1
|
Fu X, Hong J, Zhai Y, Liu K, Xu W. Deep Bottom-up Proteomics Enabled by the Integration of Liquid-Phase Ion Trap. Anal Chem 2023. [PMID: 37367992 DOI: 10.1021/acs.analchem.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In bottom-up proteomics, the complexity of the proteome requires advanced peptide separation and/or fractionation methods to acquire an in-depth understanding of protein profiles. Proposed earlier as a solution-phase ion manipulation device, liquid phase ion traps (LPITs) were used in front of mass spectrometers to accumulate target ions for improved detection sensitivity. In this work, an LPIT-reversed phase liquid chromatography-tandem mass spectrometry (LPIT-RPLC-MS/MS) platform was established for deep bottom-up proteomics. LPIT was used here as a robust and effective method for peptide fractionation, which also shows good reproducibility and sensitivity on both qualitative and quantitative levels. LPIT separates peptides based on their effective charges and hydrodynamic radii, which is orthogonal to that of RPLC. With excellent orthogonality, the integration of LPIT with RPLC-MS/MS could effectively increase the number of peptides and proteins being detected. When HeLa cells were analyzed, peptide and protein coverages were increased by ∼89.2% and 50.3%, respectively. With high efficiency and low cost, this LPIT-based peptide fraction method could potentially be used in routine deep bottom-up proteomics.
Collapse
Affiliation(s)
- Xinyan Fu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Hong
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yanbing Zhai
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Kefu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410083, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Post-Translational Modifications of ATG4B in the Regulation of Autophagy. Cells 2022; 11:cells11081330. [PMID: 35456009 PMCID: PMC9025542 DOI: 10.3390/cells11081330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy plays a key role in eliminating and recycling cellular components in response to stress, including starvation. Dysregulation of autophagy is observed in various diseases, including neurodegenerative diseases, cancer, and diabetes. Autophagy is tightly regulated by autophagy-related (ATG) proteins. Autophagy-related 4 (ATG4) is the sole cysteine protease, and four homologs (ATG4A–D) have been identified in mammals. These proteins have two domains: catalytic and short fingers. ATG4 facilitates autophagy by promoting autophagosome maturation through reversible lipidation and delipidation of seven autophagy-related 8 (ATG8) homologs, including microtubule-associated protein 1-light chain 3 (LC3) and GABA type A receptor-associated protein (GABARAP). Each ATG4 homolog shows a preference for a specific ATG8 homolog. Post-translational modifications of ATG4, including phosphorylation/dephosphorylation, O-GlcNAcylation, oxidation, S-nitrosylation, ubiquitination, and proteolytic cleavage, regulate its activity and ATG8 processing, thus modulating its autophagic activity. We reviewed recent advances in our understanding of the effect of post-translational modification on the regulation, activity, and function of ATG4, the main protease that controls autophagy.
Collapse
|
3
|
Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. MASS SPECTROMETRY REVIEWS 2021; 40:309-333. [PMID: 32491218 DOI: 10.1002/mas.21636] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Houjiang Zhou
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Centre, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
4
|
Sürmen MG, Sürmen S, Ali A, Musharraf SG, Emekli N. Phosphoproteomic strategies in cancer research: a minireview. Analyst 2020; 145:7125-7149. [PMID: 32996481 DOI: 10.1039/d0an00915f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the cellular processes is central to comprehend disease conditions and is also true for cancer research. Proteomic studies provide significant insight into cancer mechanisms and aid in the diagnosis and prognosis of the disease. Phosphoproteome is one of the most studied complements of the whole proteome given its importance in the understanding of cellular processes such as signaling and regulations. Over the last decade, several new methods have been developed for phosphoproteome analysis. A significant amount of these efforts pertains to cancer research. The current use of powerful analytical instruments in phosphoproteomic approaches has paved the way for deeper and sensitive investigations. However, these methods and techniques need further improvements to deal with challenges posed by the complexity of samples and scarcity of phosphoproteins in the whole proteome, throughput and reproducibility. This review aims to provide a comprehensive summary of the variety of steps used in phosphoproteomic methods applied in cancer research including the enrichment and fractionation strategies. This will allow researchers to evaluate and choose a better combination of steps for their phosphoproteome studies.
Collapse
Affiliation(s)
- Mustafa Gani Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Saime Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Nesrin Emekli
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
5
|
Proteomic Profiling of Emiliania huxleyi Using a Three-Dimensional Separation Method Combined with Tandem Mass Spectrometry. Molecules 2020; 25:molecules25133028. [PMID: 32630776 PMCID: PMC7411631 DOI: 10.3390/molecules25133028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Emiliania huxleyi is one of the most abundant marine planktons, and it has a crucial feature in the carbon cycle. However, proteomic analyses of Emiliania huxleyi have not been done extensively. In this study, a three-dimensional liquid chromatography (3D-LC) system consisting of strong cation exchange, high- and low-pH reversed-phase liquid chromatography was established for in-depth proteomic profiling of Emiliania huxleyi. From tryptic proteome digest, 70 fractions were generated and analyzed using liquid chromatography-tandem mass spectrometry. In total, more than 84,000 unique peptides and 10,000 proteins groups were identified with a false discovery rate of ≤0.01. The physicochemical properties of the identified peptides were evaluated. Using ClueGO, approximately 700 gene ontology terms and 15 pathways were defined from the identified protein groups with p-value ≤0.05, covering a wide range of biological processes, cellular components, and molecular functions. Many biological processes associated with CO2 fixation, photosynthesis, biosynthesis, and metabolic process were identified. Various molecular functions relating to protein binding and enzyme activities were also found. The 3D-LC strategy is a powerful approach for comparative proteomic studies on Emiliania huxleyi to reveal changes in its protein level and related mechanism.
Collapse
|
6
|
Review of Three-Dimensional Liquid Chromatography Platforms for Bottom-Up Proteomics. Int J Mol Sci 2020; 21:ijms21041524. [PMID: 32102244 PMCID: PMC7073195 DOI: 10.3390/ijms21041524] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
Proteomics is a large-scale study of proteins, aiming at the description and characterization of all expressed proteins in biological systems. The expressed proteins are typically highly complex and large in abundance range. To fulfill high accuracy and sensitivity of proteome analysis, the hybrid platforms of multidimensional (MD) separations and mass spectrometry have provided the most powerful solution. Multidimensional separations provide enhanced peak capacity and reduce sample complexity, which enables mass spectrometry to analyze more proteins with high sensitivity. Although two-dimensional (2D) separations have been widely used since the early period of proteomics, three-dimensional (3D) separation was barely used by low reproducibility of separation, increased analysis time in mass spectrometry. With developments of novel microscale techniques such as nano-UPLC and improvements of mass spectrometry, the 3D separation becomes a reliable and practical selection. This review summarizes existing offline and online 3D-LC platforms developed for proteomics and their applications. In detail, setups and implementation of those systems as well as their advances are outlined. The performance of those platforms is also discussed and compared with the state-of-the-art 2D-LC. In addition, we provide some perspectives on the future developments and applications of 3D-LC in proteomics.
