1
|
Haq SAU, Bashir T, Roberts TH, Husaini AM. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches. Mol Biol Rep 2023; 51:41. [PMID: 38158512 DOI: 10.1007/s11033-023-09042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/13/2023] [Indexed: 01/03/2024]
Abstract
While global climate change poses a significant environmental threat to agriculture, the increasing population is another big challenge to food security. To address this, developing crop varieties with increased productivity and tolerance to biotic and abiotic stresses is crucial. Breeders must identify traits to ensure higher and consistent yields under inconsistent environmental challenges, possess resilience against emerging biotic and abiotic stresses and satisfy customer demands for safer and more nutritious meals. With the advent of omics-based technologies, molecular tools are now integrated with breeding to understand the molecular genetics of genotype-based traits and develop better climate-smart crops. The rapid development of omics technologies offers an opportunity to generate novel datasets for crop species. Identifying genes and pathways responsible for significant agronomic traits has been made possible by integrating omics data with genetic and phenotypic information. This paper discusses the importance and use of omics-based strategies, including genomics, transcriptomics, proteomics and phenomics, for agricultural and horticultural crop improvement, which aligns with developing better adaptability in these crop species to the changing climate conditions.
Collapse
Affiliation(s)
- Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Thomas H Roberts
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Eveleigh, Australia
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
2
|
Yang T, Peng Q, Lin H, Xi D. Alpha-momorcharin preserves catalase activity to inhibit viral infection by disrupting the 2b-CAT interaction in Solanum lycopersicum. MOLECULAR PLANT PATHOLOGY 2023; 24:107-122. [PMID: 36377585 PMCID: PMC9831283 DOI: 10.1111/mpp.13279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Many host factors of plants are used by viruses to facilitate viral infection. However, little is known about how alpha-momorcharin (αMMC) counters virus-mediated attack strategies in tomato. Our present research revealed that the 2b protein of cucumber mosaic virus (CMV) directly interacted with catalases (CATs) and inhibited their activities. Further analysis revealed that transcription levels of catalase were induced by CMV infection and that virus accumulation increased in CAT-silenced or 2b-overexpressing tomato plants compared with that in control plants, suggesting that the interaction between 2b and catalase facilitated the accumulation of CMV in hosts. However, both CMV accumulation and viral symptoms were reduced in αMMC transgenic tomato plants, indicating that αMMC engaged in an antiviral role in the plant response to CMV infection. Molecular experimental analysis demonstrated that αMMC interfered with the interactions between catalases and 2b in a competitive manner, with the expression of αMMC inhibited by CMV infection. We further demonstrated that the inhibition of catalase activity by 2b was weakened by αMMC. Accordingly, αMMC transgenic plants exhibited a greater ability to maintain redox homeostasis than wild-type plants when infected with CMV. Altogether, these results reveal that αMMC retains catalase activity to inhibit CMV infection by subverting the interaction between 2b and catalase in tomato.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life SciencesJianghan UniversityWuhanChina
| | - Qiding Peng
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Honghui Lin
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Dehui Xi
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
3
|
Momo J, Rawoof A, Kumar A, Islam K, Ahmad I, Ramchiary N. Proteomics of Reproductive Development, Fruit Ripening, and Stress Responses in Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:65-95. [PMID: 36584279 DOI: 10.1021/acs.jafc.2c06564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fruits of the tomato crop (Solanum lycopersicum L.) are increasingly consumed by humans worldwide. Due to their rich nutritional quality, pharmaceutical properties, and flavor, tomato crops have gained a salient role as standout crops among other plants. Traditional breeding and applied functional research have made progress in varying tomato germplasms to subdue biotic and abiotic stresses. Proteomic investigations within a span of few decades have assisted in consolidating the functional genomics and transcriptomic research. However, due to the volatility and dynamicity of proteins in the regulation of various biosynthetic pathways, there is a need for continuing research in the field of proteomics to establish a network that could enable a more comprehensive understanding of tomato growth and development. With this view, we provide a comprehensive review of proteomic studies conducted on the tomato plant in past years, which will be useful for future breeders and researchers working to improve the tomato crop.
Collapse
Affiliation(s)
- John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Ilyas Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| |
Collapse
|
4
|
Zhang K, Xu X, Guo X, Ding S, Gu T, Qin L, He Z. Sugarcane Streak Mosaic Virus P1 Attenuates Plant Antiviral Immunity and Enhances Potato Virus X Infection in Nicotiana benthamiana. Cells 2022; 11:2870. [PMID: 36139443 PMCID: PMC9497147 DOI: 10.3390/cells11182870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/05/2022] Open
Abstract
The sugarcane streak mosaic virus (SCSMV) is the most important disease in sugarcane produced in southern China. The SCSMV encoded protein 1 (P1SCSMV) is important in disease development, but little is known about its detailed functions in plant-virus interactions. Here, the differential accumulated proteins (DAPs) were identified in the heterologous expression of P1SCSMV via a potato virus X (PVX)-based expression system, using a newly developed four-dimensional proteomics approach. The data were evaluated for credibility and reliability using qRT-RCR and Western blot analyses. The physiological response caused by host factors that directly interacted with the PVX-encoded proteins was more pronounced for enhancing the PVX accumulation and pathogenesis in Nicotiana benthamiana. P1SCSMV reduced photosynthesis by damaging the photosystem II (PSII). Overall, P1SCSMV promotes changes in the physiological status of its host by up- or downregulating the expression of host factors that directly interact with the viral proteins. This creates optimal conditions for PVX replication and movement, thereby enhancing its accumulation levels and pathogenesis. Our investigation is the first to supply detailed evidence of the pathogenesis-enhancing role of P1SCSMV, which provides a deeper understanding of the mechanisms behind virus-host interactions.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaowei Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shiwen Ding
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Tianxiao Gu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lang Qin
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhen He
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Yadav B, Kaur V, Narayan OP, Yadav SK, Kumar A, Wankhede DP. Integrated omics approaches for flax improvement under abiotic and biotic stress: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:931275. [PMID: 35958216 PMCID: PMC9358615 DOI: 10.3389/fpls.2022.931275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 05/03/2023]
Abstract
Flax (Linum usitatissimum L.) or linseed is one of the important industrial crops grown all over the world for seed oil and fiber. Besides oil and fiber, flax offers a wide range of nutritional and therapeutic applications as a feed and food source owing to high amount of α-linolenic acid (omega-3 fatty acid), lignans, protein, minerals, and vitamins. Periodic losses caused by unpredictable environmental stresses such as drought, heat, salinity-alkalinity, and diseases pose a threat to meet the rising market demand. Furthermore, these abiotic and biotic stressors have a negative impact on biological diversity and quality of oil/fiber. Therefore, understanding the interaction of genetic and environmental factors in stress tolerance mechanism and identification of underlying genes for economically important traits is critical for flax improvement and sustainability. In recent technological era, numerous omics techniques such as genomics, transcriptomics, metabolomics, proteomics, phenomics, and ionomics have evolved. The advancements in sequencing technologies accelerated development of genomic resources which facilitated finer genetic mapping, quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection in major cereal and oilseed crops including flax. Extensive studies in the area of genomics and transcriptomics have been conducted post flax genome sequencing. Interestingly, research has been focused more for abiotic stresses tolerance compared to disease resistance in flax through transcriptomics, while the other areas of omics such as metabolomics, proteomics, ionomics, and phenomics are in the initial stages in flax and several key questions remain unanswered. Little has been explored in the integration of omic-scale data to explain complex genetic, physiological and biochemical basis of stress tolerance in flax. In this review, the current status of various omics approaches for elucidation of molecular pathways underlying abiotic and biotic stress tolerance in flax have been presented and the importance of integrated omics technologies in future research and breeding have been emphasized to ensure sustainable yield in challenging environments.
Collapse
Affiliation(s)
- Bindu Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Vikender Kaur
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Om Prakash Narayan
- College of Arts and Sciences, University of Florida, Gainesville, FL, United States
| | - Shashank Kumar Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | |
Collapse
|
6
|
Ramulifho E, Rey MEC. Proteome Mapping of South African Cassava Mosaic Virus-Infected Susceptible and Tolerant Landraces of Cassava. Proteomes 2021; 9:41. [PMID: 34842800 PMCID: PMC8628908 DOI: 10.3390/proteomes9040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The production of cassava is threatened by the geminivirus South African cassava mosaic virus (SACMV), which causes cassava mosaic disease. Cassava landrace TME3 shows tolerance to SACMV, while T200 is highly susceptible. This study aimed to identify the leaf proteome involved in anti-viral defence. Liquid chromatography mass spectrometry (LC-MS) identified 2682 (54 differentially expressed) and 2817 (206 differentially expressed) proteins in both landraces at systemic infection (32 days post infection) and symptom recovery (67 days post infection), respectively. Differences in the number of differentially expressed proteins (DEPs) between the two landraces were observed. Gene ontology analysis showed that defence-associated pathways such as the chloroplast, proteasome, and ribosome were overrepresented at 67 days post infection (dpi) in SACMV-tolerant TME3. At 67 dpi, a high percentage (56%) of over-expressed proteins were localized in the chloroplast in TME3 compared to T200 (31% under-expressed), proposing that chloroplast proteins play a role in tolerance in TME3. Ribosomal_L7Ae domain-containing protein (Manes.12G139100) was over-expressed uniquely in TME3 at 67 dpi and interacts with the ribosomal protein Sac52 (RPL10). RPL10 is a known key player in the NIK1-mediated effector triggered immunity (ETI) response to geminivirus infection, indicating a possible role for Sac52 in SACMV recovery in TME3. In conclusion, differential protein expression responses in TME3 and T200 may be key to unravel tolerance to CMD.
