1
|
Banasaz S, Ferraro V. Keratin from Animal By-Products: Structure, Characterization, Extraction and Application-A Review. Polymers (Basel) 2024; 16:1999. [PMID: 39065316 PMCID: PMC11280741 DOI: 10.3390/polym16141999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Keratin is a structural fibrous protein and the core constituent of animal by-products from livestock such as wool, feathers, hooves, horns, and pig bristles. This natural polymer is also the main component of human hair and is present at an important percentage in human and animal skin. Significant amounts of keratin-rich animal tissues are discarded worldwide each year, ca. 12 M tons, and the share used for keratin extraction and added-value applications is still very low. An important stream of new potential raw materials, represented by animal by-products and human hair, is thus being lost, while a large-scale valorization could contribute to a circular bioeconomy and to the reduction in the environmental fingerprint of those tissues. Fortunately, scientific research has made much important progress in the last 10-15 years in the better understanding of the complex keratin architecture and its variability among different animal tissues, in the development of tailored extraction processes, and in the screening of new potential applications. Hence, this review aims at a discussion of the recent findings in the characterization of keratin and keratin-rich animal by-product structures, as well as in keratin recovery by conventional and emerging techniques and advances in valorization in several fields.
Collapse
|
2
|
Alibardi L. Scales of non-avian reptiles and their derivatives contain corneous beta proteins coded from genes localized in the Epidermal Differentiation Complex. Tissue Cell 2023; 85:102228. [PMID: 37793208 DOI: 10.1016/j.tice.2023.102228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The evolution of modern reptiles from basic reptilian ancestors gave rise to scaled vertebrates. Scales are of different types, and their corneous layer can shed frequently during the year in lepidosaurians (lizards, snakes), 1-2 times per year in the tuatara and in some freshwater turtle, irregularly in different parts of the body in crocodilians, or simply wore superficially in marine and terrestrial turtles. Lepidosaurians possess tuberculate, non-overlapped or variably overlapped scales with inter-scale (hinge) regions. The latter are hidden underneath the outer scale surface or may be more exposed in specific body areas. Hinge regions allow stretching during growth and movement so that the skin remains mechanically functional. Crocodilian and turtles feature flat and shield scales (scutes) with narrow inter-scale regions for stretching and growth. The epidermis of non-avian reptilian hinge regions is much thinner than the exposed outer surface of scales and is less cornified. Despite the thickness of the epidermis, scales are mainly composed of variably amount of Corneous Beta Proteins (CBPs) that are coded in a gene cluster known as EDC (Epidermal Differentiation Complex). These are small proteins, 100-200 amino acid long of 8-25 kDa, rich in glycine and cysteine but also in serine, proline and valine that participate to the formation of beta-sheets in the internal part of the protein, the beta-region. This region determines the further polymerization of CBPs in filamentous proteins that, together a network of Intermediate Filament Keratins (IFKs) and other minor epidermal proteins from the EDC make the variable pliable or inflexible corneous material of reptilian scales, claws and of turtle beak. The acquisition of scales and skin derivatives with different mechanical and material properties, mainly due to the evolution of reptile CBPs, is essential for the life and different adaptations of these vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
Zhao T, Pan Y. An evaluation of the effect of hydrofluoric acid (HF) treatment on keratins. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:377-384. [PMID: 36002950 DOI: 10.1002/jez.b.23173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/26/2022] [Accepted: 07/28/2022] [Indexed: 06/09/2023]
Abstract
Hydrofluoric acid (HF) is commonly used in geological and paleontological research to extract organic fossils for morphological and chemical studies. However, during HF treatment, organic matter can also be altered, which raises concerns that HF-treated organic matter may not be representative of the original organic matter. To provide reference data for protein studies on fossils, herein, we use Fourier transform infrared (FTIR) spectroscopy to investigate the effect of HF (21.3 M) treatment on keratins, with treatment durations ranging from 2 to 48 h. Results show that the FTIR spectra of HF-treated samples are overall similar to that of the untreated sample, while curve fitting shows that HF treatment has led to alteration of the secondary structure in all the HF-treated samples and the effect is time-dependent. The 2- and 4-h treatment mainly reduced the content of the random coils, α-helix, and intermolecular β-sheet. From 8h onwards, the content of random coils greatly increased at the expense of other structures. Our results imply that for protein detection in fossils using FTIR spectroscopy, the negative effect of HF treatment is not substantial, as the bands characteristic of proteins, that is, amide A, amide B, amide I, amide II, and amide III, are still present after the 48-h treatment. If the target is a secondary structure, the effect of HF treatment should be considered. When HF treatment is necessary, limiting the treatment duration to less than 4h may be a choice.
Collapse
Affiliation(s)
- Tao Zhao
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Yanhong Pan
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Barrios-Rodríguez CA, de Lacerda LD, Fernandes-Bezerra M. A Pilot Study of Mercury Distribution in the Carapace of Four Species of Sea Turtles from Northeastern Brazil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:99. [PMID: 37243788 DOI: 10.1007/s00128-023-03745-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Scutes present very complex morphologies with different growth rates at different areas of the carapace that can change the accumulation process of essential and non-essential metals. To infer the effects of morphology and growth on Hg concentrations in scutes, we mapped them in the carapace of one individual of four species of sea turtles sampled along the Brazilian coast. The results showed that Hg concentrations were higher in the vertebral scutes of Chelonia mydas and Eretmochelys imbricata suggesting variation in growth rates of different carapace areas since the vertebral area is the first to develop prior to costal areas. Caretta caretta and Lepidochelys olivacea did not show differences between carapace areas. The preliminary data from this pilot study indicate that vertebral scutes may be suitable for monitoring Hg in C. mydas and E. imbricata, since they reflect longer exposure period. A species-to-species comparison of Hg concentrations is not possible due to the small number of sampled individuals, nevertheless, E. imbricata showed remarkably lower Hg concentrations compared to the other three species. Further studies are required for all four species, with a larger number of individuals, preferentially of varying life stages, due to the unknown effects of different diets, Hg exposure, and migration histories.
