1
|
Assugeni IOS, Bazon ML, Pinto LM, Mainente LAB, Brochetto-Braga MR, de Lima Zollner R, Fernandes LGR. Recombinant antigen 5 from Polybia paulista wasp venom (Hymenoptera, Vespidae): Antigen-specific antibody production and functional profile of CD4 + T cells in the immune response. J Immunol Methods 2023; 522:113557. [PMID: 37689389 DOI: 10.1016/j.jim.2023.113557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Polybia paulista is a neotropical social wasp related to severe accidents and allergic reactions cases, including anaphylaxis, in southeastern Brazil. Antigen 5 (Poly p 5) is a major allergenic protein from its venom with potential use for component-resolved diagnostic. Therefore, the previous characterization of the immune response profile triggered by Poly p 5 should be evaluated. Recombinant Poly p 5 (rPoly p 5) was used to sensitize BALB/c mice with six weekly intradermal doses, and the specific antibody production and the functional profile of CD4+ T cells were assessed. rPoly p 5 induced the production of specific immunoglobulins (sIg) sIgE, sIgG1 and sIgG2a, which could recognize natural Poly p 5 presented in the venom of four different wasp species. rPoly p 5 stimulated in vitro the CD4+ T cells from immunized mice, which showed a significant proliferative response. These antigen-specific CD4+T cells produced IFN-γ and IL-17A cytokines and increased ROR-γT transcription factor expression. No differences between the control group and sensitized mice were found in IL-4 production and GATA-3 and T-bet expression. Interestingly, increased CD25+FoxP3+ regulatory T cells (Tregs) frequency was observed in the splenocyte cell cultures from rPoly p 5 immunized mice after the in vitro stimulation with both P. paulista venom extract and rPoly p 5. Here we showed that rPoly p 5 induces antigen-specific antibodies capable of recognizing Antigen 5 in the venom of four wasp species and modulates antigen-specific CD4+ T cells to IFN-γ production response associated with a Th17 profile in sensitized mice. These findings emphasize the potential use of rPoly p 5 as an essential source of a major wasp allergen with significant immunological properties.
Collapse
Affiliation(s)
- Isabela Oliveira Sandrini Assugeni
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | - Murilo Luiz Bazon
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | - Lucas Machado Pinto
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | | | - Márcia Regina Brochetto-Braga
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology (LIT), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology (LIT), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
2
|
Hernández LG, Garcia CHS, Souza JMFDE, Cruz GCNDA, Calábria LK, Moreno AM, Espindola FS, Souza DGDE, Sousa MVDE. Study of Melipona quadrifasciata brain under operant learning using proteomic and phosphoproteomic analysis. AN ACAD BRAS CIENC 2023; 95:e20201317. [PMID: 37585963 DOI: 10.1590/0001-3765202320201317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/02/2021] [Indexed: 08/18/2023] Open
Abstract
Learning to anticipate events based on the predictive relationship between an action and an outcome (operant conditioning) is a form of associative learning shared by humans and most of other living beings, including invertebrates. Several behavioral studies on the mechanisms of operant conditioning have included Melipona quadrifasciata, a honey bee that is easily manipulated due to lack of sting. In this work, brain proteomes of Melipona bees trained using operant conditioning and untrained (control) bees were compared by two-dimensional gel electrophoresis analysis within pI range of 3-10 and 4-7; in order to find proteins specifically related to this type of associative learning.One protein was detected with differential protein abundance in the brains of trained bees, when compared to not trained ones, through computational gel imaging and statistical analysis. This protein was identified by peptide mass fingerprinting and MS/MS peptide fragmentation using a MALDI-TOF/TOF mass spectrometer as one isoform of arginine kinase monomer, apparently dephosphorylated. Brain protein maps were obtained by 2-DE (Two-dimensional gel electrophoresis) from a total proteins and phosphoproteins extract of the bee Melipona quadrifasciata. One isoform of arginine kinase, probably a dephosphorylated isoform, was significantly more abundant in the brain of trained bees using operant conditioning. Arginine kinase has been reported as an important enzyme of the energy releasing process in the visual system of the bee, but it may carry out additional and unexpected functions in the bee brain for learning process.
Collapse
Affiliation(s)
- Liudy G Hernández
- System Biology Department, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 y 190, Cubanacán, Playa, P.O. Box 6162, 10600, La Habana, Cuba
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Carlos Henrique S Garcia
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
- Institute of Microbiology, San Francisco University of Quito, Av. Diego de Robles y Vía Interoceánica, Post Office Box 170901, Quito, Ecuador
| | - Jaques M F DE Souza
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Gabriel C N DA Cruz
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
- Superintendência da Polícia Tecnico Científica, Núcleo de Perícia Criminalística, Rua Fritz Jacobs, 1045, 15025-500 São José do Rio Preto, SP, Brazil
| | - Luciana Karen Calábria
- Universidade Federal de Uberlândia, Instituto de Biotecnologia, Av. Amazonas, 38405-320 Uberlândia, MG, Brazil
- Universidade Federal de Uberlândia, Instituto de Ciências Exatas e Naturais do Pontal, Rua Vinte, 1600, 38304-208 Ituiutaba, MG, Brazil
| | - Antonio Mauricio Moreno
- Universidade Federal de São Carlos, Departamento de Psicologia,Via Washington Luis, Km 235, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
- Universidade Estadual do Sudoeste da Bahia, Departamento de Filosofia e Ciências Humanas, Caixa Postal 95, 45028-100 Vitória da Conquista, BA, Brazil
| | - Foued S Espindola
- Universidade Federal de Uberlândia, Instituto de Biotecnologia, Av. Amazonas, 38405-320 Uberlândia, MG, Brazil
| | - Deisy G DE Souza
- Universidade Federal de São Carlos, Departamento de Psicologia,Via Washington Luis, Km 235, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
| | - Marcelo V DE Sousa
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
3
|
Guido-Patiño JC, Plisson F. Profiling hymenopteran venom toxins: Protein families, structural landscape, biological activities, and pharmacological benefits. Toxicon X 2022; 14:100119. [PMID: 35372826 PMCID: PMC8971319 DOI: 10.1016/j.toxcx.2022.100119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hymenopterans are an untapped source of venom secretions. Their recent proteo-transcriptomic studies have revealed an extraordinary pool of toxins that participate in various biological processes, including pain, paralysis, allergic reactions, and antimicrobial activities. Comprehensive and clade-specific campaigns to collect hymenopteran venoms are therefore needed. We consider that data-driven bioprospecting may help prioritise sampling and alleviate associated costs. This work established the current protein landscape from hymenopteran venoms to evaluate possible sample bias by studying their origins, sequence diversity, known structures, and biological functions. We collected all 282 reported hymenopteran toxins (peptides and proteins) from the UniProt database that we clustered into 21 protein families from the three studied clades - wasps, bees, and ants. We identified 119 biological targets of hymenopteran toxins ranging from pathogen membranes to eukaryotic proteases, ion channels and protein receptors. Our systematic study further extended to hymenopteran toxins' therapeutic and biotechnological values, where we revealed promising applications in crop pests, human infections, autoimmune diseases, and neurodegenerative disorders. The hymenopteran toxin diversity includes 21 protein families from 81 species. Some toxins are shared across wasps, bees and ants, others are clade-specific. Their venoms contain membrane-active peptides, neurotoxins, allergens and enzymes. Hymenopteran toxins have been tested against a total of 119 biological targets. Hymenopteran toxins were predominantly evaluated as anti-infective agents.
Collapse
Affiliation(s)
- Juan Carlos Guido-Patiño
- Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
| | - Fabien Plisson
- CONACYT, Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
- Corresponding author.
| |
Collapse
|
4
|
Nejabat S, Haghshenas MR, Farjadian S. Allergenome profiling of Vespa orientalis venom by serum IgE in patients with anaphylactic reaction to this hornet sting. Toxicon 2022; 214:130-135. [DOI: 10.1016/j.toxicon.2022.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
|
5
|
de Melo-Braga MN, Moreira RDS, Gervásio JHDB, Felicori LF. Overview of protein posttranslational modifications in Arthropoda venoms. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210047. [PMID: 35519418 PMCID: PMC9036706 DOI: 10.1590/1678-9199-jvatitd-2021-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
Accidents with venomous animals are a public health issue worldwide. Among the species involved in these accidents are scorpions, spiders, bees, wasps, and other members of the phylum Arthropoda. The knowledge of the function of proteins present in these venoms is important to guide diagnosis, therapeutics, besides being a source of a large variety of biotechnological active molecules. Although our understanding about the characteristics and function of arthropod venoms has been evolving in the last decades, a major aspect crucial for the function of these proteins remains poorly studied, the posttranslational modifications (PTMs). Comprehension of such modifications can contribute to better understanding the basis of envenomation, leading to improvements in the specificities of potential therapeutic toxins. Therefore, in this review, we bring to light protein/toxin PTMs in arthropod venoms by accessing the information present in the UniProtKB/Swiss-Prot database, including experimental and putative inferences. Then, we concentrate our discussion on the current knowledge on protein phosphorylation and glycosylation, highlighting the potential functionality of these modifications in arthropod venom. We also briefly describe general approaches to study "PTM-functional-venomics", herein referred to the integration of PTM-venomics with a functional investigation of PTM impact on venom biology. Furthermore, we discuss the bottlenecks in toxinology studies covering PTM investigation. In conclusion, through the mining of PTMs in arthropod venoms, we observed a large gap in this field that limits our understanding on the biology of these venoms, affecting the diagnosis and therapeutics development. Hence, we encourage community efforts to draw attention to a better understanding of PTM in arthropod venom toxins.