Collapse
Affiliation(s)
- Elelwani Ramulifho
- Plant Biotechnology Laboratory, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2001, South Africa;
- Germplasm Development, Agricultural Research Council-Small Grain Institute, Bethlehem 9700, South Africa
| | - Marie Emma Christine Rey
- Plant Biotechnology Laboratory, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2001, South Africa;
| |
Collapse
|
7
|
Chen G, Li R, Shen X. ApSerpin-ZX from Agapanthus praecox, is a potential cryoprotective agent to plant cryopreservation. Cryobiology 2020; 98:103-111. [PMID: 33316226 DOI: 10.1016/j.cryobiol.2020.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Cryopreservation-induced cell death is regarded as an important problem faced by cryobiologists. Oxidative stress and programmed cell death are detrimental to cell survival. Serine protease inhibitors (serpins) inhibit pro-cell-death proteases and play a pro-survival role in excessive cell death induced by abiotic stress. In this study, ApSerpin-ZX was isolated from Agapanthus praecox and characterized as a protective protein in plant cryopreservation. The mRNA level of ApSerpin-ZX was elevated under abiotic stress, such as salt, osmosis, oxidative, cold, and cryoinjury. The purified recombinant protein expressed in E. coli was added to the plant vitrification solution and used for A. praecox embryogenic callus cryopreservation. The concentration of 0.6-4.8 mg∙L-1 of ApSerpin-ZX protein was beneficial to the survival of cryopreserved embryogenic callus of A. praecox. The most effective concentration was 1.2 mg∙L-1, which elevated the survival by 37.15%. Subsequently, the cryopreservation procedure with 1.2 mg∙L-1 of ApSerpin-ZX protein was regarded as the treated group, compared to standard procedure, to determine the physiological mechanism of ApSerpin-ZX protein on cryopreserved cell. The MDA and H2O2 contents were significantly decreased in the treated group, along with reduced OH· generation activity in the recovery stage. After the addition of ApSerpin-ZX, the POD and CAT activities keep increased, while SOD activity increased only after dehydration. Besides, the caspase-1-like and caspase-3-like activities were lower than the standard procedure. This study indicated that ApSerpin-ZX was a potential cryoprotective agent that alleviated oxidative stress and cell death induced by cryopreservation.
Collapse
Affiliation(s)
- Guanqun Chen
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ruilian Li
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohui Shen
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Yang X, Das PP, Oppenheimer P, Zhou G, Wong SM. iTRAQ-based protein analysis provides insight into heterologous superinfection exclusion with TMV-43A against CMV in tobacco (Nicotiana benthamiana) plants. J Proteomics 2020; 229:103948. [PMID: 32858166 DOI: 10.1016/j.jprot.2020.103948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Heterologous superinfection exclusion (HSE) is a phenomenon of an initial virus infection which prevents reinfection by a distantly related or unrelated challenger virus strain in the same host. Here, we demonstrate that a mild strain mutant of Tobacco mosaic virus (TMV-43A) can protect Nicotiana benthamiana plants against infection by a challenger Cucumber mosaic virus (CMV)-Fny strain. The isobaric tags for relative and absolute quantification (iTRAQ) technique was used to investigate proteome of N. benthamiana plant during HSE. Our results indicated that in superinfected plants, the PSI and PSII proteins in the photosynthetic pathway increased in abundance, providing sufficient energy to plants for survival. The fatty acid synthesis-related proteins acetyl-CoA carboxylase 1-like and fatty acid synthase were decreased in abundance, affecting the formation of virus replication complex, which in turn reduced CMV replication and lessen hijacking of basic building blocks of RNA transcription and protein synthesis required for normal host functions. This is the first analyses of host proteins that are correlated to HSE between two unrelated plant viruses TMV-43A and CMV in N. benthamiana plants. BIOLOGICAL SIGNIFICANCE: CMV is one of the most studied host-virus interaction models in plants. It infects both monocot and dicot crop plants, causing significant economic losses. Superinfection exclusion (also known as cross protection) is one of the methods to combat virus infection. However, there is lack of proteome information of heterologous superinfection exclusion between two taxonomically unrelated plant viruses (such as between CMV and TMV). An iTRAQ-based quantitative approach was used to study proteomics of superinfection, where TMV-43A acts as a protector of N. benthamiana plants against its challenger CMV. Results showed that TMV-43A protects host plants and prevents plant death from CMV infection. This study provided insights into host responses involving multiple host pathways: photosynthesis, plant defence, carbon metabolism, translation and protein processing, fatty acid metabolism and amino acid biosynthesis. The findings provide a reference database for other viruses and increase our knowledge in host proteins that are correlated to superinfection.
Collapse
Affiliation(s)
- Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Prem Prakash Das
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Peter Oppenheimer
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
9
|
Jain A, Singh HB, Das S. Deciphering plant-microbe crosstalk through proteomics studies. Microbiol Res 2020; 242:126590. [PMID: 33022544 DOI: 10.1016/j.micres.2020.126590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
Abstract
Proteomic approaches are being used to elucidate a better discretion of interactions occurring between host, pathogen, and/or beneficial microorganisms at the molecular level. Application of proteomic techniques, unravel pathogenicity, stress-related, and antioxidant proteins expressed amid plant-microbe interactions and good information have been generated. It is being perceived that a fine regulation of protein expression takes place for effective pathogen recognition, induction of resistance, and maintenance of host integrity. However, our knowledge of molecular plant-microbe interactions is still incomplete and inconsequential. This review aims to provide insight into numerous ways used for proteomic investigation including peptide/protein identification, separation, and quantification during host defense response. Here, we highlight the current progress in proteomics of defense responses elicited by bacterial, fungal, and viral pathogens in plants along with which the proteome level changes induced by beneficial microorganisms are also discussed.
Collapse
Affiliation(s)
- Akansha Jain
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
10
|
Jia X, Qin H, Bose SK, Liu T, He J, Xie S, Ye M, Yin H. Proteomics analysis reveals the defense priming effect of chitosan oligosaccharides in Arabidopsis-Pst DC3000 interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:301-312. [PMID: 32120172 DOI: 10.1016/j.plaphy.2020.01.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 05/02/2023]
Abstract
Chitosan oligosaccharides (COS) worked effectively in multiple plant-pathogen interactions as plant immunity regulator, however, due to the complexity of the COS-induced immune signaling network, the topic requires further investigation. In the present study, quantitative analysis of proteins was performed to investigate the underlying mechanism of COS induced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in Arabidopsis thaliana. 4303 proteins were successfully quantified, 186, 217 and 207 proteins were differently regulated in mock + Pst, COS, and COS + Pst treated plants, respectively, compared with mock plants. From detailed functional and hierarchical clustering analysis, a priming effect of COS on plant immune system by pre-regulated the key proteins related to signaling transduction, defense response, cell wall biosynthesis and modification, plant growth and development, gene transcription and translation, which confers enhanced resistance when Pst DC3000 infection in Arabidopsis. Moreover, RACK1B which has the potential to be the key kinase receptor for COS signals was found out by protein-protein interaction network analysis of COS responsive proteins. In conclusion, COS treatment enable plant to fine-tuning its defense mechanisms for a more rapid and stronger response to future pathogen attacks, which obviously enhances plants defensive capacity that makes COS worked effectively in multiple plant-pathogen interactions.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hongqiang Qin
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Santosh Kumar Bose
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tongmei Liu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jinxia He
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shangqiang Xie
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
11
|
Noronha Souza PF, Abreu Oliveira JT, Vasconcelos IM, Magalhães VG, Albuquerque Silva FD, Guedes Silva RG, Oliveira KS, Franco OL, Gomes Silveira JA, Leite Carvalho FE. H 2O 2Accumulation, Host Cell Death and Differential Levels of Proteins Related to Photosynthesis, Redox Homeostasis, and Required for Viral Replication Explain the Resistance of EMS-mutagenized Cowpea to Cowpea Severe Mosaic Virus. JOURNAL OF PLANT PHYSIOLOGY 2020; 245:153110. [PMID: 31918353 DOI: 10.1016/j.jplph.2019.153110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Infection with Cowpea severe mosaic virus (CPSMV) represents one of the main limitations for cowpea (Vigna unguiculata L. Walp.) productivity due to the severity of the disease symptoms, frequency of incidence, and difficulties in dissemination control. This study aimed to identify the proteins and metabolic pathways associated with the susceptibility and resistance of cowpea plants to CPSMV. Therefore, we treated the seeds of a naturally susceptible cowpea genotype (CE-31) with the mutagenic agent ethyl methane sulfonate (EMS) and compared the secondary leaf proteomic profile of the mutagenized resistant plants inoculated with CPSMV (MCPI plant group) to those of the naturally susceptible cowpea genotype CE-31 inoculated (CPI) and noninoculated (CPU) with CPSMV. MCPI responded to CPSMV by accumulating proteins involved in the oxidative burst, increasing H2O2 generation, promoting leaf cell death (LCD), increasing the synthesis of defense proteins, and decreasing host factors important for the establishment of CPSMV infection. In contrast, CPI accumulated several host factors that favor CPSMV infection and did not accumulate H2O2 or present LCD, which allowed CPSMV replication and systemic dissemination. Based on these results, we propose that the differential abundance of defense proteins and proteins involved in the oxidative burst, LCD, and the decrease in cowpea protein factors required for CPSMV replication are associated with the resistance trait acquired by the MCPI plant group.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kleber Sousa Oliveira
- Proteomics Analysis and Biochemical Center, Catholic University of Brasilia, Brasilia, Brazil
| | - Octavio Luis Franco
- Proteomics Analysis and Biochemical Center, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Campo Grande, MS, Brazil.
