1
|
Shahid M, Khan MS, Singh UB. Pesticide-tolerant microbial consortia: Potential candidates for remediation/clean-up of pesticide-contaminated agricultural soil. ENVIRONMENTAL RESEARCH 2023; 236:116724. [PMID: 37500042 DOI: 10.1016/j.envres.2023.116724] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Reclamation of pesticide-polluted lands has long been a difficult endeavour. The use of synthetic pesticides could not be restricted due to rising agricultural demand. Pesticide toxicity has become a pressing agronomic problem due to its adverse impact on agroecosystems, agricultural output, and consequently food security and safety. Among different techniques used for the reclamation of pesticide-polluted sites, microbial bioremediation is an eco-friendly approach, which focuses on the application of resilient plant growth promoting rhizobacteria (PGPR) that may transform or degrade chemical pesticides to innocuous forms. Such pesticide-resilient PGPR has demonstrated favourable effects on soil-plant systems, even in pesticide-contaminated environments, by degrading pesticides, providing macro-and micronutrients, and secreting active but variable secondary metabolites like-phytohormones, siderophores, ACC deaminase, etc. This review critically aims to advance mechanistic understanding related to the reduction of phytotoxicity of pesticides via the use of microbe-mediated remediation techniques leading to crop optimization in pesticide-stressed soils. The literature surveyed and data presented herein are extremely useful, offering agronomists-and crop protectionists microbes-assisted remedial strategies for affordably enhancing crop productivity in pesticide-stressed soils.
Collapse
Affiliation(s)
- Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau Nath Bhanjan, 275103, UP, India; Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University (A.M.U.), Aligarh, 202001, UP, India.
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University (A.M.U.), Aligarh, 202001, UP, India
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau Nath Bhanjan, 275103, UP, India
| |
Collapse
|
2
|
Zhang D, Wang R, Xiao J, Zhu S, Li X, Han S, Li Z, Zhao Y, Shohag MJI, He Z, Li S. An integrated physiology, cytology, and proteomics analysis reveals a network of sugarcane protoplast responses to enzymolysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1066073. [PMID: 36518493 PMCID: PMC9744229 DOI: 10.3389/fpls.2022.1066073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 05/13/2023]
Abstract
The protoplast experimental system eis an effective tool for functional genomics and cell fusion breeding. However, the physiological and molecular mechanisms of protoplast response to enzymolysis are not clear, which has become a major obstacle to protoplast regeneration. Here, we used physiological, cytological, proteomics and gene expression analysis to compare the young leaves of sugarcane and enzymolized protoplasts. After enzymatic digestion, we obtained protoplasts with viability of > 90%. Meanwhile, the content of malondialdehyde, an oxidation product, increased in the protoplasts following enzymolysis, and the activity of antioxidant enzymes, such as peroxidase (POD), catalase (CAT), acid peroxidase (APX), and O2-, significantly decreased. Cytologic analysis results showed that, post enzymolysis, the cell membranes were perforated to different degrees, the nuclear activity was weakened, the nucleolus structure was not obvious, and the microtubules depolymerized and formed several short rod-like structures in protoplasts. In this study, a proteomics approaches was used to identify proteins of protoplasts in response to the enzymatic digestion process. GO, KEGG, and KOG enrichment analyses revealed that the abundant proteins were mainly involved in bioenergetic metabolism, cellular processes, osmotic stress, and redox homeostasis of protoplasts, which allow for protein biosynthesis or degradation. RT-qPCR analysis revealed that the expression of osmotic stress resistance genes, such as DREB, WRKY, MAPK4, and NAC, was upregulated, while that of key regeneration genes, such as CyclinD3, CyclinA, CyclinB, Cdc2, PSK, CESA, and GAUT, was significantly downregulated in the protoplasts. Hierarchical clustering and identification of redox proteins and oxidation products showed that these proteins were involved in dynamic networks in response to oxidative stress after enzymolysis. Our findings can facilitate the development of a standard system to produce regenerated protoplasts using molecular markers and antibody detection of enzymolysis.
