1
|
Bhardwaj JK, Siwach A, Sachdeva SN. Metabolomics and cellular altered pathways in cancer biology: A review. J Biochem Mol Toxicol 2024; 38:e23807. [PMID: 39148273 DOI: 10.1002/jbt.23807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Cancer is a deadly disease that affects a cell's metabolism and surrounding tissues. Understanding the fundamental mechanisms of metabolic alterations in cancer cells would assist in developing cancer treatment targets and approaches. From this perspective, metabolomics is a great analytical tool to clarify the mechanisms of cancer therapy as well as a useful tool to investigate cancer from a distinct viewpoint. It is a powerful emerging technology that detects up to thousands of molecules in tissues and biofluids. Like other "-omics" technologies, metabolomics involves the comprehensive investigation of micromolecule metabolites and can reveal important details about the cancer state that is otherwise not apparent. Recent developments in metabolomics technologies have made it possible to investigate cancer metabolism in greater depth and comprehend how cancer cells utilize metabolic pathways to make the amino acids, nucleotides, and lipids required for tumorigenesis. These new technologies have made it possible to learn more about cancer metabolism. Here, we review the cellular and systemic effects of cancer and cancer treatments on metabolism. The current study provides an overview of metabolomics, emphasizing the current technologies and their use in clinical and translational research settings.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
2
|
Chen S, Pu K, Wang Y, Su Y, Qiu J, Wang X, Guo K, Hu J, Wei H, Wang H, Wei X, Chen Y, Lin W, Ni W, Lin Y, Chen J, Lai SKM, Ng KM. Hierarchical superstructure aerogels for in situ biofluid metabolomics. NANOSCALE 2024; 16:8607-8617. [PMID: 38602354 DOI: 10.1039/d3nr05895f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
High-throughput biofluid metabolomics analysis for screening life-threatening diseases is urgently needed. However, the high salt content of biofluid samples, which introduces severe interference, can greatly limit the analysis throughput. Here, a new 3-D interconnected hierarchical superstructure, namely a "plasmonic gold-on-silica (Au/SiO2) double-layered aerogel", integrating distinctive features of an upper plasmonic gold aerogel with a lower inert silica aerogel was successfully developed to achieve in situ separation and storage of inorganic salts in the silica aerogel, parallel enrichment of metabolites on the surface of the functionalized gold aerogel, and direct desorption/ionization of enriched metabolites by the photo-excited gold aerogel for rapid, sensitive, and comprehensive metabolomics analysis of human serum/urine samples. By integrating all these unique advantages into the hierarchical aerogel, multifunctional properties were introduced in the SALDI substrate to enable its effective utilization in clinical metabolomics for the discovery of reliable metabolic biomarkers to achieve unambiguous differentiation of early and advanced-stage lung cancer patients from healthy individuals. This study provides insight into the design and application of superstructured nanomaterials for in situ separation, storage, and photoexcitation of multi-components in complex biofluid samples for sensitive analysis.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Keyuan Pu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Yue Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Yang Su
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Jiamin Qiu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Xin Wang
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Kunbin Guo
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Jun Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Huiwen Wei
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Hongbiao Wang
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Xiaolong Wei
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Yuping Chen
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Wen Lin
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Wenxiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Guangdong, 515041, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, China
| | - Yan Lin
- The Second Affiliated Hospital of Shantou University Medical College, Guangdong, 515041, China
| | - Jiayang Chen
- Instrumental Analysis & Testing Centre, Shantou University, Guangdong, 515063, China
| | - Samuel Kin-Man Lai
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, China
| | - Kwan-Ming Ng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, China
| |
Collapse
|
3
|
Wang Q, Shi J, Liu J, Zhang P, Li L, Xie H, Li H, Wang H, Liu C, Qin P. Integration of transcriptome and metabolome reveals the accumulation of related metabolites and gene regulation networks during quinoa seed development. PLANT MOLECULAR BIOLOGY 2024; 114:10. [PMID: 38319430 DOI: 10.1007/s11103-023-01402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 02/07/2024]
Abstract
Quinoa seeds are gluten- and cholesterol-free, contain all amino acids required by the human body, have a high protein content, provide endocrine regulation, protein supplementation, and cardiovascular protection effects. However, metabolite accumulation and transcriptional regulatory networks in quinoa seed development are not well understood. Four key stages of seed development in Dianli-3260 and Dianli-557 were thus analyzed and 849 metabolites were identified, among which sugars, amino acids, and lipids were key for developmental processes, and their accumulation showed a gradual decrease. Transcriptome analysis identified 40,345 genes, of which 20,917 were differential between the M and F phases, including 8279 and 12,638 up- and down-regulated genes, respectively. Grain development processes were mainly enriched in galactose metabolism, pentose and glucuronate interconversions, the biosynthesis of amino acids, and carbon metabolism pathways, in which raffinose, phosphoenolpyruvate, series and other metabolites are significantly enriched, gene-LOC110689372, Gene-LOC110710556 and gene-LOC110714584 are significantly expressed, and these metabolites and genes play an important role in carbohydrate metabolism, lipid and Amino acid synthesis of quinoa. This study provides a theoretical basis to expand our understanding of the molecular and metabolic development of quinoa grains.
Collapse
Affiliation(s)
- Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jirong Shi
- Food Crop Research Institute, Zhaotong Academy of Agricultural Sciences, Zhaotong, 657000, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chenghong Liu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
4
|
Da X, Xiang Y, Hu H, Kong X, Qiu C, Jiang Z, Zhao G, Cai J, Huang A, Zhang C, He C, Lv B, Zhang H, Yang Y. Identification of changes in bile composition in pancreaticobiliary reflux based on liquid chromatography/mass spectrometry metabolomics. BMC Gastroenterol 2024; 24:5. [PMID: 38166630 PMCID: PMC10759582 DOI: 10.1186/s12876-023-03097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION Pancreaticobiliary reflux (PBR) can induce gallstone formation; however, its pathogenic mechanism remains unclear. In this study, we explored the mechanism of PBR by the non-targeted metabolomic analysis of bile in patients with PBR. OBJECTIVE The aim of this study was to investigate the pathogenic mechanism in PBR by the non-targeted metabolomic analysis of bile collected during surgery. METHODS Sixty patients who underwent gallstone surgery at our center from December 2020 to May 2021 were enrolled in the study. According to the level of bile amylase, 30 patients with increased bile amylase ( > 110 U/L) were classified into the PBR group, and the remaining 30 patients were classified into the control group (≤ 110 U/L). The metabolomic analysis of bile was performed. RESULTS The orthogonal projections to latent structure-discriminant analysis of liquid chromatography mass spectrometry showed significant differences in bile components between the PBR and control groups, and 40 metabolites were screened by variable importance for the projection value (VIP > 1). The levels of phosphatidylcholine (PC) and PC (20:3(8Z,11Z,14Z)/14:0) decreased significantly, whereas the levels of lysoPC (16:1(9z)/0:0), lysoPC (15:0), lysoPC (16:0), palmitic acid, arachidonic acid, leucine, methionine, L-tyrosine, and phenylalanine increased. CONCLUSIONS Significant differences in bile metabolites were observed between the PBR and control groups. Changes in amino acids and lipid metabolites may be related to stone formation and mucosal inflammation.