Collapse
Affiliation(s)
- César Augusto Barrios-Rodríguez
- Laboratório de Biogeoquímica Costeira, Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, Fortaleza, Ceará, 60165-081, Brasil.
| | - Luiz Drude de Lacerda
- Laboratório de Biogeoquímica Costeira, Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, Fortaleza, Ceará, 60165-081, Brasil
| | - Moises Fernandes-Bezerra
- Laboratório de Biogeoquímica Costeira, Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, Fortaleza, Ceará, 60165-081, Brasil
| |
Collapse
|
5
|
Yenmiş M, Ayaz D. The Story of the Finest Armor: Developmental Aspects of Reptile Skin. J Dev Biol 2023; 11:jdb11010005. [PMID: 36810457 PMCID: PMC9944452 DOI: 10.3390/jdb11010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
The reptile skin is a barrier against water loss and pathogens and an armor for mechanical damages. The integument of reptiles consists of two main layers: the epidermis and the dermis. The epidermis, the hard cover of the body which has an armor-like role, varies among extant reptiles in terms of structural aspects such as thickness, hardness or the kinds of appendages it constitutes. The reptile epithelial cells of the epidermis (keratinocytes) are composed of two main proteins: intermediate filament keratins (IFKs) and corneous beta proteins (CBPs). The outer horny layer of the epidermis, stratum corneum, is constituted of keratinocytes by means of terminal differentiation or cornification which is a result of the protein interactions where CBPs associate with and coat the initial scaffold of IFKs. Reptiles were able to colonize the terrestrial environment due to the changes in these epidermal structures, which led to various cornified epidermal appendages such as scales and scutes, a beak, claws or setae. Developmental and structural aspects of the epidermal CBPs as well as their shared chromosomal locus (EDC) indicate an ancestral origin that gave rise to the finest armor of reptilians.
Collapse
|
6
|
Shiang CSA, Bonney C, Lazarus B, Meyers M, Jasiuk I. Hierarchical modeling of elastic moduli of equine hoof wall. J Mech Behav Biomed Mater 2022; 136:105529. [PMID: 36327663 DOI: 10.1016/j.jmbbm.2022.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
This study predicts analytically effective elastic moduli of substructures within an equine hoof wall. The hoof wall is represented as a composite material with a hierarchical structure comprised of a sequence of length scales. A bottom-up approach is employed. Thus, the outputs from a lower spatial scale serve as the inputs for the following scale. The models include the Halpin-Tsai model, composite cylinders model, a sutured interface model, and classical laminate theory. The length scales span macroscale, mesoscale, sub-mesoscale, microscale, sub-microscale, and nanoscale. The macroscale represents the hoof wall, consisting of tubules within a matrix at the mesoscale. At the sub-mesoscale, a single hollow tubule is reinforced by a tubule wall made of lamellae; the surrounding intertubular material also has a lamellar structure. The lamellae contain sutured and layered cells at the microscale. A single cell is made of crystalline macrofibrils arranged in an amorphous matrix at the sub-microscale. A macrofibril contains aligned crystalline rod-like intermediate filaments at the nanoscale. Experimentally obtained parameters are used in the modeling as inputs for geometry and nanoscale properties. The predicted properties of the hoof wall material agree with experimental measurements at the mesoscale and macroscale. We observe that the hierarchical structure of the hoof wall leads to a decrease in the elastic modulus with increasing scale, from the nanoscale to the macroscale. Such behavior is an intrinsic characteristic of hierarchical biological materials. This study can serve as a framework for designing impact-resistant hoof-inspired materials and structures.
Collapse
Affiliation(s)
| | - Christian Bonney
- Dept. of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, USA
| | - Benjamin Lazarus
- Materials Science and Engineering Program, University of California, San Diego, USA
| | - Marc Meyers
- Materials Science and Engineering Program, University of California, San Diego, USA; Dept. of Mechanical and Aerospace Engineering, University of California, San Diego, USA; Dept. of Nanoengineering, University of California, San Diego, USA
| | - Iwona Jasiuk
- Dept. of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, USA.
| |
Collapse
|
7
|
Li Y, Zhang B, Niu S, Zhang Z, Song W, Wang Y, Zhang S, Li B, Mu Z, Han Z, Ren L. Porous morphology and graded materials endow hedgehog spines with impact resistance and structural stability. Acta Biomater 2022; 147:91-101. [PMID: 35598876 DOI: 10.1016/j.actbio.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Hedgehog spines with evolved unique structures are studied on account of their remarkable mechanical efficiency. However, because of limitations of existing knowledge, it remains unclear how spines work as a material with a balance of stiffness and toughness. By combining qualitative three-dimensional (3D) structural characterization, material composition analysis, biomechanical analysis, and parametric simulations, the relationship between microstructural characteristic and multifunctional features of hedgehog spines is revealed here. The result shows that the fibers transform from the outer cortex to the interior cellular structures by the "T" section composed of the "L" section and a deltoid. The outer cortex, however, shows an arrangement of a layered fibrous structure. An inward change in Young's moduli is observed. In addition, these spines are featured with a sandwich structure that combines an inner porous core with an outer dense cortex. This feature confirms that the hedgehog spines are a kind of biological functionally graded fiber-reinforced composite. Biomimetic models based on the spine are then built, and the corresponding mechanical performance is tested. The results confirm that the internal cellular structure of the spine effectively improve impact resistance. Furthermore, the transverse diaphragm can prevent ellipticity, which may delay buckling. The longitudinal stiffeners also contribute to promote buckling resistance. The design strategies of the spine proposed here provide inspirations for designing T-joint composites. It also exhibits potential applications in low-density, impact and buckling resistance artificial composites. STATEMENT OF SIGNIFICANCE: The spines of a hedgehog are its protective armor that combines strength and toughness. The animal can not only withstand longitudinal and radial forces that are 1 × 106∼ 3 × 106 times the gravity generated by its own weight, but it can also survive unscathed by elastic buckling while dropping to the ground at a speed of up to 15 m/s. Here, we first demonstrate that hedgehog spines are biological graded fiber-reinforced structural composites and reveal their superior impact and buckling resistance mechanism through simulation analysis. Our results broaden the understanding of the relationship among morphology, materials, and function of hedgehog spines. It is anticipated that the survival strategies of hedgehog revealed here could provide inspirations for the development of synthetic composites with impact resistance and structural stability.
Collapse
Affiliation(s)
- Yujiao Li
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China; Weihai institute for Bionic, Jilin University, Weihai 264200, China
| | - Binjie Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China; Weihai institute for Bionic, Jilin University, Weihai 264200, China.
| | - Zhiyan Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Wenda Song
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Yufei Wang
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Shuang Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Bo Li
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China; Weihai institute for Bionic, Jilin University, Weihai 264200, China.
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China; Weihai institute for Bionic, Jilin University, Weihai 264200, China
| |
Collapse
|
8
|
Tahoun M, Engeser M, Namasivayam V, Sander PM, Müller CE. Chemistry and Analysis of Organic Compounds in Dinosaurs. BIOLOGY 2022; 11:670. [PMID: 35625398 PMCID: PMC9138232 DOI: 10.3390/biology11050670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
This review provides an overview of organic compounds detected in non-avian dinosaur fossils to date. This was enabled by the development of sensitive analytical techniques. Non-destructive methods and procedures restricted to the sample surface, e.g., light and electron microscopy, infrared (IR) and Raman spectroscopy, as well as more invasive approaches including liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), time-of-flight secondary ion mass spectrometry, and immunological methods were employed. Organic compounds detected in samples of dinosaur fossils include pigments (heme, biliverdin, protoporphyrin IX, melanin), and proteins, such as collagens and keratins. The origin and nature of the observed protein signals is, however, in some cases, controversially discussed. Molecular taphonomy approaches can support the development of suitable analytical methods to confirm reported findings and to identify further organic compounds in dinosaur and other fossils in the future. The chemical properties of the various organic compounds detected in dinosaurs, and the techniques utilized for the identification and analysis of each of the compounds will be discussed.