| | | | | |
Collapse
|
12
|
Proteomic Changes during MCMV Infection Revealed by iTRAQ Quantitative Proteomic Analysis in Maize. Int J Mol Sci 2019; 21:ijms21010035. [PMID: 31861651 PMCID: PMC6981863 DOI: 10.3390/ijms21010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Maize chlorotic mottle virus (MCMV) has been occurring frequently worldwide and causes severe yield losses in maize (Zea mays). To better investigate the destructive effects of MCMV infection on maize plants, isobaric tagging for relative and absolute quantitation (iTRAQ)-based comparative proteomic analysis was performed on MCMV infected maize cv. B73. A total of 972 differentially abundant proteins (DAPs), including 661 proteins with increased abundance and 311 proteins with reduced abundance, were identified in response to MCMV infection. Functional annotations of DAPs and measurement of photosynthetic activity revealed that photosynthesis was decreased, while the abundance of ribosomal proteins, proteins related to stress responses, oxidation-reduction and redox homeostasis was altered significantly during MCMV infection. Two DAPs, disulfide isomerases like protein ZmPDIL-1 and peroxiredoxin family protein ZmPrx5, were further analyzed for their roles during MCMV infection through cucumber mosaic virus-based virus-induced gene silencing (CMV-VIGS). The accumulation of MCMV was suppressed in ZmPDIL-1-silenced or ZmPrx5-silenced B73 maize, suggesting ZmPDIL-1 and ZmPrx5 might enhance host susceptibility to MCMV infection.
Collapse
|
13
|
Kumar S, Dhembla C, P H, Sundd M, Patel AK. Differential expression of structural and functional proteins during bean common mosaic virus-host plant interaction. Microb Pathog 2019; 138:103812. [PMID: 31669830 DOI: 10.1016/j.micpath.2019.103812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022]
Abstract
Bean common mosaic virus (BCMV), the most common seed-borne pathogen in Phaseolus vulgaris L. is known to cause severe loss in productivity across the globe. In the present study, proteomic analyses were performed for leaf samples from control (healthy) and susceptible BCMV infected plants. The differential expression of proteins was evaluated using two-dimensional gel electrophoresis (2-DE). Approximately, 1098 proteins were spotted, amongst which 107 proteins were observed to be statistically significant with differential expression. The functional categorization of the differential proteins illustrated that they were involved in biotic/abiotic stress (18%), energy and carbon metabolism (11%), photosynthesis (46%), protein biosynthesis (10%), chaperoning (5%), chlorophyll (5%) and polyunsaturated fatty acid biosynthesis (5%). This is the first report on the comparative proteome study of compatible plant-BCMV interactions in P. vulgaris which contributes largely to the understanding of protein-mediated disease resistance/susceptible mechanisms.
Collapse
Affiliation(s)
- Sunil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Chetna Dhembla
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Hariprasad P
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
14
|
Madroñero J, Corredor Rozo ZL, Escobar Pérez JA, Velandia Romero ML. Next generation sequencing and proteomics in plant virology: how is Colombia doing? ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n3.79486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Crop production and trade are two of the most economically important activities in Colombia, and viral diseases cause a high negative impact to agricultural sector. Therefore, the detection, diagnosis, control, and management of viral diseases are crucial. Currently, Next-Generation Sequencing (NGS) and ‘Omic’ technologies constitute a right-hand tool for the discovery of novel viruses and for studying virus-plant interactions. This knowledge allows the development of new viral diagnostic methods and the discovery of key components of infectious processes, which could be used to generate plants resistant to viral infections. Globally, crop sciences are advancing in this direction. In this review, advancements in ‘omic’ technologies and their different applications in plant virology in Colombia are discussed. In addition, bioinformatics pipelines and resources for omics data analyses are presented. Due to their decreasing prices, NGS technologies are becoming an affordable and promising means to explore many phytopathologies affecting a wide variety of Colombian crops so as to improve their trade potential.
Collapse
|
15
|
Santos Dória M, Silva Guedes M, de Andrade Silva EM, Magalhães de Oliveira T, Pirovani CP, Kupper KC, Bastianel M, Micheli F. Comparative proteomics of two citrus varieties in response to infection by the fungus Alternaria alternata. Int J Biol Macromol 2019; 136:410-423. [PMID: 31199975 DOI: 10.1016/j.ijbiomac.2019.06.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023]
Abstract
Alternaria brown spot (ABS) is a disease caused by the necrotrophic fungus Alternaria alternata, which induces necrotic lesions on fruits and young leaves due to the production of the host-specific ACT toxin by the fungus. To better understand the citrus-A. alternata interaction and to identify putative resistance proteins, as well as the receptor of the ACT toxin, citrus plants susceptible ('Minneola' mandarin) and resistant ('Clemenules' tangor) to A. alternata, infected or not (control) with the pathogen were analyzed by proteomics. Protein changes were observed between citrus genotypes after infection, and 150 candidate proteins were obtained. A general scheme of the metabolic processes involved in susceptible and resistant citrus-A. alternata interactions was designed. Susceptible plants presented a high level of proteins involved in stress response at the final stages of the infection, whereas resistant plants presented high level of ROS proteins, metabolic proteins, and proteins involved in the immune system process. Proteins like ferredoxin and cyclophilin are specific to the susceptible variety and may be good candidates as fungal effector-interacting proteins. This is the first citrus-A. alternata proteomics analysis, which has allowed a better understanding of the molecular bases of the citrus response to ABS disease.
Collapse
Affiliation(s)
- Milena Santos Dória
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), BA, Brazil
| | - Meg Silva Guedes
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), BA, Brazil
| | | | | | - Carlos Priminho Pirovani
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), BA, Brazil
| | - Katia Cristina Kupper
- Centro de Citricultura "Sylvio Moreira", Instituto Agronômico de Campinas (IAC), SP, Brazil
| | - Marinês Bastianel
- Centro de Citricultura "Sylvio Moreira", Instituto Agronômico de Campinas (IAC), SP, Brazil
| | - Fabienne Micheli
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), BA, Brazil; CIRAD, UMR AGAP, F-34398 Montpellier, France.
| |
Collapse
|
16
|
Li T, Wang YH, Liu JX, Feng K, Xu ZS, Xiong AS. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops. Crit Rev Biotechnol 2019; 39:680-692. [DOI: 10.1080/07388551.2019.1608153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Gao D, Wang D, Chen K, Huang M, Xie X, Li X. Activation of biochemical factors in CMV-infected tobacco by ningnanmycin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:116-122. [PMID: 31027570 DOI: 10.1016/j.pestbp.2019.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/09/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Cucumber mosaic virus (CMV) is a plant virus with one of the largest host ranges, the widest distribution, and economic importance, and ningnanmycin (NNM) is a commercial antiviral agent. Studies have shown that NNM induces and promotes pathogenesis-related proteins in tobacco mosaic virus-inoculated tobacco. In the present study, the defense enzymes and the biochemical factors of CMV-inoculated tobacco treated with NNM were measured. The biochemical factors of CMV-inoculated tobacco leaves treated with NNM were analyzed. Results showed that the phenylalanine ammonia-lyase, peroxidase, polypheuoloxidase, and superoxide in the CMV-inoculated tobacco leaves treated with NNM were higher than those in non-treated tobacco leaves. Furthermore, NNM activated the oxidation-reduction process, metabolic process, and oxidoreductase activity in the CMV-infected tobacco.
