1
|
Karpov OA, Stotland A, Raedschelders K, Chazarin B, Ai L, Murray CI, Van Eyk JE. Proteomics of the heart. Physiol Rev 2024; 104:931-982. [PMID: 38300522 PMCID: PMC11381016 DOI: 10.1152/physrev.00026.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.
Collapse
Affiliation(s)
- Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Aleksandr Stotland
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Blandine Chazarin
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Lizhuo Ai
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
2
|
GDH promotes isoprenaline-induced cardiac hypertrophy by activating mTOR signaling via elevation of α-ketoglutarate level. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1373-1385. [PMID: 35904584 DOI: 10.1007/s00210-022-02252-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/01/2022] [Indexed: 10/16/2022]
Abstract
Numerous studies reveal that metabolism dysfunction contributes to the development of pathological cardiac hypertrophy. While the abnormal lipid and glucose utilization in cardiomyocytes responding to hypertrophic stimuli have been extensively studied, the alteration and implication of glutaminolysis are rarely discussed. In the present work, we provide the first evidence that glutamate dehydrogenase (GDH), an enzyme that catalyzes conversion of glutamate into ɑ-ketoglutarate (AKG), participates in isoprenaline (ISO)-induced cardiac hypertrophy through activating mammalian target of rapamycin (mTOR) signaling. The expression and activity of GDH were enhanced in cultured cardiomyocytes and rat hearts following ISO treatment. Overexpression of GDH, but not its enzymatically inactive mutant, provoked cardiac hypertrophy. In contrast, GDH knockdown could relieve ISO-triggered hypertrophic responses. The intracellular AKG level was elevated by ISO or GDH overexpression, which led to increased phosphorylation of mTOR and downstream effector ribosomal protein S6 kinase (S6K). Exogenous supplement of AKG also resulted in mTOR activation and cardiomyocyte hypertrophy. However, incubation with rapamycin, an mTOR inhibitor, attenuated hypertrophic responses in cardiomyocytes. Furthermore, GDH silencing protected rats from ISO-induced cardiac hypertrophy. These findings give a further insight into the role of GDH in cardiac hypertrophy and suggest it as a potential target for hypertrophy-related cardiomyopathy.
Collapse
|
3
|
Wang M, Li J, Ding Y, Cai S, Li Z, Liu P. PEX5 prevents cardiomyocyte hypertrophy via suppressing the redox-sensitive signaling pathways MAPKs and STAT3. Eur J Pharmacol 2021; 906:174283. [PMID: 34174269 DOI: 10.1016/j.ejphar.2021.174283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Peroxisomal biogenesis factor 5 (PEX5) is a member of peroxisome biogenesis protein family which serves as a shuttle receptor for the import of peroxisome matrix protein. The function of PEX5 on cardiomyocyte hypertrophy remained to be elucidated. Our study demonstrated that the protein expression level of PEX5 was declined in primary neonatal rat cardiomyocytes treated with phenylephrine (PE) and hearts from cardiac hypertrophic rats induced by abdominal aortic constriction (AAC). Overexpression of PEX5 alleviated cardiomyocyte hypertrophy induced by PE, while silencing of PEX5 exacerbated cardiomyocyte hypertrophy. PEX5 improved redox imbalance by decreasing cellular reactive oxygen species level and preserving peroxisomal catalase. Moreover, PEX5 knockdown aggravated PE-induced activation of redox-sensitive signaling pathways, including mitogen-activated protein kinase (MAPK) pathway and signal transducer and activator of transcription 3 (STAT3); whereas PEX5 overexpression suppressed activation of MAPK and STAT3. But PEX5 did not affect PE-induced phosphorylation of mammalian target of rapamycin (mTOR). In conclusion, the present study suggests that PEX5 protects cardiomyocyte against hypertrophy via regulating redox homeostasis and inhibiting redox-sensitive signaling pathways MAPK and STAT3.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, China
| | - Jingyan Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, China; International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yanqing Ding
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, China
| | - Sidong Cai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, China.
| |
Collapse
|
4
|
Zhang X, Zhang Z, Wang P, Han Y, Liu L, Li J, Chen Y, Liu D, Wang J, Tian X, Zhao Q, Yan F. Bawei Chenxiang Wan Ameliorates Cardiac Hypertrophy by Activating AMPK/PPAR-α Signaling Pathway Improving Energy Metabolism. Front Pharmacol 2021; 12:653901. [PMID: 34149410 PMCID: PMC8209424 DOI: 10.3389/fphar.2021.653901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/13/2021] [Indexed: 12/31/2022] Open
Abstract
Bawei Chenxiang Wan (BCW), a well-known traditional Chinese Tibetan medicine formula, is effective for the treatment of acute and chronic cardiovascular diseases. In the present study, we investigated the effect of BCW in cardiac hypertrophy and underlying mechanisms. The dose of 0.2, 0.4, and 0.8 g/kg BCW treated cardiac hypertrophy in SD rat model induced by isoprenaline (ISO). Our results showed that BCW (0.4 g/kg) could repress cardiac hypertrophy, indicated by macro morphology, heart weight to body weight ratio (HW/BW), left ventricle heart weight to body weight ratio (LVW/BW), hypertrophy markers, heart function, pathological structure, cross-sectional area (CSA) of myocardial cells, and the myocardial enzymes. Furthermore, we declared the mechanism of BCW anti-hypertrophy effect was associated with activating adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-α (PPAR-α) signals, which regulate carnitine palmitoyltransferase1β (CPT-1β) and glucose transport-4 (GLUT-4) to ameliorate glycolipid metabolism. Moreover, BCW also elevated mitochondrial DNA-encoded genes of NADH dehydrogenase subunit 1(ND1), cytochrome b (Cytb), and mitochondrially encoded cytochrome coxidase I (mt-co1) expression, which was associated with mitochondria function and oxidative phosphorylation. Subsequently, knocking down AMPK by siRNA significantly can reverse the anti-hypertrophy effect of BCW indicated by hypertrophy markers and cell surface of cardiomyocytes. In conclusion, BCW prevents ISO-induced cardiomyocyte hypertrophy by activating AMPK/PPAR-α to alleviate the disturbance in energy metabolism. Therefore, BCW can be used as an alternative drug for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Zhiying Zhang
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Pengxiang Wang
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Yiwei Han
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Lijun Liu
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Jie Li
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Yichun Chen
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Duxia Liu
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Jinying Wang
- School of Medical Science, Jinan University, Guangzhou, China
| | - Xiaoying Tian
- School of Medical Science, Jinan University, Guangzhou, China
| | - Qin Zhao
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Fengxia Yan
- School of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
The poly(ADP-ribosyl)ation of BRD4 mediated by PARP1 promoted pathological cardiac hypertrophy. Acta Pharm Sin B 2021; 11:1286-1299. [PMID: 34094834 PMCID: PMC8148063 DOI: 10.1016/j.apsb.2020.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/18/2020] [Accepted: 10/13/2020] [Indexed: 12/02/2022] Open
Abstract
The bromodomain and extraterminal (BET) family member BRD4 is pivotal in the pathogenesis of cardiac hypertrophy. BRD4 induces hypertrophic gene expression by binding to the acetylated chromatin, facilitating the phosphorylation of RNA polymerases II (Pol II) and leading to transcription elongation. The present study identified a novel post-translational modification of BRD4: poly(ADP-ribosyl)ation (PARylation), that was mediated by poly(ADP-ribose)polymerase-1 (PARP1) in cardiac hypertrophy. BRD4 silencing or BET inhibitors JQ1 and MS417 prevented cardiac hypertrophic responses induced by isoproterenol (ISO), whereas overexpression of BRD4 promoted cardiac hypertrophy, confirming the critical role of BRD4 in pathological cardiac hypertrophy. PARP1 was activated in ISO-induced cardiac hypertrophy and facilitated the development of cardiac hypertrophy. BRD4 was involved in the prohypertrophic effect of PARP1, as implied by the observations that BRD4 inhibition or silencing reversed PARP1-induced hypertrophic responses, and that BRD4 overexpression suppressed the anti-hypertrophic effect of PARP1 inhibitors. Interactions of BRD4 and PARP1 were observed by co-immunoprecipitation and immunofluorescence. PARylation of BRD4 induced by PARP1 was investigated by PARylation assays. In response to hypertrophic stimuli like ISO, PARylation level of BRD4 was elevated, along with enhanced interactions between BRD4 and PARP1. By investigating the PARylation of truncation mutants of BRD4, the C-terminal domain (CTD) was identified as the PARylation modification sites of BRD4. PARylation of BRD4 facilitated its binding to the transcription start sites (TSS) of hypertrophic genes, resulting in enhanced phosphorylation of RNA Pol II and transcription activation of hypertrophic genes. The present findings suggest that strategies targeting inhibition of PARP1-BRD4 might have therapeutic potential for pathological cardiac hypertrophy.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- BET, bromodomain and extraterminal domain
- BNP, brain natriuretic polypeptide
- BRD4
- BW, body weight
- CDK9, cyclin-dependent kinase 9
- Cardiac hypertrophy
- EF, ejection fraction
- FBS, fetal bovine serum
- FS, fractional shortening
- HATs, histone acetyltransferases
- HDACs, histone deacetylases
- HE, hematoxylin-eosin
- HW, heart weight
- Hypertrophic genes
- IF, immunofluorescence
- ISO, isoproterenol
- Isoproterenol
- LVAW, left ventricular anterior wall thickness
- LVID, left ventricular internal diameter
- LVPW, left ventricular posterior wall thickness
- NC, negative control
- NRCMs, neonatal rat cardiomyocytes
- NS, normal saline
- PARP1
- PARP1, poly(ADP-ribose)polymerase-1
- PARylation
- PBS, phosphate buffer solution
- PSR, picrosirius red
- RNA Pol II
- RNA Pol II, RNA polymerases II
- SD, Sprague–Dawley
- TL, tibia length
- TSS, transcription start sites
- Transcription activation
- WGA, wheat germ agglutinin
- co-IP, co-immunoprecipitation
- siRNA, small-interfering RNA
- β-AR, β-adrenergic receptor
- β-MHC, β-myosin heavy chain
Collapse
|
6
|
Wu G, Sun Y, Deng T, Song L, Li P, Zeng H, Tang X. Identification and Functional Characterization of a Novel Immunomodulatory Protein From Morchella conica SH. Front Immunol 2020; 11:559770. [PMID: 33193329 PMCID: PMC7649207 DOI: 10.3389/fimmu.2020.559770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
A novel fungal immunomodulatory protein (FIP) was found in the precious medical and edible mushroom Morchella conica SH, defined as FIP-mco, which belongs to the FIP family. Phylogenetic analyses of FIPs from different origins were performed using Neighbor-Joining method. It was found that FIP-mco belonged to a new branch of the FIP family and may evolved from a different ancestor compared with most other FIPs. The cDNA sequence of FIP-mco was cloned and expressed in the yeast Pichia Pastoris X33. The recombinant protein of FIP-mco (rFIP-mco) was purified by agarose Ni chromatography and determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The protein rFIP-mco could significantly suppress the proliferation of A549 and HepG2 cells at the concentration of 15 and 5 μg/ml, respectively, and inhibited the migration and invasion of human A549 and HepG2 cells at the concentration of 15 and 30 μg/ml respectively in vitro. Further, rFIP-mco can significantly reduce the expression levels of TNF-α, IL-1β, and IL-6 in the THP1 cells (human myeloid leukemia mononuclear cells). In order to explore the potential mechanism of the cytotoxicity effect of rFIP-mco on A549 and HepG2 cells, cell cycle and apoptosis assay in the two cancer cells were conducted. The results demonstrated that G0/G1 to S-phase arrest and increased apoptosis may contribute to the proliferation inhibition by rFIP-mco in the two cancer cells. Molecular mechanism of rFIP-mco's reduction effect on the inflammatory cytokines was also studied by suppression of the NF-κB signaling pathway. It showed that suppression of NF-κB signaling is responsible for the reduction of inflammatory cytokines by rFIP-mco. The results indicated the prospect of FIP-mco from M. conica SH as an effective and feasible source for cancer therapeutic studies and medical applications.