Collapse
|
7
|
High-Throughput Characterization of Histidine Phosphorylation Sites Using UPAX and Tandem Mass Spectrometry. Methods Mol Biol 2020; 2077:225-235. [PMID: 31707662 DOI: 10.1007/978-1-4939-9884-5_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liquid chromatography (LC)-tandem mass spectrometry (MS/MS) is key for the characterization of phosphorylation sites in a high-throughput manner, and its application has proven essential to elucidate the phosphoproteome of many biological systems. Following proteolytic digestion of proteins extracted from tissues or cells, phosphopeptides are typically enriched by affinity chromatography using TiO2 or metal-ions (e.g., Fe3+) coupled to solid-phase materials, prior to LC-MS/MS analysis. Separation of relatively low abundance phosphopeptides from nonphosphorylated peptides in these types of extremely complex mixtures is essential to maximize coverage of the phosphoproteome. Maintaining acidic conditions during these IMAC or TiO2-based enrichment minimizes the concurrent unwanted binding of highly acidic peptides. However, while peptides containing phosphomonoesters, namely, phosphoserine (pSer), phosphothreonine (pThr), and phosphotyrosine (pTyr), are stable under these acidic binding conditions, phosphopeptides containing acid-labile phosphate group such as phosphohistidine (pHis), are not. Consequently, hydrolysis of these types of phosphopeptides occurs during standard phosphopeptide enrichment, and subsequent phosphosite identification by LC-MS/MS is severely compromised. Here we describe UPAX, unbiased phosphopeptide enrichment using strong anion exchange, for the separation of both acid-stable (pSer, pThr, pTyr) and acid-labile phosphopeptides (including those containing pHis) from nonphosphorylated peptides. We outline how implementation of UPAX prior to a minimally modified standard proteomics workflow can be used to identify sites of pHis as well as other acid-labile, as well as acid-stable phosphosites.
Collapse
|
8
|
Comprehensive Quantification of the Modified Proteome Reveals Oxidative Heart Damage in Mitochondrial Heteroplasmy. Cell Rep 2019; 23:3685-3697.e4. [PMID: 29925008 DOI: 10.1016/j.celrep.2018.05.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/13/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications hugely increase the functional diversity of proteomes. Recent algorithms based on ultratolerant database searching are forging a path to unbiased analysis of peptide modifications by shotgun mass spectrometry. However, these approaches identify only one-half of the modified forms potentially detectable and do not map the modified residue. Moreover, tools for the quantitative analysis of peptide modifications are currently lacking. Here, we present a suite of algorithms that allows comprehensive identification of detectable modifications, pinpoints the modified residues, and enables their quantitative analysis through an integrated statistical model. These developments were used to characterize the impact of mitochondrial heteroplasmy on the proteome and on the modified peptidome in several tissues from 12-week-old mice. Our results reveal that heteroplasmy mainly affects cardiac tissue, inducing oxidative damage to proteins of the oxidative phosphorylation system, and provide a molecular mechanism explaining the structural and functional alterations produced in heart mitochondria.
Collapse
|
9
|
Targeting ATG4 in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11050649. [PMID: 31083460 PMCID: PMC6562779 DOI: 10.3390/cancers11050649] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a lysosome-mediated degradation pathway that enables the degradation and recycling of cytoplasmic components to sustain metabolic homoeostasis. Recently, autophagy has been reported to have an astonishing number of connections to cancer, as tumor cells require proficient autophagy in response to metabolic and therapeutic stresses to sustain cell proliferation. Autophagy-related gene 4 (ATG4) is essential for autophagy by affecting autophagosome formation through processing full-length microtubule-associated protein 1A/1B-light chain 3 (pro-LC3) and lipidated LC3. An increasing amount of evidence suggests that ATG4B expression is elevated in certain types of cancer, implying that ATG4B is a potential anticancer target. In this review, we address the central roles of ATG4B in the autophagy machinery and in targeted cancer therapy. Specifically, we discuss how pharmacologically inhibiting ATG4B can benefit cancer therapies.
Collapse
|
10
|
Nascimento Filho EG, Vieira ML, Teixeira AF, Santos JC, Fernandes LGV, Passalia FJ, Daroz BB, Rossini A, Kochi LT, Cavenague MF, Pimenta DC, Nascimento ALTO. Proteomics as a tool to understand Leptospira physiology and virulence: Recent advances, challenges and clinical implications. J Proteomics 2018; 180:80-87. [PMID: 29501847 DOI: 10.1016/j.jprot.2018.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Edson G Nascimento Filho
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Monica L Vieira
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Aline F Teixeira
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Jademilson C Santos
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Luis G V Fernandes
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Felipe J Passalia
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Brenda B Daroz
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda Rossini
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leandro T Kochi
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria F Cavenague
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniel C Pimenta
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil.
| |
Collapse
|
11
|
Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q. Caspase-9: structure, mechanisms and clinical application. Oncotarget 2017; 8:23996-24008. [PMID: 28177918 PMCID: PMC5410359 DOI: 10.18632/oncotarget.15098] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/22/2017] [Indexed: 12/27/2022] Open
Abstract
As the most intensively studied initiator caspase, caspase-9 is a key player in the intrinsic or mitochondrial pathway which is involved in various stimuli, including chemotherapies, stress agents and radiation. Caspase-9 is activated on the apoptosome complex to remain catalytic status and is thought of involving homo-dimerization monomeric zymogens. Failing to activate caspase-9 has profound physiological and pathophysiological outcomes, leading to degenerative and developmental disorders even cancer. To govern the apoptotic commitment process appropriately, plenty of proteins and small molecules involved in regulating caspase-9. Therefore, this review is to summarize recent pertinent literature on the comprehensive description of the molecular events implicated in caspase-9 activation and inhibition, as well as the clinical trials in progress to give deep insight into caspase-9 for suppressing cancer. We hope that our concerns will be helpful for further clinical studies addressing the roles of caspase-9 and its regulators demanded to identify more effective solutions to overcome intrinsic apoptosis-related diseases especially cancer.