Collapse
Affiliation(s)
- Mariam Tahoun
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany;
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| | - Paul Martin Sander
- Institute of Geosciences, Section Paleontology, University of Bonn, D-53113 Bonn, Germany;
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| |
Collapse
|
9
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
10
|
Alibardi L. Keratinization and Cornification are not equivalent processes but keratinization in fish and amphibians evolved into cornification in terrestrial vertebrates. Exp Dermatol 2022; 31:794-799. [PMID: 35007368 DOI: 10.1111/exd.14525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/25/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
The present account offers a generalized view of the evolution of process of terminal differentiation in keratinocytes of the epidermis in anamniotes, indicated as keratinization, into a further differentiating process of cornification in the skin and appendages of terrestrial vertebrates. Keratinization indicates the prevalent accumulation of intermediate filaments of keratins (IFKs) and is present in most fish and amphibian epidermis and inner epithelia of all vertebrates. During land adaptation, terrestrial vertebrates evolved a process of cornification and keratinocytes became dead corneocytes by the addition of numerous others proteins to the IFKs framework, represented by keratin-associated proteins (KAPs) and corneous proteins (CPs). Most of genes coding for these types of proteins are localized in chromosomal loci different and un-related from those of IFKs, and CPs originated from a gene cluster indicated as epidermal differentiation complex. During the evolution of reptiles and birds, the epidermis and corneous derivatives such as scales, claws, beaks and feathers mainly accumulate a type of CPs that overcome IFKs and containing a 34 amino acid beta-sheet core indicated as corneous beta proteins, formerly known as beta-keratins. Mammals did not evolve a beta-sheet core in their CPs and KAPs but instead produced numerous cysteine-rich IFKs in their epidermis and specialized KAPs in hairs, claws, nails, hooves and horns.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Padova, Italy.,Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Baeckens S, Temmerman M, Gorb SN, Neto C, Whiting MJ, Van Damme R. Convergent evolution of skin surface microarchitecture and increased skin hydrophobicity in semi-aquatic anole lizards. J Exp Biol 2021; 224:272432. [PMID: 34642763 PMCID: PMC8541734 DOI: 10.1242/jeb.242939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
Animals that habitually cross the boundary between water and land face specific challenges with respect to locomotion, respiration, insulation, fouling and waterproofing. Many semi-aquatic invertebrates and plants have developed complex surface microstructures with water-repellent properties to overcome these problems, but equivalent adaptations of the skin have not been reported for vertebrates that encounter similar environmental challenges. Here, we document the first evidence of evolutionary convergence of hydrophobic structured skin in a group of semi-aquatic tetrapods. We show that the skin surface of semi-aquatic species of Anolis lizards is characterized by a more elaborate microstructural architecture (i.e. longer spines and spinules) and a lower wettability relative to closely related terrestrial species. In addition, phylogenetic comparative models reveal repeated independent evolution of enhanced skin hydrophobicity associated with the transition to a semi-aquatic lifestyle, providing evidence of adaptation. Our findings invite a new and exciting line of inquiry into the ecological significance, evolutionary origin and developmental basis of hydrophobic skin surfaces in semi-aquatic lizards, which is essential for understanding why and how the observed skin adaptations evolved in some and not other semi-aquatic tetrapod lineages. Summary: Multiple Anolis lineages independently evolved a similar skin surface microarchitecture with water-repellent properties as an adaptation to a semi-aquatic lifestyle.
Collapse
Affiliation(s)
- Simon Baeckens
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.,Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Laboratory for the Evolution and Optics of Nanostructures, Department of Biology, Ghent University, 9000 Gent,Belgium
| | - Marie Temmerman
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute of the Christian Albrecht Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Chiara Neto
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Raoul Van Damme
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
12
|
Lazarus BS, Chadha C, Velasco-Hogan A, Barbosa JD, Jasiuk I, Meyers MA. Engineering with keratin: A functional material and a source of bioinspiration. iScience 2021; 24:102798. [PMID: 34355149 PMCID: PMC8319812 DOI: 10.1016/j.isci.2021.102798] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Keratin is a highly multifunctional biopolymer serving various roles in nature due to its diverse material properties, wide spectrum of structural designs, and impressive performance. Keratin-based materials are mechanically robust, thermally insulating, lightweight, capable of undergoing reversible adhesion through van der Waals forces, and exhibit structural coloration and hydrophobic surfaces. Thus, they have become templates for bioinspired designs and have even been applied as a functional material for biomedical applications and environmentally sustainable fiber-reinforced composites. This review aims to highlight keratin's remarkable capabilities as a biological component, a source of design inspiration, and an engineering material. We conclude with future directions for the exploration of keratinous materials.
Collapse
Affiliation(s)
- Benjamin S. Lazarus
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Charul Chadha
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Audrey Velasco-Hogan
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | | | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Marc A. Meyers
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
- Department of Nanoengineering, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
13
|
Lettoof DC, Rankenburg K, McDonald BJ, Evans NJ, Bateman PW, Aubret F, Gagnon MM. Snake scales record environmental metal(loid) contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116547. [PMID: 33548672 DOI: 10.1016/j.envpol.2021.116547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Wetland snakes, as top predators, are becoming globally recognised as bioindicators of wetland contamination. Livers are the traditional test organ for contaminant exposure in organisms, but research is moving towards a preference for non-lethal tissue sampling. Snake scales can be used as an indicator of exposure, as many metals bind to the keratin. We used laser ablation with inductively coupled plasma-atomic emission spectroscopy and mass spectrometry (LA-ICP-MS) to quantify the concentrations of 19 metals and metalloids (collectively referred to 'metals' hereafter) in Western tiger snake (Notechis scutatus occidentalis) scales from four wetlands along an urban gradient, and compared them to concentrations measured in captive tiger snake scales. We conducted repeat measures to determine the concentration accuracy of each metal using LA-ICP-MS. Concentrations in wild Western tiger snake scales were significantly higher than in reference tiger snake scales for most metals analysed, suggesting accumulation from environmental exposure. We compared the scale concentrations to sediment concentrations of sampled wetlands, and found inter-site differences between mean concentrations of metals in scales parallel patterns recorded from sediment. Four metals (Mn, As, Se, Sb) had strong positive correlations with liver tissue contents suggesting scale concentrations can be used to infer internal concentrations. By screening for a larger suite of metals than we could using traditional digestive methods, we identified additional metals (Ti, V, Sr, Cs, Tl, Th, U) that may be accumulating to levels of concern in tiger snakes in Perth, Western Australia. This research has progressed the use of LA-ICP-MS for quantifying a suite of metals available in snake scales, and highlights the significance of using wetland snake scales as a non-lethal indicator of environmental contamination.