Collapse
Affiliation(s)
- Marcella Nunes de Melo-Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Raniele da Silva Moreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - João Henrique Diniz Brandão Gervásio
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Liza Figueiredo Felicori
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Bioactive Peptides and Proteins from Wasp Venoms. Biomolecules 2022; 12:biom12040527. [PMID: 35454116 PMCID: PMC9025469 DOI: 10.3390/biom12040527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Wasps, members of the order Hymenoptera, use their venom for predation and defense. Accordingly, their venoms contain various constituents acting on the circulatory, immune and nervous systems. Wasp venom possesses many allergens, enzymes, bioactive peptides, amino acids, biogenic amines, and volatile matters. In particular, some peptides show potent antimicrobial, anti-inflammatory, antitumor, and anticoagulant activity. Additionally, proteinous components from wasp venoms can cause tissue damage or allergic reactions in organisms. These bioactive peptides and proteins involved in wasp predation and defense may be potential sources of lead pharmaceutically active molecules. In this review, we focus on the advances in bioactive peptides and protein from the venom of wasps and their biological effects, as well as the allergic reactions and immunotherapy induced by the wasp venom.
Collapse
|
7
|
Moutinho Cabral I, Madeira C, Grosso AR, Costa PM. A drug discovery approach based on comparative transcriptomics between two toxin-secreting marine annelids: Glycera alba and Hediste diversicolor. Mol Omics 2022; 18:731-744. [DOI: 10.1039/d2mo00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While Glycera alba secretes neurotoxins, Hediste diversicolor may secrete fewer toxins with a broader action. Transcriptomics and human interactome-directed analysis unraveled promising candidates for biomedical applications from either annelid.
Collapse
Affiliation(s)
- Inês Moutinho Cabral
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Carolina Madeira
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Ana R. Grosso
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Pedro M. Costa
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Costa-Leonardo AM, da Silva IB, Janei V, Poiani SB, Dos Santos-Pinto JRA, Esteves FG, Palma MS. Salivary glands in workers of Ruptitermes spp. (Blattaria, Isoptera, Termitidae, Apicotermitinae): a morphological and preoteomic approach. Cell Tissue Res 2021; 385:603-621. [PMID: 33961129 DOI: 10.1007/s00441-021-03469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Salivary glands are omnipresent in termites and occur in all developmental stages and castes. They function to produce, store, and secrete compounds, ranging from a feeding function to defensive mechanisms. Here, we provide a complete morphological overview of the salivary glands in the soldierless species Ruptitermes reconditus and R. xanthochiton, and the first proteomic profile of the salivary glands in a Neotropical Apicotermitinae representative, R. reconditus. Salivary glands from both species were composed of several acini, roughly spherical structures composed of two types of central cells (type I and II) and peripheral parietal cells, as well as transporting ducts and two salivary reservoirs. Central cells were richly supplied with electron-lucent secretory vesicles and rough endoplasmic reticulum, a feature of protein-secreting cells. Parietal cells of Ruptitermes spp. had conspicuous characteristics such as electron-lucent secretory vesicles surrounded by mitochondria and well-developed microvilli. Moreover, different individuals showed variation in the secretory cycle of salivary acini, which may be related to polyethism. Ultrastructural analysis evidenced a high synthesis of secretion and also the occurrence of lysosomes and autophagic structures in central cells. Proteomic analysis of the salivary glands revealed 483 proteins divided into functional groups, highlighting toxins/defensins and compounds related to alarm communication and colony asepsis. Soldierless termites are quite successful, especially due to morphological adaptations of the workers, including unknown modifications of exocrine glands. Thus, according to our morphological and proteomic findings, we discuss the potential roles of the salivary gland secretion in different social aspects of the sampled species.
Collapse
Affiliation(s)
- Ana Maria Costa-Leonardo
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil. .,Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil.
| | - Iago Bueno da Silva
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Vanelize Janei
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Silvana Beani Poiani
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Franciele Grego Esteves
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Mario Sérgio Palma
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
9
|
Wasp Venom Biochemical Components and Their Potential in Biological Applications and Nanotechnological Interventions. Toxins (Basel) 2021; 13:toxins13030206. [PMID: 33809401 PMCID: PMC8000949 DOI: 10.3390/toxins13030206] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Wasps, members of the order Hymenoptera, are distributed in different parts of the world, including Brazil, Thailand, Japan, Korea, and Argentina. The lifestyles of the wasps are solitary and social. Social wasps use venom as a defensive measure to protect their colonies, whereas solitary wasps use their venom to capture prey. Chemically, wasp venom possesses a wide variety of enzymes, proteins, peptides, volatile compounds, and bioactive constituents, which include phospholipase A2, antigen 5, mastoparan, and decoralin. The bioactive constituents have anticancer, antimicrobial, and anti-inflammatory effects. However, the limited quantities of wasp venom and the scarcity of advanced strategies for the synthesis of wasp venom’s bioactive compounds remain a challenge facing the effective usage of wasp venom. Solid-phase peptide synthesis is currently used to prepare wasp venom peptides and their analogs such as mastoparan, anoplin, decoralin, polybia-CP, and polydim-I. The goal of the current review is to highlight the medicinal value of the wasp venom compounds, as well as limitations and possibilities. Wasp venom could be a potential and novel natural source to develop innovative pharmaceuticals and new agents for drug discovery.
Collapse
|
10
|
Scieuzo C, Salvia R, Franco A, Pezzi M, Cozzolino F, Chicca M, Scapoli C, Vogel H, Monti M, Ferracini C, Pucci P, Alma A, Falabella P. An integrated transcriptomic and proteomic approach to identify the main Torymus sinensis venom components. Sci Rep 2021; 11:5032. [PMID: 33658582 PMCID: PMC7930282 DOI: 10.1038/s41598-021-84385-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
During oviposition, ectoparasitoid wasps not only inject their eggs but also a complex mixture of proteins and peptides (venom) in order to regulate the host physiology to benefit their progeny. Although several endoparasitoid venom proteins have been identified, little is known about the components of ectoparasitoid venom. To characterize the protein composition of Torymus sinensis Kamijo (Hymenoptera: Torymidae) venom, we used an integrated transcriptomic and proteomic approach and identified 143 venom proteins. Moreover, focusing on venom gland transcriptome, we selected additional 52 transcripts encoding putative venom proteins. As in other parasitoid venoms, hydrolases, including proteases, phosphatases, esterases, and nucleases, constitute the most abundant families in T. sinensis venom, followed by protease inhibitors. These proteins are potentially involved in the complex parasitic syndrome, with different effects on the immune system, physiological processes and development of the host, and contribute to provide nutrients to the parasitoid progeny. Although additional in vivo studies are needed, initial findings offer important information about venom factors and their putative host effects, which are essential to ensure the success of parasitism.
Collapse
Affiliation(s)
- Carmen Scieuzo
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Franco
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Pezzi
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Flora Cozzolino
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Milvia Chicca
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Chiara Scapoli
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Heiko Vogel
- grid.418160.a0000 0004 0491 7131Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Maria Monti
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Chiara Ferracini
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Pietro Pucci
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Alberto Alma
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Patrizia Falabella
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
11
|
Jeong KY, Park JW. Insect Allergens on the Dining Table. Curr Protein Pept Sci 2020; 21:159-169. [PMID: 31309888 DOI: 10.2174/1389203720666190715091951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Edible insects are important sources of nutrition, particularly in Africa, Asia, and Latin America. Recently, edible insects have gained considerable interest as a possible solution to global exhaustion of the food supply with population growth. However, little attention has been given to the adverse reactions caused by insect consumption. Here, we provide an overview of the food allergens in edible insects and offer insights for further studies. Most of the edible insect allergens identified to date are highly cross-reactive invertebrate pan-allergens such as tropomyosin and arginine kinase. Allergic reactions to these allergens may be cross-reactions resulting from sensitization to shellfish and/or house dust mites. No unique insect allergen specifically eliciting a food allergy has been described. Many of the edible insect allergens described thus far have counterpart allergens in cockroaches, which are an important cause of respiratory allergies, but it is questionable whether inhalant allergens can cause food allergies. Greater effort is needed to characterize the allergens that are unique to edible insects so that safe edible insects can be developed. The changes in insect proteins upon food processing or cooking should also be examined to enhance our understanding of edible insect food allergies.
Collapse
Affiliation(s)
- Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University, College of Medicine, Seoul 03722, Korea
| | - Jung-Won Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University, College of Medicine, Seoul 03722, Korea
| |
Collapse
|
12
|
Pro-inflammatory response induced by the venom of Parachartergus fraternus wasp. Toxicon 2020; 190:11-19. [PMID: 33290790 DOI: 10.1016/j.toxicon.2020.11.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023]
Abstract
The sting of different wasp species triggers local and systemic reactions in victims that can lead to death. Parachartergus fraternus is responsible for frequent accidents in Latin America; however, few studies have been conducted on this insect and its venom. In this study, the inflammatory process induced by the venom of the P. fraternus wasp (Pfv; 100, 200, and 400 μg/kg) was characterized. Mice were used to assess paw edema, vascular permeability, mast cell degranulation, leukocyte influx, nitric oxide (NO) production, expression of inflammatory genes, and histopathological changes. Pfv triggered edema formation with a peak dose of 200 μg/kg at 10 min. There was an increase in permeability in all periods and doses evaluated, with no differences between them. The 200 μg/kg dose induced mast cell degranulation in all periods, with a peak at 15 min. This same dose induced leukocyte influx with a predominance of mononuclear cells and triggered a peak in NO production in the 12th hour. The increase in COX-2, iNOS, and IFN-γ mRNA expression occurred after 1 and 6 h, and there was an increase in IL-10 expression after 48 h. In addition, Pfv triggered edema and induced an influx of macrophages and mast cells into the injection site. Therefore, Pfv induces an inflammatory process from the first 5 min of inoculation that can persist for up to 48 h.
