1
|
Yang C, Ding L, He Q, Chen X, Zhu H, Chen F, Yang W, Pan Y, Tai Z, Zhang W, Yu Z, Chen Z, Yu X. Proteomic Profiling of Venoms from Bungarus suzhenae and B. bungaroides: Enzymatic Activities and Toxicity Assessment. Toxins (Basel) 2024; 16:494. [PMID: 39591249 PMCID: PMC11598402 DOI: 10.3390/toxins16110494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Kraits are venomous snakes of the genus Bungarus from the family Elapidae. Their venom typically demonstrates neurotoxicity; however, the toxicity is significantly influenced by the snake's species and geographical origin. Among the Bungarus species, Bungarus suzhenae and B. bungaroides have been poorly studied, with little to no information available regarding their venom composition. In this study, a proteomic approach was employed using LC-MS/MS to identify proteins from trypsin-digested peptides. The analysis revealed 102 venom-related proteins from 18 distinct functional protein families in the venom of B. suzhenae, with the primary components being three-finger toxins (3-FTx, 25.84%), phospholipase A2 (PLA2, 40.29%), L-amino acid oxidase (LAAO, 10.33%), Kunitz-type serine protease inhibitors (KUN, 9.48%), and snake venom metalloproteinases (SVMPs, 6.13%). In the venom of B. bungaroides, 99 proteins from 17 families were identified, with primary components being 3-FTx (33.87%), PLA2 (37.91%), LAAO (4.21%), and KUN (16.60%). Enzymatic activity assays confirmed the presence of key venom enzymes. Additionally, the LD50 values for B. suzhenae and B. bungaroides were 0.0133 μg/g and 0.752 μg/g, respectively, providing a reference for toxicity studies of these two species. This research elucidates the proteomic differences in the venoms of these two species, offering a foundation for developing antivenoms and clinical treatments for envenomation.
Collapse
Affiliation(s)
- Chenying Yang
- Animal Toxin Group, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (C.Y.); (Q.H.); (X.C.); (H.Z.); (F.C.); (W.Y.); (Y.P.); (Z.T.); (W.Z.); (Z.Y.)
| | - Li Ding
- Laboratory of Amphibians and Reptiles, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Qiyi He
- Animal Toxin Group, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (C.Y.); (Q.H.); (X.C.); (H.Z.); (F.C.); (W.Y.); (Y.P.); (Z.T.); (W.Z.); (Z.Y.)
| | - Xiya Chen
- Animal Toxin Group, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (C.Y.); (Q.H.); (X.C.); (H.Z.); (F.C.); (W.Y.); (Y.P.); (Z.T.); (W.Z.); (Z.Y.)
| | - Haiting Zhu
- Animal Toxin Group, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (C.Y.); (Q.H.); (X.C.); (H.Z.); (F.C.); (W.Y.); (Y.P.); (Z.T.); (W.Z.); (Z.Y.)
| | - Feng Chen
- Animal Toxin Group, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (C.Y.); (Q.H.); (X.C.); (H.Z.); (F.C.); (W.Y.); (Y.P.); (Z.T.); (W.Z.); (Z.Y.)
| | - Wanzhou Yang
- Animal Toxin Group, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (C.Y.); (Q.H.); (X.C.); (H.Z.); (F.C.); (W.Y.); (Y.P.); (Z.T.); (W.Z.); (Z.Y.)
| | - Yuexin Pan
- Animal Toxin Group, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (C.Y.); (Q.H.); (X.C.); (H.Z.); (F.C.); (W.Y.); (Y.P.); (Z.T.); (W.Z.); (Z.Y.)
| | - Zhiyuan Tai
- Animal Toxin Group, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (C.Y.); (Q.H.); (X.C.); (H.Z.); (F.C.); (W.Y.); (Y.P.); (Z.T.); (W.Z.); (Z.Y.)