Collapse
Affiliation(s)
- Di Gao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Dongmei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Kai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Maoxi Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
18
|
Souza PFN, Garcia-Ruiz H, Carvalho FEL. What proteomics can reveal about plant-virus interactions? Photosynthesis-related proteins on the spotlight. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2019; 31:227-248. [PMID: 31355128 PMCID: PMC6660014 DOI: 10.1007/s40626-019-00142-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant viruses are responsible for losses in worldwide production of numerous economically important food and fuel crops. As obligate cellular parasites with very small genomes, viruses rely on their hosts for replication, assembly, intra- and intercellular movement, and attraction of vectors for dispersal. Chloroplasts are photosynthesis and are the site of replication for several viruses. When viruses replicate in chloroplasts, photosynthesis, an essential process in plant physiology, is inhibited. The mechanisms underlying molecular and biochemical changes during compatible and incompatible plants-virus interactions, are only beginning to be elucidated, including changes in proteomic profiles induced by virus infections. In this review, we highlight the importance of proteomic studies to understand plant-virus interactions, especially emphasizing the changes in photosynthesis-related protein accumulation. We focus on: (a) chloroplast proteins that differentially accumulate during viral infection; (b) the significance with respect to chloroplast-virus interaction; and (c) alterations in plant's energetic metabolism and the subsequently the plant defense mechanisms to overcome viral infection.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
19
|
Wrzesińska B, Dai Vu L, Gevaert K, De Smet I, Obrępalska-Stęplowska A. Peanut Stunt Virus and Its Satellite RNA Trigger Changes in Phosphorylation in N. benthamiana Infected Plants at the Early Stage of the Infection. Int J Mol Sci 2018; 19:E3223. [PMID: 30340407 PMCID: PMC6214028 DOI: 10.3390/ijms19103223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022] Open
Abstract
Signaling in host plants is an integral part of a successful infection by pathogenic RNA viruses. Therefore, identifying early signaling events in host plants that play an important role in establishing the infection process will help our understanding of the disease process. In this context, phosphorylation constitutes one of the most important post-translational protein modifications, regulating many cellular signaling processes. In this study, we aimed to identify the processes affected by infection with Peanut stunt virus (PSV) and its satellite RNA (satRNA) in Nicotiana benthamiana at the early stage of pathogenesis. To achieve this, we performed proteome and phosphoproteome analyses on plants treated with PSV and its satRNA. The analysis of the number of differentially phosphorylated proteins showed strong down-regulation in phosphorylation in virus-treated plants (without satRNA). Moreover, proteome analysis revealed more down-regulated proteins in PSV and satRNA-treated plants, which indicated a complex dependence between proteins and their modifications. Apart from changes in photosynthesis and carbon metabolism, which are usually observed in virus-infected plants, alterations in proteins involved in RNA synthesis, transport, and turnover were observed. As a whole, this is the first community (phospho)proteome resource upon infection of N. benthamiana with a cucumovirus and its satRNA and this resource constitutes a valuable data set for future studies.
Collapse
Affiliation(s)
- Barbara Wrzesińska
- Institute of Plant Protection-National Research Institute, Department of Entomology, Animal Pests and Biotechnology, Władysława Węgorka 20, 60-318 Poznań, Poland.
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium.
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium.
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium.
| | - Aleksandra Obrępalska-Stęplowska
- Institute of Plant Protection-National Research Institute, Department of Entomology, Animal Pests and Biotechnology, Władysława Węgorka 20, 60-318 Poznań, Poland.
| |
Collapse
|
20
|
Qiu Y, Zhang Y, Wang C, Lei R, Wu Y, Li X, Zhu S. Cucumber mosaic virus coat protein induces the development of chlorotic symptoms through interacting with the chloroplast ferredoxin I protein. Sci Rep 2018; 8:1205. [PMID: 29352213 PMCID: PMC5775247 DOI: 10.1038/s41598-018-19525-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/28/2017] [Indexed: 11/15/2022] Open
Abstract
Cucumber mosaic virus (CMV) infection could induce mosaic symptoms on a wide-range of host plants. However, there is still limited information regarding the molecular mechanism underlying the development of the symptoms. In this study, the coat protein (CP) was confirmed as the symptom determinant by exchanging the CP between a chlorosis inducing CMV-M strain and a green-mosaic inducing CMV-Q strain. A yeast two-hybrid analysis and bimolecular fluorescence complementation revealed that the chloroplast ferredoxin I (Fd I) protein interacted with the CP of CMV-M both in vitro and in vivo, but not with the CP of CMV-Q. The severity of chlorosis was directly related to the expression of Fd1, that was down-regulated in CMV-M but not in CMV-Q. Moreover, the silencing of Fd I induced chlorosis symptoms that were similar to those elicited by CMV-M. Subsequent analyses indicated that the CP of CMV-M interacted with the precursor of Fd I in the cytoplasm and disrupted the transport of Fd I into chloroplasts, leading to the suppression of Fd I functions during a viral infection. Collectively, our findings accentuate that the interaction between the CP of CMV and Fd I is the primary determinant for the induction of chlorosis in tobacco.
Collapse
Affiliation(s)
- Yanhong Qiu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Chaonan Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- China Agricultural University, Beijing, 100129, China
| | - Rong Lei
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yupin Wu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Xinshi Li
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
21
|
Zhong X, Wang ZQ, Xiao R, Wang Y, Xie Y, Zhou X. iTRAQ analysis of the tobacco leaf proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense against geminivirus-betasatellite infection. J Proteomics 2017; 152:88-101. [PMID: 27989946 DOI: 10.1016/j.jprot.2016.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 11/22/2022]
Abstract
Geminiviruses have caused serious losses in crop production. To investigate the mechanisms underlying host defenses against geminiviruses, an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic approach was used to explore the expression profiles of proteins in Nicotiana benthamiana (N. benthamiana) leaves in response to tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB) at an early phase. In total, 4155 proteins were identified and 272 proteins were changed differentially in response to TYLCCNV/TYLCCNB infection. Bioinformatics analysis indicated that S-adenosyl-l-methionine cycle II was the most significantly up-regulated biochemical process during TYLCCNV/TYLCCNB infection. The mRNA levels of three proteins in S-adenosyl-l-methionine cycle II were further analyzed by qPCR, each was found significantly up-regulated in TYLCCNV/TYLCCNB-infected N. benthamiana. This result suggested a strong promotion of the biosynthesis of available methyl groups during geminivirus infections. We further tested the potential role of RdDM in N. benthamiana by virus-induced gene silencing (VIGS) and found that a disruption in RdDM resulted in more severe infectious symptoms and higher accumulation of viral DNA after TYLCCNV/TYLCCNB infection. Although the precise functions of these proteins still need to be determined, our proteomic results enhance the understanding of plant antiviral mechanisms. BIOLOGICAL SIGNIFICANCE One of the major limitations to crop growth in the worldwide is the prevalence of geminiviruses. They are able to infect food and cash crops and cause serious crop failures and economic losses worldwide, especially in Africa and Asia. Tomato yellow leaf curl China virus (TYLCCNV), which causes severe viral diseases in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). However, the mechanisms underlying the TYLCCNV/TYLCCNB defense in plants are still not fully understood at the molecular level. In this study, the combined proteomic, bioinformatic and VIGS analyses revealed that TYLCCNV/TYLCCNB invasion caused complex proteomic alterations in the leaves of N. benthamiana involving the processes of stress and defense, energy production, photosynthesis, protein homeostasis, metabolism, cell structure, signal transduction, transcription, transportation, and cell growth/division. Promotion of available methyl groups via the S-adenosyl-l-methionine cycle II pathway in N. benthamiana appeared crucial for antiviral responses. These findings enhance our understanding in the proteomic aspects of host antiviral defenses against geminiviruses, and also demonstrate that the combination of proteomics with bioinformatics and VIGS analysis is an effective approach to investigate systemic plant responses to geminiviruses and to shed light on plant-virus interactions.