Collapse
Affiliation(s)
- D C Lettoof
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, Western Australia, 6102, Australia.
| | - K Rankenburg
- School of Earth and Planetary Sciences, John de Laeter Centre, Curtin University, Perth, Australia
| | - B J McDonald
- School of Earth and Planetary Sciences, John de Laeter Centre, Curtin University, Perth, Australia
| | - N J Evans
- School of Earth and Planetary Sciences, John de Laeter Centre, Curtin University, Perth, Australia
| | - P W Bateman
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, Western Australia, 6102, Australia
| | - F Aubret
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, Western Australia, 6102, Australia; Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, UMR 5321 CNRS, 09200, Moulis, France
| | - M M Gagnon
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, Western Australia, 6102, Australia
| |
Collapse
|
14
|
Alibardi L. Development, structure, and protein composition of reptilian claws and hypotheses of their evolution. Anat Rec (Hoboken) 2020; 304:732-757. [PMID: 33015957 DOI: 10.1002/ar.24515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 11/06/2022]
Abstract
Here, we review the development, morphology, genes, and proteins of claws in reptiles. Claws likely form owing to the inductive influence of phalangeal mesenchyme on the apical epidermis of developing digits, resulting in hyperproliferation and intense protein synthesis in the dorsal epidermis, which forms the unguis. The tip of claws results from prevalent cell proliferation and distal movement along most of the ungueal epidermis in comparison to the ventral surface forming the subunguis. Asymmetrical growth between the unguis and subunguis forces beta-cells from the unguis to rotate into the apical part of the subunguis, sharpening the claw tip. Further sharpening occurs by scratching and mechanical wearing. Ungueal keratinocytes elongate, form an intricate perimeter and cementing junctions, and remain united impeding desquamation. In contrast, thin keratinocytes in the subunguis form a smooth perimeter, accumulate less corneous beta proteins (CBPs) and cysteine-poor intermediate filament (IF)-keratins, and desquamate. In addition to prevalent glycine-cysteine-tyrosine rich CBPs, special cysteine-rich IF-keratins are also synthesized in the claw, generating numerous SS bonds that harden the thick and compact corneous material. Desquamation and mechanical wear at the tip ensure that the unguis curvature remains approximately stable over time. Reptilian claws are likely very ancient in evolution, although the unguis differentiated like the outer scale surface of scales, while the subunguis might have derived from the inner scale surface. The few hair-like IF-keratins synthesized in reptilian claws indicate that ancestors of sauropsids and mammals shared cysteine-rich IF-keratins. However, the number of these keratins remained low in reptiles, while new types of CBPs function to strengthen claws.
Collapse
|
15
|
|
16
|
Torres FG, Saavedra AC. A comparison between the failure modes observed in biological and synthetic polymer nanocomposites. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2019.1625397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- F. G. Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú (Lima 32 Perú), Lima, Perú
| | - A. C. Saavedra
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú (Lima 32 Perú), Lima, Perú
| |
Collapse
|
17
|
Wang F, Chen M, Cai F, Li P, Yan J, Zhou K. Expression of specific corneous beta proteins in the developing digits of the Japanese gecko (Gekko japonicus) reveals their role in the growth of adhesive setae. Comp Biochem Physiol B Biochem Mol Biol 2020; 240:110370. [DOI: 10.1016/j.cbpb.2019.110370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 01/03/2023]
|
18
|
Holthaus KB, Eckhart L, Dalla Valle L, Alibardi L. Review: Evolution and diversification of corneous beta‐proteins, the characteristic epidermal proteins of reptiles and birds. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 330:438-453. [DOI: 10.1002/jez.b.22840] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/28/2018] [Accepted: 12/23/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Karin Brigit Holthaus
- Department of DermatologyMedical University of ViennaWien Austria
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA)University of BolognaBologna Italy
| | - Leopold Eckhart
- Department of DermatologyMedical University of ViennaWien Austria
| | | | - Lorenzo Alibardi
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA)University of BolognaBologna Italy
- Comparative Histolab PadovaPadova Italy
| |
Collapse
|
19
|
RODRIGUEZ CÉSARAUGUSTOB, BEZERRA MOISESF, REZENDE CARLOSEDUARDODE, BASTOS WANDERLEYR, LACERDA LUIZDDE. Mercury and methylmercury in carapace of the marine turtle Caretta caretta, in northeastern Brazil and its potential for environmental monitoring. AN ACAD BRAS CIENC 2019; 91:e20180672. [DOI: 10.1590/0001-3765201920180672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022] Open
|
20
|
Dubansky BH, Close M. A review of alligator and snake skin morphology and histotechnical preparations. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1517856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Brooke H. Dubansky
- Department of Medical Laboratory Sciences & Public Health, Tarleton State University, Fort Worth, TX, USA
| | - Matthew Close
- Department of Biological Sciences, Radford University, Radford, VA, USA
| |
Collapse
|
21
|
Endoh KS, Kawakatsu T, Müller-Plathe F. Coarse-Grained Molecular Simulation Model for Gecko Feet Keratin. J Phys Chem B 2018; 122:2203-2212. [DOI: 10.1021/acs.jpcb.7b10481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenkoh S. Endoh
- Eduard-Zintl-Institut
für Anorganische und Phzsikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Street 8, D-64287 Darmstadt, Germany
- Department
of Physics, Tohoku University, Aramaki Aza Aoba 6-3, Aoba-ku, 980-8578 Sendai, Japan
| | - Toshihiro Kawakatsu
- Department
of Physics, Tohoku University, Aramaki Aza Aoba 6-3, Aoba-ku, 980-8578 Sendai, Japan
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut
für Anorganische und Phzsikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Street 8, D-64287 Darmstadt, Germany
| |
Collapse
|
22
|
Holthaus KB, Strasser B, Lachner J, Sukseree S, Sipos W, Weissenbacher A, Tschachler E, Alibardi L, Eckhart L. Comparative Analysis of Epidermal Differentiation Genes of Crocodilians Suggests New Models for the Evolutionary Origin of Avian Feather Proteins. Genome Biol Evol 2018; 10:694-704. [PMID: 29447391 PMCID: PMC5827346 DOI: 10.1093/gbe/evy035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
The epidermis of amniotes forms a protective barrier against the environment and the differentiation program of keratinocytes, the main cell type in the epidermis, has undergone specific alterations in the course of adaptation of amniotes to a broad variety of environments and lifestyles. The epidermal differentiation complex (EDC) is a cluster of genes expressed at late stages of keratinocyte differentiation in both sauropsids and mammals. In the present study, we identified and analyzed the crocodilian equivalent of the EDC. The gene complement of the EDC of both the American alligator and the saltwater crocodile were determined by comparative genomics, de novo gene prediction and identification of EDC transcripts in published transcriptome data. We found that crocodilians have an organization of the EDC similar to that of their closest living relatives, the birds, with which they form the clade Archosauria. Notable differences include the specific expansion of a subfamily of EDC genes in crocodilians and the loss of distinct ancestral EDC genes in birds. Identification and comparative analysis of crocodilian orthologs of avian feather proteins suggest that the latter evolved by cooption and sequence modification of ancestral EDC genes, and that the amplification of an internal highly cysteine-enriched amino acid sequence motif gave rise to the feather component epidermal differentiation cysteine-rich protein in the avian lineage. Thus, sequence diversification of EDC genes contributed to the evolutionary divergence of the crocodilian and avian integuments.