| | - Wenhao Zhang
- Animal Toxin Group, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (C.Y.); (Q.H.); (X.C.); (H.Z.); (F.C.); (W.Y.); (Y.P.); (Z.T.); (W.Z.); (Z.Y.)
| | - Zeyuan Yu
- Animal Toxin Group, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (C.Y.); (Q.H.); (X.C.); (H.Z.); (F.C.); (W.Y.); (Y.P.); (Z.T.); (W.Z.); (Z.Y.)
| | - Zening Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China;
| | - Xiaodong Yu
- Animal Toxin Group, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (C.Y.); (Q.H.); (X.C.); (H.Z.); (F.C.); (W.Y.); (Y.P.); (Z.T.); (W.Z.); (Z.Y.)
| |
Collapse
|
2
|
Liu M, Huang S, Yan P, Yin H, Yu J, Wu X, Wang L. Effective Degradation of Brewer Spent Grains by a Novel Thermostable GH10 Xylanase. Appl Biochem Biotechnol 2024; 196:4837-4848. [PMID: 37979082 DOI: 10.1007/s12010-023-04779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Brewer spent grains (BSGs) are one of the most abundant by-products in brewing industry. Due to microbiological instability and high perishability, the efficient degradation of BSGs is of environmental and economic importance. Streptomyces sp. F-3 could grow in the medium with BSGs as the only carbon and nitrogen source. Proteome mass spectrometry revealed that a GH10 xylanase SsXyn10A could be secreted in large quantities. SsXyn10A showed optimum activity at pH 7.0 and 60 °C. SsXyn10A exhibited excellent thermostability which retained approximately 100% and 58% after incubation for 5 h at 50 and 60 °C. SsXyn10A displayed high activity to beechwood xylan (BX) and wheat arabinoxylan (WAX). SsXyn10A is active against xylotetracose (X4), xylopentose (X5), and xylohexose (X6) to produce main products xylobiose (X2) and xylotriose (X3). Ssxyn10A showed synergistic effects with commercial cellulase on BSGs hydrolyzing into soluble sugar. In addition, the steam explosion pretreatment of BSGs as the substrate produced twice as much reducing sugar as the degradation of the original substrate. This study will contribute to efficient utilization of BSGs and provide a thermostable GH10 xylanase which has potential application in biomass hydrolysis.
Collapse
Affiliation(s)
- Mengyu Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong, 266237, China
| | - Shuxia Huang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, 56 Dengzhou Road, Shibei District, Qingdao, Shandong, 266000, China
| | - Peng Yan
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, 56 Dengzhou Road, Shibei District, Qingdao, Shandong, 266000, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, 56 Dengzhou Road, Shibei District, Qingdao, Shandong, 266000, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, 56 Dengzhou Road, Shibei District, Qingdao, Shandong, 266000, China.
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong, 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong, 266237, China
| |
Collapse
|
3
|
Nazli A, Qiu J, Tang Z, He Y. Recent Advances and Techniques for Identifying Novel Antibacterial Targets. Curr Med Chem 2024; 31:464-501. [PMID: 36734893 DOI: 10.2174/0929867330666230123143458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND With the emergence of drug-resistant bacteria, the development of new antibiotics is urgently required. Target-based drug discovery is the most frequently employed approach for the drug development process. However, traditional drug target identification techniques are costly and time-consuming. As research continues, innovative approaches for antibacterial target identification have been developed which enabled us to discover drug targets more easily and quickly. METHODS In this review, methods for finding drug targets from omics databases have been discussed in detail including principles, procedures, advantages, and potential limitations. The role of phage-driven and bacterial cytological profiling approaches is also discussed. Moreover, current article demonstrates the advancements being made in the establishment of computational tools, machine learning algorithms, and databases for antibacterial target identification. RESULTS Bacterial drug targets successfully identified by employing these aforementioned techniques are described as well. CONCLUSION The goal of this review is to attract the interest of synthetic chemists, biologists, and computational researchers to discuss and improve these methods for easier and quicker development of new drugs.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Jingyi Qiu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing, 400714, P. R. China
| | - Ziyi Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing, 400714, P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
4
|
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel) 2023; 8:146. [PMID: 37092398 PMCID: PMC10123695 DOI: 10.3390/biomimetics8020146] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.