Collapse
|
13
|
Current challenges in molecular diagnostics of insect venom allergy. ALLERGO JOURNAL 2020. [DOI: 10.1007/s15007-020-2518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
LE TN, Da Silva D, Colas C, Darrouzet E, Baril P, Leseurre L, Maunit B. Asian hornet Vespa velutina nigrithorax venom: Evaluation and identification of the bioactive compound responsible for human keratinocyte protection against oxidative stress. Toxicon 2020; 176:1-9. [PMID: 31935389 DOI: 10.1016/j.toxicon.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/06/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
The present study aimed to explore the potential antioxidant molecules of the Asian hornet venom (Vespa velutina nigrithorax) responsible for radical scavenging activity and human keratinocyte protection against oxidative stress. We developed a first technical platform that combined a DPPH radical scavenging chemical assay and cytotoxicity and ROS (reactive oxygen species) production in HaCaT keratinocyte cells exposed to UVB to evaluate the antioxidant property of V. velutina venom. We further employed Thin Layer Chromatography (TLC) combined with the DPPH assay as a targeted separation approach to isolate the antioxidant compounds responsible for the free radical scavenging property of V. velutina venom. In parallel, the latter was fractionated by a HPLC-DAD non-targeted separation approach. From this experiment, nine fractions were generated which were again evaluated separately for their antioxidant properties using DPPH assays. Results showed that only one fraction exhibited significant antioxidant activity in which serotonin was identified as the major compound by a UHPLC-ESI-QTOF HRMS/MS approach. We finally demonstrated, using purified serotonin molecule that this bioactive structure is mostly responsible for the free radical scavenging property of the crude venom as evidenced by DPPH and ROS assays in HaCaT cells exposed to UVB.
Collapse
Affiliation(s)
- Thao Nhi LE
- University of Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France.
| | - David Da Silva
- University of Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France.
| | - Cyril Colas
- University of Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France; CNRS, CBM, UPR 4301, University of Orléans, F-45071, Orléans, France.
| | - Eric Darrouzet
- IRBI, UMR CNRS 7261, University of Tours, Faculty of Sciences, Parc de Grandmont, 37200, Tours, France.
| | - Patrick Baril
- CNRS, CBM, UPR 4301, University of Orléans, F-45071, Orléans, France.
| | - Lucie Leseurre
- CHIMEX (groupe L'Oréal), 16 Rue Maurice Berteaux, 95500, Le Thillay, France.
| | - Benoît Maunit
- University of Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France; University of Clermont Auvergne, INSERM, IMost, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
15
|
Costa-Leonardo AM, da Silva IB, Poiani SB, Dos Santos-Pinto JRA, Esteves FG, da Silva LHB, Palma MS. Proteomic-components provide insights into the defensive secretion in termite workers of the soldierless genus Ruptitermes. J Proteomics 2019; 213:103622. [PMID: 31863930 DOI: 10.1016/j.jprot.2019.103622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
Termite soldiers constitute the defensive frontline of the colonies, despite workers also perform such tasks, especially within the Neotropical Apicotermitinae, in which all species are soldierless. Workers of the genus Ruptitermes display an extreme form of defense, characterized by body rupture and release of a sticky secretion. Previous observations suggested that such behavior may be advantageous against enemies, but the chemical composition of this secretion has been neglected. Here we firstly provide the proteomic profile of the defensive secretion of Ruptitermes reconditus and Ruptitermes pitan workers. Additionally, the mechanisms of action of this behavior was evaluated through different bioassays. A total of 446 proteins were identified in R. reconditus and 391 proteins in R. pitan, which were classified into: toxins, defensins and proteolytic enzymes; sticky components/ alarm communication; proteins related to detoxification processes; proteins involved in folding/conformation and post-translational modifications; housekeeping proteins; and uncharacterized/hypothetical proteins. According to the bioassays, the self-sacrifice is triggered by a physical stimulus, and the defensive secretion may cause immobility and death of the opponents. Assuming that termites are abundant in the tropics and therefore exposed to predators, suicidal behaviors seem to be advantageous, since the loss of an individual benefit the whole colony. SIGNIFICANCE: Although recent studies have reported the biochemical composition of different weapons in soldiered species of termites, such efforts had not been applied to sordierless taxa up until now. Thus, this is the first report of the defensive mechanisms in soldierless termite species based on proteomic analysis. The diversity of compounds, which included toxin-like and mucin-like proteins, reflect the mechanisms of action of the defensive secretion released by termite workers, which may cause immobility and death of the opponents. Our findings may contribute to the knowledge regarding the development of defensive strategies in termites, especially in groups which lost the soldier caste during the evolution.
Collapse
Affiliation(s)
- Ana Maria Costa-Leonardo
- Laboratório de Cupins, Departamento de Biologia, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP 13506-900, Brazil; Center for the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, Univ Estadual Paulista, UNESP, Rio Claro, São Paulo, Brazil.
| | - Iago Bueno da Silva
- Laboratório de Cupins, Departamento de Biologia, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP 13506-900, Brazil
| | - Silvana Beani Poiani
- Center for the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, Univ Estadual Paulista, UNESP, Rio Claro, São Paulo, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Center for the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, Univ Estadual Paulista, UNESP, Rio Claro, São Paulo, Brazil
| | - Franciele Grego Esteves
- Center for the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, Univ Estadual Paulista, UNESP, Rio Claro, São Paulo, Brazil
| | - Luiza Helena Bueno da Silva
- Laboratório de Cupins, Departamento de Biologia, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP 13506-900, Brazil
| | - Mario Sergio Palma
- Center for the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, Univ Estadual Paulista, UNESP, Rio Claro, São Paulo, Brazil
| |
Collapse
|
16
|
Korošec P, Jakob T, Harb H, Heddle R, Karabus S, de Lima Zollner R, Selb J, Thong BYH, Zaitoun F, Golden DB, Levin M. Worldwide perspectives on venom allergy. World Allergy Organ J 2019; 12:100067. [PMID: 31700565 PMCID: PMC6829763 DOI: 10.1016/j.waojou.2019.100067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/14/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
Venom immunotherapy is the standard of care for people with severe reactions and has been proven to reduce risk of future anaphylactic events. There is a moral imperative to ensure production, supply and worldwide availability of locally relevant, registered, standardized commercial venom extracts for diagnosis and treatment. Insects causing severe immediate allergic reactions vary by region worldwide. The most common culprits include honeybees (Apis mellifera), social wasps including yellow jackets (Vespula and Dolichovespula), paper wasps (Polistes) and hornets (Vespa), stinging ants (Solenopsis, Myrmecia, Pachycondyla, and Pogonomyrmex), and bumblebees (Bombus). Insects with importance in specific areas of the world include the Australian tick (Ixodes holocyclus), the kissing bug (Triatoma spp), horseflies (Tabanus spp), and mosquitoes (Aedes, Culex, Anopheles). Reliable access to high quality venom immunotherapy to locally relevant allergens is not available throughout the world. Many current commercially available therapeutic vaccines have deficiencies, are not suitable for, or are unavailable in vast areas of the globe. New products are required to replace products that are unstandardized or inadequate, particularly whole-body extract products. New products are required for insects in which no current treatment options exist. Venom immunotherapy should be promoted throughout the world and the provision thereof be supported by health authorities, regulatory authorities and all sectors of the health care service.
Collapse
Affiliation(s)
- Peter Korošec
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Thilo Jakob
- Department of Dermatoloy and Allergy, University Medical Center Giessen UKGM, Justus-Liebig-University, Giessen, Germany
| | - Harfi Harb
- National Center of Allergy, Asthma and Immunology, Riyadh, Saudi Arabia
| | | | - Sarah Karabus
- Division of Paediatric Allergy, University of Cape Town, South Africa
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Brazil
| | - Julij Selb
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Bernard Yu-Hor Thong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore
| | | | - David B.K. Golden
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Maryland, USA
| | - Michael Levin
- Division of Paediatric Allergy, University of Cape Town, South Africa
| |
Collapse
|
17
|
Worker Defensive Behavior Associated with Toxins in the Neotropical Termite Neocapritermes braziliensis (Blattaria, Isoptera, Termitidae, Termitinae). J Chem Ecol 2019; 45:755-767. [PMID: 31440960 DOI: 10.1007/s10886-019-01098-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 10/26/2022]
Abstract
Termite societies are abundant in the tropics, and are therefore exposed to multiple enemies and predators, especially during foraging activity. Soldiers constitute a specialized defensive caste, although workers also participate in this process, and even display suicidal behavior, which is the case with the species Neocapritermes braziliensis. Here we describe the morphology, mechanisms of action, and proteomics of the salivary weapon in workers of this species, which due to the autothysis of the salivary glands causes their body rupture, in turn releasing a defensive secretion, observed during aggressiveness bioassays. Salivary glands are paired, composed of two translucent reservoirs, ducts and a set of multicellular acini. Histological and ultrastructural techniques showed that acini are composed of two types of central cells, and small parietal cells located in the acinar periphery. Type I central cells were abundant and filled with a large amount of secretion, while type II central cells were scarce and presented smaller secretion. Parietal cells were often paired and devoid of secretion. The gel-free proteomic approach (shotgun) followed by mass spectrometry revealed 235 proteins in the defensive secretion, which were classified into functional groups: (i) toxins and defensins, (ii) folding/conformation and post-translational modifications, (iii) salivary gland detoxification, (iv) housekeeping proteins and (v) uncharacterized and hypothetical proteins. We highlight the occurrence of neurotoxins previously identified in arachnid venoms, which are novelties for termite biology, and contribute to the knowledge regarding the defense strategies developed by termite species from the Neotropical region.