Collapse
Affiliation(s)
- Karin Brigit Holthaus
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), University of Bologna, Italy
| | - Bettina Strasser
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| | - Julia Lachner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| | - Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Austria
| | | | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| | - Lorenzo Alibardi
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), University of Bologna, Italy
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| |
Collapse
|
23
|
Disulfide-bond-mediated cross-linking of corneous beta-proteins in lepidosaurian epidermis. ZOOLOGY 2017; 126:145-153. [PMID: 29129393 DOI: 10.1016/j.zool.2017.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/29/2023]
Abstract
Corneous beta-proteins (CBPs), formerly referred to as beta-keratins, are major protein components of the epidermis in lepidosaurian reptiles and are largely responsible for their material properties. These proteins have been suggested to form filaments of 3.4nm in thickness and to interact with themselves or with other proteins, including intermediate filament (IF) keratins. Here, we performed immunocytochemical labeling of CBPs in the epidermis of different lizards and snakes and investigated by immunoblotting analysis whether the reduction of disulfide bonds or protein oxidation affects the solubility and mobility of these CBPs. Immunogold labeling suggested that CBPs are partly co-localized with IF-keratins in differentiating and mature beta-cells. The chemical reduction of epidermal proteins from lizard and snake epidermis increased the abundance of CBP-immunoreactive bands in the size range of CBP monomers on Western blots. Conversely, in vitro oxidation of epidermal proteins reduced the abundance of putative CBP monomers. Some modifications in the IF-keratin range were also noted. These results strongly indicate that CBPs associate with IF-keratins and other proteins via disulfide bonds in the epidermis of lizards and snakes, which likely contributes to the resilience of the cornified beta- and alpha-layers of the lepidosaurian epidermis in live animals and after shedding.
Collapse
|
24
|
Abdel-Aal HA. Surface structure and tribology of legless squamate reptiles. J Mech Behav Biomed Mater 2017; 79:354-398. [PMID: 29352677 DOI: 10.1016/j.jmbbm.2017.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
Abstract
Squamate reptiles (around 10,000 species of snakes and lizards) comprise a myriad of distinct terrestrial vertebrates. The diversity within this biological group offers a great opportunity for customized bio-inspired solutions that address a variety of current technological problems especially within the realm of surface engineering and tribology. One subgroup within squamata is of interest in that context, namely the legless reptiles (mainly snakes and few lizards). The promise of that group lies within their functional adaptation as manifested in optimized surface designs and locomotion that is distinguished by economy of effort even when functioning within hostile tribological environments. Legless reptiles are spread over a wide range in the planet, this geographical diversity demands customized response to local habitats. Customization, in turn, is facilitated through specialized surface design features. In legless reptiles, micro elements of texture, their geometry and topological layout advance mitigation of frictional effects both in locomotion and in general function. Lately, the synergy between functional traits and intrinsic surface features has emerged as focus of research across disciplines. Many investigations have sought to characterize the structural as well as the tribological response of legless species from an engineering point of view. Despite the sizable amount of data that have accumulated in the literature over the past two decades or so, no effort to review the available information, whence this review. This manuscript, therefore, endeavors to assess available data on surface metrology and tribological behavior of legless reptiles and to define aspects of that performance necessary to formulate an advanced paradigm for bio-inspired surface engineering.
Collapse
|
25
|
Alibardi L. Review: cornification, morphogenesis and evolution of feathers. PROTOPLASMA 2017; 254:1259-1281. [PMID: 27614891 DOI: 10.1007/s00709-016-1019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/19/2016] [Indexed: 05/11/2023]
Abstract
Feathers are corneous microramifications of variable complexity derived from the morphogenesis of barb ridges. Histological and ultrastructural analyses on developing and regenerating feathers clarify the three-dimensional organization of cells in barb ridges. Feather cells derive from folds of the embryonic epithelium of feather germs from which barb/barbule cells and supportive cells organize in a branching structure. The following degeneration of supportive cells allows the separation of barbule cells which are made of corneous beta-proteins and of lower amounts of intermediate filament (IF)(alpha) keratins, histidine-rich proteins, and corneous proteins of the epidermal differentiation complex. The specific protein association gives rise to a corneous material with specific biomechanic properties in barbules, rami, rachis, or calamus. During the evolution of different feather types, a large expansion of the genome coding for corneous feather beta-proteins occurred and formed 3-4-nm-thick filaments through a different mechanism from that of 8-10 nm IF keratins. In the chick, over 130 genes mainly localized in chromosomes 27 and 25 encode feather corneous beta-proteins of 10-12 kDa containing 97-105 amino acids. About 35 genes localized in chromosome 25 code for scale proteins (14-16 kDa made of 122-146 amino acids), claws and beak proteins (14-17 kDa proteins of 134-164 amino acids). Feather morphogenesis is periodically re-activated to produce replacement feathers, and multiple feather types can result from the interactions of epidermal and dermal tissues. The review shows schematic models explaining the translation of the morphogenesis of barb ridges present in the follicle into the three-dimensional shape of the main types of branched or un-branched feathers such as plumulaceous, pennaceous, filoplumes, and bristles. The temporal pattern of formation of barb ridges in different feather types and the molecular control from the dermal papilla through signaling molecules are poorly known. The evolution and diversification of the process of morphogenesis of barb ridges and patterns of their formation within feathers follicle allowed the origin and diversification of numerous types of feathers, including the asymmetric planar feathers for flight.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of BIGEA, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
26
|