Collapse
Affiliation(s)
- Guogan Wu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tingshan Deng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lili Song
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Peng Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haijuan Zeng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xueming Tang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
7
|
Wang P, Lan R, Guo Z, Cai S, Wang J, Wang Q, Li Z, Li Z, Wang Q, Li J, Wu Z, Lu J, Liu P. Histone Demethylase JMJD3 Mediated Doxorubicin-Induced Cardiomyopathy by Suppressing SESN2 Expression. Front Cell Dev Biol 2020; 8:548605. [PMID: 33117796 PMCID: PMC7552667 DOI: 10.3389/fcell.2020.548605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Jumonji domain-containing 3 (JMJD3) protein, a histone demethylase protein, specifically catalyzes the demethylation of H3K27 (H3K27me3) and regulates gene expression. Sestrin2 (SESN2), a stress-inducible protein, protected against doxorubicin (DOX)-induced cardiomyopathy by regulating mitophagy and mitochondrial function. Here, the expression of JMJD3 was increased and that of SESN2 was decreased in both the heart samples from patients with dilated cardiomyopathy and chronic DOX-stimulation induced cardiomyopathy. Inhibition or knockdown of JMJD3 attenuated DOX-induced cardiomyocytes apoptosis, mitochondrial injury and cardiac dysfunction. However, JMJD3 overexpression aggravated DOX-induced cardiomyopathy, which were relieved by SESN2 overexpression. JMJD3 inhibited the transcription of SESN2 by reducing tri-methylation of H3K27 in the promoter region of SESN2. In conclusion, JMJD3 negatively regulated SESN2 via decreasing H3K27me3 enrichment in the promoter region of SESN2, subsequently inducing mitochondrial dysfunction and cardiomyocytes apoptosis. Targeting the JMJD3-SESN2 signaling axis may be a potential therapeutic strategy to protect against DOX-mediated cardiomyopathy.
Collapse
Affiliation(s)
- Panxia Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sidong Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Quan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zeyu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qianqian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingyan Li
- School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China
| |
Collapse
|
8
|
Ma Z, Qin X, Zhong X, Liao Y, Su Y, Liu X, Liu P, Lu J, Zhou S. Flavine adenine dinucleotide inhibits pathological cardiac hypertrophy and fibrosis through activating short chain acyl-CoA dehydrogenase. Biochem Pharmacol 2020; 178:114100. [PMID: 32540485 DOI: 10.1016/j.bcp.2020.114100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022]
Abstract
Short-chain acyl-CoA dehydrogenase (SCAD), the rate-limiting enzyme for fatty acid β-oxidation, has a negative regulatory effect on pathological cardiac hypertrophy and fibrosis. Furthermore, flavin adenine dinucleotide (FAD) can enhance the expression and enzyme activity of SCAD. However, whether FAD can inhibit pathological cardiac hypertrophy and fibrosis remains unclear. Therefore, we observed the effect of FAD on pathological cardiac hypertrophy and fibrosis. FAD significantly inhibited PE-induced cardiomyocyte hypertrophy and AngII-induced cardiac fibroblast proliferation. In addition, FAD ameliorated pathological cardiac hypertrophy and fibrosis in SHR. FAD significantly increased the expression and enzyme activity of SCAD. Meanwhile, ATP content was increased, the content of free fatty acids and reactive oxygen species were decreased by FAD in vivo and in vitro. In addition, molecular dynamics simulations were also used to provide insights into the structural stability and dynamic behavior of SCAD. The results demonstrated that FAD may play an important structural role on the SCAD dimer stability and maintenance of substrate catalytic pocket to increase the expression and enzyme activity of SCAD. In conclusion, FAD can inhibit pathological cardiac hypertrophy and fibrosis through activating SCAD, which may be a novel effective treatment for pathological cardiac hypertrophy and fibrosis, thus prevent them from developing into heart failure.
Collapse
Affiliation(s)
- Zhichao Ma
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, GuangZhou, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Qin
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, GuangZhou, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyi Zhong
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, GuangZhou, China
| | - Yingqing Liao
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, GuangZhou, China
| | - Yongshao Su
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, GuangZhou, China
| | - Xi Liu
- College of Medical Information Engineering, GuangDong Pharmaceutical University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sigui Zhou
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, GuangZhou, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Li J, Huang J, Lu J, Guo Z, Li Z, Gao H, Wang P, Luo W, Cai S, Hu Y, Guo K, Wang L, Li Z, Wang M, Zhang X, Liu P. Sirtuin 1 represses PKC-ζ activity through regulating interplay of acetylation and phosphorylation in cardiac hypertrophy. Br J Pharmacol 2019; 176:416-435. [PMID: 30414383 PMCID: PMC6329629 DOI: 10.1111/bph.14538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/20/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of PKC-ζ is closely linked to the pathogenesis of cardiac hypertrophy. PKC-ζ can be activated by certain lipid metabolites such as phosphatidylinositol (3,4,5)-trisphosphate and ceramide. However, its endogenous negative regulators are not well defined. Here, the role of the sirtuin1-PKC-ζ signalling axis and the underlying molecular mechanisms were investigated in cardiac hypertrophy. EXPERIMENTAL APPROACH Cellular hypertrophy in cultures of cardiac myocytes, from neonatal Sprague-Dawley rats, was monitored by measuring cell surface area and the mRNA levels of hypertrophic biomarkers. Interaction between sirtuin1 and PKC-ζ was investigated by co-immunoprecipitation and confocal immunofluorescence microscopy. Sirtuin1 activation was enhanced by resveratrol treatment or Ad-sirtuin1 transfection. A model of cardiac hypertrophy in Sprague-Dawley rats was established by abdominal aortic constriction surgery or induced by isoprenaline in vivo. KEY RESULTS Overexpression of PKC-ζ led to cardiac hypertrophy and increased activity of NF-κB, ERK1/2 and ERK5, which was ameliorated by sirtuin1 overexpression. Enhancement of sirtuin1 activity suppressed acetylation of PKC-ζ, hindered its binding to phosphoinositide-dependent kinase 1 and inhibited PKC-ζ phosphorylation in cardiac hypertrophy. Consequently, the downstream pathways of PKC-ζ' were suppressed in cardiac hypertrophy. This regulation loop suggests a new role for sirtuin1 in mediation of cardiac hypertrophy. CONCLUSIONS AND IMPLICATIONS Sirtuin1 is an endogenous negative regulator for PKC-ζ and mediates its activity via regulating the acetylation and phosphorylation in the pathogenesis of cardiac hypertrophy. Targeting the sirtuin1-PKC-ζ signalling axis may suggest a novel therapeutic approach against cardiac hypertrophy.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Junying Huang
- College of Life SciencesGuangzhou UniversityGuangzhouGuangdongChina
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhen Guo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Hui Gao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of Pharmacology, School of MedicineJishou UniversityJishouChina
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wenwei Luo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Sidong Cai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuehuai Hu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Kaiteng Guo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Luping Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhenzhen Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Minghui Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaolei Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
10
|
Sun S, Hu Y, Zheng Q, Guo Z, Sun D, Chen S, Zhang Y, Liu P, Lu J, Jiang J. Poly(ADP‐ribose) polymerase 1 induces cardiac fibrosis by mediating mammalian target of rapamycin activity. J Cell Biochem 2019; 120:4813-4826. [DOI: 10.1002/jcb.26649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Shuya Sun
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Yuehuai Hu
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Qiyao Zheng
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Zhen Guo
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Duanping Sun
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Shaorui Chen
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Yiqiang Zhang
- Division of Cardiology, Department of Medicine Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle Washington
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Jing Lu
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Jianmin Jiang