Collapse
Affiliation(s)
- Xuanbo Da
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yukai Xiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hai Hu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiangyu Kong
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chen Qiu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhaoyan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Gang Zhao
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jingli Cai
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Anhua Huang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Cheng Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chuanqi He
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Beining Lv
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Honglei Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yulong Yang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Qu P, Rom O, Li K, Jia L, Gao X, Liu Z, Ding S, Zhao M, Wang H, Chen S, Xiong X, Zhao Y, Xue C, Zhao Y, Chu C, Wen B, Finney AC, Zheng Z, Cao W, Zhao J, Bai L, Zhao S, Sun D, Zeng R, Lin J, Liu W, Zheng L, Zhang J, Liu E, Chen YE. DT-109 ameliorates nonalcoholic steatohepatitis in nonhuman primates. Cell Metab 2023; 35:742-757.e10. [PMID: 37040763 DOI: 10.1016/j.cmet.2023.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) prevalence is rising with no pharmacotherapy approved. A major hurdle in NASH drug development is the poor translatability of preclinical studies to safe/effective clinical outcomes, and recent failures highlight a need to identify new targetable pathways. Dysregulated glycine metabolism has emerged as a causative factor and therapeutic target in NASH. Here, we report that the tripeptide DT-109 (Gly-Gly-Leu) dose-dependently attenuates steatohepatitis and fibrosis in mice. To enhance the probability of successful translation, we developed a nonhuman primate model that histologically and transcriptionally mimics human NASH. Applying a multiomics approach combining transcriptomics, proteomics, metabolomics, and metagenomics, we found that DT-109 reverses hepatic steatosis and prevents fibrosis progression in nonhuman primates, not only by stimulating fatty acid degradation and glutathione formation, as found in mice, but also by modulating microbial bile acid metabolism. Our studies describe a highly translatable NASH model and highlight the need for clinical evaluation of DT-109.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Ke Li
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, Beijing 100050, China
| | - Linying Jia
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Xiaojing Gao
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Shusi Ding
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, Beijing 100050, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Huiqing Wang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Shuangshuang Chen
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200031, China
| | - Xuelian Xiong
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200031, China
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Chao Xue
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Yang Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Chengshuang Chu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Zuowen Zheng
- Spring Biological Technology Development Co., Ltd, Fangchenggang, Guangxi 538000, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Jinpeng Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rong Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiandie Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Lemin Zheng
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, Beijing 100050, China; The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China.
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China.
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Sequeira-Antunes B, Ferreira HA. Urinary Biomarkers and Point-of-Care Urinalysis Devices for Early Diagnosis and Management of Disease: A Review. Biomedicines 2023; 11:biomedicines11041051. [PMID: 37189669 DOI: 10.3390/biomedicines11041051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Biosensing and microfluidics technologies are transforming diagnostic medicine by accurately detecting biomolecules in biological samples. Urine is a promising biological fluid for diagnostics due to its noninvasive collection and wide range of diagnostic biomarkers. Point-of-care urinalysis, which integrates biosensing and microfluidics, has the potential to bring affordable and rapid diagnostics into the home to continuing monitoring, but challenges still remain. As such, this review aims to provide an overview of biomarkers that are or could be used to diagnose and monitor diseases, including cancer, cardiovascular diseases, kidney diseases, and neurodegenerative disorders, such as Alzheimer’s disease. Additionally, the different materials and techniques for the fabrication of microfluidic structures along with the biosensing technologies often used to detect and quantify biological molecules and organisms are reviewed. Ultimately, this review discusses the current state of point-of-care urinalysis devices and highlights the potential of these technologies to improve patient outcomes. Traditional point-of-care urinalysis devices require the manual collection of urine, which may be unpleasant, cumbersome, or prone to errors. To overcome this issue, the toilet itself can be used as an alternative specimen collection and urinalysis device. This review then presents several smart toilet systems and incorporated sanitary devices for this purpose.
Collapse
|
7
|
Shen J, Du H, Wang Y, Du L, Yang D, Wang L, Zhu R, Zhang X, Wu J. A novel nomogram model combining CT texture features and urine energy metabolism to differentiate single benign from malignant pulmonary nodule. Front Oncol 2022; 12:1035307. [PMID: 36591441 PMCID: PMC9798090 DOI: 10.3389/fonc.2022.1035307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Objective To investigate a novel diagnostic model for benign and malignant pulmonary nodule diagnosis based on radiomic and clinical features, including urine energy metabolism index. Methods A total of 107 pulmonary nodules were prospectively recruited and pathologically confirmed as malignant in 86 cases and benign in 21 cases. A chest CT scan and urine energy metabolism test were performed in all cases. A nomogram model was established in combination with radiomic and clinical features, including urine energy metabolism levels. The nomogram model was compared with the radiomic model and the clinical feature model alone to test its diagnostic validity, and receiver operating characteristic (ROC) curves were plotted to assess diagnostic validity. Results The nomogram was established using a logistic regression algorithm to combine radiomic features and clinical characteristics including urine energy metabolism results. The predictive performance of the nomogram was evaluated using the area under the ROC and calibration curve, which showed the best performance, area under the curve (AUC) = 0.982, 95% CI = 0.940-1.000, compared to clinical and radiomic models in the testing cohort. The clinical benefit of the model was assessed using the decision curve analysis (DCA) and using the nomogram for benign and malignant pulmonary nodules, and preoperative prediction of benign and malignant pulmonary nodules using nomograms showed better clinical benefit. Conclusion This study shows that a coupled model combining CT imaging features and clinical features (including urine energy metabolism) in combination with the nomogram model has higher diagnostic performance than the radiomic and clinical models alone, suggesting that the combination of both methods is more advantageous in identifying benign and malignant pulmonary nodules.
Collapse
Affiliation(s)
- Jing Shen
- Graduate School, Tianjin Medical University, Tianjin, China,Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Hai Du
- Graduate School, Tianjin Medical University, Tianjin, China,Department of Radiology, Ordos Central Hospital, Ordos Inner Mongolia, China
| | - Yadong Wang
- School of Medicine, Dalian University, Dalian, China,Department of Research, Dalian Detecsen Biomedical Co., LTD, Dalian, China
| | - Lina Du
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China,Graduate School, Dalian Medical University, Dalian, China
| | - Dong Yang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China,Graduate School, Dalian University, Dalian, China
| | - Lingwei Wang
- Department of Cardio-Thoracic Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ruiping Zhu
- Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaohui Zhang
- College of Environment and Chemical Engineering, Dalian University, Dalian, China,*Correspondence: Jianlin Wu, ; Xiaohui Zhang,
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China,*Correspondence: Jianlin Wu, ; Xiaohui Zhang,
| |
Collapse
|
8
|
Integrative Analysis of the Metabolome and Transcriptome Provides Insights into the Mechanisms of Flavonoid Biosynthesis in Quinoa Seeds at Different Developmental Stages. Metabolites 2022; 12:metabo12100887. [PMID: 36295789 PMCID: PMC9609036 DOI: 10.3390/metabo12100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a crop with high nutritional and health benefits. Quinoa seeds are rich in flavonoid compounds; however, the mechanisms behind quinoa flavonoid biosynthesis remain unclear. We independently selected the high-generation quinoa strain ‘Dianli-3260′, and used its seeds at the filling, milk ripening, wax ripening, and mature stages for extensive targeted metabolome analysis combined with joint transcriptome analysis. The results showed that the molecular mechanism of flavonoid biosynthesis in quinoa seeds was mainly concentrated in two pathways: “flavonoid biosynthesis pathway” and “flavone and flavonol biosynthesis pathway”. Totally, 154 flavonoid-related metabolites, mainly flavones and flavonols, were detected in the four development stages. Moreover, 39,738 genes were annotated with KEGG functions, and most structural genes of flavonoid biosynthesis were differentially expressed during grain development. We analyzed the differential flavonoid metabolites and transcriptome changes between the four development stages of quinoa seeds and found that 11 differential flavonoid metabolites and 22 differential genes were the key factors for the difference in flavonoid biosynthesis. This study provides important information on the mechanisms underlying quinoa flavonoid biosynthesis, the screening of potential quinoa flavonoid biosynthesis regulation target genes, and the development of quinoa products.
Collapse
|
9
|
Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin 2021; 71:333-358. [PMID: 33982817 PMCID: PMC8298088 DOI: 10.3322/caac.21670] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer has myriad effects on metabolism that include both rewiring of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment, and changes in normal tissue metabolism. With the recognition that fluorodeoxyglucose-positron emission tomography imaging is an important tool for the management of many cancers, other metabolites in biological samples have been in the spotlight for cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecule metabolites that like other -omics technologies can provide critical information about the cancer state that are otherwise not apparent. Here, the authors review how cancer and cancer therapies interact with metabolism at the cellular and systemic levels. An overview of metabolomics is provided with a focus on currently available technologies and how they have been applied in the clinical and translational research setting. The authors also discuss how metabolomics could be further leveraged in the future to improve the management of patients with cancer.