Collapse
Affiliation(s)
- Kevin Dzobo
- Medical Research Council, SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Collet Dandara
- Division of Human Genetics and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- The South African Medical Research Council-UCT Platform for Pharmacogenomics Research and Translation, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
5
|
Shen L, Yan A, Wang Y, Wang Y, Liu H, Zhong Y. Tailoring the expression of Xyr1 leads to efficient production of lignocellulolytic enzymes in Trichoderma reesei for improved saccharification of corncob residues. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:142. [PMID: 36528622 PMCID: PMC9759857 DOI: 10.1186/s13068-022-02240-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei is extensively used for the industrial-scale cellulase production. It has been well known that the transcription factor Xyr1 plays an important role in the regulatory network controlling cellulase gene expression. However, the role of Xyr1 in the regulation of cellulase expression has not been comprehensively elucidated, which hinders further improvement of lignocellulolytic enzyme production. RESULTS Here, the expression dosage of xyr1 was tailored in T. reesei by differentially overexpressing the xyr1 gene under the control of three strong promoters (Pegl2, Pcbh1, and Pcdna1), and the transcript abundance of xyr1 was elevated 5.8-, 12.6-, and 47.2-fold, respectively. We found expression of cellulase genes was significantly increased in the Pegl2-driven xyr1 overexpression strain QE2X, whereas relatively low in the Pcbh1- and Pcdna1-driven overexpression strains. We also found that the Pegl2-driven overexpression of xyr1 caused a more significant opening of chromatin in the core promoter region of the prominent cellulase genes. Furthermore, the cellulase activity showed a 3.2-fold increase in the strain QE2X, while insignificant improvement in the Pcbh1- and Pcdna1-driven strains. Finally, the saccharification efficiency toward acid-pretreated corncob residues containing high-content lignin by the crude enzyme from QE2X was increased by 57.2% compared to that from the parental strain. Moreover, LC-MS/MS and RT-qPCR analysis revealed that expression of accessory proteins (Cip1, Cip2, Swo1, and LPMOs) was greatly improved in QE2X, which partly explained the promoting effect of the Pegl2-driven overexpression on enzymatic hydrolysis of lignocellulose biomass. CONCLUSIONS Our results underpin that the precise tailoring expression of xyr1 is essential for highly efficient cellulase synthesis, which provide new insights into the role of Xyr1 in regulating cellulase expression in T. reesei. Moreover, these results also provides a prospective strategy for strain improvement to enhance the lignocellulolytic enzyme production for use in biorefinery applications.