Alibardi L. Review: mapping epidermal beta-protein distribution in the lizard Anolis carolinensis shows a specific localization for the formation of scales, pads, and claws. PROTOPLASMA 2016; 253:1405-1420. [PMID: 26597267 DOI: 10.1007/s00709-015-0909-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The epidermis of lizards is made of multiple alpha- and beta-layers with different characteristics comprising alpha-keratins and corneous beta-proteins (formerly beta-keratins). Three main modifications of body scales are present in the lizard Anolis carolinensis: gular scales, adhesive pad lamellae, and claws. The 40 corneous beta-proteins present in this specie comprise glycine-rich and glycine-cysteine-rich subfamilies, while the 41 alpha-keratins comprise cysteine-poor and cysteine-rich subfamilies, the latter showing homology to hair keratins. Other genes for corneous proteins are present in the epidermal differentiation complex, the locus where corneous protein genes are located. The review summarizes the main sites of immunolocalization of beta-proteins in different scales and their derivatives producing a unique map of body distribution for these structural proteins. Small glycine-rich beta-proteins participate in the formation of the mechanically resistant beta-layer of most scales. Small glycine-cysteine beta-proteins have a more varied localization in different scales and are also present in the pliable alpha-layer. In claws, cysteine-rich alpha-keratins prevail over cysteine-poor alpha-keratins and mix to glycine-cysteine-rich beta-proteins. The larger beta-proteins with a molecular mass similar to that of alpha-keratins participate in the formation of the fibrous meshwork present in differentiating beta-cells and likely interact with alpha-keratins. The diverse localization of alpha-keratins, beta-proteins, and other proteins of the epidermal differentiation complex gives rise to variably pliable, elastic, or hard corneous layers in different body scales. The corneous layers formed in the softer or harder scales, in the elastic pad lamellae, or in the resistant claws possess peculiar properties depending on the ratio of specific corneous proteins.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology, Geology and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
27
|
Calvaresi M, Eckhart L, Alibardi L. The molecular organization of the beta-sheet region in Corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments. J Struct Biol 2016; 194:282-91. [DOI: 10.1016/j.jsb.2016.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 11/17/2022]
|
28
|
Alibardi L. The Process of Cornification Evolved From the Initial Keratinization in the Epidermis and Epidermal Derivatives of Vertebrates: A New Synthesis and the Case of Sauropsids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:263-319. [DOI: 10.1016/bs.ircmb.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Alibardi L. Immunolocalization of large corneous beta-proteins in the green anole lizard (Anolis carolinensis) suggests that they form filaments that associate to the smaller beta-proteins in the beta-layer of the epidermis. J Morphol 2015. [DOI: 10.1002/jmor.20415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea; University of Bologna; Bologna Italy
| |
Collapse
|
30
|
Alibardi L, Strasser B, Eckhart L. Immunolocalization of loricrin in the maturing α-layer of normal and regenerating epidermis of the lizard Anolis carolinensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:159-67. [PMID: 25690302 DOI: 10.1002/jez.b.22610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/18/2014] [Indexed: 11/07/2022]
Abstract
Numerous corneous proteins are produced during the differentiation of the complex lizard epidermis, comprising hard β-layers and softer α-layers. In the present ultrastructural and immunocytochemical study, we have localized a homolog of the mammalian skin barrier protein loricrin in the skin of the green anole lizard (Anolis carolinensis). We used an antibody specific to the carboxyterminus of loricrin 1, a gene of the epidermal differentiation complex (EDC) of A. carolinensis. Lizard loricrin is present in the maturing α-layer (lacunar cells) of normal scale epidermis and in the accumulating corneocytes of the wound epidermis (lacunar cells) of the regenerating epidermis. The protein appears as a component of the α-layer but not of the β-layer. Lizard loricrin is diffused in the cytoplasm of pre-corneous α-keratinocytes but eventually concentrates in the packing corneous material of the maturing corneocytes of the α-layer (lacunar) in normal epidermis or in the wound epidermis of regenerating epidermis. The protein likely contributes to the composition and pliability of the corneous material but is not specifically accumulated on the corneous cell envelope (marginal layer) that is scarcely differentiated in these cells. The study contributes to the knowledge on the distribution of specific corneous proteins that give rise to the different material properties of α-layers versus β-layers in lizard epidermis.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
31
|
Achrai B, Bar-On B, Wagner HD. Biological armors under impact--effect of keratin coating, and synthetic bio-inspired analogues. BIOINSPIRATION & BIOMIMETICS 2015; 10:016009. [PMID: 25599251 DOI: 10.1088/1748-3190/10/1/016009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A number of biological armors, such as turtle shells, consist of a strong exoskeleton covered with a thin keratin coating. The mechanical role upon impact of this keratin coating has surprisingly not been investigated thus far. Low-velocity impact tests on the turtle shell reveal a unique toughening phenomenon attributed to the thin covering keratin layer, the presence of which noticeably improves the fracture energy and shell integrity. Synthetic substrate/coating analogues were subsequently prepared and exhibit an impact behavior similar to the biological ones. The results of the present study may improve our understanding, and even future designs, of impact-tolerant structures.
Collapse
Affiliation(s)
- B Achrai
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
32
|
Schneider L, Eggins S, Maher W, Vogt RC, Krikowa F, Kinsley L, Eggins SM, Da Silveira R. An evaluation of the use of reptile dermal scutes as a non-invasive method to monitor mercury concentrations in the environment. CHEMOSPHERE 2015; 119:163-170. [PMID: 24974226 DOI: 10.1016/j.chemosphere.2014.05.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
Reptiles are ideal organisms for the non-invasive monitoring of mercury (Hg) contamination. We have investigated Hg bioaccumulation in tissue layers of reptile dermis as a basis for establishing a standardized collection method for Hg analysis. Tissue samples from freshwater turtle species Podocnemis unifilis and Podocnemis expansa and caiman species Melanosuchus niger and Caiman crocodilus, all from the Amazonian region, were analysed in this study. We first tested the relationships between Hg concentrations in keratin and bone to Hg concentrations in muscle to determine the best predictor of Hg concentration in muscle tissue. We then investigated the potential for measuring Hg concentrations across turtle carapace growth rings as an indicator of longer term changes in Hg concentration in the environment. Hg concentrations were significantly lower in bone (120 ng g(-1) caimans and 1 ng g(-1) turtles) than keratin (3600 ng g(-1) caimans and 2200 ng g(-1) turtles). Keratin was found to be a better predictor of exposure to Hg than muscle and bone tissues for both turtles and caimans and also to be a reliable non-invasive tissue for Hg analysis in turtles. Measurement of Hg in carapace growth rings has significant potential for estimating Hg bioaccumulation by turtles over time, but full quantification awaits development and use of a matrix-matched reference material for laser ablation ICPMS analysis of Hg concentrations in keratin. Realising this potential would make a valuable advance to the study of the history of contamination in mining and industrial sites, which have until now relied on the analysis of Hg concentrations in sediments.