Collapse
Affiliation(s)
- Daniel R. Schmidt
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Rutulkumar Patel
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708 USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708 USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708 USA
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Matthew G. Vander Heiden
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708 USA
| |
Collapse
|
10
|
Huo M, Wang Z, Fu W, Tian L, Li W, Zhou Z, Chen Y, Wei J, Abliz Z. Spatially Resolved Metabolomics Based on Air-Flow-Assisted Desorption Electrospray Ionization-Mass Spectrometry Imaging Reveals Region-Specific Metabolic Alterations in Diabetic Encephalopathy. J Proteome Res 2021; 20:3567-3579. [PMID: 34137614 DOI: 10.1021/acs.jproteome.1c00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spatially resolved metabolic profiling of brain is vital for elucidating tissue-specific molecular histology and pathology underlying diabetic encephalopathy (DE). In this study, a spatially resolved metabolomic method based on air-flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) was developed for investigating the region-specific metabolic disturbances in the brain of DE model rats induced by a high-fat diet in combination with streptozotocin administration. A total of 19 discriminating metabolites associated with glycolysis and the pentose phosphate pathway (PPP); the glutamate/gamma aminobutyric acid-glutamine cycle and tricarboxylic acid cycle; nucleotide metabolism; lipid metabolism; carnitine homeostasis; and taurine, ascorbic acid, histidine, and choline metabolism were identified and located in the brains of the diabetic rats simultaneously for the first time. The results indicated that increased glycolytic and PPP activity; dysfunction of mitochondrial metabolism; dysregulation of adenosinergic, glutamatergic, dopaminergic, cholinergic, and histaminergic systems; disorder of osmotic regulation and antioxidant system; and disorder of lipid metabolism occur in a region-specific fashion in the brains of DE rats. Thus, this study provides valuable information regarding the molecular pathological signature of DE. These findings also underline the high potential of AFADESI-MSI for applications in various central nervous system diseases.
Collapse
Affiliation(s)
- Meiling Huo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenqing Fu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Lu Tian
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jinfeng Wei
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China.,Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, P. R. China
| |
Collapse
|
11
|
Hua J, Mu Z, Hua P, Wang M, Qin K. Ratiometric fluorescence nanoprobe for monitoring of intracellular temperature and tyrosine based on a dual emissive carbon dots/gold nanohybrid. Talanta 2020; 219:121279. [PMID: 32887169 DOI: 10.1016/j.talanta.2020.121279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022]
Abstract
A novel dual-emission nitrogen doped carbon dots/gold nanohybrid (NCDs-Au) was designed for specific and sensitive ratiometric detection of intracellular temperature and tyrosine. In this probe, a reductive NCDs was successfully prepared with the use of natural biomass Dendrobium officinale as precursor. The new prepared NCDs acted as both reducers and stabilizers to synthesize a novel NCDs-Au nanohybrid by a facile one-step procedure along with a quantum yield of 14.3%. The prepared nanoprobe showed characteristic fluorescence emissions of NCDs and Au NCs with single-wavelength excitation. Notably, the nanoprobe shows an interesting wavelength-dependent dual response to temperature (448 nm) and tyrosine (660 nm), enabling the two targets to be detected proportionally. As an effective temperature sensor, the nanoprobe exhibited good temperature-dependent fluorescence with a sensational linear response from 5 to 75 °C. In addition, the sensor has a linear response toward tyrosine in the range of 0.5-175 μM with a detection limit of 0.19 μM. Moreover, the fluorescent nanoprobe was successfully applied to ratiometricly monitor the variation of temperature or tyrosine level in cells because of the low cytotoxicity, chemical stability and excellent fluorescence properties. These results suggested that the nanoprobe here has provided the possibility for rapidly biosensing with the acceptable selectivity and sensitivity.
Collapse
Affiliation(s)
- Jianhao Hua
- Faculty of Life Science and Technology,Kunming University of Science and Technology,Kunming,Yunnan Province, 650500,China
| | - Zhao Mu
- Faculty of Life Science and Technology,Kunming University of Science and Technology,Kunming,Yunnan Province, 650500,China
| | - Peng Hua
- Third People's Hospital of Yunnan Province,Kunming,Yunnan Province, 650011,China
| | - Meng Wang
- Faculty of Life Science and Technology,Kunming University of Science and Technology,Kunming,Yunnan Province, 650500,China; Hubei Gedian Humanwell Pharmaceutical Co.,Ltd,Wuhan,Hubei Province, 430206,China
| | - Kunhao Qin
- Faculty of Life Science and Technology,Kunming University of Science and Technology,Kunming,Yunnan Province, 650500,China; Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming,Yunnan Province, 650500,China.
| |
Collapse
|
12
|
Gasparri R, Sedda G, Spaggiari L. Biomarkers in Early Diagnosis and Early Stage Lung Cancer: The Clinician's Point of View. J Clin Med 2020; 9:E1790. [PMID: 32526831 PMCID: PMC7355900 DOI: 10.3390/jcm9061790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
Starting from the work of Ulivi and colleagues, we aim to summarize the research area of biomarkers for early diagnosis and early stage lung cancer.
Collapse
Affiliation(s)
- Roberto Gasparri
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy; (G.S.); (L.S.)
| | - Giulia Sedda
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy; (G.S.); (L.S.)
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy; (G.S.); (L.S.)
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
13
|
Callejón-Leblic B, Arias-Borrego A, Rodríguez-Moro G, Navarro Roldán F, Pereira-Vega A, Gómez-Ariza JL, García-Barrera T. Advances in lung cancer biomarkers: The role of (metal-) metabolites and selenoproteins. Adv Clin Chem 2020; 100:91-137. [PMID: 33453868 DOI: 10.1016/bs.acc.2020.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer (LC) is the second most common cause of death in men after prostate cancer, and the third most recurrent type of tumor in women after breast and colon cancers. Unfortunately, when LC symptoms begin to appear, the disease is already in an advanced stage and the survival rate only reaches 2%. Thus, there is an urgent need for early diagnosis of LC using specific biomarkers, as well as effective therapies and strategies against LC. On the other hand, the influence of metals on more than 50% of proteins is responsible for their catalytic properties or structure, and their presence in molecules is determined in many cases by the genome. Research has shown that redox metal dysregulation could be the basis for the onset and progression of LC disease. Moreover, metals can interact between them through antagonistic, synergistic and competitive mechanisms, and for this reason metals ratios and correlations in LC should be explored. One of the most studied antagonists against the toxic action of metals is selenium, which plays key roles in medicine, especially related to selenoproteins. The study of potential biomarkers able to diagnose the disease in early stage is conditioned by the development of new analytical methodologies. In this sense, omic methodologies like metallomics, proteomics and metabolomics can greatly assist in the discovery of biomarkers for LC early diagnosis.
Collapse
Affiliation(s)
- Belén Callejón-Leblic
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Ana Arias-Borrego
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Gema Rodríguez-Moro
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Francisco Navarro Roldán
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Integrated Sciences-Cell Biology, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | | | - José Luis Gómez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Tamara García-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain.
| |
Collapse
|
14
|
Wang D, Ma X, Guo S, Wang Y, Li T, Zou D, Song H, Yang W, Ge Y. Effect of Huangqin Tang on Urine Metabolic Profile in Rats with Ulcerative Colitis Based on UPLC-Q-Exactive Orbitrap MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1874065. [PMID: 32382278 PMCID: PMC7193274 DOI: 10.1155/2020/1874065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/29/2023]
Abstract
As a classic prescription, Huangqin Tang (HQT) has been widely applied to treat ulcerative colitis (UC), although its pharmacological mechanisms are not clear. In this study, urine metabolomics was first analysed to explore the therapeutic mechanisms of HQT in UC rats induced by TNBS. We identified 28 potential biomarkers affected by HQT that might cause changes in urine metabolism in UC rats, mapped the network of metabolic pathways, and revealed how HQT affects metabolism of UC rats. The results showed that UC affects amino acid metabolism and biosynthesis of unsaturated fatty acids and impairs the tricarboxylic acid cycle (TCA cycle). UC induced inflammatory and gastrointestinal reactions by inhibiting the transport of fatty acids and disrupting amino acid metabolism. HQT plays key roles via regulating the level of biomarkers in the metabolism of amino acids, lipids, and so on, normalizing metabolic disorders. In addition, histopathology and other bioinformatics analysis further confirm that HQT altered UC rat physiology and pathology, ultimately affecting metabolic function of UC rats.
