin-Guy LF, Fuerholz A, Affolter M, Ramadan Z, Kussmann M, Fay LB, Bergonzelli GE. Maternal deprivation affects the neuromuscular protein profile of the rat colon in response to an acute stressor later in life. J Proteomics 2008; 71:80-8. [PMID: 18541476 DOI: 10.1016/j.jprot.2008.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/21/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
Early life stress as neonatal maternal deprivation (MD) predisposes rats to alter gut functions in response to acute psychological stressors in adulthood, mimicking features of irritable bowel syndrome (IBS). We applied proteomics to investigate whether MD permanently changes the protein profile of the external colonic neuromuscular layer that may condition the molecular response to an acute stressor later in life. Male rat pups were separated 3 h/day from their mothers during the perinatal period and further submitted to water avoidance (WA) stress during adulthood. Proteins were extracted from the myenteric plexus-longitudinal muscle of control (C), WA and MD+WA rat colon, separated on 2D gels, and identified by mass spectrometry. MD amplified the WA-induced protein changes involved in muscle contractile function, suggesting that stress accumulation along life imbalances the muscle tone towards hypercontractility. Our results also propose a stress dependent regulation of gluconeogenesis. Secretogranin II - the secretoneurin precursor - was induced by MD. The presence of secretoneurin in myenteric ganglia may partially explain the stress-mediated modulation of gastrointestinal motility and/or mucosal inflammation previously described in MD rats. In conclusion, our findings suggest that neonatal stress alters the responses to acute stress in adulthood in intestinal smooth muscle and enteric neurons.
Collapse
Affiliation(s)
- Luísa V Lopes
- Bioanalytical Sciences, Nestlé Research Center, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Shanaiah N, Zhang S, Desilva MA, Raftery D. NMR-Based Metabolomics for Biomarker Discovery. BIOMARKER METHODS IN DRUG DISCOVERY AND DEVELOPMENT 2008. [DOI: 10.1007/978-1-59745-463-6_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|