Collapse
Affiliation(s)
- Linjing Shen
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Aiqin Yan
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yifan Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yubo Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Hong Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yaohua Zhong
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| |
Collapse
|
6
|
A highly efficient protein degradation system in Bacillus sp. CN2: a functional-degradomics study. Appl Microbiol Biotechnol 2021; 105:707-723. [PMID: 33386896 DOI: 10.1007/s00253-020-11083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
A novel protease-producing Bacillus sp. CN2 isolated from chicken manure composts exhibited a relatively high proteolytic specific activity. The strain CN2 degradome consisted of at least 149 proteases and homolog candidates, which were distributed into 4 aspartic, 30 cysteine, 55 metallo, 56 serine, and 4 threonine proteases. Extracellular proteolytic activity was almost completely inhibited by PMSF (phenylmethylsulfonyl fluoride) rather than o-P, E-64, or pepstatin A, suggesting that strain CN2 primarily secreted serine protease. More importantly, analysis of the extracellular proteome of strain CN2 revealed the presence of a highly efficient protein degradation system. Three serine proteases of the S8 family with different active site architectures firstly fragmented protein substrates which were then degraded to smaller peptides by a M4 metalloendopeptidase that prefers to degrade hydrophobic peptides and by a S13 carboxypeptidase. Those enzymes acted synergistically to degrade intact substrate proteins outside the cell. Furthermore, highly expressed sequence-specific intracellular aminopeptidases from multiple families (M20, M29, and M42) accurately degraded peptides into oligopeptides or amino acids, thus realizing the rapid acquisition and utilization of nitrogen sources. In this paper, a systematic study of the functional-degradome provided a new perspective for understanding the complexity of the protease hydrolysis system of Bacillus, and laid a solid foundation for further studying the precise degradation of proteins with the cooperative action of different family proteases. KEY POINTS: • Bacillus sp. CN2 has relatively high proteolytic specific activity. • Bacillus sp. CN2 harbors a highly efficient protein degradation system. • The site-specific endopeptidases were secreted extracellular, while the sequence-specific aminopeptidases played a role in the cell.
Collapse
|
7
|
Rozanova S, Barkovits K, Nikolov M, Schmidt C, Urlaub H, Marcus K. Quantitative Mass Spectrometry-Based Proteomics: An Overview. Methods Mol Biol 2021; 2228:85-116. [PMID: 33950486 DOI: 10.1007/978-1-0716-1024-4_8] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent decades, mass spectrometry has moved more than ever before into the front line of protein-centered research. After being established at the qualitative level, the more challenging question of quantification of proteins and peptides using mass spectrometry has become a focus for further development. In this chapter, we discuss and review actual strategies and problems of the methods for the quantitative analysis of peptides, proteins, and finally proteomes by mass spectrometry. The common themes, the differences, and the potential pitfalls of the main approaches are presented in order to provide a survey of the emerging field of quantitative, mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Svitlana Rozanova
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for protein diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for protein diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Miroslav Nikolov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany.,Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany. .,Medical Proteome Analysis, Center for protein diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
8
|
Shi Z, Han C, Zhang X, Tian L, Wang L. Novel Synergistic Mechanism for Lignocellulose Degradation by a Thermophilic Filamentous Fungus and a Thermophilic Actinobacterium Based on Functional Proteomics. Front Microbiol 2020; 11:539438. [PMID: 33042052 PMCID: PMC7518101 DOI: 10.3389/fmicb.2020.539438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Effective artificial microbial consortia containing microorganisms with desired biological functions have the potential to optimize the lignocellulose-based bioindustry. Thermobifida fusca was a dominant actinobacterium in high-temperature corn stalk composts, but it was unable to grow alone in corn stalk solid medium. Interestingly, T. fusca showed good growth and secreted enzymes when cocultured with Thermomyces lanuginosus. T. lanuginosus grew firstly during the initial stage, whereas T. fusca dominated the system subsequently during cocultivation. The secretome indicated that T. lanuginosus mainly degraded xylan by expressing a GH11 xylanase (g4601.t1, GenBank AAB94633.1; with relative secretion of 4.95 ± 0.65%). T. fusca was induced by xylan mainly to secrete a xylanase from GH11 family (W8GGR4, GenBank AHK22788.1; with relative secretion of 8.71 ± 3.83%) which could rapidly degrade xylan to xylo-oligosaccharide (XOS) and xylose within 2 min, while high concentrations (>0.5%, w/v) of XOS or xylose suppressed the growth of T. fusca; which may be the reason why T. fusca unable to grow alone in corn stalk solid medium. However, T. lanuginosus could utilize the XOS and xylose produced by xylanases secreted by T. fusca. During the synergistic degradation of lignocellulose by T. lanuginosus and T. fusca, xylan was rapidly consumed by T. lanuginosus, the residual cellulose could specifically induced T. fusca to express a GH10 xylanase with a CBM2 domain (Q47KR6, GenBank AAZ56956.1; with relative secretion of 5.03 ± 1.33%) and 6 cellulases (2 exocellulases and 4 endocellulases). Moreover, T. lanuginosus increased the secretion of cellulases from T. fusca by 19-25%. The order of T. lanuginosus and T. fusca was consistent with the multilayered structures of lignocellulose and could be regulated by different concentrations of XOS and xylose. The novel synergism of T. lanuginosus and T. fusca gave a new sight for revealing more synergetic relationships in natural environments and exploring efficient microbial inoculants and enzyme cocktails for lignocellulose degradation.