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| |
Collapse
|
11
|
Li Z, Zhang X, Guo Z, Zhong Y, Wang P, Li J, Li Z, Liu P. SIRT6 Suppresses NFATc4 Expression and Activation in Cardiomyocyte Hypertrophy. Front Pharmacol 2019; 9:1519. [PMID: 30670969 PMCID: PMC6331469 DOI: 10.3389/fphar.2018.01519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
NFATc4, a member from the Nuclear Factor of Activated T cells (NFATs) transcription factor family, plays a pivotal role in the development of cardiac hypertrophy. NFATc4 is dephosphorylated by calcineurin and translocated from the cytoplasm to the nucleus to regulate the expression of hypertrophic genes, like brain natriuretic polypeptide (BNP). The present study identified SIRT6, an important subtype of NAD+ dependent class III histone deacetylase, to be a negative regulator of NFATc4 in cardiomyocyte hypertrophy. In phenylephrine (PE)-induced hypertrophic cardiomyocyte model, overexpression of SIRT6 by adenovirus infection or by plasmid transfection repressed the protein and mRNA expressions of NFATc4, elevated its phosphorylation level, prevented its nuclear accumulation, subsequently suppressed its transcriptional activity and downregulated its target gene BNP. By contrast, mutant of SIRT6 without deacetylase activity (H133Y) did not demonstrate these effects, suggesting that the inhibitory effect of SIRT6 on NFATc4 was dependent on its deacetylase activity. Moreover, the effect of SIRT6 overexpression on repressing BNP expression was reversed by NFATc4 replenishment, whereas the effect of SIRT6 deficiency on upregulating BNP was recovered by NFATc4 silencing. Mechanistically, interactions between SIRT6 and NFATc4 might possibly facilitate the deacetylation of NFATc4 by SIRT6, thereby preventing the activation of NFATc4. In conclusion, the present study reveals that SIRT6 suppresses the expression and activation of NFATc4. These findings provide more evidences of the anti-hypertrophic effect of SIRT6 and suggest SIRT6 as a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Zhang
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Shaanxi, China
| | - Zhen Guo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yao Zhong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, Third People's Hospital of Dongguan, Dongguan, China
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingyan Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Hu Y, Guo Z, Lu J, Wang P, Sun S, Zhang Y, Li J, Zheng Q, Guo K, Wang J, Jiang J, Liu P. sFRP1 has a biphasic effect on doxorubicin-induced cardiotoxicity in a cellular location-dependent manner in NRCMs and Rats. Arch Toxicol 2018; 93:533-546. [PMID: 30377735 DOI: 10.1007/s00204-018-2342-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
Doxorubicin (Dox) is an effective anticancer drug, however, its clinical application is restricted by the life-threatening cardiotoxic effects. Secreted Frizzled-related protein 1 (sFRP1) has been reported to participate in both the cancer and cardiovascular diseases and was one of the differential expression genes in normal hearts compared with Dox-treated hearts. Thus, it is important to reveal the potential role of sFRP1 in Dox-induced cardiotoxicity. Here, we show that sFRP1 has a biphasic effect on Dox-induced cardiotoxicity in a location-dependent manner. The secretion of sFRP1 was significantly increased in Dox-treated neonatal rat cardiomyocytes (NRCMs) (1 µM) and SD rats (5 mg/kg/injection at day 1, 5, and 9, i.p.). Adding the anti-sFRP1 antibody (0.5 µg/ml) and inhibiting sFRP1 secretion by caffeine (5 mM) both relieved Dox-induced cardiotoxicity through activating Wnt/β-catenin signaling, whereas increasing the secretion of sFRP1 by heparin (100 µg/ml) had the opposite effect. The intracellular level of sFRP1 was significantly decreased after Dox treatment both in vitro and in vivo. Knockdown of sFRP1 by sgRNA aggravated Dox-induced cardiotoxicity, while moderate overexpression of sFRP1 by Ad-sFRP1 exhibited protective effect. Besides, poly(ADP-ribosyl) polymerase-1 (PARP1) was screened as an interacting partner of sFRP1 in NRCMs by mass spectrometry. Our results suggested that the intracellular sFRP1 protected NRCMs from Dox-induced cardiotoxicity by interacting with PARP1. Thus, our results provide a novel evidence that sFRP1 has a biphasic effect on Dox-induced cardiotoxicity. In addition, the oversecretion of sFRP1 might be used as a biomarker to indicate the occurrence of cardiotoxicity induced by Dox treatment.
Collapse
Affiliation(s)
- Yuehuai Hu
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Zhen Guo
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Jing Lu
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China.
| | - Panxia Wang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Shuya Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yiqiang Zhang
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jingyan Li
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Qiyao Zheng
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Kaiteng Guo
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Jianmin Jiang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China.
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
13
|
Wang L, Li Z, Tan Y, Li Q, Yang H, Wang P, Lu J, Liu P. PARP1 interacts with STAT3 and retains active phosphorylated-STAT3 in nucleus during pathological myocardial hypertrophy. Mol Cell Endocrinol 2018; 474:137-150. [PMID: 29501586 DOI: 10.1016/j.mce.2018.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022]
Abstract
The activation of signal transducer and activator of transcription 3 (STAT3) positively regulates myocardial hypertrophy, and its transcriptional activity is finely conditioned by diverse extracellular growth factors and cytokines. Here, we introduce novel evidence that poly(ADP-ribose) polymerase 1 (PARP1) interacts with STAT3 and promotes its activation in cardiomyocytes and rat heart tissues. PARP1 activity and phosphorylated STAT3 were augmented by hypertrophic stimuli both in vitro and in vivo. Infection of PARP1 adenovirus induced cardiomyocyte hypertrophy, which could be prevented by STAT3 knockdown or inhibition. Additionally, PARP1 enhanced STAT3 phosphorylation level, nuclear accumulation and transcriptional activity. Mechanistically, PARP1 interacts with STAT3 and retains active phosphorylated-STAT3 in nucleus. In conclusion, our findings provide the first evidence that PARP1 exacerbates cardiac hypertrophy by stabilizing active phosphorylated-STAT3, which suggests that multi-target therapeutic strategies counteracting PARP1 activity and STAT3 activation would be potential for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Luping Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yinzi Tan
- Bank of China Ltd., Guangzhou 510610, PR China
| | - Qian Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Hanwei Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| |
Collapse
|
14
|
Fang X, Liu Y, Lu J, Hong H, Yuan J, Zhang Y, Wang P, Liu P, Ye J. Protocatechuic aldehyde protects against isoproterenol-induced cardiac hypertrophy via inhibition of the JAK2/STAT3 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1373-1385. [PMID: 30132020 DOI: 10.1007/s00210-018-1556-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023]
Abstract
Protocatechuic aldehyde (PCA) is a natural compound found in the Chinese herb Salvia miltiorrhiza. It has been shown to possess multiple biological activities and to protect the cardiovascular system against oxidative stress, inflammation, and atherosclerosis. However, the potential effects of PCA on cardiac hypertrophy remain to be investigated. In this study, we showed that isoproterenol treatment (ISO, 10 μM for 24 h) induced significant hypertrophy in cultured neonatal rat cardiomyocytes, as manifested by enlargement of cell surface area (1.74-fold greater than that of the control, p < 0.05) and upregulation of hypertrophic gene markers (2.44- to 2.75-fold increase in ANF and β-MHC protein expression, p < 0.05). These ISO-induced hypertrophic responses were attenuated by PCA (50-200 μM, p < 0.05). Furthermore, intragastric administration of PCA (10-100 mg/kg/day) ameliorated cardiac hypertrophy in ISO-treated rats (1.5 mg/kg/day, s.c., for 7 days). PCA inhibited the abnormal changes in echocardiographic parameters and suppressed ISO-induced increase in cardiomyocyte cross-sectional area and collagen content (p < 0.05). It also ameliorated ISO-mediated elevation of HW/BW, LVW/BW, and HW/TL ratios (p < 0.05). Mechanistically, ISO facilitated JAK2 and STAT3 phosphorylation, increased STAT3 nuclear translocation, and enhanced STAT3 transcriptional activity. All these changes were attenuated by PCA. Taken together, these findings showed that PCA could protect against cardiac hypertrophy induced by ISO possibly via inhibition of the JAK2/STAT3 signaling pathway, suggesting the potential of PCA as a therapeutic candidate for hypertrophy-associated heart diseases.