Collapse
Affiliation(s)
- Demei Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Rui Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Jiming Xiao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Shuifang Zhu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Xinzhu Li
- School of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Shijian Han
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Zhigang Li
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Yang Zhao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - M. J. I. Shohag
- Institute of Food and Agricultural Sciences (IFAS) Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United States
| | - Zhenli He
- Institute of Food and Agricultural Sciences (IFAS) Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United States
| | - Suli Li
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
- *Correspondence: Suli Li,
| |
Collapse
|
3
|
Zhang Y, Zhang Y, Yu J, Zhang H, Wang L, Wang S, Guo S, Miao Y, Chen S, Li Y, Dai S. NaCl-responsive ROS scavenging and energy supply in alkaligrass callus revealed from proteomic analysis. BMC Genomics 2019; 20:990. [PMID: 31847807 PMCID: PMC6918623 DOI: 10.1186/s12864-019-6325-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Salinity has obvious effects on plant growth and crop productivity. The salinity-responsive mechanisms have been well-studied in differentiated organs (e.g., leaves, roots and stems), but not in unorganized cells such as callus. High-throughput quantitative proteomics approaches have been used to investigate callus development, somatic embryogenesis, organogenesis, and stress response in numbers of plant species. However, they have not been applied to callus from monocotyledonous halophyte alkaligrass (Puccinellia tenuifora). RESULTS The alkaligrass callus growth, viability and membrane integrity were perturbed by 50 mM and 150 mM NaCl treatments. Callus cells accumulated the proline, soluble sugar and glycine betaine for the maintenance of osmotic homeostasis. Importantly, the activities of ROS scavenging enzymes (e.g., SOD, APX, POD, GPX, MDHAR and GR) and antioxidants (e.g., ASA, DHA and GSH) were induced by salinity. The abundance patterns of 55 salt-responsive proteins indicate that salt signal transduction, cytoskeleton, ROS scavenging, energy supply, gene expression, protein synthesis and processing, as well as other basic metabolic processes were altered in callus to cope with the stress. CONCLUSIONS The undifferentiated callus exhibited unique salinity-responsive mechanisms for ROS scavenging and energy supply. Activation of the POD pathway and AsA-GSH cycle was universal in callus and differentiated organs, but salinity-induced SOD pathway and salinity-reduced CAT pathway in callus were different from those in leaves and roots. To cope with salinity, callus mainly relied on glycolysis, but not the TCA cycle, for energy supply.
Collapse
Affiliation(s)
- Yongxue Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yue Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Juanjuan Yu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Liyue Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Sining Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 455000, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 455000, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
4
|
Tétard‐Jones C, Sabbadin F, Moss S, Hull R, Neve P, Edwards R. Changes in the proteome of the problem weed blackgrass correlating with multiple-herbicide resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:709-720. [PMID: 29575327 PMCID: PMC5969246 DOI: 10.1111/tpj.13892] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 05/02/2023]
Abstract
Herbicide resistance in grass weeds is now one of the greatest threats to sustainable cereal production in Northern Europe. Multiple-herbicide resistance (MHR), a poorly understood multigenic and quantitative trait, is particularly problematic as it provides tolerance to most classes of chemistries currently used for post-emergence weed control. Using a combination of transcriptomics and proteomics, the evolution of MHR in populations of the weed blackgrass (Alopecurus myosuroides) has been investigated. While over 4500 genes showed perturbation in their expression in MHR versus herbicide sensitive (HS) plants, only a small group of proteins showed >2-fold changes in abundance, with a mere eight proteins consistently associated with this class of resistance. Of the eight, orthologues of three of these proteins are also known to be associated with multiple drug resistance (MDR) in humans, suggesting a cross-phyla conservation in evolved tolerance to chemical agents. Proteomics revealed that MHR could be classified into three sub-types based on the association with resistance to herbicides with differing modes of action (MoA), being either global, specific to diverse chemistries acting on one MoA, or herbicide specific. Furthermore, the proteome of MHR plants were distinct from that of HS plants exposed to a range of biotic (insect feeding, plant-microbe interaction) and abiotic (N-limitation, osmotic, heat, herbicide safening) challenges commonly encountered in the field. It was concluded that MHR in blackgrass is a uniquely evolving trait(s), associated with changes in the proteome that are distinct from responses to conventional plant stresses, but sharing common features with MDR in humans.