Collapse
Affiliation(s)
- Zelu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Chao Han
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiujun Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Li Tian
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Li X, Han C, Li W, Chen G, Wang L. Insights into the cellulose degradation mechanism of the thermophilic fungus Chaetomium thermophilum based on integrated functional omics. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:143. [PMID: 32817759 PMCID: PMC7425565 DOI: 10.1186/s13068-020-01783-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lignocellulose is the most abundant and renewable biomass resource on the planet. Lignocellulose can be converted into biofuels and high-value compounds; however, its recalcitrance makes its breakdown a challenge. Lytic polysaccharide monooxygenases (LPMOs) offer tremendous promise for the degradation of recalcitrant polysaccharides. Chaetomium thermophilum, having many LPMO-coding genes, is a dominant thermophilic fungus in cellulose-rich and self-heating habitats. This study explores the genome, secretomes and transcript levels of specific genes of C. thermophilum. RESULTS The genome of C. thermophilum encoded a comprehensive set of cellulose- and xylan-degrading enzymes, especially 18 AA9 LPMOs that belonged to different subfamilies. Extracellular secretomes showed that arabinose and microcrystalline cellulose (MCC) could specifically induce the secretion of carbohydrate-active enzymes (CAZymes), especially AA9 LPMOs, by C. thermophilum under different carbon sources. Temporal analyses of secretomes and transcripts revealed that arabinose induced the secretion of xylanases by C. thermophilum, which was obviously different from other common filamentous fungi. MCC could efficiently induce the specific secretion of LPMO2s, possibly because the insert in loop3 on the substrate-binding surface of LPMO2s strengthened its binding capacity to cellulose. LPMO2s, cellobio hydrolases (CBHs) and cellobiose dehydrogenases (CDHs) were cosecreted, forming an efficient cellulose degradation system of oxidases and hydrolases under thermophilic conditions. CONCLUSIONS The specific expression of LPMO2s and cosecretion of hydrolases and oxidases by the thermophilic fungus C. thermophilum play an important role in cellulose degradation. This insight increases our understanding of the cellulose degradation under thermophilic conditions and may inspire the design of the optimal enzyme cocktails for more efficient exploration of biomass resources in industrial applications.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Chao Han
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Weiguang Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| |
Collapse
|
10
|
Choi D, Go G, Kim DK, Lee J, Park SM, Di Vizio D, Gho YS. Quantitative proteomic analysis of trypsin-treated extracellular vesicles to identify the real-vesicular proteins. J Extracell Vesicles 2020; 9:1757209. [PMID: 32489530 PMCID: PMC7241501 DOI: 10.1080/20013078.2020.1757209] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/23/2020] [Accepted: 04/10/2020] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles surrounded by a lipid bilayer and released into the extracellular milieu by most of cells. Although various EV isolation methods have been established, most of the current methods isolate EVs with contaminated non-vesicular proteins. By applying the label-free quantitative proteomic analyses of human colon cancer cell SW480-derived EVs, we identified trypsin-sensitive and trypsin-resistant vesicular proteins. Further systems biology and protein-protein interaction network analyses based on their cellular localization, we classified the trypsin-sensitive and trypsin-resistant vesicular proteins into two subgroups: 363 candidate real-vesicular proteins and 151 contaminated non-vesicular proteins. Moreover, the protein interaction network analyses showed that candidate real-vesicular proteins are mainly derived from plasma membrane (46.8%), cytosol (36.6%), cytoskeleton (8.0%) and extracellular region (2.5%). On the other hand, most of the contaminated non-vesicular proteins derived from nucleus, Golgi apparatus, endoplasmic reticulum and mitochondria. In addition, ribosomal protein complexes and T-complex proteins were classified as the contaminated non-vesicular proteins. Taken together, our trypsin-digested proteomic approach on EVs is an important advance to identify the real-vesicular proteins that could help to understand EV biogenesis and protein cargo-sorting mechanism during EV release, to identify more reliable EV diagnostic marker proteins, and to decode pathophysiological roles of EVs.