Collapse
Affiliation(s)
- Xiuli Fang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yajun Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Huiqi Hong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jing Yuan
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yuhong Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Hong HQ, Lu J, Fang XL, Zhang YH, Cai Y, Yuan J, Liu PQ, Ye JT. G3BP2 is involved in isoproterenol-induced cardiac hypertrophy through activating the NF-κB signaling pathway. Acta Pharmacol Sin 2018; 39:184-194. [PMID: 28816235 DOI: 10.1038/aps.2017.58] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/13/2017] [Indexed: 12/25/2022] Open
Abstract
The RasGAP SH3 domain-binding proteins (G3BPs) are a family of RNA-binding proteins that can co-ordinate signal transduction and post-transcriptional gene regulation. G3BPs have been shown to be involved in mediating a great diversity of cellular processes such as cell survival, growth, proliferation and apoptosis. But the potential roles of G3BPs in the pathogenesis and progression of cardiovascular diseases remain to be clarified. In the present study, we provide the first evidence that suggests the participation of G3BP2 in cardiac hypertrophy. In cultured neonatal rat cardiomyocytes (NRCMs), treatment with isoproterenol (ISO, 0.1-100 μmol/L) significantly elevated the mRNA and protein levels of G3BP2. Similar results were observed in the hearts of rats subjected to 7D-injection of ISO, accompanied by obvious heart hypertrophy and elevated the expression of hypertrophy marker genes ANF, BNP and β-MHC in heart tissues. Overexpression of G3BP2 in NRCMs led to hypertrophic responses evidenced by increased cellular surface area and the expression of hypertrophy marker genes, whereas knockdown of G3BP2 significantly attenuated ISO-induced hypertrophy of NRCMs. We further showed that G3BP2 directly interacted with IκBα and promoted the aggregation of the NF-κB subunit p65 in the nucleus and increased NF-κB-dependent transcriptional activity. NF-κB inhibition with PDTC (50 μmol/L) or p65 knockdown significantly decreased the hypertrophic responses in NRCMs induced by ISO or G3BP2 overexpression. These results give new insight into the functions of G3BP2 and may help further elucidate the molecular mechanisms underlying cardiac hypertrophy.
Collapse
|
16
|
STAT3 Suppression Is Involved in the Protective Effect of SIRT6 Against Cardiomyocyte Hypertrophy. J Cardiovasc Pharmacol 2017; 68:204-14. [PMID: 27124607 DOI: 10.1097/fjc.0000000000000404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The activation of signal transducer and activator of transcription 3 (STAT3) is critical for the development of cardiac hypertrophy and heart failure. Sirtuin 6 (SIRT6) protects cardiomyocytes from hypertrophy. This study focused on the association between SIRT6 and STAT3 in the regulation of cardiomyocyte hypertrophy. In the phenylephrine (PE)-induced hypertrophic cardiomyocyte model and in the hearts of isoprenaline-induced cardiac hypertrophic rat model, the mRNA and protein expressions of STAT3 and its phosphorylated level at tyrosine 705 (P-STAT3) were significantly increased. By contrast, the deacetylation activity of SIRT6 was weakened without altering its protein expression. In addition, the nuclear localization of STAT3 and P-STAT3 was enhanced by PE, suggesting that STAT3 was activated in cardiomyocyte hypertrophy. Adenovirus infection-induced SIRT6 overexpression repressed the activation of STAT3 by decreasing its mRNA and protein levels, by suppressing its transcriptional activity, and by hindering the expressions of its target genes. Moreover, the effect of SIRT6 overexpression on eliminating PE-induced expressions of hypertrophic biomarkers, such as atrial natriuretic factor and brain natriuretic peptide, was reversed by STAT3 overexpression. Likewise, SIRT6 knockdown-induced upregulation of atrial natriuretic factor and brain natriuretic peptide was reversed by STAT3 silencing. These observations suggest that the antihypertrophic effect of SIRT6 involves STAT3 suppression. In conclusion, SIRT6 prevents PE-induced activation of STAT3 in cardiomyocyte hypertrophy; the inhibitory effect of SIRT6 on STAT3 contributes to cardiac protection.
Collapse
|
17
|
Lu J, Zhang R, Hong H, Yang Z, Sun D, Sun S, Guo X, Ye J, Li Z, Liu P. The poly(ADP-ribosyl)ation of FoxO3 mediated by PARP1 participates in isoproterenol-induced cardiac hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1863:3027-3039. [PMID: 27686254 DOI: 10.1016/j.bbamcr.2016.09.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
The Forkhead box-containing protein, O subfamily 3 (FoxO3) transcription factor negatively regulates myocardial hypertrophy, and its transcriptional activity is finely conditioned by diverse posttranslational modifications, such as phosphorylation, acetylation, ubiquitination, methylation and glycosylation. Here, we introduce a novel modification of the FoxO3 protein in cardiomyocytes: poly(ADP-ribosyl)ation (PARylation) mediated by poly(ADP-ribose) polymerase-1 (PARP1). This process catalyzes the NAD+-dependent synthesis of polymers of ADP-ribose (PAR) and their subsequent attachment to target proteins by PARPs. Primary-cultured neonatal rat cardiomyocytes were incubated with isoproterenol (ISO) to induce hypertrophy, or were infected with recombinant adenovirus vectors harboring PARP1 cDNA (Ad-PARP1). Sprague-Dawley (SD) rats were treated with ISO to induce cardiac hypertrophy, or were injected with Ad-PARP1 into the anterior and posterior left ventricular walls. Cardiomyocyte surface area, the mRNA expression of hypertrophic biomarkers, echocardiography, morphometry of the hearts were measured. The PARP1 activity was tested by cellular PAR levels. Interactions of PARP1 and FoxO3 were investigated by co-immunoprecipitation and immunofluorescence technique. PARylation of FoxO3 mediated by PARP1 facilitated its phosphorylation at the T32, S252 and S314 sites, triggered its nucleus export and suppressed its transcriptional activity and target genes expression, ultimately inducing cardiac hypertrophy. Additionally, PARP1 silencing or specific inhibition by 3-Aminobenzamide (3AB) and veliparib (ABT-888) alleviated the inhibition of FoxO3 activity by ISO, thus suppressing ISO-induced cardiac hypertrophy. Our data provide the first evidence that PARP1 exacerbates cardiac hypertrophy by PARylation of FoxO3.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Renwei Zhang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Huiqi Hong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Zuolong Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Duanping Sun
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Shuya Sun
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Xiaolei Guo
- Infinitus (China) Company Ltd., Guangzhou 510623, Guangdong, PR China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
18
|
Gao S, Liu XP, Wei LH, Lu J, Liu P. Upregulation of α-enolase protects cardiomyocytes from phenylephrine-induced hypertrophy. Can J Physiol Pharmacol 2017; 96:352-358. [PMID: 28910549 DOI: 10.1139/cjpp-2017-0282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac hypertrophy often refers to the abnormal growth of heart muscle through a variety of factors. The mechanisms of cardiomyocyte hypertrophy have been extensively investigated using neonatal rat cardiomyocytes treated with phenylephrine. α-Enolase is a glycolytic enzyme with "multifunctional jobs" beyond its catalytic activity. Its possible contribution to cardiac dysfunction remains to be determined. The present study aimed to investigate the change of α-enolase during cardiac hypertrophy and explore its role in this pathological process. We revealed that mRNA and protein levels of α-enolase were significantly upregulated in hypertrophic rat heart induced by abdominal aortic constriction and in phenylephrine-treated neonatal rat cardiomyocytes. Furthermore, knockdown of α-enolase by RNA interference in cardiomyocytes mimicked the hypertrophic responses and aggravated phenylephrine-induced hypertrophy without reducing the total glycolytic activity of enolase. In addition, knockdown of α-enolase led to an increase of GATA4 expression in the normal and phenylephrine-treated cardiomyocytes. Our results suggest that the elevation of α-enolase during cardiac hypertrophy is compensatory. It exerts a catalytic independent role in protecting cardiomyocytes against pathological hypertrophy.
Collapse
Affiliation(s)
- Si Gao
- a Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, 132 East Wai-huan Road, Guangzhou, 510006 Guangdong, P.R. China.,b Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, 257 Liu-shi Road, Liuzhou, 545005 Guangxi, P.R. China
| | - Xue-Ping Liu
- a Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, 132 East Wai-huan Road, Guangzhou, 510006 Guangdong, P.R. China.,b Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, 257 Liu-shi Road, Liuzhou, 545005 Guangxi, P.R. China
| | - Li-Hua Wei
- c Department of Pathology and Pathophysiology, School of Medicine, Guangxi University of Science and Technology, 257 Liu-shi Road, Liuzhou, 545005 Guangxi, P.R. China
| | - Jing Lu
- a Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, 132 East Wai-huan Road, Guangzhou, 510006 Guangdong, P.R. China
| | - Peiqing Liu
- a Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, 132 East Wai-huan Road, Guangzhou, 510006 Guangdong, P.R. China
| |
Collapse
|
19
|
Deng LJ, Wang LH, Peng CK, Li YB, Huang MH, Chen MF, Lei XP, Qi M, Cen Y, Ye WC, Zhang DM, Chen WM. Fibroblast Activation Protein α Activated Tripeptide Bufadienolide Antitumor Prodrug with Reduced Cardiotoxicity. J Med Chem 2017; 60:5320-5333. [DOI: 10.1021/acs.jmedchem.6b01755] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li-Juan Deng
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Long-Hai Wang
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Cheng-Kang Peng
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yi-Bin Li
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Mao-Hua Huang
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Min-Feng Chen
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xue-Ping Lei
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ming Qi
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yun Cen
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-Min Chen
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
20
|
Feng GS, Zhu CG, Li ZM, Wang PX, Huang Y, Liu M, He P, Lou LL, Chen SR, Liu PQ. Synthesis of the novel PARP-1 inhibitor AG-690/11026014 and its protective effects on angiotensin II-induced mouse cardiac remodeling. Acta Pharmacol Sin 2017; 38:638-650. [PMID: 28239158 DOI: 10.1038/aps.2016.159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
We previously identified AG-690/11026014 (6014) as a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor that effectively prevented angiotensin II (Ang II)-induced cardiomyocyte hypertrophy. In the present study, we reported a new synthesis route for 6014, and investigated its protective effects on Ang II-induced cardiac remodeling and cardiac dysfunction and the underlying mechanisms in mice. We designed a new synthesis route to obtain a sufficient quantity of 6014 for this in vivo study. C57BL/6J mice were infused with Ang II and treated with 6014 (10, 30, 90 mg·kg-1·d-1, ig) for 4 weeks. Then two-dimensional echocardiography was performed to assess the cardiac function and structure. Histological changes of the hearts were examined with HE staining and Masson's trichrome staining. The protein expression was evaluated by Western blot, immunohistochemistry and immunofluorescence assays. The activities of sirtuin-1 (SIRT-1) and the content of NAD+ were detected with the corresponding test kits. Treatment with 6014 dose-dependently improved cardiac function, including LVEF, CO and SV and reversed the changes of cardiac structure in Ang II-infused mice: it significantly ameliorated Ang II-induced cardiac hypertrophy evidenced by attenuating the enlargement of cardiomyocytes, decreased HW/BW and LVW/BW, and decreased expression of hypertrophic markers ANF, BNP and β-MHC; it also prevented Ang II-induced cardiac fibrosis, as implied by the decrease in excess accumulation of extracellular matrix (ECM) components collagen I, collagen III and FN. Further studies revealed that treatment with 6014 did not affect the expression levels of PARP-1, but dose-dependently inhibited the activity of PARP-1 and subsequently restored the activity of SIRT-1 in heart tissues due to the decreased consumption of NAD+ and attenuated Poly-ADP-ribosylation (PARylation) of SIRT-1. In conclusion, the novel PARP-1 inhibitor 6014 effectively protects mice against AngII-induced cardiac remodeling and improves cardiac function. Thus, 6014 might be a potential therapeutic agent for heart diseases..