Collapse
Affiliation(s)
- Xueting Zhong
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Zhan Qi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Ruyuan Xiao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
22
|
Paiva ALS, Oliveira JTA, de Souza GA, Vasconcelos IM. Label-free Proteomic Reveals that Cowpea Severe Mosaic Virus Transiently Suppresses the Host Leaf Protein Accumulation During the Compatible Interaction with Cowpea (Vigna unguiculata [L.] Walp.). J Proteome Res 2016; 15:4208-4220. [PMID: 27934294 DOI: 10.1021/acs.jproteome.6b00211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Viruses are important plant pathogens that threaten diverse crops worldwide. Diseases caused by Cowpea severe mosaic virus (CPSMV) have drawn attention because of the serious damages they cause to economically important crops including cowpea. This work was undertaken to quantify and identify the responsive proteins of a susceptible cowpea genotype infected with CPSMV, in comparison with mock-inoculated controls, using label-free quantitative proteomics and databanks, aiming at providing insights on the molecular basis of this compatible interaction. Cowpea leaves were mock- or CPSMV-inoculated and 2 and 6 days later proteins were extracted and analyzed. More than 3000 proteins were identified (data available via ProteomeXchange, identifier PXD005025) and 75 and 55 of them differentially accumulated in response to CPSMV, at 2 and 6 DAI, respectively. At 2 DAI, 76% of the proteins decreased in amount and 24% increased. However, at 6 DAI, 100% of the identified proteins increased. Thus, CPSMV transiently suppresses the synthesis of proteins involved particularly in the redox homeostasis, protein synthesis, defense, stress, RNA/DNA metabolism, signaling, and other functions, allowing viral invasion and spread in cowpea tissues.
Collapse
Affiliation(s)
| | | | - Gustavo A de Souza
- Proteomics Core Facility, Institute of Immunology (IMM), Rikshospitalet , Oslo, Norway
| | | |
Collapse
|
23
|
Huang Y, Ma HY, Huang W, Wang F, Xu ZS, Xiong AS. Comparative proteomic analysis provides novel insight into the interaction between resistant vs susceptible tomato cultivars and TYLCV infection. BMC PLANT BIOLOGY 2016; 16:162. [PMID: 27436092 PMCID: PMC4952150 DOI: 10.1186/s12870-016-0819-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/24/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Tomato yellow leaf curl virus (TYLCV) is a member of the family Geminiviridae, genus Begomovirus. The virus is a widespread plant virus that causes important economic losses in tomatoes. Genetic engineering strategies have increasingly been adopted to improve the resistance of tomatoes to TYLCV. RESULTS In this study, a proteomic approach was used to investigate the molecular mechanisms involved in tomato leaf defense against TYLCV infection. Proteins extracted from leaves of resistant tomato cultivar 'Zheza-301' and susceptible cultivar 'Jinpeng-1' after TYLCV infection were analyzed using two-dimensional gel electrophoresis. Eighty-six differentially expressed proteins were identified and classified into seven groups based on their functions. For several of the proteins, including CDC48, CHI and HSC70, expression patterns measured using quantitative real-time PCR differed from the results of the proteomic analysis. A putative interaction network between tomato leaves and TYLCV infection provides us with important information about the cellular activities that are involved in the response to TYLCV infection. CONCLUSIONS We conducted a comparative proteomic study of TYLCV infection in resistant and susceptible tomato cultivars. The proteins identified in our work show a variety of functions and expression patterns in the process of tomato-TYLCV interaction, and these results contribute to our understanding of the mechanism underlying TYLCV resistance in tomatoes at the protein level.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Hong-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
24
|
Di Carli M, De Rossi P, Paganin P, Del Fiore A, Lecce F, Capodicasa C, Bianco L, Perrotta G, Mengoni A, Bacci G, Daroda L, Dalmastri C, Donini M, Bevivino A. Bacterial community and proteome analysis of fresh-cut lettuce as affected by packaging. FEMS Microbiol Lett 2016; 363:fnv209. [PMID: 26511951 DOI: 10.1093/femsle/fnv209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 01/11/2023] Open
Abstract
With the growing demand of fresh-cut vegetables, a variety of packaging films are produced specifically to improve safety and quality of the fresh vegetables over the storage period. The aim of our work was to evaluate the influence of different packaging films on the quality of fresh-cut lettuce analyzing changes in bacterial community composition and modifications at the proteome level, by means of culture-dependent/culture-independent methods and differential gel electrophoresis combined with mass spectrometry analysis. Total viable counts indicated the presence of a highly variable and complex microbial flora, around a mean value of 6.26 log10 CFU g(-1). Analysis of terminal-restriction fragment length polymorphism data indicated that bacterial communities changed with packaging films and time, showing differences in community composition and diversity indices between the commercially available package (F) and the new packages (A and C), in the first days after packaging. Also proteomic analysis revealed significant changes, involving proteins related to energy metabolism, photosynthesis, plant defense and oxidative stress processes, between F and A/C packages. In conclusion, microbiological and proteomic analysis have proved to be powerful tools to provide new insights into both the composition of leaf-associated bacterial communities and protein content of fresh-cut lettuce during the shelf-life storage process.
Collapse
Affiliation(s)
- Mariasole Di Carli
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Patrizia De Rossi
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Patrizia Paganin
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Antonella Del Fiore
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Francesca Lecce
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Cristina Capodicasa
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Linda Bianco
- Energy Technologies Department, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, 75026 Rotondella (MT), Italy
| | - Gaetano Perrotta
- Energy Technologies Department, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, 75026 Rotondella (MT), Italy
| | - Alessio Mengoni
- Biology Department, University of Florence, I-50019 Sesto F.no, Florence, Italy
| | - Giovanni Bacci
- Biology Department, University of Florence, I-50019 Sesto F.no, Florence, Italy
| | - Lorenza Daroda
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Claudia Dalmastri
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Marcello Donini
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Annamaria Bevivino
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| |
Collapse
|
25
|
Dória MS, de Sousa AO, Barbosa CDJ, Costa MGC, Gesteira ADS, Souza RM, Freitas ACO, Pirovani CP. Citrus tristeza virus (CTV) Causing Proteomic and Enzymatic Changes in Sweet Orange Variety "Westin". PLoS One 2015. [PMID: 26207751 PMCID: PMC4514840 DOI: 10.1371/journal.pone.0130950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Citrus Tristeza disease, caused by CTV (Citrus tristeza virus), committs citrus plantations around the world and specifically attacks phloem tissues of the plant. The virus exists as a mixture of more or less severe variants, which may or may not cause symptoms of Tristeza. The objective of this study was to analyze the changes caused by CTV in the proteome of stems of sweet orange, as well as in the activity and gene expression of antioxidant enzymes. The CTV-infected sweet orange displayed mild symptoms, which were characterized by the presence of sparse stem pitting throughout their stems. The presence of virus was confirmed by RT-PCR. Proteomic analysis by 2DE-PAGE-MS / MS revealed the identity of 40 proteins differentially expressed between CTV- infected and -non-infected samples. Of these, 33 were up-regulated and 7 were down-regulated in CTV-infected samples. Among the proteins identified stands out a specific from the virus, the coat protein. Other proteins identified are involved with oxidative stress and for this their enzymatic activity was measured. The activity of superoxide dismutase (SOD) was higher in CTV-infected samples, as catalase (CAT) showed higher activity in uninfected samples. The activity of guaiacol peroxidase (GPX) did not vary significantly between samples. However, ascorbate peroxidase (APX) was more active in the infected samples. The relative expression of the genes encoding CAT, SOD, APX and GPX was analyzed by quantitative real time PCR (RT-qPCR). The CTV-infected samples showed greater accumulation of transcripts, except for the CAT gene. This gene showed higher expression in the uninfected samples. Taken together, it can be concluded that the CTV affects the protein profile and activity and gene expression of antioxidant enzymes in plants infected by this virus.