Collapse
Affiliation(s)
- Dongsic Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.,Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, Canada
| | - Gyeongyun Go
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dae-Kyum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaewook Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seon-Min Park
- Pohang Center for Evaluation of Biomaterials, Pohang, Republic of Korea
| | - Dolores Di Vizio
- Department of Surgery, Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
11
|
Shiny Matilda C, Madhusudan I, Gaurav Isola R, Shanthi C. Potential of proteomics to probe microbes. J Basic Microbiol 2020; 60:471-483. [PMID: 32212201 DOI: 10.1002/jobm.201900628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 01/05/2023]
Abstract
An organism exposed to a plethora of environmental perturbations undergoes proteomic changes which enable the characterization of total proteins in it. Much of the proteomic information is obtained from genomic data. Additional information on the proteome such as posttranslational modifications, protein-protein interactions, protein localization, metabolic pathways, and so on are deduced using proteomic tools which genomics and transcriptomics fail to offer. The proteomic analysis allows identification of precise changes in proteins, which in turn solve the complexity of microbial population providing insights into the microbial metabolism, cellular pathways, and behavior of microorganisms in new environments. Furthermore, they provide clues for the exploitation of their special features for biotechnological applications. Numerous techniques for the analysis of microbial proteome such as electrophoretic, chromatographic, mass spectrometric-based methods as well as quantitative proteomics are available which facilitate protein separation, expression, identification, and quantification of proteins. An understanding of the potential of each of the proteomic tools has created a significant impact on diverse microbiological aspects and the same has been discussed in this review.
Collapse
Affiliation(s)
- Chellaiah Shiny Matilda
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Iyengar Madhusudan
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Ravi Gaurav Isola
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Chittibabu Shanthi
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, India
| |
Collapse
|
12
|
A new β-galactosidase extracted from the infant feces with high hydrolytic and transgalactosylation activity. Appl Microbiol Biotechnol 2019; 103:8439-8448. [DOI: 10.1007/s00253-019-10092-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 02/05/2023]
|
13
|
Sun X, Li Y, Tian Z, Qian Y, Zhang H, Wang L. A novel thermostable chitinolytic machinery of Streptomyces sp. F-3 consisting of chitinases with different action modes. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:136. [PMID: 31171937 PMCID: PMC6545677 DOI: 10.1186/s13068-019-1472-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The biodegradation of chitin is an important part of the carbon and nitrogen cycles in nature. Speeding up the biotransformation of chitin substrates can not only reduce pollution, but also produce high value-added products. However, this process is strictly regulated by the catalytic efficiency of the chitinolytic machinery. Therefore, it is necessary to study the mode of action and compound mechanisms of different chitin-degrading enzymes in depth to improve the catalytic efficiency of the chitinolytic machinery. RESULTS The thermophilic bacterium Streptomyces sp. F-3 showed comparatively high chitin degradation activities. To elucidate the mechanism underlying chitin hydrolysis, six chitin degradation-related enzymes were identified in the extracellular proteome of Streptomyces sp. F-3, including three chitinases (SsChi18A, SsChi18B, and SsChi18C) from the GH18 family, one GH19 chitinase (SsChi19A), one GH20 β-N-acetylhexosaminidase (SsGH20A), and one lytic polysaccharide monooxygenase (SsLPMO10A) from the AA10 family. All were upregulated by chitin. The heterologously expressed hydrolases could withstand temperatures up to 70 °C and were stable at pH values of 4 to 11. Biochemical analyses displayed that these chitin degradation-related enzymes had different functions and thus showed synergistic effects during chitin degradation. Furthermore, based