Collapse
|
21
|
García-Rúa V, Feijóo-Bandín S, García-Vence M, Aragón-Herrera A, Bravo SB, Rodríguez-Penas D, Mosquera-Leal A, Lear PV, Parrington J, Alonso J, Roselló-Lletí E, Portolés M, Rivera M, González-Juanatey JR, Lago F. Metabolic alterations derived from absence of Two-Pore Channel 1 at cardiac level. J Biosci 2016; 41:643-658. [DOI: 10.1007/s12038-016-9647-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Shen P, Feng X, Zhang X, Huang X, Liu S, Lu X, Li J, You J, Lu J, Li Z, Ye J, Liu P. SIRT6 suppresses phenylephrine-induced cardiomyocyte hypertrophy though inhibiting p300. J Pharmacol Sci 2016; 132:31-40. [DOI: 10.1016/j.jphs.2016.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 01/01/2023] Open
|
23
|
Yue Z, Ma Y, You J, Li Z, Ding Y, He P, Lu X, Jiang J, Chen S, Liu P. NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy. Exp Cell Res 2016; 347:261-73. [PMID: 27423420 DOI: 10.1016/j.yexcr.2016.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/29/2016] [Accepted: 07/12/2016] [Indexed: 01/10/2023]
Abstract
Pathological cardiac hypertrophy is a maladaptive response in a variety of organic heart disease (OHD), which is characterized by mitochondrial dysfunction that results from disturbed energy metabolism. SIRT3, a mitochondria-localized sirtuin, regulates global mitochondrial lysine acetylation and preserves mitochondrial function. However, the mechanisms by which SIRT3 regulates cardiac hypertrophy remains to be further elucidated. In this study, we firstly demonstrated that expression of SIRT3 was decreased in Angiotension II (Ang II)-treated cardiomyocytes and in hearts of Ang II-induced cardiac hypertrophic mice. In addition, SIRT3 overexpression protected myocytes from hypertrophy, whereas SIRT3 silencing exacerbated Ang II-induced cardiomyocyte hypertrophy. In particular, SIRT3-KO mice exhibited significant cardiac hypertrophy. Mechanistically, we identified NMNAT3 (nicotinamide mononucleotide adenylyltransferase 3), the rate-limiting enzyme for mitochondrial NAD biosynthesis, as a new target and binding partner of SIRT3. Specifically, SIRT3 physically interacts with and deacetylates NMNAT3, thereby enhancing the enzyme activity of NMNAT3 and contributing to SIRT3-mediated anti-hypertrophic effects. Moreover, NMNAT3 regulates the activity of SIRT3 via synthesis of mitochondria NAD. Taken together, these findings provide mechanistic insights into the negative regulatory role of SIRT3 in cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhongbao Yue
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Yunzi Ma
- Department of Pharmacy, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, People's Republic of China
| | - Jia You
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Zhuoming Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Yanqing Ding
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Ping He
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Xia Lu
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Jianmin Jiang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Shaorui Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China.
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China; National and Local Joint Engineering Laboratory of Druggability Assessment and Evaluation, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China.
| |
Collapse
|
24
|
Lu J, Sun D, Liu Z, Li M, Hong H, Liu C, Gao S, Li H, Cai Y, Chen S, Li Z, Ye J, Liu P. SIRT6 suppresses isoproterenol-induced cardiac hypertrophy through activation of autophagy. Transl Res 2016; 172:96-112.e6. [PMID: 27016702 DOI: 10.1016/j.trsl.2016.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/25/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022]
Abstract
Reduction in autophagy has been reported to contribute to the pathogenesis of cardiac hypertrophy. However, the molecular pathways leading to impaired autophagy at the presence of hypertrophic stimuli remain to be elucidated. The present study aimed to investigate the role of sirtuin 6 (SIRT6), a sirtuin family member, in regulating cardiomyocyte autophagy, and its implication in prevention of cardiac hypertrophy. Primary neonatal rat cardiomyocytes (NRCMs) or Sprague-Dawley (SD) rats were submitted to isoproterenol (ISO) treatment, and then the hypertrophic responses and changes in autophagy activity were measured. The influence of SIRT6 on autophagy was observed in cultured NRCMs with gain- and loss-of-function approaches to regulate SIRT6 expression, and further confirmed in vivo by intramyocardial delivery of an adenovirus vector encoding SIRT6 cDNA. In addition, the involvement of SIRT6-mediated autophagy in attenuation of cardiomyocyte hypertrophy induced by ISO was determined basing on genetic or pharmaceutical disruption of autophagy, and the underlying mechanism was preliminarily explored. ISO-caused cardiac hypertrophy accompanying with a significant decrease in autophagy activity. SIRT6 overexpression enhanced autophagy in NRCMs and in rat hearts, whereas knockdown of SIRT6 by RNA interference led to suppression of cardiomyocyte autophagy. Furthermore, the protective effect of SIRT6 against ISO-stimulated hypertrophy was associated with induction of autophagy. SIRT6 promoted nuclear retention of forkhead box O3 transcription factor possibly via attenuating Akt signaling, which was responsible for autophagy activation. Our findings revealed that SIRT6 positively regulates autophagy in cardiomyocytes, which may help to ameliorate ISO-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Duanping Sun
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Zhiping Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Min Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Huiqi Hong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Cui Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Si Gao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yi Cai
- Guangzhou Research Institute of Snake Venom, Guangzhou Medical College, Guangzhou, Guangdong, P.R. China
| | - Shaorui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
25
|
Manakov D, Ujcikova H, Pravenec M, Novotny J. Alterations in the cardiac proteome of the spontaneously hypertensive rat induced by transgenic expression of CD36. J Proteomics 2016; 145:177-186. [PMID: 27132684 DOI: 10.1016/j.jprot.2016.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/13/2016] [Accepted: 04/26/2016] [Indexed: 01/08/2023]
Abstract
Fatty acid translocase (FAT/CD36) plays an important role in fatty acid uptake by different cell types and may also participate in regulation of calcium homeostasis and eicosanoid production. CD36 deficiency or polymorphisms in the CD36 gene are linked to some physiological irregularities. It is known that the expression of FAT/CD36 is aberrant in the spontaneously hypertensive rat (SHR), one of the most widely studied rat strains in cardiovascular research. In this work, we compared the cardiac proteome of SHR and transgenic SHR-Cd36 rats, who carry a copy of the wild type CD36 gene. Protein expression profiling was based on two-dimensional gel electrophoresis (2DE) coupled to tandem mass spectrometry and label-free LC/MS. These two complementary proteomic approaches allowed us to investigate proteome differences in the left and right heart ventricles of SHR and SHR-Cd36 rats. In total, we identified 26 differently expressed myocardial proteins, out of which 18 were found in the right ventricles and 8 in the left ventricles. Besides that, we determined a great number of proteins uniquely expressed either in the left or right ventricles. These data indicate a large qualitative disparity between the left and right ventricles. Genetic manipulations may affect different proteins in both heart ventricles. Biological significance: This is the first report revealing a relatively broad impact of transgenic expression of CD36 on the heart at the proteome level. Comparison of the protein profiles in both the left and right ventricles revealed differences in several proteins involved especially in energy metabolism. The observed downregulation of the respiratory chain enzymes in transgenic SHR-Cd36 rats may suggest a shift in regulation of energy metabolism due to expression of fatty acid translocase FAT/CD36. This study highlights the important role of cardiac tissue proteomic profiling for mapping of proteins which might be altered by targeted genetic manipulations.