Collapse
Affiliation(s)
- Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuran Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tao Li
- The Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dixin Zou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongxin Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongxiang Ge
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| |
Collapse
|
15
|
Dinges SS, Hohm A, Vandergrift LA, Nowak J, Habbel P, Kaltashov IA, Cheng LL. Cancer metabolomic markers in urine: evidence, techniques and recommendations. Nat Rev Urol 2020; 16:339-362. [PMID: 31092915 DOI: 10.1038/s41585-019-0185-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Urinary tests have been used as noninvasive, cost-effective tools for screening, diagnosis and monitoring of diseases since ancient times. As we progress through the 21st century, modern analytical platforms have enabled effective measurement of metabolites, with promising results for both a deeper understanding of cancer pathophysiology and, ultimately, clinical translation. The first study to measure metabolomic urinary cancer biomarkers using NMR and mass spectrometry (MS) was published in 2006 and, since then, these techniques have been used to detect cancers of the urological system (kidney, prostate and bladder) and nonurological tumours including those of the breast, ovary, lung, liver, gastrointestinal tract, pancreas, bone and blood. This growing field warrants an assessment of the current status of research developments and recommendations to help systematize future research.
Collapse
Affiliation(s)
- Sarah S Dinges
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Haematology and Oncology, CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Hohm
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Diagnostic and Interventional Neuroradiology, University Hospital of Würzburg, Würzburg, Germany
| | - Lindsey A Vandergrift
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Piet Habbel
- Department of Haematology and Oncology, CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| | - Leo L Cheng
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Song L, Yin Q, Kang M, Ma N, Li X, Yang Z, Jin H, Lin M, Zhuang P, Zhang Y. Untargeted metabolomics reveals novel serum biomarker of renal damage in rheumatoid arthritis. J Pharm Biomed Anal 2019; 180:113068. [PMID: 31884392 DOI: 10.1016/j.jpba.2019.113068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 12/07/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic progressive disease, it often involves kidney, lung, heart, and other systems.Renal damage is quite common in RA. Exploring of biomarkers of renal damage in the course of RA progression is of significant importance for disease diagnosis and treatment. We use type II Collagen-Induced Arthritis(CIA) Model. Serums were collected at the 4th, 6th, 8th, and 10th week after the first immunization. An untargeted metabonomic strategy based on UPLC-Q/TOF/MS with support vector machine(SVM) was developed to discover the biomarkers in the rats' serum samples between the RA stage(4-6 weeks in RA model, at which time the kidneys are not affected) and renal damage in RA stage(8-10 weeks in RA model, and the kidneys are affected). Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to analyze the metabolic profiles of rat serum. The support vector machine (SVM) method was used to screen the specific markers of renal damage in RA. Following multivariate statistical and integration analysis, 5 specific markers of renal damage in RA were screened and found. After the analysis of these metabolites, pentose and glucuronate interconversions are closely related to the pathogenesis of RA renal damage. The present study first use untargeted dmetabonomics combined with the pathological features in the different phases of CIA model rats. This will provide a basis for the choice of treatment drugs for patients with RA who may be complicated by renal damage.
Collapse
Affiliation(s)
- Lili Song
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, People's Republic of China
| | - Qingsheng Yin
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, People's Republic of China
| | - Mingqin Kang
- Jilin Entry-exit Inspection and Quarantine Bureau, Changchun, People's Republic of China
| | - Ningning Ma
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, People's Republic of China
| | - Xin Li
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, People's Republic of China
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, People's Republic of China
| | - Hua Jin
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, People's Republic of China
| | - Mengya Lin
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, People's Republic of China
| | - Pengwei Zhuang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, People's Republic of China.
| | - Yanjun Zhang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, People's Republic of China.
| |
Collapse
|
17
|
Tang Y, Li Z, Lazar L, Fang Z, Tang C, Zhao J. Metabolomics workflow for lung cancer: Discovery of biomarkers. Clin Chim Acta 2019; 495:436-445. [DOI: 10.1016/j.cca.2019.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
|
18
|
Ni J, Xu L, Li W, Zheng C, Wu L. Targeted metabolomics for serum amino acids and acylcarnitines in patients with lung cancer. Exp Ther Med 2019; 18:188-198. [PMID: 31258653 PMCID: PMC6566041 DOI: 10.3892/etm.2019.7533] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is one of the most prevalent types of cancer, but accurate diagnosis remains a challenge. The aim of the present study was to create a model using amino acids and acylcarnitines for lung cancer screening. Serum samples were obtained from two groups of patients with lung cancer recruited in 2015 (including 40 patients and 100 matched controls) and 2017 (including 17 patients and 30 matched controls). Using a metabolomics method, 21 metabolites (13 types of amino acids and 8 types of acylcarnitines) were measured using liquid chromatography-tandem mass spectrometry. Data (from the 2015 and 2017 data sets) were analysed using a Mann-Whitney U test, Student's t-test, Welch's F test, receiver-operator characteristic curve or logistic regression in order to investigate the potential biomarkers. Six metabolites (glycine, valine, methionine, citrulline, arginine and C16-carnitine) were indicated to be involved in distinguishing patients with lung cancer from healthy controls. The six discriminating metabolites from the 2017 data set were further analysed using Partial least squares-discriminant analysis (PLS-DA). The PLS-DA model was verified using Spearman's correlation analysis and receiver operating characteristic curve analysis. These results demonstrated that the PLS-DA model using the six metabolites (glycine, valine, methionine, citrulline, arginine and C16-carnitine) had a strong ability to identify lung cancer. Therefore, the PLS-DA model using glycine, valine, methionine, citrulline, arginine and C16-carnitine may become a novel screening tool in patients with lung cancer.
Collapse
Affiliation(s)
- Junjun Ni
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 101111, P.R. China
| | - Li Xu
- Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 101111, P.R. China
| | - Wei Li
- Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 101111, P.R. China
| | - Chunmei Zheng
- Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 101111, P.R. China
| | - Lijun Wu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
19
|
Mu Y, Zhou Y, Wang Y, Li W, Zhou L, Lu X, Gao P, Gao M, Zhao Y, Wang Q, Wang Y, Xu G. Serum Metabolomics Study of Nonsmoking Female Patients with Non-Small Cell Lung Cancer Using Gas Chromatography-Mass Spectrometry. J Proteome Res 2019; 18:2175-2184. [PMID: 30892048 DOI: 10.1021/acs.jproteome.9b00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence of nonsmoking female patients with non-small cell lung cancer (NSCLC) has increased in recent decades; however, the pathogenesis of patients is unclear, and early diagnosis biomarkers are in urgent need. In this study, 136 nonsmoking female subjects (65 patients with NSCLC, 6 patients with benign lung tumors, and 65 healthy controls) were enrolled, and their metabolic profiling was investigated by using pseudotargeted gas chromatography-mass spectrometry. A total of 56 annotated metabolites were found and verified to be significantly different in nonsmoking females with NSCLC compared with the control. The metabolic profiling was featured by disturbed energy metabolism, amino acid metabolism, oxidative stress, lipid metabolism, and so on. Cysteine, serine, and 1-monooleoylglycerol were defined as the biomarker panel for the diagnosis of NSCLC patients. 98.5 and 91.4% of subjects were correctly distinguished in the discovery and validation sets, respectively. The biomarker panel was also useful for the diagnosis of in situ malignancy patients, with an accuracy of 97.7 and 97.8% in the discovery and validation sets, respectively. The study provides a biomarker panel for the auxiliary diagnosis of nonsmoking females with NSCLC.