Collapse
Affiliation(s)
- Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| | - Libin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| |
Collapse
|
12
|
Yuan Y, Zheng Y, Zhang X, Chen Y, Wu X, Wu J, Shen Z, Jiang L, Wang L, Yang W, Luo J, Qin Z, Hu W, Chen Z. BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy 2017; 13:1754-1766. [PMID: 28820284 DOI: 10.1080/15548627.2017.1357792] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cerebral ischemia induces massive mitochondrial damage. These damaged mitochondria are cleared, thus attenuating brain injury, by mitophagy. Here, we identified the involvement of BNIP3L/NIX in cerebral ischemia-reperfusion (I-R)-induced mitophagy. Bnip3l knockout (bnip3l-/-) impaired mitophagy and aggravated cerebral I-R injury in mice, which can be rescued by BNIP3L overexpression. The rescuing effects of BNIP3L overexpression can be observed in park2-/- mice, which showed mitophagy deficiency after I-R. Interestingly, bnip3l and park2 double-knockout mice showed a synergistic mitophagy deficiency with I-R treatment, which further highlighted the roles of BNIP3L-mediated mitophagy as being independent from PARK2. Further experiments indicated that phosphorylation of BNIP3L serine 81 is critical for BNIP3L-mediated mitophagy. Nonphosphorylatable mutant BNIP3LS81A failed to counteract both mitophagy impairment and neuroprotective effects in bnip3l-/- mice. Our findings offer insights into mitochondrial quality control in ischemic stroke and bring forth the concept that BNIP3L could be a potential therapeutic target for ischemic stroke, beyond its accepted role in reticulocyte maturation.
Collapse
Affiliation(s)
- Yang Yuan
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Yanrong Zheng
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Xiangnan Zhang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Ying Chen
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Xiaoli Wu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Jiaying Wu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Zhe Shen
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Lei Jiang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Lu Wang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Wei Yang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Jianhong Luo
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Zhenghong Qin
- c Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases , Soochow University School of Pharmaceutical Science , Suzhou , China
| | - Weiwei Hu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Zhong Chen
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| |
Collapse
|
13
|
Ti(IV) carrying polydopamine-coated, monodisperse-porous SiO 2 microspheres with stable magnetic properties for highly selective enrichment of phosphopeptides. Colloids Surf B Biointerfaces 2017; 153:280-290. [DOI: 10.1016/j.colsurfb.2017.02.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 11/21/2022]
|
14
|
Giorgianni F, Beranova-Giorgianni S. Phosphoproteome Discovery in Human Biological Fluids. Proteomes 2016; 4:proteomes4040037. [PMID: 28248247 PMCID: PMC5260970 DOI: 10.3390/proteomes4040037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 01/07/2023] Open
Abstract
Phosphorylation plays a critical role in regulating protein function and thus influences a vast spectrum of cellular processes. With the advent of modern bioanalytical technologies, examination of protein phosphorylation on a global scale has become one of the major research areas. Phosphoproteins are found in biological fluids and interrogation of the phosphoproteome in biological fluids presents an exciting opportunity for discoveries that hold great potential for novel mechanistic insights into protein function in health and disease, and for translation to improved diagnostic and therapeutic approaches for the clinical setting. This review focuses on phosphoproteome discovery in selected human biological fluids: serum/plasma, urine, cerebrospinal fluid, saliva, and bronchoalveolar lavage fluid. Bioanalytical workflows pertinent to phosphoproteomics of biological fluids are discussed with emphasis on mass spectrometry-based approaches, and summaries of studies on phosphoproteome discovery in major fluids are presented.
Collapse
Affiliation(s)
- Francesco Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
15
|
Glycogen synthase kinase-3-mediated phosphorylation of serine 73 targets sterol response element binding protein-1c (SREBP-1c) for proteasomal degradation. Biosci Rep 2015; 36:e00284. [PMID: 26589965 PMCID: PMC4718510 DOI: 10.1042/bsr20150234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/30/2015] [Indexed: 01/08/2023] Open
Abstract
We have identified Serine 73 as a novel GSK-3β site on SREBP-1c that alters its affinity for SCAP, and proteasomal degradation. Phosphorylation of Serine 73 by GSK-3β during starvation (insulin-depleted stat) may lead to lower levels of SREBP-1c; conversely, de-phosphorylation of this site may be involved in stabilizing SREBP-1c by insulin (by blocking GSK-3β action). A functional role of this site needs to be corroborated in vivo. Sterol regulatory element binding protein-1c (SREBP-1c) is a key transcription factor that regulates genes involved in the de novo lipid synthesis and glycolysis pathways. The structure, turnover and transactivation potential of SREBP-1c are regulated by macronutrients and hormones via a cascade of signalling kinases. Using MS, we have identified serine 73 as a novel glycogen synthase kinase-3 (GSK-3) phosphorylation site in the rat SREBP-1c purified from McA-RH7777 hepatoma cells. Our site-specific mutagenesis strategy revealed that the turnover of SREBP-1c, containing wild type, phospho-null (serine to alanine) or phospho-mimetic (serine to aspartic acid) substitutions, was differentially regulated. We show that the S73D mutant of pSREBP-1c, that mimicked a state of constitutive phosphorylation, dissociated from the SREBP-1c–SCAP complex more readily and underwent GSK-3-dependent proteasomal degradation via SCFFbw7 ubiquitin ligase pathway. Pharmacologic inhibition of GSK-3 or knockdown of GSK-3 by siRNA prevented accelerated degradation of SREBP-1c. As demonstrated by MS, SREBP-1c was phosphorylated in vitro by GSK-3β at serine 73. Phosphorylation of serine 73 also occurs in the intact liver. We propose that GSK-3-mediated phosphorylation of serine 73 in the rat SREBP-1c and its concomitant destabilization represents a novel mechanism involved in the inhibition of de novo lipid synthesis in the liver.