Collapse
Affiliation(s)
- Dmitry Manakov
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Hana Ujcikova
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic.
| |
Collapse
|
26
|
Zeng Z, Huang Q, Shu Z, Liu P, Chen S, Pan X, Zang L, Zhou S. Effects of short-chain acyl-CoA dehydrogenase on cardiomyocyte apoptosis. J Cell Mol Med 2016; 20:1381-91. [PMID: 26989860 PMCID: PMC4929297 DOI: 10.1111/jcmm.12828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/04/2016] [Indexed: 11/27/2022] Open
Abstract
Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid β-oxidation, plays an important role in cardiac hypertrophy. However, its effect on the cardiomyocyte apoptosis remains unknown. We aimed to determine the role of SCAD in tert-butyl hydroperoxide (tBHP)-induced cardiomyocyte apoptosis. The mRNA and protein expression of SCAD were significantly down-regulated in the cardiomyocyte apoptosis model. Inhibition of SCAD with siRNA-1186 significantly decreased SCAD expression, enzyme activity and ATP content, but obviously increased the content of free fatty acids. Meanwhile, SCAD siRNA treatment triggered the same apoptosis as cardiomyocytes treated with tBHP, such as the increase in cell apoptotic rate, the activation of caspase3 and the decrease in the Bcl-2/Bax ratio, which showed that SCAD may play an important role in primary cardiomyocyte apoptosis. The changes of phosphonate AMP-activated protein kinase α (p-AMPKα) and Peroxisome proliferator-activated receptor α (PPARα) in cardiomyocyte apoptosis were consistent with that of SCAD. Furthermore, PPARα activator fenofibrate and AMPKα activator AICAR treatment significantly increased the expression of SCAD and inhibited cardiomyocyte apoptosis. In conclusion, for the first time our findings directly demonstrated that SCAD may be as a new target to prevent cardiomyocyte apoptosis through the AMPK/PPARα/SCAD signal pathways.
Collapse
Affiliation(s)
- Zhenhua Zeng
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Qiuju Huang
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Zhaohui Shu
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaorui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuediao Pan
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Linquan Zang
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Sigui Zhou
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
27
|
Liu S, Chen S, Li M, Zhang B, Shen P, Liu P, Zheng D, Chen Y, Jiang J. Autophagy activation attenuates angiotensin II-induced cardiac fibrosis. Arch Biochem Biophys 2015; 590:37-47. [PMID: 26562437 DOI: 10.1016/j.abb.2015.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/10/2015] [Accepted: 11/02/2015] [Indexed: 01/21/2023]
Abstract
Autophagy has been involved in numerous diseases processes. However, little is known about the role of autophagy in cardiac fibrosis. Thus, whether or not angiotensin II (Ang II)-induced autophagy has a regulatory function on cardiac fibrosis was detected in vitro and in vivo. In rat cardiac fibroblasts (CFs) stimulated with Ang II, activated autophagy was observed using transmission electron microscopic analysis (TEM), immunofluorescence and Western blot. In Ang II-infused mice, increased co-localization of LC3 puncta with vimentin was observed. In rat CFs, co-treated with rapamycin (Rapa), an autophagy inducer, Ang II-induced the upregulation of type I collagen (Col-I), fibronectin (FN) was decreased. Conversely, inhibition of autophagy by chloroquine (CQ), an autophagy inhibitor, or knockdown of ATG5, a key component of the autophagy pathway by specific siRNA, aggravated Ang II-mediated the accumulation of Col-I and FN. Furthermore, in C57 BL/6 mice with Ang II infusion, intraperitoneal administration of Rapa ameliorated Ang II-induced cardiac fibrosis and cardiac dysfunction, while CQ treatment not only exacerbated Ang II-mediated cardiac fibrosis and cardiac dysfunction, but also impaired cardiac function. These findings suggest that autophagy may exert a protective role to attenuate excess extracellular matrix (ECM) accumulation in the heart.
Collapse
Affiliation(s)
- Shenglan Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Shaorui Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Min Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Boyu Zhang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peiye Shen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; National and Local Joint Engineering Laboratory of Druggabilitiy Assessment and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Dandan Zheng
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yijie Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jianmin Jiang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
28
|
Feng XJ, Gao H, Gao S, Li Z, Li H, Lu J, Wang JJ, Huang XY, Liu M, Zou J, Ye JT, Liu PQ. The orphan receptor NOR1 participates in isoprenaline-induced cardiac hypertrophy by regulating PARP-1. Br J Pharmacol 2015; 172:2852-63. [PMID: 25625556 DOI: 10.1111/bph.13091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/29/2014] [Accepted: 01/16/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE The orphan nuclear receptor NOR1 belongs to the NR4A subfamily of the nuclear hormone receptor superfamily, and is involved in glucose and fat metabolism. However, its potential contribution to cardiovascular diseases remains to be assessed. Here, the roles of NOR1 in cardiac hypertrophy induced by isoprenaline and the underlying molecular mechanisms were investigated. EXPERIMENTAL APPROACH NOR1 was expressed in cardiomyocytes treated with isoprenaline. After NOR1 overexpression or knockdown in neonatal rat cardiomyocytes, cellular hypertrophy was monitored by measuring cell surface area and the mRNA of hypertrophic biomarkers. Interactions between NOR1 and PARP-1 were investigated by co-immunoprecipitation. NOR1 expression and PARP-1 activity were measured in rats with cardiac hypertrophy induced by isoprenaline. KEY RESULTS Treatment with isoprenaline significantly up-regulated NOR1 expression and PARP-1 activity both in vivo and in vitro. Specific gene silencing of NOR1 attenuated isoprenaline-induced cardiomyocyte hypertrophy, whereas NOR1 overexpression exacerbated cardiac hypertrophy. We identified a physical interaction between NOR1 and PARP-1, which was enhanced by NOR1 transfection and thereby led to PARP-1 activation. Overexpression of NOR1, but not C293Y, a NOR1 mutant lacking the PARP-1 binding activity, increased cellular surface area and the mRNA levels of atrial natriuretic factor and brain natriuretic polypeptide, effects blocked by the PARP-1 inhibitor 3-aminobenzamide or siRNA for PARP-1. CONCLUSIONS AND IMPLICATIONS This is the first evidence that NOR1 was involved in isoprenaline-induced cardiac hypertrophy. The pro-hypertrophic effect of NOR1 can be partly attributed to its regulation of PARP-1 enzymic activity.
Collapse
Affiliation(s)
- Xiao-Jun Feng
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hui Gao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Department of Pharmacology, School of Medicine, Jishou University, Jishou, China
| | - Si Gao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hong Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiao-Jiao Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yang Huang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Min Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jian Zou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, China
| | - Jian-Tao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Pei-Qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
29
|
Huang J, Xu L, Huang Q, Luo J, Liu P, Chen S, Yuan X, Lu Y, Wang P, Zhou S. Changes in short-chain acyl-coA dehydrogenase during rat cardiac development and stress. J Cell Mol Med 2015; 19:1672-88. [PMID: 25753319 PMCID: PMC4511364 DOI: 10.1111/jcmm.12541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 12/18/2014] [Indexed: 11/28/2022] Open
Abstract
This study was designed to investigate the expression of short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid β-oxidation, during rat heart development and the difference of SCAD between pathological and physiological cardiac hypertrophy. The expression of SCAD was lowest in the foetal and neonatal heart, which had time-dependent increase during normal heart development. In contrast, a significant decrease in SCAD expression was observed in different ages of spontaneously hypertensive rats (SHR). On the other hand, swim-trained rats developed physiological cardiac hypertrophy, whereas SHR developed pathological cardiac hypertrophy. The two kinds of cardiac hypertrophy exhibited divergent SCAD changes in myocardial fatty acids utilization. In addition, the expression of SCAD was significantly decreased in pathological cardiomyocyte hypertrophy, however, increased in physiological cardiomyocyte hypertrophy. SCAD siRNA treatment triggered the pathological cardiomyocyte hypertrophy, which showed that the down-regulation of SCAD expression may play an important role in pathological cardiac hypertrophy. The changes in peroxisome proliferator-activated receptor α (PPARα) was accordant with that of SCAD. Moreover, the specific PPARα ligand fenofibrate treatment increased the expression of SCAD and inhibited pathological cardiac hypertrophy. Therefore, we speculate that the down-regulated expression of SCAD in pathological cardiac hypertrophy may be responsible for 'the recapitulation of foetal energy metabolism'. The deactivation of PPARα may result in the decrease in SCAD expression in pathological cardiac hypertrophy. Changes in SCAD are different in pathological and physiological cardiac hypertrophy, which may be used as the molecular markers of pathological and physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Jinxian Huang
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Lipeng Xu
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou, China
| | - Qiuju Huang
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Jiani Luo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaorui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xi Yuan
- Clinical Medicine Eight Years 1st Class 2007 Grade, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yao Lu
- Clinical Medicine Eight Years 1st Class 2007 Grade, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Sigui Zhou
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
30
|
Huang Q, Huang J, Zeng Z, Luo J, Liu P, Chen S, Liu B, Pan X, Zang L, Zhou S. Effects of ERK1/2/PPARα/SCAD signal pathways on cardiomyocyte hypertrophy induced by insulin-like growth factor 1 and phenylephrine. Life Sci 2015; 124:41-9. [PMID: 25636810 DOI: 10.1016/j.lfs.2015.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/22/2014] [Accepted: 01/15/2015] [Indexed: 11/28/2022]
Abstract
AIMS Short-chain acyl-CoA dehydrogenase (SCAD) is a key enzyme in fatty acid oxidation. In the present study we aim to investigate the changes in SCAD between pathological and physiological cardiomyocyte hypertrophy. We also explore the different signaling pathways of pathological and physiological cardiomyocyte hypertrophy. MAIN METHODS After neonatal rat cardiomyocytes were treated as setups, cell surface area, expression of SCAD, PPARα, phospho-ERK1/2, activity of SCAD, free fatty acid content and ATP content in the cardiomyocytes were measured. KEY FINDINGS Neonatal rat cardiomyocytes treated by PE showed an increased cell surface area and free fatty acid content, increased ERK1/2 phosphorylation, decreased expression of PPARα, decreased expression and activity of SCAD and decreased levels of ATP. Neonatal rat cardiomyocytes treated by IGF-1 showed the reverse effects except for the cell surface area. PPARα inhibitor GW6471 and PPARα activator Fenofibrate treatments abrogated the effects induced by IGF-1 and PE in cardiomyocytes respectively, as well as ERK1/2 activator EGF and ERK1/2 inhibitor PD98059. SIGNIFICANCE SCAD has different changes between pathological and physiological cardiomyocyte hypertrophy. The ERK1/2/PPARα/SCAD signaling pathways play different roles in pathological and physiological cardiomyocyte hypertrophy. SCAD may be used as a new target to prevent the development of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Qiuju Huang
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou 510006, China
| | - Jinxian Huang
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenhua Zeng
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou 510006, China
| | - Jiani Luo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shaorui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bing Liu
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou 510006, China
| | - Xuediao Pan
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou 510006, China
| | - Linquan Zang
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou 510006, China
| | - Sigui Zhou
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Gao S, Li H, Feng XJ, Li M, Liu ZP, Cai Y, Lu J, Huang XY, Wang JJ, Li Q, Chen SR, Ye JT, Liu PQ. α-Enolase plays a catalytically independent role in doxorubicin-induced cardiomyocyte apoptosis and mitochondrial dysfunction. J Mol Cell Cardiol 2014; 79:92-103. [PMID: 25446184 DOI: 10.1016/j.yjmcc.2014.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND α-Enolase is a glycolytic enzyme with "second jobs" beyond its catalytic activity. However, its possible contribution to cardiac dysfunction remains to be determined. The present study aimed to investigate the role of α-enolase in doxorubicin (Dox)-induced cardiomyopathy as well as the underlying mechanisms. EXPERIMENTAL APPROACHES The expression of α-enolase was detected in rat hearts and primary cultured rat cardiomyocytes with or without Dox administration. An adenovirus carrying short-hairpin interfering RNA targeting α-enolase was constructed and transduced specifically into the heart by intramyocardial injection. Heart function, cell apoptosis and mitochondrial function were measured following Dox administration. In addition, by using gain- and loss-of-function approaches to regulate α-enolase expression in primary cultured rat cardiomyocytes, we investigated the role of endogenous, wide type and catalytically inactive mutant α-enolase in cardiomyocyte apoptosis and ATP generation. Furthermore, the involvement of α-enolase in AMPK phosphorylation was also studied. KEY RESULTS The mRNA and protein expression of cardiac α-enolase was significantly upregulated by Dox. Genetic silencing of α-enolase in rat hearts and cultured cardiomyocytes attenuated Dox-induced apoptosis and mitochondrial dysfunction. In contrast, overexpression of wide-type or catalytically inactive α-enolase in cardiomyocytes mimicked the detrimental role of Dox in inducing apoptosis and ATP reduction. AMPK dephosphorylation was further demonstrated to be involved in the proapoptotic and ATP-depriving effects of α-enolase. CONCLUSION Our findings provided the evidence that α-enolase has a catalytically independent role in inducing cardiomyocyte apoptosis and mitochondrial dysfunction, which could be at least partially contributed to the inhibition of AMPK phosphorylation.