Collapse
Affiliation(s)
- Ying Mu
- The First Affiliated Hospital of Dalian Medical University , Dalian Medical University , Dalian 116000 , China.,The Dalian Branch, the Library of Liaoning University of Traditional Chinese Medicine , Dalian 116600 , China
| | - Yang Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China.,The Second Affiliated Hospital of Dalian Medical University , Dalian Medical University , Dalian 116027 , China
| | - Yanfeng Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wei Li
- The First Affiliated Hospital of Dalian Medical University , Dalian Medical University , Dalian 116000 , China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Peng Gao
- Clinical Laboratory, Dalian Sixth People's Hospital , Dalian 116031 , China
| | - Mingyang Gao
- The First Affiliated Hospital of Dalian Medical University , Dalian Medical University , Dalian 116000 , China
| | - Yanhui Zhao
- The Dalian Branch, the Library of Liaoning University of Traditional Chinese Medicine , Dalian 116600 , China
| | - Qi Wang
- The Second Affiliated Hospital of Dalian Medical University , Dalian Medical University , Dalian 116027 , China
| | - Yanfu Wang
- The First Affiliated Hospital of Dalian Medical University , Dalian Medical University , Dalian 116000 , China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
20
|
Biotransformation-based metabolomics profiling method for determining and quantitating cancer-related metabolites. J Chromatogr A 2018; 1580:80-89. [DOI: 10.1016/j.chroma.2018.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023]
|
21
|
Wu H, Chen Y, Li Z, Liu X. Untargeted metabolomics profiles delineate metabolic alterations in mouse plasma during lung carcinoma development using UPLC-QTOF/MS in MS E mode. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181143. [PMID: 30839735 PMCID: PMC6170569 DOI: 10.1098/rsos.181143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/20/2018] [Indexed: 05/29/2023]
Abstract
In this work, an untargeted metabolomic method based on ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) in MSE (E represents collision energy) mode was exploited to determine the dynamic metabolic alterations in the plasma of male C57BL/6 mice during the onset and development of lung carcinoma. Plasma samples were collected from control and model mice (male C57BL/6 mice experimentally inoculated with the Lewis lung carcinoma cells) at 7 and 14 days post-inoculation (DPI). As a result, 15 dysregulated metabolites, including cholesterol sulphate, tiglylcarnitine, 1-palmitoylglycerophosphoinositol, 2-stearoylglycerophosphoinositol, stearoylcarnitine, PC(20:2(11Z,14Z)/16:0), PC(22:4(7Z,10Z,13Z,16Z)/14:0), PC(22:5(7Z,10Z,13Z,16Z,19Z)/14:0), PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0), 12,20-Dioxo-leukotriene B4, sphingosine 1-phosphate(d19:1-P), sphingomyelin(d18:0/16:1(9Z)), lysoPC(16:0), lysoPC(18:0) and lysoPC(20:4(5Z,8Z,11Z,14Z)), were identified in the plasma of model mice with xenografts at both 7 and 14 DPI. All the altered metabolites associated with the onset and development of lung carcinoma were involved in the metabolism of glycerophospholipid, fatty acid, sphingolipid and arachidonic acid. The feasible utility of these endogenous biomarkers as potential diagnostic indicators was validated through receiver operating characteristic curve analysis. Collectively, these findings provide a systematic view of metabolic changes linked to the onset and development of lung carcinoma.
Collapse
Affiliation(s)
- Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, People's Republic of China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, People's Republic of China
- National Key Disciplines of Lung Disease of Anhui University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Hefei 230038, People's Republic of China
- Department of Chinese Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Zegeng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, People's Republic of China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, People's Republic of China
- National Key Disciplines of Lung Disease of Anhui University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Hefei 230038, People's Republic of China
| | - Xianhua Liu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, People's Republic of China
| |
Collapse
|
22
|
Analysis of l-tyrosine based on electrocatalytic oxidative reactions via screen-printed electrodes modified with multi-walled carbon nanotubes and nanosized titanium oxide (TiO2). Amino Acids 2018; 50:823-829. [DOI: 10.1007/s00726-018-2557-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/23/2018] [Indexed: 01/05/2023]
|
23
|
Metabolomics of Hydrazine-Induced Hepatotoxicity in Rats for Discovering Potential Biomarkers. DISEASE MARKERS 2018; 2018:8473161. [PMID: 29849827 PMCID: PMC5914126 DOI: 10.1155/2018/8473161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/20/2017] [Indexed: 01/05/2023]
Abstract
Metabolic pathway disturbances associated with drug-induced liver injury remain unsatisfactorily characterized. Diagnostic biomarkers for hepatotoxicity have been used to minimize drug-induced liver injury and to increase the clinical safety. A metabolomics strategy using rapid-resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS) analyses and multivariate statistics was implemented to identify potential biomarkers for hydrazine-induced hepatotoxicity. The global serum and urine metabolomics of 30 hydrazine-treated rats at 24 or 48 h postdosing and 24 healthy rats were characterized by a metabolomics approach. Multivariate statistical data analyses and receiver operating characteristic (ROC) curves were performed to identify the most significantly altered metabolites. The 16 most significant potential biomarkers were identified to be closely related to hydrazine-induced liver injury. The combination of these biomarkers had an area under the curve (AUC) > 0.85, with 100% specificity and sensitivity, respectively. This high-quality classification group included amino acids and their derivatives, glutathione metabolites, vitamins, fatty acids, intermediates of pyrimidine metabolism, and lipids. Additionally, metabolomics pathway analyses confirmed that phenylalanine, tyrosine, and tryptophan biosynthesis as well as tyrosine metabolism had great interactions with hydrazine-induced liver injury in rats. These discriminating metabolites might be useful in understanding the pathogenesis mechanisms of liver injury and provide good prospects for drug-induced liver injury diagnosis clinically.
Collapse
|
24
|
Abstract
Urine is a biological matrix that contains hundreds of metabolic end products which constitute the urinary metabolome. The development and advances on LC-MS/MS have revolutionized the analytical study of biomolecules by enabling their accurate identification and quantification in an unprecedented manner. Nowadays, LC-MS/MS is helping to unveil the complexity of urine metabolome, and the results obtained have multiple biomedical applications. This review focuses on the targeted LC-MS/MS analysis of the urine metabolome. In the first part, we describe general considerations (from sample collection to quantitation) required for a proper targeted metabolic analysis. In the second part, we address the urinary analysis and recent applications of four relevant families: amino acids, catecholamines, lipids and steroids.
Collapse
|
25
|
Yu L, Li K, Zhang X. Next-generation metabolomics in lung cancer diagnosis, treatment and precision medicine: mini review. Oncotarget 2017; 8:115774-115786. [PMID: 29383200 PMCID: PMC5777812 DOI: 10.18632/oncotarget.22404] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/21/2017] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death. Next-generation metabolomics is becoming a powerful emerging technology for studying the systems biology and chemistry of health and disease. This mini review summarized the main platforms of next-generation metabolomics and its main applications in lung cancer including early diagnosis, pathogenesis, classifications and precision medicine. The period covers between 2009 and August, 2017. The major issues and future directions of metabolomics in lung cancer research and clinical applications were also discussed.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Kefeng Li
- School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
26
|
Zhang R, Hu P, Zang Q, Yue X, Zhou Z, Xu X, Xu J, Li S, Chen Y, Qiang B, Peng X, Han W, Zhang R, Abliz Z. LC-MS-based metabolomics reveals metabolic signatures related to glioma stem-like cell self-renewal and differentiation. RSC Adv 2017. [DOI: 10.1039/c7ra03781c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A metabolomic study of three glioma cell lines with different stemness were conducted. The specific metabolite signatures associated with SLC self-renewal and differentiation were characterized.
Collapse
|
27
|
Metabolomics, a Powerful Tool for Agricultural Research. Int J Mol Sci 2016; 17:ijms17111871. [PMID: 27869667 PMCID: PMC5133871 DOI: 10.3390/ijms17111871] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022] Open
Abstract
Metabolomics, which is based mainly on nuclear magnetic resonance (NMR), gas-chromatography (GC) or liquid-chromatography (LC) coupled to mass spectrometry (MS) analytical technologies to systematically acquire the qualitative and quantitative information of low-molecular-mass endogenous metabolites, provides a direct snapshot of the physiological condition in biological samples. As complements to transcriptomics and proteomics, it has played pivotal roles in agricultural and food science research. In this review, we discuss the capacities of NMR, GC/LC-MS in the acquisition of plant metabolome, and address the potential promise and diverse applications of metabolomics, particularly lipidomics, to investigate the responses of Arabidopsis thaliana, a primary plant model for agricultural research, to environmental stressors including heat, freezing, drought, and salinity.