Collapse
|
16
|
Yang Z, Wilkie-Grantham RP, Yanagi T, Shu CW, Matsuzawa SI, Reed JC. ATG4B (Autophagin-1) phosphorylation modulates autophagy. J Biol Chem 2015; 290:26549-61. [PMID: 26378241 DOI: 10.1074/jbc.m115.658088] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 11/06/2022] Open
Abstract
Autophagy is a catabolic cellular mechanism for entrapping cellular macromolecules and organelles in intracellular vesicles and degrading their contents by fusion with lysosomes. Important roles for autophagy have been elucidated for cell survival during nutrient insufficiency, eradication of intracellular pathogens, and counteracting aging through clearance of senescent proteins and mitochondria. Autophagic vesicles become decorated with LC3, a protein that mediates their fusion with lysosomes. LC3 is a substrate of the cysteine protease ATG4B (Autophagin-1), where cleavage generates a C-terminal glycine required for LC3 conjugation to lipids in autophagosomes. ATG4B both cleaves pro-LC3 and also hydrolyzes lipids from cleaved LC3. We show here that phosphorylation of ATG4B at Ser-383 and Ser-392 increases its hydrolyase activity as measured using LC3 as a substrate. Reconstituting atg4b(-/-) cells with phosphorylation-deficient ATG4B showed a role of ATG4B phosphorylation in LC3 delipidation and autophagic flux, thus demonstrating that the cellular activity of ATG4B is modulated by phosphorylation. Proteolytic conversion of pro-LC3 to LC3-I was not significantly impacted by ATG4B phosphorylation in cells. Phosphorylation-deficient ATG4B also showed reduced interactions with the lipid-conjugated LC3 but not unconjugated LC3. Taken together, these findings demonstrate a role for Ser-383 and Ser-392 phosphorylation of ATG4B in control of autophagy.
Collapse
Affiliation(s)
- Zhifen Yang
- From the Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, Department of Radiation Oncology, Stanford University, Palo Alto, California 94305
| | | | - Teruki Yanagi
- From the Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Chih-Wen Shu
- From the Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, Department of Medical Education and Research; Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 813, and
| | - Shu-Ichi Matsuzawa
- From the Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037,
| | - John C Reed
- From the Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, Roche, Pharmaceutical Research & Early Development, Roche Innovation Center-Basel, Basel, Switzerland CH4014
| |
Collapse
|
17
|
Huang J, Wang F, Ye M, Zou H. Enrichment and separation techniques for large-scale proteomics analysis of the protein post-translational modifications. J Chromatogr A 2014; 1372C:1-17. [DOI: 10.1016/j.chroma.2014.10.107] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 12/16/2022]
|
18
|
Marttila M, Lehtokari VL, Marston S, Nyman TA, Barnerias C, Beggs AH, Bertini E, Ceyhan-Birsoy O, Cintas P, Gerard M, Gilbert-Dussardier B, Hogue JS, Longman C, Eymard B, Frydman M, Kang PB, Klinge L, Kolski H, Lochmüller H, Magy L, Manel V, Mayer M, Mercuri E, North KN, Peudenier-Robert S, Pihko H, Probst FJ, Reisin R, Stewart W, Taratuto AL, de Visser M, Wilichowski E, Winer J, Nowak K, Laing NG, Winder TL, Monnier N, Clarke NF, Pelin K, Grönholm M, Wallgren-Pettersson C. Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies. Hum Mutat 2014; 35:779-90. [PMID: 24692096 DOI: 10.1002/humu.22554] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/17/2014] [Indexed: 01/14/2023]
Abstract
Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca(2+) sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin-actin association or tropomyosin head-to-tail binding.
Collapse
Affiliation(s)
- Minttu Marttila
- The Folkhälsan Institute of Genetics and the Department of Medical Genetics, University of Helsinki, Haartman Institute, Biomedicum Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gao M, Qi D, Zhang P, Deng C, Zhang X. Development of multidimensional liquid chromatography and application in proteomic analysis. Expert Rev Proteomics 2014; 7:665-78. [DOI: 10.1586/epr.10.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Smurf1-mediated Lys29-linked nonproteolytic polyubiquitination of axin negatively regulates Wnt/β-catenin signaling. Mol Cell Biol 2013; 33:4095-105. [PMID: 23959799 DOI: 10.1128/mcb.00418-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination plays important and diverse roles in modulating protein functions. As a C2-WW-HECT-type ubiquitin ligase, Smad ubiquitination regulatory factor 1 (Smurf1) commonly serves to regulate ubiquitin-dependent protein degradation in a number of signaling pathways. Here, we report a novel function of Smurf1 in regulating Wnt/β-catenin signaling through targeting axin for nonproteolytic ubiquitination. Our data unambiguously demonstrate that Smurf1 ubiquitinates axin through Lys 29 (K29)-linked polyubiquitin chains. Unexpectedly, Smurf1-mediated axin ubiquitination does not lead to its degradation but instead disrupts its interaction with the Wnt coreceptors LRP5/6, which subsequently attenuates Wnt-stimulated LRP6 phosphorylation and represses Wnt/β-catenin signaling. The inhibitory function of Smurf1 on Wnt/β-catenin signaling is further evidenced by analysis with Smurf1 knockout murine embryonic fibroblasts. We next identified K789 and K821 in axin as the ubiquitination sites by Smurf1. Consistently, Smurf1 could neither disrupt the interaction of an axin(K789/821R) double mutant with LRP5/6 nor attenuate the phosphorylation of LRP6 in axin(K789/821R)-expressing cells. Collectively, our studies uncover Smurf1 as a new regulator for the Wnt/β-catenin signaling pathway via modulating the activity of axin.
Collapse
|
21
|
Zhao X, Wang Q, Wang S, Zou X, An M, Zhang X, Ji J. Citric Acid-Assisted Two-Step Enrichment with TiO2 Enhances the Separation of Multi- and Monophosphorylated Peptides and Increases Phosphoprotein Profiling. J Proteome Res 2013; 12:2467-76. [DOI: 10.1021/pr301061q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xuyang Zhao
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| | - Qingsong Wang
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| | - Shuxin Wang
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao Zou
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| | - Mingrui An
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| | - Xuefei Zhang
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Ji
- State Key Laboratory of Protein and
Plant Gene Research,
College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Lapteva YS, Uversky VN, Permyakov SE. Sequence microheterogeneity of parvalbumin, the major fish allergen. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1607-14. [PMID: 23632315 DOI: 10.1016/j.bbapap.2013.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/05/2013] [Accepted: 04/21/2013] [Indexed: 12/11/2022]
Abstract
The microheterogeneity of amino acid sequence observed in various allergens may affect immune response, but incidence of sequence microheterogeneity in allergens and its relation to their allergenicity are unclear. The occurrence of sequence microheterogeneity in major fish allergen, parvalbumin (PA), has been explored using bioinformatics approaches. 44% of 111 species with known PA sequence have PA isoforms. 41% of these species exhibit from 1 to 4 cases of PA sequence microheterogeneity, i.e. unique pairs of PA isoforms with sequence identity above 90%. 29% of 210 PA sequences studied are characterized by microheterogeneity. The occurrence of allergens among them is 2.5-fold higher than among other PAs. The incidence of sequence microheterogeneity within more allergenic β isoform of PA is 2.0-fold lower than that for its less allergenic α isoform. 39 residues affected by PA microheterogeneity are concentrated in the region of helices A, B, F, while helices D and E are the most conservative region. 44% and 11% of the microheterogeneous substitutions are located in the species-specific and cross-reactive IgE-binding epitopes of PAs, respectively. 45% and 48% of the substitution cases are predicted to cause notable changes in protein disorder propensity and protein stability, respectively. Hence, the increased allergenicity rate among PAs having microheterogeneous isoforms can be related to differences in their IgE-binding caused directly or in an allosteric manner. Overall, sequence microheterogeneity is shown to be inherent to many of PAs and likely contributes to PA allergenicity.