Collapse
Affiliation(s)
- Catherine Tétard‐Jones
- Agriculture, School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon‐TyneNE1 7RUUK
| | | | - Stephen Moss
- Stephen Moss Consulting7 Alzey GardensHarpendenHertfordshireAL5 5SZUK
| | - Richard Hull
- Rothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Paul Neve
- Rothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Robert Edwards
- Agriculture, School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon‐TyneNE1 7RUUK
| |
Collapse
|
5
|
Zhao LX, Wu H, Zou YL, Wang QR, Fu Y, Li CY, Ye F. Design, Synthesis, and Safener Activity of Novel Methyl (R)-N-Benzoyl/Dichloroacetyl-Thiazolidine-4-Carboxylates. Molecules 2018; 23:molecules23010155. [PMID: 29329269 PMCID: PMC6017158 DOI: 10.3390/molecules23010155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/05/2018] [Accepted: 01/12/2018] [Indexed: 11/16/2022] Open
Abstract
A series of novel methyl (R)-N-benzoyl/dichloroacetyl-thiazolidine-4-carboxylates were designed by active substructure combination. The title compounds were synthesized using a one-pot route from l-cysteine methyl ester hydrochloride, acyl chloride, and ketones. All compounds were characterized by IR, 1H NMR, 13C NMR, and HRMS. The structure of 4q was determined by X-ray crystallography. The biological tests showed that the title compounds protected maize from chlorimuron-ethyl injury to some extent. The ALS activity assay showed that the title compounds increased the ALS activity of maize inhibited by chlorimuron-ethyl. Molecular docking modeling demonstrated that Compound 4e competed against chlorimuron-ethyl to combine with the herbicide target enzyme active site, causing the herbicide to be ineffective.
Collapse
Affiliation(s)
- Li-Xia Zhao
- College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Hao Wu
- College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yue-Li Zou
- College of Science, Northeast Agricultural University, Harbin 150030, China
| | - Qing-Rui Wang
- College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Fu
- College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Chun-Yan Li
- College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- College of Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Zhao B, Huo J, Liu N, Zhang J, Dong J. Transketolase Is Identified as a Target of Herbicidal Substance α-Terthienyl by Proteomics. Toxins (Basel) 2018; 10:E41. [PMID: 29329271 PMCID: PMC5793128 DOI: 10.3390/toxins10010041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/27/2017] [Accepted: 01/11/2018] [Indexed: 11/28/2022] Open
Abstract
α-terthienyl is a natural phytotoxin isolated originally from Flaveria bidentis (L.) Kuntze. The bioassay presented here shows the strong herbicidal activity of α-terthienyl on Digitaria sanguinalis, Arabidopsis thaliana and Chlamydomonas reinhardtii. The α-terthienyl-induced response of A. thaliana at the protein level was analyzed at different times. Changes in the protein expression profiles were analyzed by two-dimensional gel electrophoresis and liquid chromatography tandem mass spectrometry (LC-MS/MS) mass spectrometry. Sixteen protein spots were identified that showed reproducible changes in the expression of at least 2-fold when compared to the control. Among these 16 spots, three were up-regulated and 13 were down-regulated. The decreased expression of several proteins associated with energy production and carbon metabolism suggested that these processes were affected by α-terthienyl. To search for the candidate proteins in this screen, A. thaliana T-DNA mutants of the candidate proteins were used to test their susceptibility to α-terthienyl. Amongst the others, attkl1, a mutant of transketolase, exhibited a significantly lower sensitivity to α-terthienyl when hit compared with Col-0. Based on the identification of the proteins associated with the response to α-terthienyl by proteomics, a candidate target protein transketolase was identified.
Collapse
Affiliation(s)
- Bin Zhao
- College of plant protection, Agricultural University of Hebei, Baoding 071000, China.
- College of life science, Agricultural University of Hebei, Baoding 071000, China.
| | - Jingqian Huo
- College of plant protection, Agricultural University of Hebei, Baoding 071000, China.
| | - Ning Liu
- College of life science, Agricultural University of Hebei, Baoding 071000, China.
| | - Jinlin Zhang
- College of plant protection, Agricultural University of Hebei, Baoding 071000, China.
| | - Jingao Dong
- College of life science, Agricultural University of Hebei, Baoding 071000, China.
| |
Collapse
|
7
|
Proust H, Hartmann C, Crespi M, Lelandais-Brière C. Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics. Methods Mol Biol 2018; 1822:205-239. [PMID: 30043307 DOI: 10.1007/978-1-4939-8633-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This decade introduced "omics" approaches, such as genomics, transcriptomics, proteomics, and metabolomics in association with reverse and forward genetic approaches, developed earlier, to try to identify molecular pathways involved in the development or in the response to environmental conditions as well as in animals and plants. This review summarizes studies that utilized "omics" strategies to unravel the root development in the model legume Medicago truncatula and how external factors such as soil mineral status or the presence of bacteria and fungi affect root system architecture in this species. We also compare these "omics" data to the knowledges concerning the Arabidopsis thaliana root development, nowadays considered as the model of allorhiz root systems. However, unlike legumes, this species is unable to interact with soil nitrogen-fixing rhizobia and arbuscular-mycorrhizal (AM) fungi to develop novel root-derived symbiotic structures. Differences in root organization, development, and regulatory pathways between these two model species have been highlighted.