Collapse
|
28
|
Xu J, Chen Y, Zhang R, He J, Song Y, Wang J, Wang H, Wang L, Zhan Q, Abliz Z. Global metabolomics reveals potential urinary biomarkers of esophageal squamous cell carcinoma for diagnosis and staging. Sci Rep 2016; 6:35010. [PMID: 27725730 PMCID: PMC5057114 DOI: 10.1038/srep35010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022] Open
Abstract
We performed a metabolomics study using liquid chromatography-mass spectrometry (LC-MS) combined with multivariate data analysis (MVDA) to discriminate global urine profiles in urine samples from esophageal squamous cell carcinoma (ESCC) patients and healthy controls (NC). Our work evaluated the feasibility of employing urine metabolomics for the diagnosis and staging of ESCC. The satisfactory classification between the healthy controls and ESCC patients was obtained using the MVDA model, and obvious classification of early-stage and advanced-stage patients was also observed. The results suggest that the combination of LC-MS analysis and MVDA may have potential applications for ESCC diagnosis and staging. We then conducted LC-MS/MS experiments to identify the potential biomarkers with large contributions to the discrimination. A total of 83 potential diagnostic biomarkers for ESCC were screened out, and 19 potential biomarkers were identified; the variations between the differences in staging using these potential biomarkers were further analyzed. These biomarkers may not be unique to ESCCs, but instead result from any malignant disease. To further elucidate the pathophysiology of ESCC, we studied related metabolic pathways and found that ESCC is associated with perturbations of fatty acid β-oxidation and the metabolism of amino acids, purines, and pyrimidines.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Yanhua Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, P. R. China
| | - Jingbo Wang
- Department of Radiation Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, P. R. China
| | - Huiqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Luhua Wang
- Department of Radiation Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, P. R. China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, P. R. China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
- Centre for Bioimaging & Systems Biology, Minzu university of China, Beijing 100081, P. R. China
| |
Collapse
|
29
|
Potential Metabolic Biomarkers to Identify Interstitial Lung Abnormalities. Int J Mol Sci 2016; 17:ijms17071148. [PMID: 27438829 PMCID: PMC4964521 DOI: 10.3390/ijms17071148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
Determining sensitive biomarkers in the peripheral blood to identify interstitial lung abnormalities (ILAs) is essential for the simple early diagnosis of ILAs. This study aimed to determine serum metabolic biomarkers of ILAs and the corresponding pathogenesis. Three groups of subjects undergoing health screening, including healthy subjects, subjects with ILAs, and subjects who were healthy initially and with ILAs one year later (Healthy→ILAs), were recruited for this study. The metabolic profiles of all of the subjects’ serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry. The metabolic characteristics of the ILAs subjects were discovered, and the corresponding biomarkers were predicted. The metabolomic data from the Healthy→ILAs subjects were collected for further verification. The results indicated that five serum metabolite alterations (up-regulated phosphatidylcholine, phosphatidic acid, betaine aldehyde and phosphatidylethanolamine, as well as down-regulated 1-acylglycerophosphocholine) were sensitive and reliable biomarkers for identifying ILAs. Perturbation of the corresponding biological pathways (RhoA signaling, mTOR/P70S6K signaling and phospholipase C signaling) might be at least partially responsible for the pathogenesis of ILAs. This study may provide a good template for determining the early diagnostic markers of subclinical disease status and for obtaining a better understanding of their pathogenesis.
Collapse
|
30
|
Huang Z, Zhang J, Zhang P, Wang H, Pan Z, Wang L. Analysis of volatile organic compounds in pleural effusions by headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry. J Sep Sci 2016; 39:2544-52. [DOI: 10.1002/jssc.201600279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Zhongping Huang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou China
| | - Jie Zhang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou China
| | - Peipei Zhang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou China
| | - Hong Wang
- Respiratory Department; Zhejiang Provincial People's Hospital; Hangzhou China
| | - Zaifa Pan
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou China
| | - Lili Wang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou China
| |
Collapse
|
31
|
Methods used to increase the comprehensive coverage of urinary and plasma metabolomes by MS. Bioanalysis 2016; 8:981-97. [DOI: 10.4155/bio-2015-0010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metabolomics, focusing on comprehensive analysis of all the metabolites in a biological system, provides a direct signature of biochemical activity. Using emerging technologies in MS, it is possible to simultaneously and rapidly analyze thousands of metabolites. However, due to the chemical and physical diversity of metabolites, it is difficult to acquire a comprehensive and reliable profiling of the whole metabolome. Here, we summarize the state of the art in metabolomics research, focusing on efforts to provide a more comprehensive metabolome coverage via improvements in two fundamental processes: sample preparation and MS analysis. Additionally, the reliable analysis is also highlighted via the combinations of multiple methods (e.g., targeted and untargeted approaches), and analytical quality control and calibration methods.
Collapse
|
32
|
Tian H, Zheng N, Wang W, Cheng J, Li S, Zhang Y, Wang J. Integrated Metabolomics Study of the Milk of Heat-stressed Lactating Dairy Cows. Sci Rep 2016; 6:24208. [PMID: 27048914 PMCID: PMC4822173 DOI: 10.1038/srep24208] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/22/2016] [Indexed: 02/01/2023] Open
Abstract
Heat stress (HS) damages the global dairy industry by reducing milk yields and quality, harming health, and damaging the reproduction of dairy cows, causing huge economic losses each year. However, an understanding of the physiological mechanism of HS lactating dairy cows remains elusive. Here, a metabolomics study using LC-MS and 1H NMR spectroscopy was performed to analyze the metabolomic differences in the milk between HS-free and HS dairy cows, and discover diagnostic biomarkers and changes in the metabolic pathway. A total of 53 discriminating metabolites were significantly up- or down-regulated in the HS group compared with the HS-free group (P < 0.05). These biomarkers were involved in pathways of carbohydrate, amino acid, lipid, and gut microbiome-derived metabolism. Comparing these potential biomarkers with previously identified HS candidate biomarkers in plasma, significant correlations between the levels of lactate, pyruvate, creatine, acetone, β-hydroxybutyrate, trimethylamine, oleic acid, linoleic acid, lysophosphatidylcholine 16:0, and phosphatidylcholine 42:2 in milk and plasma were found, indicating that the blood-milk barrier became leaky and the levels of these 10 biomarkers in milk can reflect HS-induced metabolomic alterations in blood. These novel findings can support more in-depth research to elucidate the milk-based changes in metabolic pathways in HS lactating dairy cows.
Collapse
Affiliation(s)
- He Tian
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Nan Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Weiyu Wang
- The High School affiliated to Renmin University of China, Beijing, 100080, P.R. China
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Songli Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Yangdong Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Jiaqi Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| |
Collapse
|
33
|
Abstract
RATIONALE Volatile organic compounds present in the exhaled breath have shown promise as biomarkers of lung cancer. Advances in colorimetric sensor array technology, breath collection methods, and clinical phenotyping may lead to the development of a more accurate breath biomarker. OBJECTIVES Perform a discovery-level assessment of the accuracy of a colorimetric sensor array-based volatile breath biomarker. METHODS Subjects with biopsy-confirmed untreated lung cancer, and others at risk for developing lung cancer, performed tidal breathing into a breath collection instrument designed to expose a colorimetric sensor array to the alveolar portion of the breath. Random forest models were built from the sensor output of 70% of the study subjects and were tested against the remaining 30%. Models were developed to separate cancer and subgroups from control, and to characterize the cancer. Additional models were developed after matching the clinical phenotypes of cancer and control subjects. MEASUREMENTS AND MAIN RESULTS Ninety-seven subjects with lung cancer and 182 control subjects participated. The accuracies, reported as C-statistics, for models of cancer and subgroups versus control ranged from 0.794 to 0.861. The accuracy was improved by developing models for cancer and control groups selected through propensity matching for clinical variables. A model built using only subjects from the largest available clinical subgroup (49 subjects) had a C-statistic of 0.982. Models developed and tested to characterize cancer histology, and to compare early- with late-stage cancer, had C-statistics of 0.881-0.960. CONCLUSIONS The colorimetric sensor array signature of exhaled breath volatile organic compounds was capable of distinguishing patients with lung cancer from clinically relevant control subjects in a discovery level trial. The incorporation of clinical phenotypes into the further development of this biomarker may optimize its accuracy.