Collapse
|
18
|
de Souza CL, Dos Santos-Pinto JRA, Esteves FG, Perez-Riverol A, Fernandes LGR, de Lima Zollner R, Palma MS. Revisiting Polybia paulista wasp venom using shotgun proteomics - Insights into the N-linked glycosylated venom proteins. J Proteomics 2019; 200:60-73. [PMID: 30905720 DOI: 10.1016/j.jprot.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
The partial proteome of Polybia paulista wasp venom was previously reported elsewhere using a gel-dependent approach and resulted in the identification of a limited number of venom toxins. Here, we reinvestigated the P. paulista venom using a gel-free shotgun proteomic approach; the highly dynamic range of this approach facilitated the detection and identification of 1673 proteins, of which 23 venom proteins presented N-linked glycosylation as a posttranslational modification. Three different molecular forms of PLA1 were identified as allergenic proteins, and two of these forms were modified by N-linked glycosylation. This study reveals an extensive repertoire of hitherto undescribed proteins that were classified into the following six different functional groups: (i) typical venom proteins; (ii) proteins related to the folding/conformation and PTMs of toxins; (iii) proteins that protect toxins from oxidative stress; (iv) proteins involved in chemical communication; (v) housekeeping proteins; and (vi) uncharacterized proteins. It was possible to identify venom toxin-like proteins that are commonly reported in other animal venoms, including arthropods such as spiders and scorpions. Thus, the findings reported here may contribute to improving our understanding of the composition of P. paulista venom, its envenoming mechanism and the pathologies experienced by the victim after the wasp stinging accident. BIOLOGICAL SIGNIFICANCE: The present study significantly expanded the number of proteins identified in P. paulista venom, contributing to improvements in our understanding of the envenoming mechanism produced by sting accidents caused by this wasp. For example, novel wasp venom neurotoxins have been identified, but no studies have assessed the presence of this type of toxin in social wasp venoms. In addition, 23 N-linked glycosylated venom proteins were identified in the P. paulista venom proteome, and some of these proteins might be relevant allergens that are immunoreactive to human IgE.
Collapse
Affiliation(s)
- Caroline Lacerra de Souza
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil.
| | - Franciele Grego Esteves
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - Amilcar Perez-Riverol
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology, Faculty of Medicine, University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, SP 13083887, Brazil
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, Faculty of Medicine, University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, SP 13083887, Brazil
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil.
| |
Collapse
|
19
|
Catae AF, da Silva Menegasso AR, Pratavieira M, Palma MS, Malaspina O, Roat TC. MALDI-imaging analyses of honeybee brains exposed to a neonicotinoid insecticide. PEST MANAGEMENT SCIENCE 2019; 75:607-615. [PMID: 30393944 DOI: 10.1002/ps.5226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Toxicological studies evaluating the possible harmful effects of pesticides on bees are important and allow the emergence of protection and pollinator conservation strategies. This study aimed to evaluate the effects of exposure to a sublethal concentration of imidacloprid (LC50/100 : 0.014651 ng imidacloprid µL-1 diet) on the distribution of certain proteins identified in the brain of Apis mellifera worker bees using a MALDI-imaging approach. This technique enables proteomic analysis of tissues in situ by monitoring the spatiotemporal dynamics of the biochemical processes occurring at a specific time in specific brain neuropils. For this purpose, foraging bees were exposed to an 8-day diet containing a sublethal concentration of imidacloprid corresponding to the LC50/100 . Bees were collected on day 8 of exposure, and their brains analyzed using protein density maps. RESULTS The results showed that exposure to imidacloprid led to a series of biochemical changes, including alterations in synapse regulation, apoptosis regulation and oxidative stress, which may adversely impair the physiology of these colony bees. CONCLUSION Worker bee contact with even tiny amounts of imidacloprid had potent effects leading to the overexpression of a series of proteins related to important cellular processes that were possibly damaged by the insecticide. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aline F Catae
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Anally R da Silva Menegasso
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Marcel Pratavieira
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Mario S Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Osmar Malaspina
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Thaisa C Roat
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
20
|
Cavassan NRV, Camargo CC, de Pontes LG, Barraviera B, Ferreira RS, Miot HA, Abbade LPF, Dos Santos LD. Correlation between chronic venous ulcer exudate proteins and clinical profile: A cross-sectional study. J Proteomics 2019; 192:280-290. [PMID: 30261322 DOI: 10.1016/j.jprot.2018.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 01/13/2023]
Abstract
Chronic venous ulcers affect the quality of life of patients around the world. The aims of this study were to identify the proteins expressed in chronic venous ulcer exudates, to categorize them according to their roles and to correlate them with the clinical and epidemiological aspects of the disease. The study population consisted of 37 ulcers from 28 patients, and the inflammatory exudates of these thirty-seven ulcers were subjected to tryptic digestion and mass spectrometry analysis. Twenty-three patients were female (62.2%), and five (37.8%) were male. The patients had a mean age of 70 (±10.1) years. Of the patients, 73% adhered to compression and rest, 81.1% reported a history of primary varices, 54.1% reported a history of systemic arterial hypertension, 54.1% reported a history of devitalized tissue in the wound bed and 64.9% reported ulcers with more than ten years of evolution. Seventy-six proteins were identified, and they were grouped according to their primary role in the healing process. Eight correlations between clinical and epidemiological data and protein expression were noteworthy: diabetes mellitus vs. Ig gamma-2 and apolipoprotein-A1 and albumin; congestive heart failure vs. Ig lambda-2; colonization vs. actin; compressive therapy vs. Ig kappa; systemic arterial hypertension vs. alpha-2-macroglobulin and apolipoprotein-A1; area of ulcer vs. apolipoprotein-A1; race vs. heavy chain Ig and Ig γ-1 chain; age and race vs. Ig γ-1 chain. These associations may help to elucidate the prognosis and chronicity of chronic venous ulcers based on secreted proteins.
Collapse
Affiliation(s)
- Nayara Rodrigues Vieira Cavassan
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Caio Cavassan Camargo
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Letícia Gomes de Pontes
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Benedito Barraviera
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Hélio Amante Miot
- Department of Dermatology and Radiology, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Luciana Patrícia Fernandes Abbade
- Department of Dermatology and Radiology, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
21
|
Perez-Riverol A, Lasa AM, Dos Santos-Pinto JRA, Palma MS. Insect venom phospholipases A1 and A2: Roles in the envenoming process and allergy. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 105:10-24. [PMID: 30582958 DOI: 10.1016/j.ibmb.2018.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Insect venom phospholipases have been identified in nearly all clinically relevant social Hymenoptera, including bees, wasps and ants. Among other biological roles, during the envenoming process these enzymes cause the disruption of cellular membranes and induce hypersensitive reactions, including life threatening anaphylaxis. While phospholipase A2 (PLA2) is a predominant component of bee venoms, phospholipase A1 (PLA1) is highly abundant in wasps and ants. The pronounced prevalence of IgE-mediated reactivity to these allergens in sensitized patients emphasizes their important role as major elicitors of Hymenoptera venom allergy (HVA). PLA1 and -A2 represent valuable marker allergens for differentiation of genuine sensitizations to bee and/or wasp venoms from cross-reactivity. Moreover, in massive attacks, insect venom phospholipases often cause several pathologies that can lead to fatalities. This review summarizes the available data related to structure, model of enzymatic activity and pathophysiological roles during envenoming process of insect venom phospholipases A1 and -A2.
Collapse
Affiliation(s)
- Amilcar Perez-Riverol
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil
| | - Alexis Musacchio Lasa
- Center for Genetic Engineering and Biotechnology, Biomedical Research Division, Department of System Biology, Ave. 31, e/158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana, 10600, Cuba
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil.
| |
Collapse
|
22
|
Huang L, Wang Z, Yu N, Li J, Liu Z. Toxin diversity revealed by the venom gland transcriptome of Pardosa pseudoannulata, a natural enemy of several insect pests. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:172-182. [DOI: 10.1016/j.cbd.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 02/03/2023]
|
23
|
Wanandy T, Wilson R, Gell D, Rose HE, Gueven N, Davies NW, Brown SGA, Wiese MD. Towards complete identification of allergens in Jack Jumper (Myrmecia pilosula) ant venom and their clinical relevance: An immunoproteomic approach. Clin Exp Allergy 2018; 48:1222-1234. [DOI: 10.1111/cea.13224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/25/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Troy Wanandy
- Jack Jumper Allergy Program; Royal Hobart Hospital; Hobart TAS Australia
- Division of Pharmacy; School of Medicine; University of Tasmania; Hobart TAS Australia
- School of Medicine; University of Tasmania; Hobart TAS Australia
- Department of Pharmacy; Royal Hobart Hospital; Hobart TAS Australia
| | - Richard Wilson
- Central Science Laboratory; University of Tasmania; Hobart TAS Australia
| | - David Gell
- School of Medicine; University of Tasmania; Hobart TAS Australia
| | - Hayley E. Rose
- Jack Jumper Allergy Program; Royal Hobart Hospital; Hobart TAS Australia
| | - Nuri Gueven
- Division of Pharmacy; School of Medicine; University of Tasmania; Hobart TAS Australia
| | - Noel W. Davies
- Central Science Laboratory; University of Tasmania; Hobart TAS Australia
| | - Simon G. A. Brown
- Jack Jumper Allergy Program; Royal Hobart Hospital; Hobart TAS Australia
- School of Medicine; University of Tasmania; Hobart TAS Australia
- Ambulance Tasmania; Hobart TAS Australia
- Department of Emergency Medicine; Royal Hobart Hospital; Hobart TAS Australia
| | - Michael D. Wiese
- Jack Jumper Allergy Program; Royal Hobart Hospital; Hobart TAS Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide SA Australia
| |
Collapse
|
24
|
Bazon ML, Silveira LH, Simioni PU, Brochetto-Braga MR. Current Advances in Immunological Studies on the Vespidae Venom Antigen 5: Therapeutic and Prophylaxis to Hypersensitivity Responses. Toxins (Basel) 2018; 10:E305. [PMID: 30042313 PMCID: PMC6115769 DOI: 10.3390/toxins10080305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/18/2023] Open
Abstract
Although systemic reactions caused by allergenic proteins present in venoms affect a small part of the world population, Hymenoptera stings are among the main causes of immediate hypersensitivity responses, with risk of anaphylactic shock. In the attempt to obtain therapeutic treatments and prophylaxis to hypersensitivity responses, interest in the molecular characterization of these allergens has grown in the scientific community due to the promising results obtained in immunological and clinical studies. The present review provides an update on the knowledge regarding the immune response and the therapeutic potential of Antigen 5 derived from Hymenoptera venom. The results confirm that the identification and topology of epitopes, associated with molecular regions that interact with antibodies, are crucial to the improvement of hypersensitivity diagnostic methods.