Collapse
Affiliation(s)
- Hélène Proust
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Christine Lelandais-Brière
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France.
| |
Collapse
|
8
|
Yang X, Zhang Z, Gu T, Dong M, Peng Q, Bai L, Li Y. Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass ( Echinochloa crus-galli L.). J Proteomics 2017; 150:160-169. [DOI: 10.1016/j.jprot.2016.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023]
|
9
|
Molecular Signals Controlling the Inhibition of Nodulation by Nitrate in Medicago truncatula. Int J Mol Sci 2016; 17:ijms17071060. [PMID: 27384556 PMCID: PMC4964436 DOI: 10.3390/ijms17071060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 11/30/2022] Open
Abstract
The presence of nitrogen inhibits legume nodule formation, but the mechanism of this inhibition is poorly understood. We found that 2.5 mM nitrate and above significantly inhibited nodule initiation but not root hair curling in Medicago trunatula. We analyzed protein abundance in M. truncatula roots after treatment with either 0 or 2.5 mM nitrate in the presence or absence of its symbiont Sinorhizobium meliloti after 1, 2 and 5 days following inoculation. Two-dimensional gel electrophoresis combined with mass spectrometry was used to identify 106 differentially accumulated proteins responding to nitrate addition, inoculation or time point. While flavonoid-related proteins were less abundant in the presence of nitrate, addition of Nod gene-inducing flavonoids to the Sinorhizobium culture did not rescue nodulation. Accumulation of auxin in response to rhizobia, which is also controlled by flavonoids, still occurred in the presence of nitrate, but did not localize to a nodule initiation site. Several of the changes included defense- and redox-related proteins, and visualization of reactive oxygen species indicated that their induction in root hairs following Sinorhizobium inoculation was inhibited by nitrate. In summary, the presence of nitrate appears to inhibit nodulation via multiple pathways, including changes to flavonoid metabolism, defense responses and redox changes.
Collapse
|
10
|
Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus (Nelumbo nucifera Gaertn.spp. baijianlian). J Proteomics 2016; 131:61-70. [DOI: 10.1016/j.jprot.2015.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/29/2015] [Accepted: 10/08/2015] [Indexed: 11/23/2022]
|
11
|
Alvarez S, Naldrett MJ. Plant Structure and Specificity - Challenges and Sample Preparation Considerations for Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:63-81. [PMID: 27975213 DOI: 10.1007/978-3-319-41448-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Plants are considered as a simple structured organism when compared to humans and other vertebrates. The number of organs and tissue types is very limited. Instead the origin of the complexity comes from the high number and variety of plant species that exist, with >300,000 compared to 5000 in mammals. Proteomics, defined as the large-scale study of the proteins present in a tissue, cell or cellular compartment at a defined time point, was introduced in 1994. However, the first publications reported in the plant proteomics field only appeared at the beginning of the twenty-first century. Since these early years, the increase of proteomic studies in plants has only followed a linear trend. The main reason for this stems from the challenges specific to studying plants, those of protein extraction from cells with variously strengthened cellulosic cell walls, and a high abundance of interfering compounds, such as phenolic compounds and pigments located in plastids throughout the plant. Indeed, the heterogeneity between different organs and tissue types, between species and different developmental stages, requires the use of optimized plant protein extraction methods as described in this section. The second bottleneck of plant proteomics, which will not be discussed or reviewed here, is the lack of genomic information. Without sequence databases of the >300,000 species, proteomic studies of plants, especially of those that are not considered economically relevant, are impossible to accomplish.
Collapse
Affiliation(s)
- Sophie Alvarez
- Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA.