Collapse
|
34
|
Wen C, Wang Z, Zhang M, Wang S, Geng P, Sun F, Chen M, Lin G, Hu L, Ma J, Wang X. Metabolic changes in rat urine after acute paraquat poisoning and discriminated by support vector machine. Biomed Chromatogr 2015; 30:75-80. [PMID: 26419410 DOI: 10.1002/bmc.3627] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/28/2015] [Accepted: 09/25/2015] [Indexed: 11/11/2022]
Abstract
Paraquat is quick-acting and non-selective, killing green plant tissue on contact; it is also toxic to human beings and animals. In this study, we developed a urine metabonomic method by gas chromatography-mass spectrometry to evaluate the effect of acute paraquat poisoning on rats. Pattern recognition analysis, including both partial least squares discriminate analysis and principal component analysis revealed that acute paraquat poisoning induced metabolic perturbations. Compared with the control group, the levels of benzeneacetic acid and hexadecanoic acid of the acute paraquat poisoning group (intragastric administration 36 mg/kg) increased, while the levels of butanedioic acid, pentanedioic acid, altronic acid decreased. Based on these urinary metabolomics data, support vector machine was applied to discriminate the metabolomic change of paraquat groups from the control group, which achieved 100% classification accuracy. In conclusion, metabonomic method combined with support vector machine can be used as a useful diagnostic tool in paraquat-poisoned rats.
Collapse
Affiliation(s)
- Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiyi Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Meiling Zhang
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, 325035, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui, 323000, China
| | - Peiwu Geng
- The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui, 323000, China
| | - Fa Sun
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, 325035, China
| | - Mengchun Chen
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, 325035, China
| | - Guanyang Lin
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, 325035, China
| | - Lufeng Hu
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jianshe Ma
- Function Experiment Teaching Center of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xianqin Wang
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
35
|
Wu Q, Fang A, Li H, Zhang Y, Yao S. Enzymatic-induced upconversion photoinduced electron transfer for sensing tyrosine in human serum. Biosens Bioelectron 2015; 77:957-62. [PMID: 26544870 DOI: 10.1016/j.bios.2015.10.084] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/17/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022]
Abstract
This paper reports a novel nanosensor for tyrosine based on photoinduced electron-transfer (PET) between NaYF4:Yb, Tm upconversion nanoparticles (UCNPs) and melanin-like polymers. Melanin-like films were obtained from catalytic oxidation of tyrosine by tyrosinase, and deposited on the surface of UCNPs, and then quenched the fluorescence of UCNPs. Under the optimized conditions, the fluorescence quenching of UCNPs showed a good linear response to tyrosine concentration in the range of 0.8-100 μΜ with a detection limit of 1.1 μΜ. Meanwhile, it showed good sensitivity, stability and has been successfully applied to the detection of tyrosine in human serum.
Collapse
Affiliation(s)
- Qiongqiong Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Aijin Fang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
36
|
The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol 2015; 1277:161-93. [PMID: 25677154 DOI: 10.1007/978-1-4939-2377-9_13] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have evolved as the most common techniques in metabolomics studies, and each brings its own advantages and limitations. Unlike MS spectrometry, NMR spectroscopy is quantitative and does not require extra steps for sample preparation, such as separation or derivatization. Although the sensitivity of NMR spectroscopy has increased enormously and improvements continue to emerge steadily, this remains a weak point for NMR compared with MS. MS-based metabolomics provides an excellent approach that can offer a combined sensitivity and selectivity platform for metabolomics research. Moreover, different MS approaches such as different ionization techniques and mass analyzer technology can be used in order to increase the number of metabolites that can be detected. In this chapter, the advantages, limitations, strengths, and weaknesses of NMR and MS as tools applicable to metabolomics research are highlighted.
Collapse
|
37
|
Tian H, Wang W, Zheng N, Cheng J, Li S, Zhang Y, Wang J. Data from identification of diagnostic biomarkers and metabolic pathway shifts of heat-stressed lactating dairy cows. Data Brief 2015; 4:90-5. [PMID: 26217769 PMCID: PMC4510399 DOI: 10.1016/j.dib.2015.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022] Open
Abstract
Controlling heat stress (HS) is a global challenge for the dairy industry. In this work, an integrated metabolomics and lipidomics approach using (1)H nuclear magnetic resonance (NMR) and ultra-fast LC-MS in combination with multivariate analyses was employed to investigate the discrimination of plasma metabolic profiles between HS-free and HS lactating dairy cows. Here we provide the information about the acquiring and processing of raw data obtained by (1)H NMR and LC-MS techniques. The data of present study are related to the research article "Identification of diagnostic biomarkers and metabolic pathway shifts of heat-stressed lactating dairy cows" in the Journal of Proteomics (Tian et al., J. Proteomics, (2015), doi:10.1016/j.jprot.2015.04.014).
Collapse
Affiliation(s)
- He Tian
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiyu Wang
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Nan Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Songli Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Moein MM, Javanbakht M, Karimi M, Akbari-adergani B, Abdel-Rehim M. Three-phase molecularly imprinted sol–gel based hollow fiber liquid-phase microextraction combined with liquid chromatography–tandem mass spectrometry for enrichment and selective determination of a tentative lung cancer biomarker. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 995-996:38-45. [DOI: 10.1016/j.jchromb.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/23/2015] [Accepted: 05/09/2015] [Indexed: 01/10/2023]
|
39
|
Wang Z, Zheng Y, Zhao B, Zhang Y, Liu Z, Xu J, Chen Y, Yang Z, Wang F, Wang H, He J, Zhang R, Abliz Z. Human metabolic responses to chronic environmental polycyclic aromatic hydrocarbon exposure by a metabolomic approach. J Proteome Res 2015; 14:2583-93. [PMID: 25990285 DOI: 10.1021/acs.jproteome.5b00134] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The toxicities of polycyclic aromatic hydrocarbons (PAHs) have been extensively explored due to their carcinogenic and mutagenic potency; however, little is known about the metabolic responses to chronic environmental PAH exposure among the general population. In the present study, 566 healthy volunteers were dichotomized into exposed and control groups to investigate PAH-induced perturbations in the metabolic profiles. Nine urine PAH metabolites were measured by a sensitive LC-MS/MS method to comprehensively evaluate the PAH exposure level of each individual, and the metabolic profiles were characterized via a LC-MS-based metabolomic approach. PAH exposure was correlated to its metabolic outcomes by linear and logistic regression analyses. Metabolites related to amino acid, purine, lipid, and glucuronic acid metabolism were significantly changed in the exposed group. 1-Hydroxyphenanthrene and dodecadienylcarnitine have potential as sensitive and reliable biomarkers for PAH exposure and its metabolic outcomes, respectively, in the general population. These findings generally support the hypothesis that environmental PAH exposure causes oxidative stress-related effects in humans. The current study provides new insight into the early molecular events induced by PAH exposure in the actual environment.