Collapse
Affiliation(s)
- Yulia S Lapteva
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | | | | |
Collapse
|
23
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 997] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Yang XL, Li QR, Ning ZB, Zhang Y, Zeng R, Wu JR. Identification of complex relationship between protein kinases and substrates during the cell cycle of HeLa cells by phosphoproteomic analysis. Proteomics 2013; 13:1233-46. [PMID: 23322592 DOI: 10.1002/pmic.201200357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/08/2012] [Accepted: 10/25/2012] [Indexed: 11/07/2022]
Abstract
Each phase of eukaryotic cell cycle is tightly controlled by multicomponent regulatory networks based on complex relationships of protein phosphorylation. In order to better understand the relationships between kinases and their substrate proteins during the progression of cell cycle, we analyzed phosphoproteome of HeLa cells during G1, S, and G2/M phases of cell cycle using our developed quantitative phosphoproteomic approaches. A total of 4776 high-confidence phosphorylation sites (phosphosites) in 1177 proteins were identified. Bioinformatics analysis for predicting kinase groups revealed that 46 kinase groups could be assigned to 4321 phosphosites. The majority of phosphoproteins harboring two or more phosphosites could be phosphorylated by different kinase groups, in which nine major kinase groups accounted for more than 90% phosphosites. Further analyses showed that approximately half of the examined two phosphosite combinations were correlatively regulated, regardless of whether the kinase groups were same or not. In general, the majority of proteins containing correlated phosphosites had solely co-regulated or counter-regulated phosphosites, and co-regulation was significantly more frequent than counter-regulation, suggesting that the former may be more important for regulating the cell cycle. In conclusion, our findings provide new insights into the complex regulatory mechanisms of protein phosphorylation networks during eukaryotic cell cycle.
Collapse
Affiliation(s)
- Xing-Lin Yang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | | | | | | | | | | |
Collapse
|
25
|
Phosphoproteome analysis reveals an important role for glycogen synthase kinase-3 in perfluorododecanoic acid-induced rat liver toxicity. Toxicol Lett 2013; 218:61-9. [DOI: 10.1016/j.toxlet.2013.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
|
26
|
Çelikbıçak Ö, Atakay M, Güler Ü, Salih B. A novel tantalum-based sol–gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications. Analyst 2013; 138:4403-10. [DOI: 10.1039/c3an00021d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJR, Mohammed S. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 2012. [PMID: 23186163 DOI: 10.1021/pr300630k] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS)-based phosphoproteomics has achieved extraordinary success in qualitative and quantitative analysis of cellular protein phosphorylation. Considering that an estimated level of phosphorylation in a cell is placed at well above 100,000 sites, there is still much room for improvement. Here, we attempt to extend the depth of phosphoproteome coverage while maintaining realistic aspirations in terms of available material, robustness, and instrument running time. We developed three strategies, where each provided a different balance between these three key parameters. The first strategy simply used enrichment by Ti(4+)-IMAC followed by reversed chromatography LC-MS (termed 1D). The second strategy incorporated an additional fractionation step through the use of HILIC (2D). Finally, a third strategy was designed employing first an SCX fractionation, followed by Ti(4+)-IMAC enrichment and additional fractionation by HILIC (3D). A preliminary evaluation was performed on the HeLa cell line. Detecting 3700 phosphopeptides in about 2 h, the 1D strategy was found to be the most sensitive but limited in comprehensivity, mainly due to issues with complexity and dynamic range. Overall, the best balance was achieved using the 2D based strategy, identifying close to 17,000 phosphopeptides with less than 1 mg of material in about 48 h. Subsequently, we confirmed the findings with the K562 cell sample. When sufficient material was available, the 3D strategy increased phosphoproteome allowing over 22,000 unique phosphopeptides to be identified. Unfortunately, the 3D strategy required more time and over 1 mg of material before it started to outperform 2D. Ultimately, combining all strategies, we were able to identify over 16,000 and nearly 24,000 unique phosphorylation sites from the cancer cell lines HeLa and K562, respectively. In summary, we demonstrate the need to carry out extensive fractionation for deep mining of the phosphoproteome and provide a guide for appropriate strategies depending on sample amount and/or analysis time.
Collapse
Affiliation(s)
- Houjiang Zhou
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Yalak G, Vogel V. Extracellular phosphorylation and phosphorylated proteins: not just curiosities but physiologically important. Sci Signal 2012; 5:re7. [PMID: 23250399 DOI: 10.1126/scisignal.2003273] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mining of the literature and high-throughput mass spectrometry data from both healthy and diseased tissues and from body fluids reveals evidence that various extracellular proteins can exist in phosphorylated states. Extracellular kinases and phosphatases (ectokinases and ectophosphatases) are active in extracellular spaces during times of sufficiently high concentrations of adenosine triphosphate. There is evidence for a role of extracellular phosphorylation in various physiological functions, including blood coagulation, immune cell activation, and the formation of neuronal networks. Ectokinase activity is increased in some diseases, including cancer, Alzheimer's disease, and some microbial infections. We summarize the literature supporting the physiological and pathological roles of extracellularly localized protein kinases, protein phosphatases, and phosphorylated proteins and provide an analysis of the available mass spectrometry data to annotate potential extracellular phosphorylated proteins.