Collapse
Affiliation(s)
- Murilo Luiz Bazon
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IB-RC-UNESP (Univ Estadual Paulista), Av. 24-A, n_ 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil.
| | - Lais Helena Silveira
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IB-RC-UNESP (Univ Estadual Paulista), Av. 24-A, n_ 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil.
| | - Patricia Ucelli Simioni
- Departamento de Biomedicina, Faculdade de Americana, FAM, Av. Joaquim Bôer, 733 Jardim Luciane, Americana 13477-360, SP, Brazil.
| | - Márcia Regina Brochetto-Braga
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IB-RC-UNESP (Univ Estadual Paulista), Av. 24-A, n_ 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil.
- Centro de Estudos de Venenos e Animais Peçonhentos-CEVAP (Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, Fazenda Experimental Lageado, Botucatu 18610-307, SP, Brazil.
| |
Collapse
|
25
|
dos Santos-Pinto JRA, Perez-Riverol A, Lasa AM, Palma MS. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon 2018; 148:172-196. [DOI: 10.1016/j.toxicon.2018.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
|
26
|
Diniz-Sousa R, Kayano AM, Caldeira CA, Simões-Silva R, Monteiro MC, Moreira-Dill LS, Grabner FP, Calderon LA, Zuliani JP, Stábeli RG, Soares AM. Biochemical characterization of a phospholipase A 2 homologue from the venom of the social wasp Polybia occidentalis. J Venom Anim Toxins Incl Trop Dis 2018; 24:5. [PMID: 29467796 PMCID: PMC5815181 DOI: 10.1186/s40409-018-0143-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/19/2018] [Indexed: 12/28/2022] Open
Abstract
Background Wasp venoms constitute a molecular reservoir of new pharmacological substances such as peptides and proteins, biological property holders, many of which are yet to be identified. Exploring these sources may lead to the discovery of molecules hitherto unknown. This study describes, for the first time in hymenopteran venoms, the identification of an enzymatically inactive phospholipase A2 (PLA2) from the venom of the social wasp Polybia occidentalis. Methods P. occidentalis venom was fractioned by molecular exclusion and reverse phase chromatography. For the biochemical characterization of the protein, 1D and 2D SDS-PAGE were performed, along with phospholipase activity assays on synthetic substrates, MALDI-TOF mass spectrometry and sequencing by Edman degradation. Results The protein, called PocTX, was isolated using two chromatographic steps. Based on the phospholipase activity assay, electrophoresis and mass spectrometry, the protein presented a high degree of purity, with a mass of 13,896.47 Da and a basic pI. After sequencing by the Edman degradation method, it was found that the protein showed a high identity with snake venom PLA2 homologues. Conclusion This is the first report of an enzymatically inactive PLA2 isolated from wasp venom, similar to snake PLA2 homologues.
Collapse
Affiliation(s)
- Rafaela Diniz-Sousa
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil.,3Postgraduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO Brazil.,São Lucas University Center (UniSL), Porto Velho, RO Brazil
| | - Anderson M Kayano
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil
| | - Cleópatra A Caldeira
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil.,5Postgraduate Program in Biodiversity and Biotechnology, Bionorte Network, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil
| | - Rodrigo Simões-Silva
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil
| | - Marta C Monteiro
- 6School of Pharmacy, Federal University of Pará (UFPA), Belém, PA Brazil
| | - Leandro S Moreira-Dill
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil
| | - Fernando P Grabner
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,São Lucas University Center (UniSL), Porto Velho, RO Brazil
| | - Leonardo A Calderon
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil
| | - Juliana P Zuliani
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil
| | - Rodrigo G Stábeli
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,7Department of Medicine, UFSCar, São Carlos, Center of Translational Medicine, Fiocruz - SP, and School of Medicine of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Andreimar M Soares
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil.,São Lucas University Center (UniSL), Porto Velho, RO Brazil
| |
Collapse
|
27
|
Phospholipase A1-based cross-reactivity among venoms of clinically relevant Hymenoptera from Neotropical and temperate regions. Mol Immunol 2017; 93:87-93. [PMID: 29156294 DOI: 10.1016/j.molimm.2017.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023]
Abstract
Molecular cross-reactivity caused by allergen homology or cross-reactive carbohydrate determinants (CCDs) is a major challenge for diagnosis and immunotherapy of insect venom allergy. Venom phospholipases A1 (PLA1s) are classical, mostly non-glycosylated wasp and ant allergens that provide diagnostic benefit for differentiation of genuine sensitizations from cross-reactivity. As CCD-free molecules, venom PLA1s are not causative for CCD-based cross-reactivity. Little is known however about the protein-based cross-reactivity of PLA1 within vespid species. Here, we address PLA1-based cross-reactivity among ten clinically relevant Hymenoptera venoms from Neotropical and temperate regions including Polybia paulista (paulistinha) venom and Vespula vulgaris (yellow jacket) venom. In order to evaluate cross-reactivity, sera of mice sensitized with recombinant PLA1 (rPoly p 1) from P. paulista wasp venom were used. Pronounced IgE and IgG based cross-reactivity was detected for wasp venoms regardless the geographical region of origin. The cross-reactivity correlated well with the identity of the primary sequence and 3-D models of PLA1 proteins. In contrast, these mice sera showed no reaction with honeybee (HBV) and fire ant venom. Furthermore, sera from patients monosensitized to HBV and fire ants did not recognize the rPoly p 1 in immunoblotting. Our findings reveal the presence of conserved epitopes in the PLA1s from several clinically relevant wasps as major cause of PLA1-based in vitro cross-reactivity. These findings emphasize the limitations but also the potential of PLA1-based HVA diagnostics.
Collapse
|
28
|
Rodríguez-Rios L, Díaz-Peña LF, Lazcano-Pérez F, Arreguín-Espinosa R, Rojas-Molina A, García-Arredondo A. Hyaluronidase-like enzymes are a frequent component of venoms from theraphosid spiders. Toxicon 2017; 136:34-43. [DOI: 10.1016/j.toxicon.2017.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/27/2022]
|
29
|
Liu NY, Wang JQ, Zhang ZB, Huang JM, Zhu JY. Unraveling the venom components of an encyrtid endoparasitoid wasp Diversinervus elegans. Toxicon 2017; 136:15-26. [DOI: 10.1016/j.toxicon.2017.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022]
|
30
|
Heterologous Expression, Purification and Immunoreactivity of the Antigen 5 from Polybia paulista Wasp Venom. Toxins (Basel) 2017; 9:toxins9090259. [PMID: 28837089 PMCID: PMC5618192 DOI: 10.3390/toxins9090259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023] Open
Abstract
Polybia paulista (Hymenoptera: Vespidae) is responsible for a high number of sting accidents and anaphylaxis events in Southeast Brazil, Argentina and Paraguay. The specific detection of allergy to the venom of this wasp is often hampered by the lack of recombinant allergens currently available for molecular diagnosis. Antigen 5 (~23 kDa) from P. paulista venom (Poly p 5) is a highly abundant and glycosylated allergenic protein that could be used for development of component-resolved diagnosis (CRD). Here, we describe the cloning and heterologous expression of the antigen 5 (rPoly p 5) from P. paulista venom using the eukaryotic system Pichia pastoris. The expression as a secreted protein yielded high levels of soluble rPoly p 5. The recombinant allergen was further purified to homogeneity (99%) using a two-step chromatographic procedure. Simultaneously, the native form of the allergen (nPoly p 5) was purified from the wasp venom by Ion exchange chromatography. The rPoly p 5 and nPoly p 5 were then submitted to a comparative analysis of IgE-mediated immunodetection using sera from patients previously diagnosed with sensitization to wasp venoms. Both rPoly p 5 and nPoly p 5 were recognized by specific IgE (sIgE) in the sera of the allergic individuals. The high levels of identity found between nPoly p 5 and rPoly p 5 by the alignment of its primary sequences as well as by 3-D models support the results obtained in the immunoblot. Overall, we showed that P. pastoris is a suitable system for production of soluble rPoly p 5 and that the recombinant allergen represents a potential candidate for molecular diagnosis of P.paulista venom allergy.
Collapse
|
31
|
Perez-Riverol A, Dos Santos-Pinto JRA, Lasa AM, Palma MS, Brochetto-Braga MR. Wasp venomic: Unravelling the toxins arsenal of Polybia paulista venom and its potential pharmaceutical applications. J Proteomics 2017; 161:88-103. [PMID: 28435107 DOI: 10.1016/j.jprot.2017.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 02/08/2023]
Abstract
Polybia paulista (Hymenoptera: Vespidae) is a neotropical social wasp from southeast Brazil. As most social Hymenoptera, venom from P. paulista comprises a complex mixture of bioactive toxins ranging from low molecular weight compounds to peptides and proteins. Several efforts have been made to elucidate the molecular composition of the P. paulista venom. Data derived from proteomic, peptidomic and allergomic analyses has enhanced our understanding of the whole envenoming process caused by the insect sting. The combined use of bioinformatics, -omics- and molecular biology tools have allowed the identification, characterization, in vitro synthesis and recombinant expression of several wasp venom toxins. Some of these P. paulista - derived bioactive compounds have been evaluated for the rational design of antivenoms and the improvement of allergy specific diagnosis and immunotherapy. Molecular characterization of crude venom extract has enabled the description and isolation of novel toxins with potential biotechnological applications. Here, we review the different approaches that have been used to unravel the venom composition of P. paulista. We also describe the main groups of P. paulista - venom toxins currently identified and analyze their potential in the development of component-resolved diagnosis of allergy, and in the rational design of antivenoms and novel bioactive drugs.