Collapse
Affiliation(s)
- Larissa Schneider
- University of Canberra, Institute for Applied Ecology, Kirinary St., Canberra, ACT, Australia.
| | - Sam Eggins
- University of Canberra, Institute for Applied Ecology, Kirinary St., Canberra, ACT, Australia
| | - William Maher
- University of Canberra, Institute for Applied Ecology, Kirinary St., Canberra, ACT, Australia
| | - Richard C Vogt
- Instituto Nacional de Pesquisas da Amazônia, Coordenacao de Biodiversidade, Av. André Araujo 2223, Aleixo, CEP: 69080-971 Manaus, AM, Brazil
| | - Frank Krikowa
- University of Canberra, Institute for Applied Ecology, Kirinary St., Canberra, ACT, Australia
| | - Les Kinsley
- Australian National University, Research School of Earth Sciences, Canberra 0200, Australia
| | - Stephen M Eggins
- Australian National University, Research School of Earth Sciences, Canberra 0200, Australia
| | - Ronis Da Silveira
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Rua General Rodrigo Otávio Num. 3000, Mini-Campus Coroado, CEP: 66077070 Manaus, AM, Brazil
| |
Collapse
|
33
|
Ng CS, Wu P, Fan WL, Yan J, Chen CK, Lai YT, Wu SM, Mao CT, Chen JJ, Lu MYJ, Ho MR, Widelitz RB, Chen CF, Chuong CM, Li WH. Genomic organization, transcriptomic analysis, and functional characterization of avian α- and β-keratins in diverse feather forms. Genome Biol Evol 2014; 6:2258-73. [PMID: 25152353 PMCID: PMC4202321 DOI: 10.1093/gbe/evu181] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Feathers are hallmark avian integument appendages, although they were also present on theropods. They are composed of flexible corneous materials made of α- and β-keratins, but their genomic organization and their functional roles in feathers have not been well studied. First, we made an exhaustive search of α- and β-keratin genes in the new chicken genome assembly (Galgal4). Then, using transcriptomic analysis, we studied α- and β-keratin gene expression patterns in five types of feather epidermis. The expression patterns of β-keratin genes were different in different feather types, whereas those of α-keratin genes were less variable. In addition, we obtained extensive α- and β-keratin mRNA in situ hybridization data, showing that α-keratins and β-keratins are preferentially expressed in different parts of the feather components. Together, our data suggest that feather morphological and structural diversity can largely be attributed to differential combinations of α- and β-keratin genes in different intrafeather regions and/or feather types from different body parts. The expression profiles provide new insights into the evolutionary origin and diversification of feathers. Finally, functional analysis using mutant chicken keratin forms based on those found in the human α-keratin mutation database led to abnormal phenotypes. This demonstrates that the chicken can be a convenient model for studying the molecular biology of human keratin-based diseases.
Collapse
Affiliation(s)
- Chen Siang Ng
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California
| | - Wen-Lang Fan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jie Yan
- Department of Pathology, Keck School of Medicine, University of Southern California Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Chih-Kuan Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Siao-Man Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Tang Mao
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Molecular Biology of Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jun-Jie Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Meng-Ru Ho
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Randall B Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan Center for the Integrative and Evolutionary Galliformes Genomics (iEGG Center), National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California Center for the Integrative and Evolutionary Galliformes Genomics (iEGG Center), National Chung Hsing University, Taichung, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
34
|
Alibardi L. Immunolocalization of alpha-keratins and associated beta-proteins in lizard epidermis shows that acidic keratins mix with basic keratin-associated beta-proteins. PROTOPLASMA 2014; 251:827-837. [PMID: 24276370 DOI: 10.1007/s00709-013-0585-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/10/2013] [Indexed: 06/02/2023]
Abstract
The differentiation of the corneous layers of lizard epidermis has been analyzed by ultrastructural immunocytochemistry using specific antibodies against alpha-keratins and keratin associated beta-proteins (KAbetaPs, formerly indicated as beta-keratins). Both beta-cells and alpha-cells of the corneous layer derive from the same germinal layer. An acidic type I alpha-keratin is present in basal and suprabasal layers, early differentiating clear, oberhautchen, and beta-cells. Type I keratin apparently disappears in differentiated beta- and alpha-layers of the mature corneous layers. Conversely, a basic type II alpha-keratin rich in glycine is absent or very scarce in basal and suprabasal layers and this keratin likely does not pair with type I keratin to form intermediate filaments but is weakly detected in the pre-corneous and corneous alpha-layer. Single and double labeling experiments show that in differentiating beta-cells, basic KAbetaPs are added and replace type-I keratin to form the hard beta-layer. Epidermal alpha-keratins contain scarce cysteine (0.2-1.4 %) that instead represents 4-19 % of amino acids present in KAbetaPs. Possible chemical bonds formed between alpha-keratins and KAbetaPs may derive from electrostatic interactions in addition to cross-linking through disulphide bonds. Both the high content in glycine of keratins and KAbetaPs may also contribute to increase the hydrophobicy of the beta- and alpha-layers and the resistance of the corneous layer. The increase of gly-rich KAbetaPs amount and the bonds to the framework of alpha-keratins give rise to the inflexible beta-layer while the cys-rich KAbetaPs produce a pliable alpha-layer.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento di Biologia, Geologia e Scienze Ambientali, University of Bologna, Bologna, Italy,
| |
Collapse
|
35
|
van Doorn KL, Sivak JG, Vijayan MM. β-Keratin composition of the specialized spectacle scale of snakes and geckos. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The eyes of snakes and most geckos are shielded beneath a layer of transparent skin (the “spectacle”), of which the outermost layer consists of an optically transparent scale. The characteristics of the spectacle scale that contribute to its transparency are not well understood but may conceivably be related to its biochemical composition. The composition of the spectacle scales of numerous snakes and two geckos was analyzed with particular focus on β-keratins, the hard proteins that form the outermost layer of squamate scales, to determine whether spectacle scales differ biochemically from other scales and whether they differ between species. Results indicate that the spectacle scale of snakes differs in the types of β-keratins it contains and that diversity in spectacle β-keratins occurs between species and bears a relationship with taxonomy, suggesting that optical transparency is not restricted to a few isoforms. Other findings include a greater β-keratin to α-keratin ratio in the embryonic spectacle of pythons compared with those from after hatch and a complete absence of β-keratin in gecko spectacle scales, an unusual characteristic for squamate integument. Expression of β-keratins in the spectacle has clearly evolved for needs specific to this specialized region of the integument.
Collapse
Affiliation(s)
- Kevin L.H. van Doorn
- School of Optometry and Vision Science and Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Jacob G. Sivak
- School of Optometry and Vision Science and Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Mathilakath M. Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
36
|
Alibardi L. Immunolocalization of beta-proteins and alpha-keratin in the epidermis of the soft-shelled turtle explains the lack of formation of hard corneous material. ACTA ZOOL-STOCKHOLM 2014. [DOI: 10.1111/azo.12069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea; University of Bologna; via Selmi 3 40126 Bologna Italy
| |
Collapse
|
37
|
Immunoreactivity to the pre-core box antibody shows that most glycine-rich beta-proteins accumulate in lepidosaurian beta-layer and in the corneous layer of crocodilian and turtle epidermis. Micron 2014; 57:31-40. [DOI: 10.1016/j.micron.2013.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022]
|
38
|
Li YI, Kong L, Ponting CP, Haerty W. Rapid evolution of Beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles. Genome Biol Evol 2013; 5:923-33. [PMID: 23576313 PMCID: PMC3673632 DOI: 10.1093/gbe/evt060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles.