Collapse
Affiliation(s)
- Garif Yalak
- Department of Health Sciences and Technology, ETH Zurich, Wolfgang Pauli Strasse 10, HCI F443, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
29
|
Schindler J, Ye J, Jensen ON, Nothwang HG. Monitoring the native phosphorylation state of plasma membrane proteins from a single mouse cerebellum. J Neurosci Methods 2012; 213:153-64. [PMID: 23246975 DOI: 10.1016/j.jneumeth.2012.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
Neuronal processing in the cerebellum involves the phosphorylation and dephosphorylation of various plasma membrane proteins such as AMPA or NMDA receptors. Despite the importance of changes in phosphorylation pattern, no global phospho-proteome analysis has yet been performed. As plasma membrane proteins are major targets of the signalling cascades, we developed a protocol to monitor their phosphorylation state starting from a single mouse cerebellum. An aqueous polymer two-phase system was used to enrich for plasma membrane proteins. Subsequently, calcium phosphate precipitation, immobilized metal affinity chromatography, and TiO(2) were combined to a sequential extraction procedure prior to mass spectrometric analyses. This strategy resulted in the identification of 1501 different native phosphorylation sites in 507 different proteins. 765 (51%) of these phosphorylation sites were localized with a confidence level of 99% or higher. 41.4% of the identified proteins were allocated to the plasma membrane and about half of the phosphorylation sites have not been reported previously. A bioinformatic screen for 12 consensus sequences identified putative kinases for 642 phosphorylation sites. In summary, the protocol deployed here identified several hundred novel phosphorylation sites of cerebellar proteins. Furthermore, it provides a valuable tool to monitor the plasma membrane proteome from any small brain samples of interest under differing physiological or pathophysiological conditions.
Collapse
Affiliation(s)
- Jens Schindler
- Neurogenetics Group, University of Oldenburg, Oldenburg, Germany.
| | | | | | | |
Collapse
|
30
|
|
31
|
Hinrichs MV, Torrejón M, Montecino M, Olate J. Ric-8: different cellular roles for a heterotrimeric G-protein GEF. J Cell Biochem 2012; 113:2797-805. [PMID: 22511245 DOI: 10.1002/jcb.24162] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Signaling via heterotrimeric G-proteins is evoked by agonist-mediated stimulation of seven transmembrane spanning receptors (GPCRs). During the last decade it has become apparent that Gα subunits can be activated by receptor-independent mechanisms. Ric-8 belongs to a highly conserved protein family that regulates heterotrimeric G-protein function, acting as a non-canonical guanine nucleotide exchange factors (GEF) over a subset of Gα subunits. In this review we discuss the roles of Ric-8 in the regulation of diverse cell functions, emphasizing the contribution of its multiple domain protein structure in these diverse functions.
Collapse
Affiliation(s)
- M V Hinrichs
- Faculty of Biological Sciences, Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | | | | | | |
Collapse
|
32
|
Abstract
Multidimensional liquid chromatography (LC) combined with mass spectrometry (MS) has become a standard technique in proteomics to reduce sample complexity and to tackle the dynamic range in protein abundance. Fractionation is necessary to obtain a comprehensive analysis of complex biological samples such as tissue and mammalian cell lines. However, extensive fractionation comes at the expense of sample loss, presenting a bottleneck in the analysis of limited amounts of material. In this protocol, we describe a two-dimensional chromatographic strategy based on a combination of hydrophilic interaction liquid chromatography (HILIC; with a zwitterionic packing material, ZIC-cHILIC) and reversed-phase chromatography, which allows proteomic analyses with minimal sample loss. Experimental aspects related to obtaining maximum recovery are discussed, including how to optimally prepare samples for this system. Examples involving protein lysates originating from cultured cell lines and cells sorted by flow cytometry are used to show the power, sensitivity and versatility of the technique. Once the ZIC-cHILIC fractionation system has been optimized and standardized, this protocol requires ∼5-6 d, including sample preparation and fraction analysis.
Collapse
|
33
|
Li QR, Ning ZB, Yang XL, Wu JR, Zeng R. Complementary workflow for global phosphoproteome analysis. Electrophoresis 2012; 33:3291-8. [DOI: 10.1002/elps.201200124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/26/2012] [Accepted: 09/05/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Qing-Run Li
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai; China
| | - Zhi-Bin Ning
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai; China
| | - Xing-Lin Yang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai; China
| | - Jia-Rui Wu
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai; China
| | - Rong Zeng
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai; China
| |
Collapse
|
34
|
Beltran L, Cutillas PR. Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids 2012; 43:1009-24. [PMID: 22821267 DOI: 10.1007/s00726-012-1288-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/03/2012] [Indexed: 12/27/2022]
Abstract
Phosphoproteomics is increasingly used to address a wide range of biological questions. However, despite some success, techniques for phosphoproteomics are not without challenges. Phosphoproteins are present in cells in low abundance relative to their unphosphorylated counterparts; therefore phosphorylated proteins (or phosphopeptides after protein digestion) are rarely detected in standard shotgun proteomics experiments. Thus, extraction of phosphorylated polypeptides from complex mixtures is a critical step in the success of phosphoproteomics experiments. Intense research over the last decade has resulted in the development of powerful techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Here, we review how the development of IMAC, MOAC, chemical derivatization and antibody affinity purification and chromatography is contributing to the evolution of phosphoproteomics techniques. Although further developments are needed for the technology to reach maturity, current state-of-the-art techniques can already be used as powerful tools for biological research.
Collapse
Affiliation(s)
- Luisa Beltran
- Analytical Signalling Group, Centre for Cell Signalling, Barts Cancer Institute-CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | | |
Collapse
|
35
|
Sun Z, Hamilton KL, Reardon KF. Phosphoproteomics and molecular cardiology: Techniques, applications and challenges. J Mol Cell Cardiol 2012; 53:354-68. [DOI: 10.1016/j.yjmcc.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/26/2012] [Accepted: 06/03/2012] [Indexed: 12/16/2022]
|
36
|
Dong M, Ye M, Cheng K, Song C, Pan Y, Wang C, Bian Y, Zou H. Depletion of Acidic Phosphopeptides by SAX To Improve the Coverage for the Detection of Basophilic Kinase Substrates. J Proteome Res 2012; 11:4673-81. [DOI: 10.1021/pr300503z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingming Dong
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kai Cheng
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxia Song
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbo Pan
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Wang
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Bian
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanfa Zou
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
37
|
Covian R, Balaban RS. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. Am J Physiol Heart Circ Physiol 2012; 303:H940-66. [PMID: 22886415 DOI: 10.1152/ajpheart.00077.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain α-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on (32)P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the evaluation of this possibility will require the application of approaches developed for bacterial cell signaling to the mitochondria.