Collapse
Affiliation(s)
- Amilcar Perez-Riverol
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | | | - Alexis Musacchio Lasa
- Center for Genetic Engineering and Biotechnology, Biomedical Research Division, System Biology Department, Ave. 31, e/158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana 10600, Cuba.
| | - Mario Sergio Palma
- Centro de Estudos de Insetos Sociais-CEIS-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | - Márcia Regina Brochetto-Braga
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil; Centro de Estudos de Venenos e Animais Peçonhentos-CEVAP (Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, Fazenda Experimental Lageado, Botucatu 18610-307, SP, Brazil.
| |
Collapse
|
32
|
Protein Discovery: Combined Transcriptomic and Proteomic Analyses of Venom from the Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae). Toxins (Basel) 2017; 9:toxins9040135. [PMID: 28417942 PMCID: PMC5408209 DOI: 10.3390/toxins9040135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/08/2023] Open
Abstract
Many species of endoparasitoid wasps provide biological control services in agroecosystems. Although there is a great deal of information on the ecology and physiology of host/parasitoid interactions, relatively little is known about the protein composition of venom and how specific venom proteins influence physiological systems within host insects. This is a crucial gap in our knowledge because venom proteins act in modulating host physiology in ways that favor parasitoid development. Here, we identified 37 possible venom proteins from the polydnavirus-carrying endoparasitoid Cotesia chilonis by combining transcriptomic and proteomic analyses. The most abundant proteins were hydrolases, such as proteases, peptidases, esterases, glycosyl hydrolase, and endonucleases. Some components are classical parasitoid venom proteins with known functions, including extracellular superoxide dismutase 3, serine protease inhibitor and calreticulin. The venom contains novel proteins, not recorded from any other parasitoid species, including tolloid-like proteins, chitooligosaccharidolytic β-N-acetylglucosaminidase, FK506-binding protein 14, corticotropin-releasing factor-binding protein and vascular endothelial growth factor receptor 2. These new data generate hypotheses and provide a platform for functional analysis of venom components.
Collapse
|
33
|
Esteves FG, Santos-Pinto JRAD, Saidemberg DM, Palma MS. Using a proteometabolomic approach to investigate the role of Dufour's gland in pheromone biosynthesis in the social wasp Polybia paulista. J Proteomics 2017; 151:122-130. [DOI: 10.1016/j.jprot.2016.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/28/2022]
|
34
|
Perez-Riverol A, Campos Pereira FD, Musacchio Lasa A, Romani Fernandes LG, Santos-Pinto JRAD, Justo-Jacomini DL, Oliveira de Azevedo G, Bazon ML, Palma MS, Zollner RDL, Brochetto-Braga MR. Molecular cloning, expression and IgE-immunoreactivity of phospholipase A1, a major allergen from Polybia paulista (Hymenoptera: Vespidae) venom. Toxicon 2016; 124:44-52. [PMID: 27826019 DOI: 10.1016/j.toxicon.2016.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/05/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Polybia paulista (Hymenoptera: Vespidae) is a clinically relevant social wasp that frequently causes stinging accidents in southeast Brazil. To date, diagnosis and specific immunotherapy (SIT) of allergy are based on the use of crude venom extracts. Production of recombinant forms of major allergens from P. paulista venom will improve diagnosis and SIT of allergic patients by reducing the incidence of cross-reactivity and non-specific sensitization. Here, we describe the molecular cloning, heterologous expression, purification and IgE-mediated immunodetection of phospholipase A1 (Poly p 1), a major allergen from P. paulista venom. The cDNA of Poly p 1 was extracted from venom glands and then cloned, and further expression of the recombinant allergen (rPoly p 1) was achieved in Escherichia coli BL21 (DE3) cells. Purification of rPoly p 1 was performed using immobilized Ni2+ metal affinity chromatography. Also, a single-step chromatographic method allowed the purification of native Poly p 1 (nPoly p 1) from the wasp's venom glands. We used western blotting to evaluate IgE-reactivity of the sera from 10 P. paulista venom-allergic patients to rPoly p 1 and nPoly p 1. High levels of insoluble rPoly p 1 were obtained during heterologous expression. After solubilization of inclusion bodies and purification of the recombinant protein, a unique band of ∼34 kDa was detected in SDS-PAGE analysis. Allergen-specific IgE (sIgE) from allergic patients' sera recognized rPoly p 1, nPoly p 1 and crude venom extract to a similar extent. Our results showed that rPoly p 1 could be used for development of component-resolved diagnosis (CRD) and molecular-defined SIT of P. paulista venom allergy.
Collapse
Affiliation(s)
- Amilcar Perez-Riverol
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, nº 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | - Franco Dani Campos Pereira
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, nº 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil; Laboratório de Mutagênese Ambiental, Avenida 24-A, nº 1515, Bela Vista, Rio Claro, São Paulo, CEP 13506-900, Brazil.
| | - Alexis Musacchio Lasa
- Center for Genetic Engineering and Biotechnology, Biomedical Research Division, System Biology Department, Ave. 31, e/ 158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana, 10600, Cuba.
| | - Luis Gustavo Romani Fernandes
- Laboratório de Imunologia Translacional, Faculdade de Ciências Médicas, FCM, Universidade Estadual de Campinas-UNICAMP, Rua Vital Brasil, nº 300, CEP 13083-887, Cidade Universitária "Zeferino Vaz", Campinas, SP, Brazil.
| | | | - Débora Lais Justo-Jacomini
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, nº 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | - Gabriel Oliveira de Azevedo
- Instituto de Pesquisa em Bioenergia (IPBEN) (Univ Estadual Paulista), Av. 24-A, nº1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | - Murilo Luiz Bazon
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, nº 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | - Mario Sergio Palma
- Centro de Estudos de Insetos Sociais-CEIS-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, nº 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | - Ricardo de Lima Zollner
- Laboratório de Imunologia Translacional, Faculdade de Ciências Médicas, FCM, Universidade Estadual de Campinas-UNICAMP, Rua Vital Brasil, nº 300, CEP 13083-887, Cidade Universitária "Zeferino Vaz", Campinas, SP, Brazil.
| | - Márcia Regina Brochetto-Braga
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, nº 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil; Centro de Estudos de Venenos e Animais Peçonhentos-CEVAP (Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, Fazenda Experimental Lageado, Botucatu 18610-307, SP, Brazil.
| |
Collapse
|
35
|
Pessoa WFB, Silva LCC, de Oliveira Dias L, Delabie JHC, Costa H, Romano CC. Analysis of Protein Composition and Bioactivity of Neoponera villosa Venom (Hymenoptera: Formicidae). Int J Mol Sci 2016; 17:513. [PMID: 27110765 PMCID: PMC4848969 DOI: 10.3390/ijms17040513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
Ants cause a series of accidents involving humans. Such accidents generate different reactions in the body, ranging from a mild irritation at the bite site to anaphylactic shock, and these reactions depend on the mechanism of action of the venom. The study of animal venom is a science known as venomics. Through venomics, the composition of the venom of several ant species has already been characterized and their biological activities described. Thus, the aim of this study was to evaluate the protein composition and biological activities (hemolytic and immunostimulatory) of the venom of Neoponera villosa (N. villosa), an ant widely distributed in South America. The protein composition was evaluated by proteomic techniques, such as two-dimensional electrophoresis. To assess the biological activity, hemolysis assay was carried out and cytokines were quantified after exposure of macrophages to the venom. The venom of N. villosa has a profile composed of 145 proteins, including structural and metabolic components (e.g., tubulin and ATPase), allergenic and immunomodulatory proteins (arginine kinase and heat shock proteins (HSPs)), protective proteins of venom (superoxide dismutase (SOD) and catalase) and tissue degradation proteins (hyaluronidase and phospholipase A2). The venom was able to induce hemolysis in human erythrocytes and also induced release of both pro-inflammatory cytokines, as the anti-inflammatory cytokine release by murine macrophages. These results allow better understanding of the composition and complexity of N. villosa venom in the human body, as well as the possible mechanisms of action after the bite.
Collapse
Affiliation(s)
- Wallace Felipe Blohem Pessoa
- State University of Santa Cruz (UESC)-Center of Biotechnology and Genetics (CBG), Ilhéus, Bahia 45662-900, Brazil.
| | | | - Leila de Oliveira Dias
- State University of Santa Cruz (UESC)-Center of Biotechnology and Genetics (CBG), Ilhéus, Bahia 45662-900, Brazil.
| | - Jacques Hubert Charles Delabie
- Myrmecology Laboratory of the Cocoa Research Center-CEPEC, Executive Committee of the Cocoa Crop (CEPLAC), Ilhéus, Bahia 45660-000, Brazil.
| | - Helena Costa
- State University of Santa Cruz (UESC)-Center of Biotechnology and Genetics (CBG), Ilhéus, Bahia 45662-900, Brazil.
| | - Carla Cristina Romano
- State University of Santa Cruz (UESC)-Center of Biotechnology and Genetics (CBG), Ilhéus, Bahia 45662-900, Brazil.
| |
Collapse
|
36
|
Dos Santos-Pinto JRA, Garcia AMC, Arcuri HA, Esteves FG, Salles HC, Lubec G, Palma MS. Silkomics: Insight into the Silk Spinning Process of Spiders. J Proteome Res 2016; 15:1179-93. [PMID: 26923066 DOI: 10.1021/acs.jproteome.5b01056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proteins from the silk-producing glands were identified using both a bottom-up gel-based proteomic approach as well as from a shotgun proteomic approach. Additionally, the relationship between the functions of identified proteins and the spinning process was studied. A total of 125 proteins were identified in the major ampullate, 101 in the flagelliform, 77 in the aggregate, 75 in the tubuliform, 68 in the minor ampullate, and 23 in aciniform glands. On the basis of the functional classification using Gene Ontology, these proteins were organized into seven different groups according to their general function: (i) web silk proteins-spidroins, (ii) proteins related to the folding/conformation of spidroins, (iii) proteins that protect silk proteins from oxidative stress, (iv) proteins involved in fibrillar preservation of silks in the web, (v) proteins related to ion transport into and out of the glands during silk fiber spinning, (vi) proteins involved in prey capture and pre-digestion, and (vii) housekeeping proteins from all of the glands. Thus, a general mechanism of action for the identified proteins in the silk-producing glands from the Nephila clavipes spider was proposed; the current results also indicate that the webs play an active role in prey capture.