Collapse
Affiliation(s)
- Milena Santos Dória
- Centro of Biotechnologia and Genetica, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus/BA, 45662–000, Brasil
| | - Aurizângela Oliveira de Sousa
- Centro of Biotechnologia and Genetica, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus/BA, 45662–000, Brasil
| | | | - Márcio Gilberto Cardoso Costa
- Centro of Biotechnologia and Genetica, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus/BA, 45662–000, Brasil
| | | | - Regina Martins Souza
- Centro of Biotechnologia and Genetica, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus/BA, 45662–000, Brasil
| | - Ana Camila Oliveira Freitas
- Centro of Biotechnologia and Genetica, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus/BA, 45662–000, Brasil
| | - Carlos Priminho Pirovani
- Centro of Biotechnologia and Genetica, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus/BA, 45662–000, Brasil
- * E-mail:
| |
Collapse
|
26
|
Wang L, Wang X, Jin X, Jia R, Huang Q, Tan Y, Guo A. Comparative proteomics of Bt-transgenic and non-transgenic cotton leaves. Proteome Sci 2015; 13:15. [PMID: 25949214 PMCID: PMC4422549 DOI: 10.1186/s12953-015-0071-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/03/2015] [Indexed: 01/05/2023] Open
Abstract
Background As the rapid growth of the commercialized acreage in genetically modified (GM) crops, the unintended effects of GM crops’ biosafety assessment have been given much attention. To investigate whether transgenic events cause unintended effects, comparative proteomics of cotton leaves between the commercial transgenic Bt + CpTI cotton SGK321 (BT) clone and its non-transgenic parental counterpart SY321 wild type (WT) was performed. Results Using enzyme linked immunosorbent assay (ELISA), Cry1Ac toxin protein was detected in the BT leaves, while its content was only 0.31 pg/g. By 2-DE, 58 differentially expressed proteins (DEPs) were detected. Among them 35 were identified by MS. These identified DEPs were mainly involved in carbohydrate transport and metabolism, chaperones related to post-translational modification and energy production. Pathway analysis revealed that most of the DEPs were implicated in carbon fixation and photosynthesis, glyoxylate and dicarboxylate metabolism, and oxidative pentose phosphate pathway. Thirteen identified proteins were involved in protein-protein interaction. The protein interactions were mainly involved in photosynthesis and energy metabolite pathway. Conclusions Our study demonstrated that exogenous DNA in a host cotton genome can affect the plant growth and photosynthesis. Although some unintended variations of proteins were found between BT and WT cotton, no toxic proteins or allergens were detected. This study verified genetically modified operation did not sharply alter cotton leaf proteome, and the target proteins were hardly checked by traditional proteomic analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0071-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Limin Wang
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China ; Chinese Academy of Agricultural Sciences, The Oilcrops Research Institute, Wuhan, 430062 China
| | - Xuchu Wang
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Xiang Jin
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Ruizong Jia
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Qixing Huang
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Yanhua Tan
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Anping Guo
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| |
Collapse
|
27
|
Ghannam A, Kumari S, Muyldermans S, Abbady AQ. Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses. PLANT MOLECULAR BIOLOGY 2015; 87:355-69. [PMID: 25648551 DOI: 10.1007/s11103-015-0282-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/06/2015] [Indexed: 05/03/2023]
Abstract
Worldwide, plant viral infections decrease seriously the crop production yield, boosting the demand to develop new strategies to control viral diseases. One of these strategies to prevent viral infections, based on the immunomodulation faces many problems related to the ectopic expression of specific antibodies in planta. Camelid nanobodies, expressed in plants, may offer a solution as they are an attractive tool to bind efficiently to viral epitopes, cryptic or not accessible to conventional antibodies. Here, we report a novel, generic approach that might lead to virus resistance based on the expression of camelid specific nanobodies against Broad bean mottle virus (BBMV). Eight nanobodies, recognizing BBMV with high specificity and affinity, were retrieved after phage display from a large 'immune' library constructed from an immunized Arabic camel. By an in vitro assay we demonstrate how three nanobodies attenuate the BBMV spreading in inoculated Vicia faba plants. Furthermore, the in planta transient expression of these three selected nanobodies confirms their virus neutralizing capacity. In conclusion, this report supports that plant resistance against viral infections can be achieved by the in vivo expression of camelid nanobodies.
Collapse
Affiliation(s)
- Ahmed Ghannam
- Division of Plant Pathology, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P. O. Box 6091, Damascus, Syria,
| | | | | | | |
Collapse
|
28
|
Obrępalska-Stęplowska A, Renaut J, Planchon S, Przybylska A, Wieczorek P, Barylski J, Palukaitis P. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants. FRONTIERS IN PLANT SCIENCE 2015; 6:903. [PMID: 26579153 PMCID: PMC4625170 DOI: 10.3389/fpls.2015.00903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/09/2015] [Indexed: 05/08/2023]
Abstract
Temperature is an important environmental factor influencing plant development in natural and diseased conditions. The growth rate of plants grown at C27°C is more rapid than for plants grown at 21°C. Thus, temperature affects the rate of pathogenesis progression in individual plants. We have analyzed the effect of temperature conditions (either 21°C or 27°C during the day) on the accumulation rate of the virus and satellite RNA (satRNA) in Nicotiana benthamiana plants infected by peanut stunt virus (PSV) with and without its satRNA, at four time points. In addition, we extracted proteins from PSV and PSV plus satRNA-infected plants harvested at 21 dpi, when disease symptoms began to appear on plants grown at 21°C and were well developed on those grown at 27°C, to assess the proteome profile in infected plants compared to mock-inoculated plants grown at these two temperatures, using 2D-gel electrophoresis and mass spectrometry approaches. The accumulation rate of the viral RNAs and satRNA was more rapid at 27°C at the beginning of the infection and then rapidly decreased in PSV-infected plants. At 21 dpi, PSV and satRNA accumulation was higher at 21°C and had a tendency to increase further. In all studied plants grown at 27°C, we observed a significant drop in the identified proteins participating in photosynthesis and carbohydrate metabolism at the proteome level, in comparison to plants maintained at 21°C. On the other hand, the proteins involved in protein metabolic processes were all more abundant in plants grown at 27°C. This was especially evident when PSV-infected plants were analyzed, where increase in abundance of proteins involved in protein synthesis, degradation, and folding was revealed. In mock-inoculated and PSV-infected plants we found an increase in abundance of the majority of stress-related differently-regulated proteins and those associated with protein metabolism. In contrast, in PSV plus satRNA-infected plants the shift in the temperature barely increased the level of stress-related proteins.
Collapse
Affiliation(s)
- Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research InstitutePoznań, Poland
- *Correspondence: Aleksandra Obrępalska-Stęplowska
| | - Jenny Renaut
- Department Environmental Research and Innovation, Integrative Biology Facility, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Sebastien Planchon
- Department Environmental Research and Innovation, Integrative Biology Facility, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Arnika Przybylska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research InstitutePoznań, Poland
| | - Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research InstitutePoznań, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Adam Mickiewicz UniversityPoznań, Poland
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women UniversitySeoul, South Korea
| |
Collapse
|
29
|
Balasubramaniam M, Kim BS, Hutchens-Williams HM, Loesch-Fries LS. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of Alfalfa mosaic virus and inhibits virus replication. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1107-18. [PMID: 24940990 DOI: 10.1094/mpmi-02-14-0035-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alfalfa mosaic virus (AMV) coat protein (CP) is essential for many steps in virus replication from early infection to encapsidation. However, the identity and functional relevance of cellular factors that interact with CP remain unknown. In an unbiased yeast two-hybrid screen for CP-interacting Arabidopsis proteins, we identified several novel protein interactions that could potentially modulate AMV replication. In this report, we focus on one of the novel CP-binding partners, the Arabidopsis PsbP protein, which is a nuclear-encoded component of the oxygen-evolving complex of photosystem II. We validated the protein interaction in vitro with pull-down assays, in planta with bimolecular fluorescence complementation assays, and during virus infection by co-immunoprecipitations. CP interacted with the chloroplast-targeted PsbP in the cytosol and mutations that prevented the dimerization of CP abolished this interaction. Importantly, PsbP overexpression markedly reduced virus accumulation in infected leaves. Taken together, our findings demonstrate that AMV CP dimers interact with the chloroplast protein PsbP, suggesting a potential sequestration strategy that may preempt the generation of any PsbP-mediated antiviral state.
Collapse
|
30
|
Orjuela J, Deless EFT, Kolade O, Chéron S, Ghesquière A, Albar L. A recessive resistance to rice yellow mottle virus is associated with a rice homolog of the CPR5 gene, a regulator of active defense mechanisms. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1455-63. [PMID: 23944999 DOI: 10.1094/mpmi-05-13-0127-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
RYMV2 is a major recessive resistance gene identified in cultivated African rice (Oryza glaberrima) which confers high resistance to the Rice yellow mottle virus (RYMV). We mapped RYMV2 in an approximately 30-kb interval in which four genes have been annotated. Sequencing of the candidate region in the resistant Tog7291 accession revealed a single mutation affecting a predicted gene, as compared with the RYMV-susceptible O. glaberrima CG14 reference sequence. This mutation was found to be a one-base deletion leading to a truncated and probably nonfunctional protein. It affected a gene homologous to the Arabidopsis thaliana CPR5 gene, known to be a defense mechanism regulator. Only seven O. glaberrima accessions showing this deletion were identified in a collection consisting of 417 accessions from three rice species. All seven accessions were resistant to RYMV, which is an additional argument in favor of the involvement of the deletion in resistance. In addition, fine mapping of a resistance quantitative trait locus in O. sativa advanced backcrossed lines pinpointed a 151-kb interval containing RYMV2, suggesting that allelic variants of the same gene may control both high and partial resistance.