Collapse
Affiliation(s)
- Raul Covian
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, Bethesda, Maryland 20817, USA
| | | |
Collapse
|
38
|
Di Palma S, Hennrich ML, Heck AJ, Mohammed S. Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. J Proteomics 2012; 75:3791-813. [DOI: 10.1016/j.jprot.2012.04.033] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
|
39
|
D'Alessandro A, Marrocco C, Rinalducci S, Mirasole C, Failla S, Zolla L. Chianina beef tenderness investigated through integrated Omics. J Proteomics 2012; 75:4381-98. [PMID: 22510581 DOI: 10.1016/j.jprot.2012.03.052] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/12/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022]
Abstract
In the present study we performed an integrated proteomics, interactomics and metabolomics analysis of Longissimus dorsi tender and tough meat samples from Chianina beef cattle. Results were statistically handled as to obtain Pearson's correlation coefficients of the results from Omics investigation in relation to canonical tenderness-related parameters, including Warner Bratzler shear force, myofibrillar degradation (at 48 h and 10 days after slaughter), sarcomere length and total collagen content. As a result, we could observe that the tender meat group was characterized by higher levels of glycolytic enzymes, which were over-phosphorylated and produced accumulation of glycolytic intermediates. Oxidative stress promoted meat tenderness and elicited heat shock protein responses, which in turn triggered apoptosis-like cascades along with PARP fragmentation. Phosphorylation was found to be a key process in post mortem muscle conversion to meat, as it was shown not only to modulate glycolytic enzyme activities, but also mediate the stability of structural proteins at the Z-disk. On the other hand, phosphorylation of HSPs has been supposed to alter their functions through changing their affinity for target interactors. Analogies and breed-specific differences are highlighted throughout the text via a direct comparison of the present results against the ones obtained in a parallel study on Maremmana Longissimus dorsi. It emerges that, while the main cornerstones and the final outcome are maintained, post mortem metabolism in tender and tough meat yielding individuals is subtly modulated via specific higher levels of enzymes and amino acidic residue phosphorylation in a breed-specific fashion, and whether calcium homeostasis dysregulation was a key factor in Maremmana, higher early post mortem phosphocreatine levels in the Chianina tender group could favor a slower and prolonged glycolytic rate, prolonging the extent of the minimum hanging period necessary to obtain tender meat from this breed by a few days.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, snc, 01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Fíla J, Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids 2011; 43:1025-47. [PMID: 22002794 PMCID: PMC3418503 DOI: 10.1007/s00726-011-1111-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 09/26/2011] [Indexed: 11/28/2022]
Abstract
Rapid changes of protein phosphorylation play a crucial role in the regulation of many cellular processes. Being post-translationally modified, phosphoproteins are often present in quite low abundance and tend to co-exist with their unphosphorylated isoform within the cell. To make their identification more practicable, the use of enrichment protocols is often required. The enrichment strategies can be performed either at the level of phosphoproteins or at the level of phosphopeptides. Both approaches have their advantages and disadvantages. Most enriching strategies are based on chemical modifications, affinity chromatography to capture peptides and proteins containing negatively charged phosphate groups onto a positively charged matrix, or immunoprecipitation by phospho-specific antibodies. In this article, the most up-to-date enrichment techniques are discussed, taking into account their optimization, and highlighting their advantages and disadvantages. Moreover, these methods are compared to each other, revealing their complementary nature in providing comprehensive coverage of the phosphoproteome.
Collapse
Affiliation(s)
- Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, Czech Republic
| | | |
Collapse
|
41
|
Gyenis L, Duncan JS, Turowec JP, Bretner M, Litchfield DW. Unbiased functional proteomics strategy for protein kinase inhibitor validation and identification of bona fide protein kinase substrates: application to identification of EEF1D as a substrate for CK2. J Proteome Res 2011; 10:4887-901. [PMID: 21936567 PMCID: PMC3208357 DOI: 10.1021/pr2008994] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein kinases have emerged as attractive targets for treatment of several diseases prompting large-scale phosphoproteomics studies to elucidate their cellular actions and the design of novel inhibitory compounds. Current limitations include extensive reliance on consensus predictions to derive kinase-substrate relationships from phosphoproteomics data and incomplete experimental validation of inhibitors. To overcome these limitations in the case of protein kinase CK2, we employed functional proteomics and chemical genetics to enable identification of physiological CK2 substrates and validation of CK2 inhibitors including TBB and derivatives. By 2D electrophoresis and mass spectrometry, we identified the translational elongation factor EEF1D as a protein exhibiting CK2 inhibitor-dependent decreases in phosphorylation in (32)P-labeled HeLa cells. Direct phosphorylation of EEF1D by CK2 was shown by performing CK2 assays with EEF1D -FLAG from HeLa cells. Dramatic increases in EEF1D phosphorylation following λ-phosphatase treatment and phospho- EEF1D antibody recognizing EEF1D pS162 indicated phosphorylation at the CK2 site in cells. Furthermore, phosphorylation of EEF1D in the presence of TBB or TBBz is restored using CK2 inhibitor-resistant mutants. Collectively, our results demonstrate that EEF1D is a bona fide physiological CK2 substrate for CK2 phosphorylation. Furthermore, this validation strategy could be adaptable to other protein kinases and readily combined with other phosphoproteomic methods.
Collapse
Affiliation(s)
- Laszlo Gyenis
- Department of Biochemistry, The University of Western Ontario , London, Ontario, N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
42
|
Tsougeni K, Zerefos P, Tserepi A, Vlahou A, Garbis SD, Gogolides E. TiO2-ZrO2 affinity chromatography polymeric microchip for phosphopeptide enrichment and separation. LAB ON A CHIP 2011; 11:3113-3120. [PMID: 21796280 DOI: 10.1039/c1lc20133f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We fabricated a TiO(2)-ZrO(2) affinity chromatography micro-column on 2 mm PMMA plates, and demonstrated the enrichment and separation of (a) a standard mono- and tetra-phosphopeptide, and (b) phosphopeptides contained in a tryptic digest of β-Casein. The chromatography column consisted of 32 parallel microchannels with common input and output ports and was fabricated by lithography directly on the polymeric substrate followed by plasma etching (i.e. standard MEMS processing) and sealed with lamination. The liquid deposited TiO(2)-ZrO(2) stationary phase was characterized by X-ray diffraction and was found to be mostly TiO(2) and ZrO(2) in crystalline phases. Off-chip UV detection and MALDI MS identification of the separated effluents were used. The chip had a capacity of >1.4 μg (0.7 nmol) of a prototype mono-phosphopeptide and a recovery of 94 ± 3%, and can be used with small samples (less than 0.1 μL depending on the syringe pump used). The chip design allows an expansion of its capacity by means of increasing the number of parallel microchannels at a constant sample volume. Our approach provided an alternative to off-line extraction tips (with typical capacities of 1-2 μg and sample volumes of 1-10 μL), and to on-chip efforts based on packed bed and frit formats.