Collapse
Affiliation(s)
- José Roberto Aparecido Dos Santos-Pinto
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil.,Department of Pediatrics, Medical University of Vienna , Vienna 1090, Austria
| | - Ana Maria Caviquioli Garcia
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| | - Helen Andrade Arcuri
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| | - Franciele Grego Esteves
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| | - Heliana Clara Salles
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna , Vienna 1090, Austria
| | - Mario Sergio Palma
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| |
Collapse
|
37
|
Lee SH, Baek JH, Yoon KA. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps. Toxins (Basel) 2016; 8:32. [PMID: 26805885 PMCID: PMC4773785 DOI: 10.3390/toxins8020032] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps' sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed.
Collapse
Affiliation(s)
- Si Hyeock Lee
- Department of Agricultural Biology, Seoul National University, Seoul 151-921, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.
| | - Ji Hyeong Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Kyungjae Andrew Yoon
- Department of Agricultural Biology, Seoul National University, Seoul 151-921, Korea.
| |
Collapse
|
38
|
Bordon KCF, Wiezel GA, Amorim FG, Arantes EC. Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology. J Venom Anim Toxins Incl Trop Dis 2015; 21:43. [PMID: 26500679 PMCID: PMC4619011 DOI: 10.1186/s40409-015-0042-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023] Open
Abstract
Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix. They are involved in several pathological and physiological activities including fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.2.1.35. To date, only five three-dimensional structures for arthropod venom hyaluronidases (Apis mellifera and Vespula vulgaris) were determined. Additionally, there are four molecular models for hyaluronidases from Mesobuthus martensii, Polybia paulista and Tityus serrulatus venoms. These enzymes are employed as adjuvants to increase the absorption and dispersion of other drugs and have been used in various off-label clinical conditions to reduce tissue edema. Moreover, a PEGylated form of a recombinant human hyaluronidase is currently under clinical trials for the treatment of metastatic pancreatic cancer. This review focuses on the arthropod venom hyaluronidases and provides an overview of their biochemical properties, role in the envenoming, structure/activity relationship, and potential medical and biotechnological applications.
Collapse
Affiliation(s)
- Karla C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Gisele A. Wiezel
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernanda G. Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Eliane C. Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| |
Collapse
|
39
|
Perez-Riverol A, Justo-Jacomini DL, Zollner RDL, Brochetto-Braga MR. Facing Hymenoptera Venom Allergy: From Natural to Recombinant Allergens. Toxins (Basel) 2015; 7:2551-70. [PMID: 26184309 PMCID: PMC4516928 DOI: 10.3390/toxins7072551] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/16/2015] [Accepted: 06/23/2015] [Indexed: 12/30/2022] Open
Abstract
Along with food and drug allergic reactions, a Hymenoptera insect Sting (Apoidea, Vespidae, Formicidae) is one of the most common causes of anaphylaxis worldwide. Diagnoses of Hymenoptera venom allergy (HVA) and specific immunotherapy (SIT) have been based on the use of crude venom extracts. However, the incidence of cross-reactivity and low levels of sensibility during diagnosis, as well as the occurrence of nonspecific sensitization and undesired side effects during SIT, encourage the search for novel allergenic materials. Recombinant allergens are an interesting approach to improve allergy diagnosis and SIT because they circumvent major problems associated with the use of crude venom. Production of recombinant allergens depends on the profound molecular characterization of the natural counterpart by combining some “omics” approaches with high-throughput screening techniques and the selection of an appropriate system for heterologous expression. To date, several clinically relevant allergens and novel venom toxins have been identified, cloned and characterized, enabling a better understanding of the whole allergenic and envenoming processes. Here, we review recent findings on identification, molecular characterization and recombinant expression of Hymenoptera venom allergens and on the evaluation of these heterologous proteins as valuable tools for tackling remaining pitfalls on HVA diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Amilcar Perez-Riverol
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IB-RC-UNESP (Univ Estadual Paulista), Av. 24-A, n_ 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil.
| | - Débora Lais Justo-Jacomini
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IB-RC-UNESP (Univ Estadual Paulista), Av. 24-A, n_ 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil.
| | - Ricardo de Lima Zollner
- Laboratório de Imunologia e Alergia Experimental-LIAE, Departamento de Clínica Médica, Faculdade de Ciências Médicas, FCM, Universidade Estadual de Campinas-UNICAMP, Rua Tessália Vieira de Camargo n_ 126, Cidade Universitária "Zeferino Vaz", Campinas 13083-887, SP, Brazil.
| | - Márcia Regina Brochetto-Braga
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IB-RC-UNESP (Univ Estadual Paulista), Av. 24-A, n_ 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil.
- Centro de Estudos de Venenos e Animais Peçonhentos-CEVAP (Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, Fazenda Experimental Lageado, Botucatu 18610-307, SP, Brazil.
| |
Collapse
|
40
|
Deciphering the venomic transcriptome of killer-wasp Vespa velutina. Sci Rep 2015; 5:9454. [PMID: 25896434 PMCID: PMC5381768 DOI: 10.1038/srep09454] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/27/2015] [Indexed: 12/21/2022] Open
Abstract
Wasp stings have been arising to be a severe public health problem in China in recent years. However, molecular information about lethal or toxic factors in wasp venom is extremely lacking. In this study, we used two pyrosequencing platforms to analyze the transcriptome of Vespa velutina, the most common wasp species native in China. Besides the substantial amount of transcripts encoding for allergens usually regarded as the major lethal factor of wasp sting, a greater abundance of hemostasis-impairing toxins and neurotoxins in the venom of V. velutina were identified, implying that toxic reactions and allergic effects are envenoming strategy for the dangerous outcomes. The pattern of differentially expressed genes before and after venom extraction clearly indicates that the manifestation of V. velutina stings depends on subtle regulations in the metabolic pathway required for toxin recruitment. This comparative analysis offers timely clues for developing clinical treatments for wasp envenoming in China and around the world.
Collapse
|
41
|
Bouzid W, Verdenaud M, Klopp C, Ducancel F, Noirot C, Vétillard A. De Novo sequencing and transcriptome analysis for Tetramorium bicarinatum: a comprehensive venom gland transcriptome analysis from an ant species. BMC Genomics 2014; 15:987. [PMID: 25407482 PMCID: PMC4256838 DOI: 10.1186/1471-2164-15-987] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 09/09/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Arthropod venoms are invaluable sources of bioactive substances with biotechnological application. The limited availability of some venoms, such as those from ants, has restricted the knowledge about the composition and the potential that these biomolecules could represent. In order to provide a global insight on the transcripts expressed in the venom gland of the Brazilian ant species Tetramorium bicarinatum and to unveil the potential of its products, high-throughput approach using Illumina technology has been applied to analyze the genes expressed in active venom glands of this ant species. RESULTS A total of 212,371,758 pairs of quality-filtered, 100-base-pair Illumina reads were obtained. The de novo assemblies yielded 36,042 contigs for which 27,873 have at least one predicted ORF among which 59.77% produce significant hits in the available databases. The investigation of the reads mapping toxin class revealed a high diversification with the major part consistent with the classical hymenopteran venom protein signature represented by venom allergen (33.3%), followed by a diverse toxin-expression profile including several distinct isoforms of phospholipase A1 and A2, venom serine protease, hyaluronidase, protease inhibitor and secapin. Moreover, our results revealed for the first time the presence of toxin-like peptides that have been previously identified from unrelated venomous animals such as waprin-like (snakes) and agatoxins (spiders and conus).The non-toxin transcripts were mainly represented by contigs involved in protein folding and translation, consistent with the protein-secretory function of the venom gland tissue. Finally, about 40% of the generated contigs have no hits in the databases with 25% of the predicted peptides bearing signal peptide emphasizing the potential of the investigation of these sequences as source of new molecules. Among these contigs, six putative novel peptides that show homologies with previously identified antimicrobial peptides were identified. CONCLUSIONS To the best of our knowledge, this work reports the first large-scale analysis of genes transcribed by the venomous gland of the ant species T. bicarinatum and helps with the identification of Hymenoptera toxin arsenal. In addition, results from this study demonstrate that de novo transcriptome assembly allows useful venom gene expression analysis in a species lacking a genome sequence database.
Collapse
Affiliation(s)
| | | | | | | | | | - Angélique Vétillard
- Venoms and Biological Activities Laboratory, EA 4357, PRES-University of Toulouse, Jean-François Champollion University Center, Albi, France.
| |
Collapse
|
42
|
Roat TC, dos Santos-Pinto JRA, Dos Santos LD, Santos KS, Malaspina O, Palma MS. Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub-lethal doses of the insecticide fipronil. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1659-1670. [PMID: 25139030 DOI: 10.1007/s10646-014-1305-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Fipronil is a phenylpyrazole insecticide that is widely used in Brazilian agriculture for pest control. Although honeybees are not targets of fipronil, studies indicate that this pesticide can be harmful to honeybees. To assess the effects of fipronil in the brain of Africanized Apis mellifera workers, this study focused on the toxico-proteome profiling of the brain of newly emerged and aged honeybee workers that were exposed to a sub-lethal dose (10 pg fipronil per day. i.e. (1)/100 of LD50/bee/day during 5 days) of the insecticide. Proteomic analysis identified 25 proteins that were differentially up-regulated or down-regulated when the fipronil-exposed and non-exposed groups were compared. These proteins are potentially related to pathogen susceptibility, neuronal chemical stress, neuronal protein misfolding, and occurrence of apoptosis, ischemia, visual impairment, damaged synapse formation, brain degeneration, memory and learning impairment. The exposure of honeybees to a very low dose of fipronil, even for a short period of time (5 days), was sufficient to cause a series of important neuroproteomic changes in the brains of honeybees.