| | - Michael J Naldrett
- Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| |
Collapse
|
12
|
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N. Legume proteomics: Progress, prospects, and challenges. Proteomics 2015; 16:310-27. [DOI: 10.1002/pmic.201500257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/19/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Dipak Gayen
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Saurabh Gayali
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| |
Collapse
|
13
|
He R, Salvato F, Park JJ, Kim MJ, Nelson W, Balbuena TS, Willer M, Crow JA, May GD, Soderlund CA, Thelen JJ, Gang DR. A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement. BMC PLANT BIOLOGY 2014; 14:46. [PMID: 24521476 PMCID: PMC3933257 DOI: 10.1186/1471-2229-14-46] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 02/07/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND The rhizome, the original stem of land plants, enables species to invade new territory and is a critical component of perenniality, especially in grasses. Red rice (Oryza longistaminata) is a perennial wild rice species with many valuable traits that could be used to improve cultivated rice cultivars, including rhizomatousness, disease resistance and drought tolerance. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development and function in this plant. RESULTS We used an integrated approach to compare the transcriptome, proteome and metabolome of the rhizome to other tissues of red rice. 116 Gb of transcriptome sequence was obtained from various tissues and used to identify rhizome-specific and preferentially expressed genes, including transcription factors and hormone metabolism and stress response-related genes. Proteomics and metabolomics approaches identified 41 proteins and more than 100 primary metabolites and plant hormones with rhizome preferential accumulation. Of particular interest was the identification of a large number of gene transcripts from Magnaportha oryzae, the fungus that causes rice blast disease in cultivated rice, even though the red rice plants showed no sign of disease. CONCLUSIONS A significant set of genes, proteins and metabolites appear to be specifically or preferentially expressed in the rhizome of O. longistaminata. The presence of M. oryzae gene transcripts at a high level in apparently healthy plants suggests that red rice is resistant to this pathogen, and may be able to provide genes to cultivated rice that will enable resistance to rice blast disease.
Collapse
Affiliation(s)
- Ruifeng He
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164, USA
| | - Fernanda Salvato
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
- Current Address: Departamento de Tecnologia, Universidade Estadual Paulista, Jaboticabal, SP 14884-900, Brazil
| | - Jeong-Jin Park
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164, USA
| | - Min-Jeong Kim
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164, USA
| | - William Nelson
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Tiago S Balbuena
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
- Current Address: Departamento de Tecnologia, Universidade Estadual Paulista, Jaboticabal, SP 14884-900, Brazil
| | - Mark Willer
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - John A Crow
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Greg D May
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | | | - Jay J Thelen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164, USA
| |
Collapse
|
14
|
Manaa A, Faurobert M, Valot B, Bouchet JP, Grasselly D, Causse M, Ahmed HB. Effect of salinity and calcium on tomato fruit proteome. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:338-52. [PMID: 23692365 DOI: 10.1089/omi.2012.0108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Salinity is a major abiotic stress that adversely affects plant growth and productivity. The physiology of the tomato in salty and nonsalty conditions has been extensively studied, providing an invaluable base to understand the responses of the plants to cultural practices. However few data are yet available at the proteomic level looking for the physiological basis of fruit development, under salt stress. Here, we report the effects of salinity and calcium on fruit proteome variations of two tomato genotypes (Cervil and Levovil). Tomato plants were irrigated with a control solution (3 dSm(-1)) or with saline solutions (Na or Ca+Na at 7.6 dSm(-1)). Tomato fruits were harvested at two ripening stages: green (14 days post-anthesis) and red ripe. Total proteins were extracted from pericarp tissue and separated by two-dimensional gel electrophoresis. Among the 600 protein spots reproducibly detected, 53 spots exhibited significant abundance variations between samples and were submitted to mass spectrometry for identification. Most of the identified proteins were involved in carbon and energy metabolism, salt stress, oxidative stress, and proteins associated with ripening process. Overall, there was a large variation on proteins abundance between the two genotypes that can be correlated to salt treatment or/and fruit ripening stage. The results showed a protective effect of calcium that limited the impact of salinization on metabolism, ripening process, and induced plant salt tolerance. Collectively, this work has improved our knowledge about salt and calcium effect on tomato fruit proteome.
Collapse
Affiliation(s)
- Arafet Manaa
- Unité d'Ecophysiologie et Nutrition des Plantes, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunisie.
| | | | | | | | | | | | | |
Collapse
|
15
|
Omics methods for probing the mode of action of natural and synthetic phytotoxins. J Chem Ecol 2013; 39:333-47. [PMID: 23355015 PMCID: PMC3589630 DOI: 10.1007/s10886-013-0240-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/31/2012] [Indexed: 11/05/2022]
Abstract
For a little over a decade, omics methods (transcriptomics, proteomics, metabolomics, and physionomics) have been used to discover and probe the mode of action of both synthetic and natural phytotoxins. For mode of action discovery, the strategy for each of these approaches is to generate an omics profile for phytotoxins with known molecular targets and to compare this library of responses to the responses of compounds with unknown modes of action. Using more than one omics approach enhances the probability of success. Generally, compounds with the same mode of action generate similar responses with a particular omics method. Stress and detoxification responses to phytotoxins can be much clearer than effects directly related to the target site. Clues to new modes of action must be validated with in vitro enzyme effects or genetic approaches. Thus far, the only new phytotoxin target site discovered with omics approaches (metabolomics and physionomics) is that of cinmethylin and structurally related 5-benzyloxymethyl-1,2-isoxazolines. These omics approaches pointed to tyrosine amino-transferase as the target, which was verified by enzyme assays and genetic methods. In addition to being a useful tool of mode of action discovery, omics methods provide detailed information on genetic and biochemical impacts of phytotoxins. Such information can be useful in understanding the full impact of natural phytotoxins in both agricultural and natural ecosystems.