on structural bioinformatics data, we speculated that the different action modes among the three GH18 chitinases may be caused by loop differences in their active site architectures. Among them, SsChi18A is probably processive and mainly acts on polysaccharides, while SsChi18B and SsChi18C are likely endo-non-processive and displayed higher activity on the degradation of chitin oligosaccharides. In addition, proteomic data and synergy experiments also indicated the importance of SsLPMO10A, which could promote the activities of the hydrolases and increase the monosaccharide content in the reaction system, respectively. CONCLUSIONS In this article, the chitinolytic machinery of a thermophilic Streptomyces species was studied to explore the structural basis for the synergistic actions of chitinases from different GH18 subfamilies. The elucidation of the degradation mechanisms of these thermophilic chitinases will lay a theoretical foundation for the efficient industrialized transformation of natural chitin.
Collapse
Affiliation(s)
- Xiaomeng Sun
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Zhennan Tian
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Yuanchao Qian
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Huaiqiang Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| |
Collapse
|
14
|
Integrated Functional-Omics Analysis of Thermomyces lanuginosus Reveals its Potential for Simultaneous Production of Xylanase and Substituted Xylooligosaccharides. Appl Biochem Biotechnol 2018; 187:1515-1538. [PMID: 30267287 DOI: 10.1007/s12010-018-2873-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/24/2018] [Indexed: 11/27/2022]
Abstract
Thermophiles have several beneficial properties for the conversion of biomass at high temperatures. Thermomyces lanuginosus is a thermophilic filamentous fungus that was shown to secrete 40 glycoside hydrolases and 25 proteases when grown on different carbon sources. Among the 13 identified glycoside hydrolases with high expression levels, 9 were reduced sugar glycosidases (RSGs) belonging to seven GH families, and 7 of the 10 identified proteases were exopeptidases belonging to six different protease families. High expression of RSGs and exopeptidases may allow the fungus to efficiently degrade oligosaccharides and oligopeptides in saprophytic habitats. There were no xylan side chain-degrading enzymes predicted in the genome of T. lanuginosus, and only one thermophilic GH11 xylanase (g4601.t1) and one GH43 xylosidase (g3706.t1) were detected by liquid chromatography-mass spectrometry/mass spectrometry when T. lanuginosus grown on xylan, which led to the accumulation of substituted xylooligosaccharides (SXOS) during corncob xylan degradation where SXOS output made up more than 8% of the total xylan. The SXOS are beneficial prebiotics and important inducers for enzymes secretion of microorganisms. Thus, T. lanuginosus exhibits distinct advantages in utilizing cheap raw materials producing one thermostable xylanase and the high value-added SXOS as well as microbial inoculants to compost by batch fermentation.
Collapse
|
15
|
Ankney JA, Muneer A, Chen X. Relative and Absolute Quantitation in Mass Spectrometry-Based Proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:49-77. [PMID: 29894226 DOI: 10.1146/annurev-anchem-061516-045357] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mass spectrometry-based quantitative proteomics is a powerful tool for gaining insights into function and dynamics of biological systems. However, peptides with different sequences have different ionization efficiencies, and their intensities in a mass spectrum are not correlated with their abundances. Therefore, various label-free or stable isotope label-based quantitation methods have emerged to assist mass spectrometry to perform comparative proteomic experiments, thus enabling nonbiased identification of thousands of proteins differentially expressed in healthy versus diseased cells. Here, we discuss the most widely used label-free and metabolic-, enzymatic-, and chemical labeling-based proteomic strategies for relative and absolute quantitation. We summarize the specific strengths and weaknesses of each technique in terms of quantification accuracy, proteome coverage, multiplexing capability, and robustness. Applications of each strategy for solving specific biological complexities are also presented.