Collapse
Affiliation(s)
- T C Roat
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Avenida 24-A, N.1515-Bela Vista, Rio Claro, SP, Brazil,
| | | | | | | | | | | |
Collapse
|
43
|
dos Santos-Pinto JRA, dos Santos LD, Arcuri HA, da Silva Menegasso AR, Pêgo PN, Santos KS, Castro FM, Kalil JE, De-Simone SG, Palma MS. B-cell linear epitopes mapping of antigen-5 allergen from Polybia paulista wasp venom. J Allergy Clin Immunol 2014; 135:264-7. [PMID: 25129676 DOI: 10.1016/j.jaci.2014.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/27/2014] [Accepted: 07/02/2014] [Indexed: 11/17/2022]
Affiliation(s)
| | | | - Helen Andrade Arcuri
- INCT, São Paulo, Brazil; Discipline of Allergy and Immunology (HC/Incor/FMUSP) São Paulo, Brazil
| | | | | | - Keity Souza Santos
- INCT, São Paulo, Brazil; Discipline of Allergy and Immunology (HC/Incor/FMUSP) São Paulo, Brazil
| | - Fábio Morato Castro
- INCT, São Paulo, Brazil; Discipline of Allergy and Immunology (HC/Incor/FMUSP) São Paulo, Brazil
| | - Jorge Elias Kalil
- INCT, São Paulo, Brazil; Discipline of Allergy and Immunology (HC/Incor/FMUSP) São Paulo, Brazil
| | | | - Mario Sergio Palma
- Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, Brazil; INCT, São Paulo, Brazil.
| |
Collapse
|
44
|
Justo Jacomini DL, Gomes Moreira SM, Campos Pereira FD, Zollner RDL, Brochetto Braga MR. Reactivity of IgE to the allergen hyaluronidase from Polybia paulista (Hymenoptera, Vespidae) venom. Toxicon 2014; 82:104-11. [DOI: 10.1016/j.toxicon.2014.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 11/15/2022]
|
45
|
Lebrun EG, Jones NT, Gilbert LE. Chemical warfare among invaders: a detoxification interaction facilitates an ant invasion. Science 2014; 343:1014-7. [PMID: 24526314 DOI: 10.1126/science.1245833] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As tawny crazy ants (Nylanderia fulva) invade the southern United States, they often displace imported fire ants (Solenopsis invicta). After exposure to S. invicta venom, N. fulva applies abdominal exocrine gland secretions to its cuticle. Bioassays reveal that these secretions detoxify S. invicta venom. Further, formic acid from N. fulva venom is the detoxifying agent. N. fulva exhibits this detoxification behavior after conflict with a variety of ant species; however, it expresses it most intensely after interactions with S. invicta. This behavior may have evolved in their shared South American native range. The capacity to detoxify a major competitor's venom probably contributes substantially to its ability to displace S. invicta populations, making this behavior a causative agent in the ecological transformation of regional arthropod assemblages.
Collapse
Affiliation(s)
- Edward G Lebrun
- Brackenridge Field Laboratory, Department of Integrative Biology, The University of Texas at Austin, 2907 Lake Austin Boulevard, Austin, TX 78703, USA
| | | | | |
Collapse
|
46
|
Sookrung N, Wong-din-Dam S, Tungtrongchitr A, Reamtong O, Indrawattana N, Sakolvaree Y, Visitsunthorn N, Manuyakorn W, Chaicumpa W. Proteome and allergenome of Asian wasp, Vespa affinis, venom and IgE reactivity of the venom components. J Proteome Res 2014; 13:1336-44. [PMID: 24437991 DOI: 10.1021/pr4009139] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vespa affinis (Asian wasp, Thai banded tiger wasp, or local name: Tor Hua Seua) causes the most frequent incidence of medically important Hymenoptera sting in South and Southeast Asia. However, data on the venom components attributable to the sting derived-clinical manifestations (local reactions, IgE mediated-anaphylaxis, or systemic envenomation) are lacking. This study provides the first set information on V. affinis venom proteome, allergenome, and IgE reactivity of individual venom components. From 2DE-gel based-proteomics, the venom revealed 93 protein spots, of which proteins in 51 spots could be identified and classified into three groups: typical venom components and structural and housekeeping proteins. Venom proteins in 32 spots reacted with serum IgE of wasp allergic patients. Major allergenic proteins that reacted to IgE of >50% of the wasp allergic patients included PLA1 (100%), arginine kinase (73%), heat shock 70 kDa protein (73.3%), venom allergen-5 (66.7%), enolase (66.7%), PLA1 magnifin (60%), glyceraldehyde-3-phosphate dehydrogenase (60%), hyaluronidase (53.3%), and fructose-bisphosphate aldolase (53.3%). The venom minor allergens were GB17876 transcript (40%), GB17291 transcript (20%), malic enzyme (13.3%), aconitate hydratase (6.7%), and phosphoglucomutase (6.7%). The information has diagnostic and clinical implications for future improvement of case diagnostic sensitivity and specificity, component-resolve diagnosis, and design of specific Hymenoptera venom immunotherapy.
Collapse
Affiliation(s)
- Nitat Sookrung
- Department of Research and Development, ‡Graduate Program in Immunology, Department of Immunology, §Department of Parasitology, and ∥Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok 10700, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dias NB, de Souza BM, Gomes PC, Palma MS. Peptide diversity in the venom of the social wasp Polybia paulista (Hymenoptera): a comparison of the intra- and inter-colony compositions. Peptides 2014; 51:122-30. [PMID: 24239857 DOI: 10.1016/j.peptides.2013.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 11/22/2022]
Abstract
The venoms of the social wasps evolved to be used as defensive tools to protect the colonies of these insects against the attacks of predators. Previous studies estimated the presence of a dozen peptide components in the venoms of each species of these insects, which altogether comprise up to 70% of the weight of freeze-dried venoms. In the present study, an optimized experimental protocol is reported that utilizes liquid chromatography coupled to electrospray ionization mass spectrometry for the detection of peptides in the venom of the social wasp Polybia paulista; peptide profiles for both intra- and inter-colonial comparisons were obtained using this protocol. The results of our study revealed a surprisingly high level of intra- and inter-colonial variability for the same wasp species. We detected 78-108 different peptides in the venom of different colonies of P. paulista in the molar mass range from 400 to 3000Da; among those, only 36 and 44 common peptides were observed in the inter- and intra-colony comparisons, respectively.
Collapse
Affiliation(s)
- Nathalia Baptista Dias
- UNESP - São Paulo State University, Center of Studies of Social Insects, Institute of Biosciences, Rio Claro, Brazil
| | - Bibiana Monson de Souza
- UNESP - São Paulo State University, Center of Studies of Social Insects, Institute of Biosciences, Rio Claro, Brazil
| | - Paulo Cesar Gomes
- UNESP - São Paulo State University, Center of Studies of Social Insects, Institute of Biosciences, Rio Claro, Brazil
| | - Mario Sergio Palma
- UNESP - São Paulo State University, Center of Studies of Social Insects, Institute of Biosciences, Rio Claro, Brazil.
| |
Collapse
|
48
|
dos Santos-Pinto JRA, dos Santos LD, Andrade Arcuri H, Castro FM, Kalil JE, Palma MS. Using Proteomic Strategies for Sequencing and Post-Translational Modifications Assignment of Antigen-5, a Major Allergen from the Venom of the Social Wasp Polybia paulista. J Proteome Res 2013; 13:855-65. [DOI: 10.1021/pr4008927] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- José Roberto Aparecido dos Santos-Pinto
- Institute
of Biosciences of Rio Claro, Department of Biology, Center of the
Study of Social Insects, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
- INCT-iii, São Paulo, Brazil
| | - Lucilene Delazari dos Santos
- Center
for the Study of Venoms and Venomous Animals (CEVAP), University of São Paulo State (UNESP), Botucatu, SP, Brazil
- INCT-iii, São Paulo, Brazil
| | - Helen Andrade Arcuri
- INCT-iii, São Paulo, Brazil
- Discipline
of Allergy and Immunology (HC/Incor/FMUSP), SP, Brazil
| | - Fábio Morato Castro
- INCT-iii, São Paulo, Brazil
- Discipline
of Allergy and Immunology (HC/Incor/FMUSP), SP, Brazil
| | - Jorge Elias Kalil
- INCT-iii, São Paulo, Brazil
- Discipline
of Allergy and Immunology (HC/Incor/FMUSP), SP, Brazil
| | - Mario Sergio Palma
- Institute
of Biosciences of Rio Claro, Department of Biology, Center of the
Study of Social Insects, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
- INCT-iii, São Paulo, Brazil
| |
Collapse
|
49
|
Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. BMC Genomics 2013; 14:766. [PMID: 24199871 PMCID: PMC3835400 DOI: 10.1186/1471-2164-14-766] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Honeybee venom is a complicated defensive toxin that has a wide range of pharmacologically active compounds. Some of these compounds are useful for human therapeutics. There are two major forms of honeybee venom used in pharmacological applications: manually (or reservoir disrupting) extracted glandular venom (GV), and venom extracted through the use of electrical stimulation (ESV). A proteome comparison of these two venom forms and an understanding of the phosphorylation status of ESV, are still very limited. Here, the proteomes of GV and ESV were compared using both gel-based and gel-free proteomics approaches and the phosphoproteome of ESV was determined through the use of TiO2 enrichment. RESULTS Of the 43 proteins identified in GV, < 40% were venom toxins, and >60% of the proteins were non-toxic proteins resulting from contamination by gland tissue damage during extraction and bee death. Of the 17 proteins identified in ESV, 14 proteins (>80%) were venom toxic proteins and most of them were found in higher abundance than in GV. Moreover, two novel proteins (dehydrogenase/reductase SDR family member 11-like and histone H2B.3-like) and three novel phosphorylation sites (icarapin (S43), phospholipase A-2 (T145), and apamin (T23)) were identified. CONCLUSIONS Our data demonstrate that venom extracted manually is different from venom extracted using ESV, and these differences may be important in their use as pharmacological agents. ESV may be more efficient than GV as a potential pharmacological source because of its higher venom protein content, production efficiency, and without the need to kill honeybee. The three newly identified phosphorylated venom proteins in ESV may elicit a different immune response through the specific recognition of antigenic determinants. The two novel venom proteins extend our proteome coverage of honeybee venom.
Collapse
|
50
|
Ledford H, Petherick A, Abbott A, Nordling L. From the frontline: 30 something science. Nature 2013; 495:28-31. [PMID: 23467151 DOI: 10.1038/495028a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|