Collapse
|
31
|
Proteomics of model and crop plant species: Status, current limitations and strategic advances for crop improvement. J Proteomics 2013; 93:5-19. [DOI: 10.1016/j.jprot.2013.05.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 12/22/2022]
|
32
|
Wu L, Wang S, Chen X, Wang X, Wu L, Zu X, Chen Y. Proteomic and phytohormone analysis of the response of maize (Zea mays L.) seedlings to sugarcane mosaic virus. PLoS One 2013; 8:e70295. [PMID: 23894637 PMCID: PMC3720893 DOI: 10.1371/journal.pone.0070295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 06/22/2013] [Indexed: 12/27/2022] Open
Abstract
Background Sugarcane mosaic virus (SCMV) is an important virus pathogen in crop production, causing serious losses in grain and forage yields in susceptible cultivars. Control strategies have been developed, but only marginal successes have been achieved. For the efficient control of this virus, a better understanding of its interactions and associated resistance mechanisms at the molecular level is required. Methodology/Principal Findings The responses of resistant and susceptible genotypes of maize to SCMV and the molecular basis of the resistance were studied using a proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS/MS) analysis. Ninety-six protein spots showed statistically significant differences in intensity after SCMV inoculation. The classification of differentially expressed proteins showed that SCMV-responsive proteins were mainly involved in energy and metabolism, stress and defense responses, and photosynthesis. Most of the proteins identified were located in chloroplasts, chloroplast membranes, and the cytoplasm. Analysis of changes in phytohormone levels after virus inoculation suggested that salicylic acid, abscisic acid, jasmonic acid, and azelaic acid may played important roles in the maize response to SCMV infection. Conclusions/Significance Among these identified proteins, 19 have not been identified previously as virus-responsive proteins, and seven were new and did not have assigned functions. These proteins may be candidate proteins for future investigation, and they may present new biological functions and play important roles in plant-virus interactions. The behavioural patterns of the identified proteins suggest the existence of defense mechanisms operating during the early stages of infection that differed in two genotypes. In addition, there are overlapping and specific phytohormone responses to SCMV infection between resistant and susceptible maize genotypes. This study may provide important insights into the molecular events during plant responses to virus infection.
Collapse
Affiliation(s)
- Liuji Wu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, China
| | - Shunxi Wang
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
| | - Xiao Chen
- Henan Province Seed Control Station, Zhengzhou, China
| | - Xintao Wang
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
| | - Liancheng Wu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, China
| | - Xiaofeng Zu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
| | - Yanhui Chen
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, China
- * E-mail:
| |
Collapse
|
33
|
Obrępalska-Stęplowska A, Wieczorek P, Budziszewska M, Jeszke A, Renaut J. How can plant virus satellite RNAs alter the effects of plant virus infection? A study of the changes in the Nicotiana benthamiana proteome after infection by peanut stunt virus in the presence or absence of its satellite RNA. Proteomics 2013; 13:2162-75. [PMID: 23580405 DOI: 10.1002/pmic.201200056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 02/16/2013] [Accepted: 03/12/2013] [Indexed: 11/10/2022]
Abstract
Peanut stunt virus (PSV), which belongs to the Cucumovirus genus, is a pathogen of legumes. Certain PSV strains associated with a satellite RNA (satRNA) modify the symptoms of infected plants and interfere with plant metabolism. We used PSV-P genomic transcripts (GTs) with and without PSV-P satRNA and a comparative proteomic 2D-DIGE/MS study to assess their effects on Nicotiana benthamiana infection. When the proteomes of the PSV-P genomic transcripts-infected (no satRNA present) and mock-inoculated plants were compared 29 differentially regulated proteins were found. When comparisons were made for plants infected with PSV-P-GT in the presence or absence of satRNA, and for mock-infected plants and those infected with the satRNA-associated PSV-P-GT, 40 and 60 such proteins, respectively, were found. The presence of satRNA mostly decreased the amounts of the affected host proteins. Proteins involved in photosynthesis and carbohydrate metabolism, for example ferredoxin-NADP-reductase and malate dehydrogenase, are among the identified affected proteins in all comparisons. Proteins involved in protein synthesis and degradation were also affected. Such proteins include chaperonin 60β--whose abundance of the proteins changed for all comparisons--and aminopeptidase that is a satRNA- or PSV-P-GT/satRNA-responsive protein. Additionally, the levels of the stress-related proteins superoxide dismutase and acidic endochitinase Q increased in the PSV-P-GT- and PSV-P-GT/satRNA-infected plants. This study appears to be the first report on plant proteome changes in response to a satRNA presence during viral infection and, as such, may provide a reference for future studies concerning the influence of satRNAs during viral infections.
Collapse
|
34
|
Wu L, Han Z, Wang S, Wang X, Sun A, Zu X, Chen Y. Comparative proteomic analysis of the plant-virus interaction in resistant and susceptible ecotypes of maize infected with sugarcane mosaic virus. J Proteomics 2013; 89:124-40. [PMID: 23770298 DOI: 10.1016/j.jprot.2013.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 12/26/2022]
Abstract
UNLABELLED Sugarcane mosaic virus (SCMV) is an important viral pathogen and has caused serious losses in grain and forage yield. To identify candidate SCMV resistance proteins and to explore the molecular mechanisms involved in the plant-SCMV interaction, we conducted proteomic analyses of leaf samples from resistant and susceptible ecotypes of maize infected with SCMV. Proteins were analyzed by quantitative two-dimensional differential gel electrophoresis (2D-DIGE), and 93 protein spots showed statistically significant differences after virus inoculation. Functional categorization showed that SCMV-responsive proteins were mainly involved in energy and metabolism, stress and defense responses, photosynthesis, and carbon fixation. The majority of the identified proteins were located in chloroplast and cytoplasm based on bioinformatic analysis. Among these identified proteins, 17 have not been identified previously as virus-responsive proteins, and 7 were new and did not have assigned functions. Western blotting analyses confirmed the expression patterns of proteins of specific interest, and the genes encoding these proteins were further analyzed by real-time PCR. The results of this study showed overlapping and specific proteomic responses to SCMV infection between resistant and susceptible maize ecotypes. This study provides further insight into the molecular events during compatible and incompatible interactions between viruses and host plants. BIOLOGICAL SIGNIFICANCE Sugarcane mosaic virus (SCMV) is an important viral pathogen and has caused serious losses in grain and forage yield. However, little is known about host-SCMV interactions from the proteome perspective. This study analyzed proteomic changes in resistant and susceptible plants that are infected with SCMV using DIGE based proteomics. We identified 17 proteins that have not been identified previously as virus-responsive proteins, and 7 new proteins without assigned functions. These proteins are interesting candidates for future research, as they may be associated with new biological functions and play important roles in plant-virus interactions. Real-time RT-PCR analysis of genes encoding several proteins of interest provided indication on whether the changes in protein abundance were regulated at the mRNA level. The results of this study showed overlapping and specific proteomic responses to SCMV infection between resistant and susceptible ecotypes. After inoculation, the proteins involved in energy and metabolism, stress and defense responses, photosynthesis and other four functional groups showed significant changes in both ecotypes, which suggested that SCMV infection influenced these physiological processes in both the resistant Siyi and the susceptible Mo17. However, the oxidative burst was more pronounced during incompatible plant-SCMV interactions, as compared to those defined as compatible. We also observed an increase of enzymes involved in glycolysis and gluconeogenesis pathways in the resistant maize ecotype Siyi, while decrease in the susceptible maize ecotype Mo17. In addition, there is a marked increase of guanine nucleotide-binding protein beta submit in the resistant Siyi, which suggests a possible involvement of G-protein associated pathways in the resistant responses of maize to SCMV. These observations may possibly reveal protein targets/markers that are useful in the design of future diagnosis or plant protection strategies and provide new insights into the molecular mechanism of plant-virus interactions.
Collapse
Affiliation(s)
- Liuji Wu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou 450002, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Niehl A, Zhang ZJ, Kuiper M, Peck SC, Heinlein M. Label-free quantitative proteomic analysis of systemic responses to local wounding and virus infection in Arabidopsis thaliana. J Proteome Res 2013; 12:2491-503. [PMID: 23594257 DOI: 10.1021/pr3010698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plants are continuously exposed to changing environmental conditions and must, as sessile organisms, possess sophisticated acclimative mechanisms. To gain insight into systemic responses to local virus infection or wounding, we performed comparative LC-MS/MS protein profiling of distal, virus-free leaves four and five days after local inoculation of Arabidopsis thaliana plants with either Oilseed rape mosaic virus (ORMV) or inoculation buffer alone. Our study revealed biomarkers for systemic signaling in response to wounding and compatible virus infection in Arabidopsis, which should prove useful in further addressing the trigger-specific systemic response network and the elusive systemic signals. We observed responses common to ORMV and mock treatment as well as protein profile changes that are specific to local virus infection or mechanical wounding (mock treatment) alone, which provides evidence for the existence of more than one systemic signal to induce these distinct changes. Comparison of the systemic responses between time points indicated that the responses build up over time. Our data indicate stress-specific changes in proteins involved in jasmonic and abscisic acid signaling, intracellular transport, compartmentalization of enzyme activities, protein folding and synthesis, and energy and carbohydrate metabolism. In addition, a virus-triggered systemic signal appears to suppress antiviral host defense.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR 2357, Université de Strasbourg, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
36
|
Gong CY, Wang T. Proteomic evaluation of genetically modified crops: current status and challenges. FRONTIERS IN PLANT SCIENCE 2013; 4:41. [PMID: 23471542 PMCID: PMC3590489 DOI: 10.3389/fpls.2013.00041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/19/2013] [Indexed: 05/07/2023]
Abstract
Hectares of genetically modified (GM) crops have increased exponentially since 1996, when such crops began to be commercialized. GM biotechnology, together with conventional breeding, has become the main approach to improving agronomic traits of crops. However, people are concerned about the safety of GM crops, especially GM-derived food and feed. Many efforts have been made to evaluate the unintended effects caused by the introduction of exogenous genes. "Omics" techniques have advantages over targeted analysis in evaluating such crops because of their use of high-throughput screening. Proteins are key players in gene function and are directly involved in metabolism and cellular development or have roles as toxins, antinutrients, or allergens, which are essential for human health. Thus, proteomics can be expected to become one of the most useful tools in safety assessment. This review assesses the potential of proteomics in evaluating various GM crops. We further describe the challenges in ensuring homogeneity and sensitivity in detection techniques.