Collapse
Affiliation(s)
- Zhonghua Wang
- †State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Yajie Zheng
- †State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Baoxin Zhao
- ‡Taiyuan Centre for Disease Control and Prevention, Taiyuan 030012, China
| | - Yanping Zhang
- ‡Taiyuan Centre for Disease Control and Prevention, Taiyuan 030012, China
| | - Zhe Liu
- §Department of Biostatistics, Harvard School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Jing Xu
- †State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Yanhua Chen
- †State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Zhao Yang
- ∥School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Fenfen Wang
- ∥School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Huiqing Wang
- †State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Jiuming He
- †State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Ruiping Zhang
- †State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Zeper Abliz
- †State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| |
Collapse
|
40
|
Tian H, Wang W, Zheng N, Cheng J, Li S, Zhang Y, Wang J. Identification of diagnostic biomarkers and metabolic pathway shifts of heat-stressed lactating dairy cows. J Proteomics 2015; 125:17-28. [PMID: 25913299 DOI: 10.1016/j.jprot.2015.04.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Controlling heat stress (HS) is a global challenge for the dairy industry. However, simple and reliable biomarkers that aid the diagnoses of HS-induced metabolic disorders have not yet been identified. In this work, an integrated metabolomic and lipidomic approach using (1)H nuclear magnetic resonance and ultra-fast LC-MS was employed to investigate the discrimination of plasma metabolic profiles between HS-free and HS lactating dairy cows. Targeted detection using LC-MS in multiple reaction monitoring mode was used to verify the reliability of the metabolites as biomarker candidates. Overall, 41 metabolites were identified as candidates for lactating dairy cows exposed to HS, among which 13 metabolites, including trimethylamine, glucose, lactate, betaine, creatine, pyruvate, acetoacetate, acetone, β-hydroxybutyrate, C16 sphinganine, lysophosphatidylcholine (18:0), phosphatidylcholine (16:0/14:0), and arachidonic acid, had high sensitivity and specificity in diagnosing HS status, and are likely to be the potential biomarkers of HS dairy cows. All of these potentially diagnostic biomarkers were involved in carbohydrate, amino acid, lipid, or gut microbiome-derived metabolism, indicating that HS affected the metabolic pathways in lactating dairy cows. Further research is warranted to evaluate these biomarkers in practical applications and to elucidate the physiological mechanisms of HS-induced metabolic disorders. BIOLOGICAL SIGNIFICANCE Heat stress (HS) annually causes huge losses to global dairy industry, including animal performance decrease, metabolic disorder and health problem. So far, physiological mechanisms underlying HS of dairy cows still remain elusive. To our best knowledge, this is the first attempt to elucidate the HS-induced metabolic disorders of dairy cows using integrated (1)H NMR and LC-MS-based metabolic study. The results not only provided potential diagnostic biomarkers for HS lactating dairy cows, but also significantly explored the related physiological mechanisms of metabolic pathway shifts induced by HS environment. This work offers comprehensive insights into the global metabolic alterations of dairy cows exposed to HS and provides a new perspective for further study.
Collapse
Affiliation(s)
- He Tian
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiyu Wang
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Nan Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Songli Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
41
|
Urinary metabonomics study of Wu-tou-tang and its co-decoction with Pinelliae Rhizoma in adjuvant-induced arthritis rats. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2014.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Application of a novel metabolomic approach based on atmospheric pressure photoionization mass spectrometry using flow injection analysis for the study of Alzheimer׳s disease. Talanta 2015; 131:480-9. [DOI: 10.1016/j.talanta.2014.07.075] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
|
43
|
Moein MM, Javanbakht M, Karimi M, Akbari-adergani B, Abdel-Rehim M. A new strategy for surface modification of polysulfone membrane by in situ imprinted sol–gel method for the selective separation and screening ofl-Tyrosine as a lung cancer biomarker. Analyst 2015; 140:1939-46. [DOI: 10.1039/c4an01596g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of surface modification of polysulfone membrane byin situMIP sol–gel process.
Collapse
Affiliation(s)
| | | | - Mohammad Karimi
- Department of Textile engineering
- Amirkabir University of Technology
- Hafez
- Iran
| | - Behrouz Akbari-adergani
- Food and Drug Laboratory Research Center
- Food and Drug Department
- Ministry of Health and Medical Education
- Tehran
- Iran
| | | |
Collapse
|
44
|
Moein MM, El-Beqqali A, Javanbakht M, Karimi M, Akbari-adergani B, Abdel-Rehim M. On-line detection of hippuric acid by microextraction with a molecularly-imprinted polysulfone membrane sorbent and liquid chromatography–tandem mass spectrometry. J Chromatogr A 2014; 1372C:55-62. [DOI: 10.1016/j.chroma.2014.10.061] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/01/2023]
|
45
|
The early diagnosis and monitoring of squamous cell carcinoma via saliva metabolomics. Sci Rep 2014; 4:6802. [PMID: 25354816 PMCID: PMC4213796 DOI: 10.1038/srep06802] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/28/2014] [Indexed: 11/12/2022] Open
Abstract
Early diagnosis of oral squamous cell carcinoma (OSCC) is an attractive strategy to increase survival rate of patient. An integrated separation approach of reversed phase liquid chromatography and hydrophilic interaction chromatography combining with time of flight mass spectrometer has been firstly developed for performing global saliva metabonomics analysis for early diagnosis of OSCC. This approach was designed to overcome the limitations of a single chromatographic method due to different polarity of endogenous metabolites. As a result, 14 potential salivary metabolites were identified. Eight biomarkers up-regulated in OSCC patients are compared with control and six down-regulated groups. Receiver operating characteristic analysis was exploited to evaluate the diagnostic power of the candidate biomarkers, and related metabolic pathways have also been studied. Five salivary biomarkers (propionylcholine, N-Acetyl-L-phenylalanine, sphinganine, phytosphingosine, and S-carboxymethyl-L-cysteine) in combination yielded satisfactory accuracy (AUC = 0.997), sensitivity (100%), and specificity (96.7%) in distinguishing early stage of OSCC from the control. In this study, a comprehensive saliva metabonomics analysis for identifying potential biomarkers to early diagnose OSCC is successfully demonstrated, which has the advantages of non-invasive, simple, reliable, and low-cost. These novel metabolic biomarkers have obvious clinical utility that will help to diagnose OSCC at its early stage.
Collapse
|
46
|
Zhao YY, Cheng XL, Vaziri ND, Liu S, Lin RC. UPLC-based metabonomic applications for discovering biomarkers of diseases in clinical chemistry. Clin Biochem 2014; 47:16-26. [DOI: 10.1016/j.clinbiochem.2014.07.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/11/2014] [Accepted: 07/16/2014] [Indexed: 01/09/2023]
|
47
|
Preparation of monolithic molecularly imprinted polymer sol–gel packed tips for high-throughput bioanalysis: Extraction and quantification of l-tyrosine in human plasma and urine samples utilizing liquid chromatography and tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 967:168-73. [DOI: 10.1016/j.jchromb.2014.07.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022]
|
48
|
Liu H, Li C, Wang H, Huang Z, Zhang P, Pan Z, Wang L. Characterization of Volatile Organic Metabolites in Lung Cancer Pleural Effusions by SPME–GC/MS Combined with an Untargeted Metabolomic Method. Chromatographia 2014. [DOI: 10.1007/s10337-014-2720-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Wu Q, Yu X, Wang Y, Gu X, Ma X, Lv W, Chen Z, Yan C. Pressurized CEC coupled with QTOF-MS for urinary metabolomics. Electrophoresis 2014; 35:2470-8. [PMID: 24789083 DOI: 10.1002/elps.201400117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/19/2014] [Accepted: 04/19/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Qian Wu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Xinwei Yu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Xue Gu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Xiaoqiong Ma
- Zhejiang Provincial Hospital of Traditional Chinese Medicine; Zhejiang Chinese Medical University; Hangzhou China
| | - Wang Lv
- Zhejiang Provincial Hospital of Traditional Chinese Medicine; Zhejiang Chinese Medical University; Hangzhou China
| | - Zhe Chen
- Zhejiang Provincial Hospital of Traditional Chinese Medicine; Zhejiang Chinese Medical University; Hangzhou China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
50
|
Wu Q, Wang Y, Gu X, Zhou J, Zhang H, Lv W, Chen Z, Yan C. Urinary metabolomic study of non-small cell lung carcinoma based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Sep Sci 2014; 37:1728-35. [PMID: 24771673 DOI: 10.1002/jssc.201400222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Qian Wu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Xue Gu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Junyi Zhou
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Huiping Zhang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Wang Lv
- Zhejiang Hospital of Traditional Chinese Medicine; Zhejiang Chinese Medical University; Hangzhou China
| | - Zhe Chen
- Zhejiang Hospital of Traditional Chinese Medicine; Zhejiang Chinese Medical University; Hangzhou China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|