Collapse
|
16
|
Mathesius U, Djordjevic MA, Oakes M, Goffard N, Haerizadeh F, Weiller GF, Singh MB, Bhalla PL. Comparative proteomic profiles of the soybean (Glycine max) root apex and differentiated root zone. Proteomics 2011; 11:1707-19. [PMID: 21438152 DOI: 10.1002/pmic.201000619] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/14/2010] [Accepted: 12/29/2010] [Indexed: 11/06/2022]
Abstract
The root apical meristem (RAM) is responsible for the growth of the plant root system. Because of the importance of root architecture in the performance of crop plants, we established a proteome reference map of the soybean root apex and compared this with the proteome of the differentiated root zone. The root apex samples contained the apical 1 mm of the root, comprising the RAM, quiescent center and root cap. We identified 342 protein spots from 550 excised proteins (∼62%) of root apex samples by MALDI-TOF MS/MS analysis. All these proteins were also present in the differentiated root, but differed in abundance. Functional classification showed that the most numerous protein categories represented in the root were those of stress response, glycolysis, redox homeostasis and protein processing. Using DIGE, we identified 73 differentially accumulated proteins between root apex and differentiated root. Proteins overrepresented in the root apex belonged primarily to the pathways for protein synthesis and processing, cell redox homeostasis and flavonoid biosynthesis. Proteins underrepresented in the root apex were those of glycolysis, tricarboxylic acid metabolism and stress response. Our results highlight the importance of stress and defense response, redox control and flavonoid metabolism in the root apex.
Collapse
Affiliation(s)
- Ulrike Mathesius
- ARC Centre of Excellence for Integrative Legume Research, Australia; Division of Plant Science, Research School of Biology, Australian National University, Canberra ACT, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Takáč T, Pechan T, Samaj J. Differential proteomics of plant development. J Proteomics 2011; 74:577-88. [PMID: 21315196 DOI: 10.1016/j.jprot.2011.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
In this mini-review, recent advances in plant developmental proteomics are summarized. The growing interest in plant proteomics continually produces large numbers of developmental studies on plant cell division, elongation, differentiation, and formation of various organs. The brief overview of changes in proteome profiles emphasizes the participation of stress-related proteins in all developmental processes, which substantially changes the view on functional classification of these proteins. Next, it is noteworthy that proteomics helped to recognize some metabolic and housekeeping proteins as important signaling inducers of developmental pathways. Further, cell division and elongation are dependent on proteins involved in membrane trafficking and cytoskeleton dynamics. These protein groups are less prevalently represented in studies concerning cell differentiation and organ formation, which do not target primarily cell division. The synthesis of new proteins, generally observed during developmental processes, is followed by active protein folding. In this respect, disulfide isomerase was found to be commonly up-regulated during several developmental processes. The future progress in plant proteomics requires new and/or complementary approaches including cell fractionation, specific chemical treatments, molecular cloning and subcellular localization of proteins combined with more sensitive methods for protein detection and identification.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | | |
Collapse
|
18
|
Colditz F, Braun HP. Medicago truncatula proteomics. J Proteomics 2010; 73:1974-85. [PMID: 20621211 DOI: 10.1016/j.jprot.2010.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
Legumes (Fabaceae) are unique in their ability to enter into an elaborate symbiosis with nitrogen-fixing rhizobial bacteria. Rhizobia-legume (RL) symbiosis represents one of the most productive nitrogen-fixing systems and effectively renders the host plants to be more or less independent of other nitrogen sources. Due to high protein content, legumes are among the most economically important crop families. Beyond that, legumes consist of over 16,000 species assigned to 650 genera. In most cases, the genomes of legumes are large and polyploid, which originally did not predestine these plants as genetic model systems. It was not until the early 1990 th that Medicago truncatula was selected as the model plant for studying Fabaceae biology. M. truncatula is closely related to many economically important legumes and therefore its investigation is of high relevance for agriculture. Recently, quite a number of studies were published focussing on in depth characterizations of the M. truncatula proteome. The present review aims to summarize these studies, especially those which focus on the root system and its dynamic changes induced upon symbiotic or pathogenic interactions with microbes.