Collapse
Affiliation(s)
- Katerina Tsougeni
- Institute of Microelectronics, NCSR Demokritos, P.O. BOX 60228, 153 10, Aghia Paraskevi, Greece
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Proteomic analysis requires the combination of an extensive suite of technologies including protein processing and separation, micro-flow HPLC, MS and bioinformatics. Although proteomic technologies are still in flux, approaches that bypass gel electrophoresis (gel-free approaches) are dominating the field of proteomics. Along with the development of gel-free proteomics, came the development of devices for the processing of proteomic samples termed proteomic reactors. These microfluidic devices provide rapid, robust and efficient pre-MS sample procession by performing protein sample preparation/concentration, digestion and peptide fractionation. The proteomic reactor has advanced in two major directions: immobilized enzyme reactor and ion exchange-based proteomic reactor. This review summarizes the technical developments and biological applications of the proteomic reactor over the last decade.
Collapse
Affiliation(s)
- Hu Zhou
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
44
|
Hennrich ML, Groenewold V, Kops GJPL, Heck AJR, Mohammed S. Improving Depth in Phosphoproteomics by Using a Strong Cation Exchange-Weak Anion Exchange-Reversed Phase Multidimensional Separation Approach. Anal Chem 2011; 83:7137-43. [DOI: 10.1021/ac2015068] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Marco L. Hennrich
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Vincent Groenewold
- Molecular Cancer Research and Cancer Genomics Centre, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Geert J. P. L. Kops
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Molecular Cancer Research and Cancer Genomics Centre, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
45
|
Xing XB, Li QR, Sun H, Fu X, Zhan F, Huang X, Li J, Chen CL, Shyr Y, Zeng R, Li YX, Xie L. The discovery of novel protein-coding features in mouse genome based on mass spectrometry data. Genomics 2011; 98:343-51. [PMID: 21840390 DOI: 10.1016/j.ygeno.2011.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/18/2011] [Accepted: 07/23/2011] [Indexed: 01/07/2023]
Abstract
Identifying protein-coding genes in eukaryotic genomes remains a challenge in post-genome era due to the complex gene models. We applied a proteogenomics strategy to detect un-annotated protein-coding regions in mouse genome. High-accuracy tandem mass spectrometry (MS/MS) data from diverse mouse samples were generated by LTQ-Orbitrap mass spectrometer in house. Two searchable diagnostic proteomic datasets were constructed, one with all possible encoding exon junctions, and the other with all putative encoding exons, for the discovery of novel exon splicing events and novel uninterrupted protein-coding regions. Altogether 29,586 unique peptides were identified. Aligning backwards to the mouse genome, the translation of 4471 annotated genes was validated by the known peptides; and 172 genic events were defined in mouse genome by the novel peptides. The approach in the current work can provide substantial evidences for eukaryote genome annotation in encoding genes.
Collapse
Affiliation(s)
- Xiao-Bin Xing
- Shanghai Center for Bioinformation Technology, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang SK, Weaver JD, Zhang S, Lei XG. Knockout of SOD1 promotes conversion of selenocysteine to dehydroalanine in murine hepatic GPX1 protein. Free Radic Biol Med 2011; 51:197-204. [PMID: 21420488 PMCID: PMC3109192 DOI: 10.1016/j.freeradbiomed.2011.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/22/2011] [Accepted: 03/11/2011] [Indexed: 12/23/2022]
Abstract
Se-dependent glutathione peroxidase-1 (GPX1) and Cu,Zn-superoxide dismutase (SOD1) are two major intracellular antioxidant enzymes. The purpose of this study was to elucidate the biochemical mechanisms for the 40% loss of hepatic GPX1 activity in SOD1(-/-) mice. Compared with the wild type (WT), the SOD1(-/-) mice showed no change in the total amount of GPX1 protein. However, their total enzyme protein exhibited 31 and 38% decreases (P<0.05) in the apparent k(cat) for hydrogen peroxide and tert-butylperoxide (at 2mM GSH), respectively. Most striking, mass spectrometry revealed two chemical forms of the 47th residue of GPX1: the projected native selenocysteine (Sec) and the Se-lacking dehydroalanine (DHA). The hepatic GPX1 protein of the SOD1(-/-) mice contained 38% less Sec and 77% more DHA than that of WT and showed aggravated dissociation of the tetramer structure. In conclusion, knockout of SOD1 elevated the conversion of Sec to DHA in the active site of hepatic GPX1, leading to proportional decreases in the apparent k(cat) and activity of the enzyme protein as a whole. Our data reveal a structural and kinetic mechanism for the in vivo functional dependence of GPX1 on SOD1 in mammals and provide a novel mass spectrometric method for the assay of oxidative modification of the GPX1 protein.
Collapse
Affiliation(s)
- Shi Kui Wang
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy D. Weaver
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Sheng Zhang
- Department of Proteomics and Mass Spectrometry Core Facility, Cornell University, Ithaca, NY 14853, USA
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
- Contact information of the corresponding author: Dr. X. G. Lei, Professor, Department of Animal Science, Cornell University, Ithaca, NY 14853, USA, Tel: (607)-254-4703, Fax: (607)-255-9829,
| |
Collapse
|
47
|
Siu SO, Lam MPY, Lau E, Kong RPW, Lee SMY, Chu IK. Fully automatable two-dimensional reversed-phase capillary liquid chromatography with online tandem mass spectrometry for shotgun proteomics. Proteomics 2011; 11:2308-19. [DOI: 10.1002/pmic.201100110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/16/2010] [Accepted: 03/08/2011] [Indexed: 01/09/2023]
|
48
|
Mohammed S, Heck AJR. Strong cation exchange (SCX) based analytical methods for the targeted analysis of protein post-translational modifications. Curr Opin Biotechnol 2011; 22:9-16. [DOI: 10.1016/j.copbio.2010.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/05/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
49
|
Hu Y, Peng Y, Lin K, Shen H, Brousseau LC, Sakamoto J, Sun T, Ferrari M. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins. NANOSCALE 2011; 3:421-8. [PMID: 21135976 PMCID: PMC3397147 DOI: 10.1039/c0nr00720j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV=18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.
Collapse
Affiliation(s)
- Ye Hu
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yang Peng
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kevin Lin
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, USA
| | - Haifa Shen
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louis C. Brousseau
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jason Sakamoto
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tong Sun
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mauro Ferrari
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
50
|
Chen CT, Wang LY, Ho YP. Use of polyethylenimine-modified magnetic nanoparticles for highly specific enrichment of phosphopeptides for mass spectrometric analysis. Anal Bioanal Chem 2011; 399:2795-806. [DOI: 10.1007/s00216-010-4623-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/25/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
|