Collapse
Affiliation(s)
| | - Tai Wang
- *Correspondence: Tai Wang, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidianqu, Beijing 100093, China. e-mail:
| |
Collapse
|
37
|
Di Carli M, Benvenuto E, Donini M. Recent insights into plant-virus interactions through proteomic analysis. J Proteome Res 2012; 11:4765-80. [PMID: 22954327 DOI: 10.1021/pr300494e] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plant viruses represent a major threat for a wide range of host species causing severe losses in agricultural practices. The full comprehension of mechanisms underlying events of virus-host plant interaction is crucial to devise novel plant resistance strategies. Until now, functional genomics studies in plant-virus interaction have been limited mainly on transcriptomic analysis. Only recently are proteomic approaches starting to provide important contributions to this area of research. Classical two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) is still the most widely used platform in plant proteome analysis, although in the last years the application of quantitative "second generation" proteomic techniques (such as differential in gel electrophoresis, DIGE, and gel-free protein separation methods) are emerging as more powerful analytical approaches. Apparently simple, plant-virus interactions reveal a really complex pathophysiological context, in which resistance, defense and susceptibility, and direct virus-induced reactions interplay to trigger expression responses of hundreds of genes. Given that, this review is specifically focused on comparative proteome-based studies on pathogenesis of several viral genera, including some of the most important and widespread plant viruses of the genus Tobamovirus, Sobemovirus, Cucumovirus and Potyvirus. In all, this overview reveals a widespread repression of proteins associated with the photosynthetic apparatus, while energy metabolism/protein synthesis and turnover are typically up-regulated, indicating a major redirection of cell metabolism. Other common features include the modulation of metabolisms concerning sugars, cell wall, and reactive oxigen species as well as pathogenesis-related (PR) proteins. The fine-tuning between plant development and antiviral defense mechanisms determines new patterns of regulation of common metabolic pathways. By offering a 360-degree view of protein modulation, all proteomic tools reveal the extraordinary intricacy of mechanisms with which a simple viral genome perturbs the plant cell molecular networks. This "omic" approach, while providing a global perspective and useful information to the understanding of the plant host-virus interactome, may possibly reveal protein targets/markers useful in the design of future diagnosis and/or plant protection strategies.
Collapse
Affiliation(s)
- Mariasole Di Carli
- ENEA, Laboratorio Biotecnologie, UT BIORAD-FARM, Casaccia Research Center, Via Anguillarese 301, I-00123 Rome, Italy
| | | | | |
Collapse
|
38
|
Jayaraman D, Forshey KL, Grimsrud PA, Ané JM. Leveraging proteomics to understand plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2012; 3:44. [PMID: 22645586 PMCID: PMC3355735 DOI: 10.3389/fpls.2012.00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/21/2012] [Indexed: 05/20/2023]
Abstract
Understanding the interactions of plants with beneficial and pathogenic microbes is a promising avenue to improve crop productivity and agriculture sustainability. Proteomic techniques provide a unique angle to describe these intricate interactions and test hypotheses. The various approaches for proteomic analysis generally include protein/peptide separation and identification, but can also provide quantification and the characterization of post-translational modifications. In this review, we discuss how these techniques have been applied to the study of plant-microbe interactions. We also present some areas where this field of study would benefit from the utilization of newly developed methods that overcome previous limitations. Finally, we reinforce the need for expanding, integrating, and curating protein databases, as well as the benefits of combining protein-level datasets with those from genetic analyses and other high-throughput large-scale approaches for a systems-level view of plant-microbe interactions.
Collapse
Affiliation(s)
| | - Kari L. Forshey
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- Department of Genetics, University of Wisconsin MadisonMadison, WI, USA
| | - Paul A. Grimsrud
- Department of Biochemistry, University of Wisconsin MadisonMadison, WI, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- *Correspondence: Jean-Michel Ané, Department of Agronomy, University of Wisconsin Madison, 1575 Linden Drive, Madison, WI 53706, USA. e-mail:
| |
Collapse
|
39
|
Giribaldi M, Purrotti M, Pacifico D, Santini D, Mannini F, Caciagli P, Rolle L, Cavallarin L, Giuffrida MG, Marzachì C. A multidisciplinary study on the effects of phloem-limited viruses on the agronomical performance and berry quality of Vitis vinifera cv. Nebbiolo. J Proteomics 2011; 75:306-15. [PMID: 21856458 DOI: 10.1016/j.jprot.2011.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 02/08/2023]
Abstract
Viral infections are known to have a detrimental effect on grapevine yield and performance, but there is still a lack of knowledge about their effect on the quality and safety of end products. Vines of Vitis vinifera cv. Nebbiolo clone 308, affected simultaneously by Grapevine leafroll-associated virus 1 (GLRaV-1), Grapevine virus A (GVA), and Rupestris stem pitting associated virus (RSPaV), were subjected to integrated analyses of agronomical performance, grape berry characteristics, instrumental texture profile, and proteome profiling. The comparison of performance and grape quality of healthy and infected vines cultivated in a commercial vineyard revealed similar shoot fertility, number of clusters, total yield, with significant differences in titratable acidity, and resveratrol content. Also some texture parameters such as cohesiveness and resilience were altered in berries of infected plants. The proteomic analysis of skin and pulp visualized about 400 spots. The ANOVA analysis on 2D gels revealed significant differences among healthy and virus-infected grape berries for 12 pulp spots and 7 skin spots. Virus infection mainly influenced proteins involved in the response to oxidative stress in the berry skin, and proteins involved in cell structure metabolism in the pulp.
Collapse
Affiliation(s)
- Marzia Giribaldi
- Istituto di Scienze delle Produzioni Alimentari, National Research Council, Grugliasco (TO), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guo H, Zhang H, Li Y, Ren J, Wang X, Niu H, Yin J. Identification of changes in wheat (Triticum aestivum L.) seeds proteome in response to anti-trx s gene. PLoS One 2011; 6:e22255. [PMID: 21811579 PMCID: PMC3139615 DOI: 10.1371/journal.pone.0022255] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/17/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Thioredoxin h (trx h) is closely related to germination of cereal seeds. The cDNA sequences of the thioredoxin s (trx s) gene from Phalaris coerulescens and the thioredoxin h (trx h) gene from wheat are highly homologous, and their expression products have similar biological functions. Transgenic wheat had been formed after the antisense trx s was transferred into wheat, and it had been certified that the expression of trx h decreased in transgenic wheat, and transgenic wheat has high resistance to pre-harvest sprouting. METHODOLOGY/PRINCIPAL FINDINGS Through analyzing the differential proteome of wheat seeds between transgenic wheat and wild type wheat, the mechanism of transgenic wheat seeds having high resistance to pre-harvest sprouting was studied in the present work. There were 36 differential proteins which had been identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). All these differential proteins are involved in regulation of carbohydrates, esters, nucleic acid, proteins and energy metabolism, and biological stress. The quantitative real time PCR results of some differential proteins, such as trx h, heat shock protein 70, α-amylase, β-amylase, glucose-6-phosphate isomerase, 14-3-3 protein, S3-RNase, glyceraldehyde-3-phosphate dehydrogenase, and WRKY transcription factor 6, represented good correlation between transcripts and proteins. The biological functions of many differential proteins are consistent with the proposed role of trx h in wheat seeds. CONCLUSIONS/SIGNIFICANCE A possible model for the role of trx h in wheat seeds germination was proposed in this paper. These results will not only play an important role in clarifying the mechanism that transgenic wheat has high resistance to pre-harvest sprouting, but also provide further evidence for the role of trx h in germination of wheat seeds.
Collapse
Affiliation(s)
- Hongxiang Guo
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongchun Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Jiangping Ren
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Xiang Wang
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Hongbin Niu
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Jun Yin
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- * E-mail:
| |
Collapse
|