Collapse
Affiliation(s)
- Yang I Li
- Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
39
|
Alibardi L. Ultrastructural immunolocalization of alpha-keratins and associated beta-proteins (beta-keratins) suggests a new interpretation on the process of hard and soft cornification in turtle epidermis. Micron 2013; 52-53:8-15. [DOI: 10.1016/j.micron.2013.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
|
40
|
Ultrastructural immunocytochemistry for the central region of keratin associated-beta-proteins (beta-keratins) shows the epitope is constantly expressed in reptilian epidermis. Tissue Cell 2013; 45:241-52. [DOI: 10.1016/j.tice.2013.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 11/21/2022]
|
41
|
Dalla Valle L, Michieli F, Benato F, Skobo T, Alibardi L. Molecular characterization of alpha-keratins in comparison to associated beta-proteins in soft-shelled and hard-shelled turtles produced during the process of epidermal differentiation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:428-41. [DOI: 10.1002/jez.b.22517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/25/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022]
Affiliation(s)
- L. Dalla Valle
- Department of Biology; University of Padova; Padova; Italy
| | - F. Michieli
- Department of Biology; University of Padova; Padova; Italy
| | - F. Benato
- Department of Biology; University of Padova; Padova; Italy
| | - T. Skobo
- Department of Biology; University of Padova; Padova; Italy
| | - L. Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna; Italy
| |
Collapse
|
42
|
Greenwold MJ, Sawyer RH. Molecular evolution and expression of archosaurian β-keratins: Diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:393-405. [DOI: 10.1002/jez.b.22514] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/25/2013] [Accepted: 05/04/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Matthew J. Greenwold
- Department of Biological Sciences; University of South Carolina; Columbia; South Carolina
| | - Roger H. Sawyer
- Department of Biological Sciences; University of South Carolina; Columbia; South Carolina
| |
Collapse
|
43
|
On surface structure and friction regulation in reptilian limbless locomotion. J Mech Behav Biomed Mater 2013; 22:115-35. [DOI: 10.1016/j.jmbbm.2012.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 11/21/2022]
|
44
|
Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. Acta Biomater 2013; 9:5890-902. [PMID: 23271040 DOI: 10.1016/j.actbio.2012.12.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 12/16/2012] [Accepted: 12/17/2012] [Indexed: 11/23/2022]
Abstract
Turtle shell is a multi-scale bio-composite in which the components are arranged in various spatial patterns, leading to an unusually strong and durable structure. The keratin-coated dorsal shell, termed the carapace, exhibits a flat bone, sandwich-like structure made up of two exterior cortices enclosing a cancellous interior. This unique structure was developed by nature to protect the reptile from predator attacks by sustaining impact loads and dissipating energy. In the present study we attempt to correlate the micro-scale architecture with the mechanical properties of the carapace sub-regions of the red-eared slider turtle. The microscopic structural features were examined by scanning electron microscopy and micro-computed tomography. Nanoindentation tests were performed under dry and wet conditions on orthogonal anatomical planes to evaluate the elastic modulus and hardness of the various carapace sub-regions. The mineral content was also measured in the different regions of the carapace. Consequently, we discuss the influence of hydration on the carapace sub-regions and the contribution of each sub-region to the overall mechanical resistance of the assemblage.
Collapse
|
45
|
Alibardi L. Immunocytochemistry indicates that glycine-rich beta-proteins are present in the beta-layer, while cysteine-rich beta-proteins are present in beta- and alpha-layers of snake epidermis. ACTA ZOOL-STOCKHOLM 2013. [DOI: 10.1111/azo.12030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna 40126 Italy
| |
Collapse
|
46
|
KREY KELIOPAS, FARAJALLAH ACHMAD. Skin Histology and Microtopography of Papuan White Snake (Micropechis ikaheka) in Relation to Their Zoogeographical Distribution. HAYATI JOURNAL OF BIOSCIENCES 2013. [DOI: 10.4308/hjb.20.1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
47
|
Dickerson MB, Sierra AA, Bedford NM, Lyon WJ, Gruner WE, Mirau PA, Naik RR. Keratin-based antimicrobial textiles, films, and nanofibers. J Mater Chem B 2013; 1:5505-5514. [DOI: 10.1039/c3tb20896f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Greenberg DA, Fudge DS. Regulation of hard α-keratin mechanics via control of intermediate filament hydration: matrix squeeze revisited. Proc Biol Sci 2012; 280:20122158. [PMID: 23135675 DOI: 10.1098/rspb.2012.2158] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammalian hard α-keratins are fibre-reinforced biomaterials that consist of 10 nm intermediate filaments (IFs) embedded in an elastomeric protein matrix. Recent work suggests that the mechanical properties of IFs are highly sensitive to hydration, whereas hard α-keratins such as wool, hair and nail are relatively hydration insensitive. This raises the question of how mammalian keratins remain stiff in water. The matrix squeeze hypothesis states that the IFs in hard α-keratins are stiffened during an air-drying step during keratinization, and subsequently locked into a dehydrated state via the oxidation and cross-linking of the keratin matrix around them. The result is that even when hard α-keratins are immersed in water, their constituent IFs remain essentially 'dry' and therefore stiff. This hypothesis makes several predictions about the effects of matrix abundance and function on hard α-keratin mechanics and swelling behaviour. Specifically, it predicts that high matrix keratins in water will swell less, and have a higher tensile modulus, a higher yield stress and a lower dry-to-wet modulus ratio. It also predicts that disruption of the keratin matrix in water should lead to additional swelling, and a drop in modulus and yield stress. Our results are consistent with these predictions and suggest that the keratin matrix plays a critical role in governing the mechanical properties of mammalian keratins via control of IF hydration.
Collapse
Affiliation(s)
- Daniel A Greenberg
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| | | |
Collapse
|
49
|
Alibardi L. Comparative immunolocalization of keratin-associated beta-proteins (beta-keratins) supports a new explanation for the cyclical process of keratinocyte differentiation in lizard epidermis. ACTA ZOOL-STOCKHOLM 2012. [DOI: 10.1111/azo.12003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology University of Bologna Bologna Italy
| |
Collapse
|
50
|
Alibardi L. Cornification in reptilian epidermis occurs through the deposition of keratin-associated beta-proteins (beta-keratins) onto a scaffold of intermediate filament keratins. J Morphol 2012; 274:175-93. [DOI: 10.1002/jmor.20086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|