Collapse
Affiliation(s)
- Si Gao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China; School of Medicine, Guangxi University of Science and Technology, No. 257 Liu-shi Road, Liuzhou 545005, Guangxi, PR China
| | - Hong Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China
| | - Xiao-jun Feng
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China
| | - Min Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China
| | - Zhi-ping Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China
| | - Yi Cai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China; Guangzhou Research Institute of Snake Venom, Guangzhou Medical College, Guangzhou 510182, Guangdong, PR China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China
| | - Xiao-yang Huang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China
| | - Jiao-jiao Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China
| | - Qin Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China
| | - Shao-rui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China
| | - Jian-tao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China.
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, No. 132 East Wai-huan Road, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
32
|
Petriz BA, Almeida JA, Gomes CPC, Pereira RW, Murad AM, Franco OL. NanoUPLC/MS(E) proteomic analysis reveals modulation on left ventricle proteome from hypertensive rats after exercise training. J Proteomics 2014; 113:351-65. [PMID: 25451014 DOI: 10.1016/j.jprot.2014.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/03/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED NanoUPLC/MS(E) was used to verify the effects of 8weeks of low (SHR-LIT=4) and high (SHR-HIT=4) intensity training over the left ventricle proteome of hypertensive rats (SHR-C=4). Training enhanced the aerobic capacity and reduced the systolic blood pressure in all exercised rats. NanoUPLC/MS(E) identified 250 proteins, with 233 in common to all groups and 16 exclusive to SHR-C, 2 to SHR-LIT, and 2 to the SHR-HIT. Cardiac hypertrophy related proteins appeared only in SHR-C. The SHR-LIT enhanced the abundance of 30 proteins and diminished 6, while SHR-HIT enhanced the abundance of 39 proteins and reduced other 7. The levels of metabolic (β and γ-enolase, adenine phosphoribosultransferase, and cytochrome b-c1), myofibril (myosin light chain 4, tropomyosin α and β-chain), and transporter proteins (hemoglobin, serum albumin, and hemopexin) were increased by both intensities. Transcription regulator and histone variants were enhanced by SHR-LIT and SHR-HIT respectively. SHR-LIT reduced the concentration of myosin binding protein C, while desmin and membrane voltage dependent anion selective channel protein-3 were reduced only by SHR-HIT. In addition, polyubiquitin B and C, and transcription regulators decreased in both intensities. Exercise also increased the concentration of anti-oxidant proteins, peroxiredozin-6 and glutathione peroxidase-1. BIOLOGICAL SIGNIFICANCE Pathologic left ventricle hypertrophy if one of the major outcomes of hypertension being a strong predictor of heart failure. Among the various risk factors for cardiovascular disorders, arterial hypertension is responsible for the highest rates of mortality worldwide. In this way, this present study contribute to the understanding of the molecular mechanisms involved in the attenuation of hypertension and the regression of pathological cardiac hypertrophy induced by exercise training.
Collapse
Affiliation(s)
- Bernardo A Petriz
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; UDF - Centro Universitário, Brasília, DF, Brazil
| | - Jeeser A Almeida
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; UDF - Centro Universitário, Brasília, DF, Brazil; Programa de Pós Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília - UnB, Ceilândia-DF, Brazil
| | - Clarissa P C Gomes
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Rinaldo W Pereira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Programa de Pós-Graduação em Educação Física, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - André M Murad
- Embrapa Recursos Genéticos e Biotecnologia - Laboratório de Biologia Sintética, Brasília-DF, Brazil
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; S-Inova, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande MS, Brazil; Programa de Pós-Graduação em Educação Física, Universidade Católica de Brasília, Brasília-DF, Brazil.
| |
Collapse
|
33
|
Effects of hypertension and exercise on cardiac proteome remodelling. BIOMED RESEARCH INTERNATIONAL 2014; 2014:634132. [PMID: 24877123 PMCID: PMC4022191 DOI: 10.1155/2014/634132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/14/2014] [Indexed: 12/29/2022]
Abstract
Left ventricle hypertrophy is a common outcome of pressure overload stimulus closely associated with hypertension. This process is triggered by adverse molecular signalling, gene expression, and proteome alteration. Proteomic research has revealed that several molecular targets are associated with pathologic cardiac hypertrophy, including angiotensin II, endothelin-1 and isoproterenol. Several metabolic, contractile, and stress-related proteins are shown to be altered in cardiac hypertrophy derived by hypertension. On the other hand, exercise is a nonpharmacologic agent used for hypertension treatment, where cardiac hypertrophy induced by exercise training is characterized by improvement in cardiac function and resistance against ischemic insult. Despite the scarcity of proteomic research performed with exercise, healthy and pathologic heart proteomes are shown to be modulated in a completely different way. Hence, the altered proteome induced by exercise is mostly associated with cardioprotective aspects such as contractile and metabolic improvement and physiologic cardiac hypertrophy. The present review, therefore, describes relevant studies involving the molecular characteristics and alterations from hypertensive-induced and exercise-induced hypertrophy, as well as the main proteomic research performed in this field. Furthermore, proteomic research into the effect of hypertension on other target-demerged organs is examined.