Collapse
Affiliation(s)
- Frank Colditz
- Leibniz University of Hannover, Institute for Plant Genetics, Dept. III, Plant Molecular Biology, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | | |
Collapse
|
19
|
Orcaray L, Igal M, Marino D, Zabalza A, Royuela M. The possible role of quinate in the mode of action of glyphosate and acetolactate synthase inhibitors. PEST MANAGEMENT SCIENCE 2010; 66:262-9. [PMID: 19918955 DOI: 10.1002/ps.1868] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/07/2009] [Indexed: 05/08/2023]
Abstract
BACKGROUND The herbicide glyphosate inhibits the biosynthesis of aromatic amino acids by blocking the shikimate pathway. Imazethapyr and chlorsulfuron are two herbicides that act by inhibiting branched-chain amino acid biosynthesis. These herbicides stimulate secondary metabolism derived from the aromatic amino acids. The aim of this study was to test if they cause any cross-effect in the amino acid content and if they have similar effects on the shikimate pathway. RESULTS The herbicides inhibiting two different amino acid biosynthesis pathways showed a common pattern in general content of free amino acids. There was a general increase in total free amino acid content, with a transient decrease in the proportion of amino acids whose pathways were specifically inhibited. Afterwards, an increase in these inhibited amino acids was detected; this was probably related to proteolysis. All herbicides caused quinate accumulation. Exogenous application of quinate arrested growth, decreased net photosynthesis and stomatal conductance and was ultimately lethal, similarly to glyphosate and imazethapyr. CONCLUSIONS Quinate accumulation was a common effect of the two different classes of herbicide. Moreover, exogenous quinate application had phytotoxic effects, showing that this plant metabolite can trigger the toxic effects of the herbicides. This ability to mimic the herbicide effects suggests a possible link between the mode of action of these herbicides and the potential role of quinate as a natural herbicide.
Collapse
Affiliation(s)
- Luis Orcaray
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadia, E-31006 Pamplona, Spain
| | | | | | | | | |
Collapse
|
20
|
Mathesius U. Comparative proteomic studies of root–microbe interactions. J Proteomics 2009; 72:353-66. [DOI: 10.1016/j.jprot.2008.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 01/19/2023]
|
21
|
Holmes P, Goffard N, Weiller GF, Rolfe BG, Imin N. Transcriptional profiling of Medicago truncatula meristematic root cells. BMC PLANT BIOLOGY 2008; 8:21. [PMID: 18302802 PMCID: PMC2277415 DOI: 10.1186/1471-2229-8-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 02/27/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND The root apical meristem of crop and model legume Medicago truncatula is a significantly different stem cell system to that of the widely studied model plant species Arabidopsis thaliana. In this study we used the Affymetrix Medicago GeneChip(R) to compare the transcriptomes of meristem and non-meristematic root to identify root meristem specific candidate genes. RESULTS Using mRNA from root meristem and non-meristem we were able to identify 324 and 363 transcripts differentially expressed from the two regions. With bioinformatics tools developed to functionally annotate the Medicago genome array we could identify significant changes in metabolism, signalling and the differentially expression of 55 transcription factors in meristematic and non-meristematic roots. CONCLUSION This is the first comprehensive analysis of M. truncatula root meristem cells using this genome array. This data will facilitate the mapping of regulatory and metabolic networks involved in the open root meristem of M. truncatula and provides candidates for functional analysis.
Collapse
Affiliation(s)
- Peta Holmes
- ARC Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Nicolas Goffard
- ARC Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
- Institut Louis Malardé, GP Box 30, 98713 Papeete Tahiti, French Polynesia
| | - Georg F Weiller
- ARC Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Barry G Rolfe
- ARC Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Nijat Imin
- ARC Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
22
|
Ané JM, Zhu H, Frugoli J. Recent Advances in Medicago truncatula Genomics. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2008; 2008:256597. [PMID: 18288239 PMCID: PMC2216067 DOI: 10.1155/2008/256597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 09/14/2007] [Indexed: 05/23/2023]
Abstract
Legume rotation has allowed a consistent increase in crop yield and consequently in human population since the antiquity. Legumes will also be instrumental in our ability to maintain the sustainability of our agriculture while facing the challenges of increasing food and biofuel demand. Medicago truncatula and Lotus japonicus have emerged during the last decade as two major model systems for legume biology. Initially developed to dissect plant-microbe symbiotic interactions and especially legume nodulation, these two models are now widely used in a variety of biological fields from plant physiology and development to population genetics and structural genomics. This review highlights the genetic and genomic tools available to the M. truncatula community. Comparative genomic approaches to transfer biological information between model systems and legume crops are also discussed.
Collapse
Affiliation(s)
- Jean-Michel Ané
- Department of Agronomy,
University of Wisconsin,
Madison, WI 53706,
USA
| | - Hongyan Zhu
- Department of Plant and Soil Sciences,
University of Kentucky, Lexington, KY 40546,
USA
| | - Julia Frugoli
- Department of Genetics and Biochemistry,
Clemson University,
100 Jordan Hall,
Clemson, SC 29634,
USA
| |
Collapse
|
23
|
Abstract
This 2006 'Plant Proteomics Update' is a continuation of the two previously published in 'Proteomics' by 2004 (Canovas et al., Proteomics 2004, 4, 285-298) and 2006 (Rossignol et al., Proteomics 2006, 6, 5529-5548) and it aims to bring up-to-date the contribution of proteomics to plant biology on the basis of the original research papers published throughout 2006, with references to those appearing last year. According to the published papers and topics addressed, we can conclude that, as observed for the three previous years, there has been a quantitative, but not qualitative leap in plant proteomics. The full potential of proteomics is far from being exploited in plant biology research, especially if compared to other organisms, mainly yeast and humans, and a number of challenges, mainly technological, remain to be tackled. The original papers published last year numbered nearly 100 and deal with the proteome of at least 26 plant species, with a high percentage for Arabidopsis thaliana (28) and rice (11). Scientific objectives ranged from proteomic analysis of organs/tissues/cell suspensions (57) or subcellular fractions (29), to the study of plant development (12), the effect of hormones and signalling molecules (8) and response to symbionts (4) and stresses (27). A small number of contributions have covered PTMs (8) and protein interactions (4). 2-DE (specifically IEF-SDS-PAGE) coupled to MS still constitutes the almost unique platform utilized in plant proteome analysis. The application of gel-free protein separation methods and 'second generation' proteomic techniques such as multidimensional protein identification technology (MudPIT), and those for quantitative proteomics including DIGE, isotope-coded affinity tags (ICAT), iTRAQ and stable isotope labelling by amino acids in cell culture (SILAC) still remains anecdotal. This review is divided into seven sections: Introduction, Methodology, Subcellular proteomes, Development, Responses to biotic and abiotic stresses, PTMs and Protein interactions. Section 8 summarizes the major pitfalls and challenges of plant proteomics.
Collapse
Affiliation(s)
- Jesús V Jorrín
- Agricultural and Plant Biochemistry Research Group-Plant Proteomics, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain.
| | | | | |
Collapse
|
24
|
van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG, Mathesius U. Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. PLANT PHYSIOLOGY 2007; 144:1115-31. [PMID: 17468210 PMCID: PMC1914185 DOI: 10.1104/pp.107.099978] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 04/13/2007] [Indexed: 05/15/2023]
Abstract
We used proteome analysis to identify proteins induced during nodule initiation and in response to auxin in Medicago truncatula. From previous experiments, which found a positive correlation between auxin levels and nodule numbers in the M. truncatula supernodulation mutant sunn (supernumerary nodules), we hypothesized (1) that auxin mediates protein changes during nodulation and (2) that auxin responses might differ between the wild type and the supernodulating sunn mutant during nodule initiation. Increased expression of the auxin response gene GH3:beta-glucuronidase was found during nodule initiation in M. truncatula, similar to treatment of roots with auxin. We then used difference gel electrophoresis and tandem mass spectrometry to compare proteomes of wild-type and sunn mutant roots after 24 h of treatment with Sinorhizobium meliloti, auxin, or a control. We identified 131 of 270 proteins responding to treatment with S. meliloti and/or auxin, and 39 of 89 proteins differentially displayed between the wild type and sunn. The majority of proteins changed similarly in response to auxin and S. meliloti after 24 h in both genotypes, supporting hypothesis 1. Proteins differentially accumulated between untreated wild-type and sunn roots also showed changes in auxin response, consistent with altered auxin levels in sunn. However, differences between the genotypes after S. meliloti inoculation were largely not due to differential auxin responses. The role of the identified candidate proteins in nodule initiation and the requirement for their induction by auxin could be tested in future functional studies.
Collapse
Affiliation(s)
- Giel E van Noorden
- Australian Research Council Centre of Excellence for Integrative Legume Research , Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | | | | | | | |
Collapse
|