Collapse
|
34
|
Yu SS, Cai Y, Ye JT, Pi RB, Chen SR, Liu PQ, Shen XY, Ji Y. Sirtuin 6 protects cardiomyocytes from hypertrophy in vitro via inhibition of NF-κB-dependent transcriptional activity. Br J Pharmacol 2014; 168:117-28. [PMID: 22335191 DOI: 10.1111/j.1476-5381.2012.01903.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Sirtuin 6 (SIRT6) is involved in regulation of glucose and fat metabolism. However, its possible contribution to cardiac dysfunction remains to be determined. In the present study, the effect of SIRT6 on cardiac hypertrophy induced by angiotensin II (AngII) and the underlying molecular mechanisms were investigated. EXPERIMENTAL APPROACH The expression and deacetylase activity of SIRT6 were measured in hypertrophic cardiomyocytes induced by AngII. After SIRT6 overexpression by transfection, or depletion by RNA interference in neonatal rat cardiomyocytes, cellular hypertrophy was monitored by measuring cell surface area and the mRNA levels of hypertrophic biomarkers. Further, the interaction between SIRT6 and the transcription factor NF-κB was investigated by co-immunoprecipitation, confocal immunofluorescence microscopy and luciferase reporter gene assay. The expression and deacetylase activity of SIRT6 were measured in vivo, using the abdominal aortic constriction (AAC) model of cardiac hypertrophy in rats. KEY RESULTS In AngII-induced hypertrophic cardiomyocytes and also in AAC-induced hypertrophic hearts, the expression of SIRT6 protein was upregulated, while its deacetylase activity was decreased. Overexpression of wild-type SIRT6 but not its catalytically inactive mutant, attenuated AngII-induced cardiomyocyte hypertrophy. We further demonstrated a physical interaction between SIRT6 and NF-κB catalytic subunit p65, whose transcriptional activity could be repressed by SIRT6 overexpression. CONCLUSIONS AND IMPLICATIONS Our findings suggest that SIRT6 suppressed cardiomyocyte hypertrophy in vitro via inhibition of NF-κB-dependent transcriptional activity and that this effect was dependent on its deacetylase activity.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bennett BJ, Romanoski CE, Lusis AJ. Network-centered view of coronary artery disease. Expert Rev Cardiovasc Ther 2014; 5:1095-103. [DOI: 10.1586/14779072.5.6.1095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Gao S, Li H, Cai Y, Ye JT, Liu ZP, Lu J, Huang XY, Feng XJ, Gao H, Chen SR, Li M, Liu PQ. Mitochondrial binding of α-enolase stabilizes mitochondrial membrane: Its role in doxorubicin-induced cardiomyocyte apoptosis. Arch Biochem Biophys 2014; 542:46-55. [DOI: 10.1016/j.abb.2013.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 12/05/2013] [Accepted: 12/08/2013] [Indexed: 12/20/2022]
|
37
|
Liu Z, Wang J, Huang E, Gao S, Li H, Lu J, Tian K, Little PJ, Shen X, Xu S, Liu P. Tanshinone IIA suppresses cholesterol accumulation in human macrophages: role of heme oxygenase-1. J Lipid Res 2013; 55:201-13. [PMID: 24302760 DOI: 10.1194/jlr.m040394] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Accumulation of foam cells in the neointima represents a key event in atherosclerosis. We previously demonstrated that Tanshinone IIA (Tan), a lipophilic bioactive compound extracted from Salvia miltiorrhiza Bunge, inhibits experimental atherogenesis, yet the detailed mechanisms are not fully understood. In this study, we sought to explore the potential effects of Tan on lipid accumulation in macrophage foam cells and the underlying molecular mechanisms. Our data indicate that Tan treatment reduced the content of macrophages, cholesterol accumulation, and the development of atherosclerotic plaque in apolipoprotein E-deficient mice. In human macrophages, Tan ameliorated oxidized low density lipoporotein (oxLDL)-elicited foam cell formation by inhibiting oxLDL uptake and promoting cholesterol efflux. Mechanistically, Tan markedly reduced the expression of scavenger receptor class A and increased the expression of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 in lipid-laden macrophages via activation of the extracellular signal-regulated kinase (ERK)/nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Tan treatment induced the phosphorylation and nuclear translocation of Nrf2 and subsequently increased the expression of HO-1, and these effects were abolished by the specific ERK inhibitors, PD98059 and U0126. Moreover, HO-1 small interfering RNA or zinc protoporphyrin (a HO-1 inhibitor) abrogated Tan-mediated suppression of lipid accumulation in macrophages. Our current findings demonstrate that a novel HO-1-dependent mechanism is involved in the regulation of cholesterol balance by Tan.
Collapse
Affiliation(s)
- Zhiping Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cai Y, Yu SS, Chen TT, Gao S, Geng B, Yu Y, Ye JT, Liu PQ. EGCG inhibits CTGF expression via blocking NF-κB activation in cardiac fibroblast. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:106-13. [PMID: 23141425 DOI: 10.1016/j.phymed.2012.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/11/2012] [Indexed: 05/25/2023]
Abstract
Connective tissue growth factor (CTGF) has been reported to play an important role in tissue fibrosis and presents a promising therapeutic target for fibrotic diseases. In heart, inappropriate increase in level of CTGF promotes fibroblast proliferation and extracellular matrix (ECM) accumulation, thereby exacerbating cardiac hypertrophy and subsequent failure. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac fibrosis. However, the molecular mechanism by which EGCG exerts its anti-fibrotic effects has not been well investigated. In this study, we found that EGCG could significantly reduce collagen synthesis, fibronectin (FN) expression and cell proliferation in rat cardiac fibroblasts stimulated with angiotensinII (AngII). It also ameliorated cardiac fibrosis in rats submitted to abdominal aortic constriction (AAC). Moreover, EGCG attenuated the excessive expression of CTGF induced by AAC or AngII, and reduced the nuclear translocation of NF-κB p65 subunit and degradation of IκB-α. Subsequently, we demonstrated that in cardiac fibroblasts NF-κB inhibition could suppress AngII-induced CTGF expression. Taken together, these findings provide the first evidence that the effect of EGCG against cardiac fibrosis may be attributed to its inhibition on NF-κB activation and subsequent CTGF overexpression, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy.
Collapse
Affiliation(s)
- Yi Cai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Geng B, Cai Y, Gao S, Lu J, Zhang L, Zou J, Liu M, Yu S, Ye J, Liu P. PARP-2 knockdown protects cardiomyocytes from hypertrophy via activation of SIRT1. Biochem Biophys Res Commun 2012; 430:944-50. [PMID: 23261455 DOI: 10.1016/j.bbrc.2012.11.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 11/17/2012] [Indexed: 10/27/2022]
Abstract
Poly(ADP-ribosyl)ation catalyzed by the poly(ADP-ribose) polymerases (PARPs) is an immediate post-translational modification of proteins with a homopolymeric chain of repeating ADP-ribose units. It is involved in various cellular processes, such as cell survival and death, transcription, DNA repair and cell division. Inhibitors of PARPs have been documented to be useful in different pathological conditions. Recently, activation of PARP-1, the founding member of PARP family, has been revealed to participate in the development and progression of cardiac hypertrophy and heart failure. However, the roles of other PARPs in cardiovascular system remain to be clarified. PARP-2 shares 69% similarity with PARP-1 in catalytic domains, but their functions do not fully overlap. In this study, we show the first evidence that PARP-2 is involved in cardiac hypertrophy. The mRNA and protein levels of PARP-2 were significantly increased in AngII-stimulated rat cardiomyocytes as well as in hearts of rats submitted to pressure overload. PARP-2 knockdown protected cardiomyocytes from hypertrophy, which may be attributed to activation of SIRT1. These findings shed new light on the understanding of PARP-2-related cardiomyopathy, and suggest the potential application of PARP-2 inhibitors in cardiac hypertrophy.
Collapse
Affiliation(s)
- Biao Geng
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yu M, Wang X, Du Y, Chen H, Guo X, Xia L, Chen J. Comparative analysis of renal protein expression in spontaneously hypertensive rat. Clin Exp Hypertens 2008; 30:315-25. [PMID: 18633755 DOI: 10.1080/10641960802269935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Molecular mechanisms of nephrosclerosis caused by hypertension are not well known. Understanding changes in renal protein expression in hypertension may provide further information on how hypertension caused renal injury. METHODS AND RESULTS In the present study, we showed the protein expression profiles of the kidney in spontaneously hypertensive rats and Wistar-Kyoto rats using two-dimensional gel electrophoresis (2-DE). Differentially expressed protein spots were excised, underwent in-gel tryptic digestion, and were analyzed by MALDI-TOF MS. Eleven spots were identified. Of these identified spots, four spots were newly appeared, five spots up-regulated, and two spots down-regulated. The identified spots were mainly involved in energy metabolism, lipid transferring between membranes, and cell proliferation. CONCLUSIONS The expression of many proteins have changed significantly in the kidney of spontaneously hypertensive rat. NADP(+)-dependent isocitrate dehydrogenase may be a candidate for further investigation of pathophysiological mechanisms of renal injury in hypertension.
Collapse
Affiliation(s)
- Min Yu
- Department of Cardiovascular Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Muñoz J, Fernández-Irigoyen J, Santamaría E, Parbel A, Obeso J, Corrales FJ. Mass spectrometric characterization of mitochondrial complex I NDUFA10 variants. Proteomics 2008; 8:1898-908. [DOI: 10.1002/pmic.200701085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Sun B, Wang JH, Lv YY, Zhu SS, Yang J, Ma JZ. Proteomic adaptation to chronic high intensity swimming training in the rat heart. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:108-17. [DOI: 10.1016/j.cbd.2007.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 11/23/2007] [Accepted: 11/23/2007] [Indexed: 01/07/2023]
|
43
|
Reduced expression of GSTM2 and increased oxidative stress in spontaneously hypertensive rat. Mol Cell Biochem 2007; 309:99-107. [DOI: 10.1007/s11010-007-9647-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 10/31/2007] [Indexed: 02/05/2023]
|
44
|
Shono S, Kose H, Yamada T, Matsumoto K. Proteomic analysis of a diabetic congenic rat identified age-dependent alteration of an acidic protein. THE JOURNAL OF MEDICAL INVESTIGATION 2007; 54:289-94. [PMID: 17878678 DOI: 10.2152/jmi.54.289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Proteomic analysis was performed in an attempt to identify a gene responsible for the expression of type 2 diabetes using a congenic rat, F.O-Nidd2/of, which possesses a single hyperglycemic QTL locus derived from the diabetic OLETF (Otsuka Long-Evans Tokushima Fatty) rat. Since the genetic difference between the congenic and its host strain, the F344 rat, is limited to the introgressed segment of 38 cM or ca. 2% of the rat whole genome, any discordant protein spots on two dimensional polyacrylamid gel electrophoresis (2D PAGE) will be considered strong candidate genes of this locus. Here we analyzed ca. one thousand protein spots in three different tissue types, liver, muscle and pancreas at 10, 20 and 30 weeks of age, we found that an acidic protein of 55 kD in muscle tissue shifts towards acidic end in an age dependent fashion in the congenic strain. However, the shift was not observed in the control rat, which is intriguing because the timing of the shift corresponds to the age at which hyperglycemia begins in the congenic. Future biochemical analysis should aid in elucidating the molecular mechanisms of glucose metabolism.
Collapse
Affiliation(s)
- Shigeichi Shono
- Division for Animal Research Resources, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | |
Collapse
|