Collapse
Affiliation(s)
- J Astor Ankney
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Adil Muneer
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
16
|
Liu L, Gong W, Sun X, Chen G, Wang L. Extracellular Enzyme Composition and Functional Characteristics of Aspergillus niger An-76 Induced by Food Processing Byproducts and Based on Integrated Functional Omics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1285-1295. [PMID: 29334221 DOI: 10.1021/acs.jafc.7b05164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Byproducts of food processing can be utilized for the production of high-value-added enzyme cocktails. In this study, we utilized integrated functional omics technology to analyze composition and functional characteristics of extracellular enzymes produced by Aspergillus niger grown on food processing byproducts. The results showed that oligosaccharides constituted by arabinose, xylose, and glucose in wheat bran were able to efficiently induce the production of extracellular enzymes of A. niger. Compared with other substrates, wheat bran was more effective at inducing the secretion of β-glucosidases from GH1 and GH3 families, as well as >50% of proteases from A1-family aspartic proteases. Compared with proteins induced by single wheat bran or soybean dregs, the protein yield induced by their mixture was doubled, and the time required to reach peak enzyme activity was shortened by 25%. This study provided a technical platform for the complex formulation of various substrates and functional analysis of extracellular enzymes.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Microbial Technology, Shandong University , 27 Shandanan Road, Jinan 250100, China
- College of Marine Science, Shandong University , Weihai 264200, China
| | - Weili Gong
- State Key Laboratory of Microbial Technology, Shandong University , 27 Shandanan Road, Jinan 250100, China
| | - Xiaomeng Sun
- State Key Laboratory of Microbial Technology, Shandong University , 27 Shandanan Road, Jinan 250100, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Shandong University , 27 Shandanan Road, Jinan 250100, China
- College of Marine Science, Shandong University , Weihai 264200, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University , 27 Shandanan Road, Jinan 250100, China
| |
Collapse
|
17
|
Zhou JY, Chen L, Zhang B, Tian Y, Liu T, Thomas SN, Chen L, Schnaubelt M, Boja E, Hiltke T, Kinsinger CR, Rodriguez H, Davies SR, Li S, Snider JE, Erdmann-Gilmore P, Tabb DL, Townsend RR, Ellis MJ, Rodland KD, Smith RD, Carr SA, Zhang Z, Chan DW, Zhang H. Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues. J Proteome Res 2017; 16:4523-4530. [PMID: 29124938 DOI: 10.1021/acs.jproteome.7b00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clinical proteomics requires large-scale analysis of human specimens to achieve statistical significance. We evaluated the long-term reproducibility of an iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomics strategy using one channel for reference across all samples in different iTRAQ sets. A total of 148 liquid chromatography tandem mass spectrometric (LC-MS/MS) analyses were completed, generating six 2D LC-MS/MS data sets for human-in-mouse breast cancer xenograft tissues representative of basal and luminal subtypes. Such large-scale studies require the implementation of robust metrics to assess the contributions of technical and biological variability in the qualitative and quantitative data. Accordingly, we derived a quantification confidence score based on the quality of each peptide-spectrum match to remove quantification outliers from each analysis. After combining confidence score filtering and statistical analysis, reproducible protein identification and quantitative results were achieved from LC-MS/MS data sets collected over a 7-month period. This study provides the first quality assessment on long-term stability and technical considerations for study design of a large-scale clinical proteomics project.
Collapse
Affiliation(s)
- Jian-Ying Zhou
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Bai Zhang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Stefani N Thomas
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Li Chen
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Sherri R Davies
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Shunqiang Li
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Jacqueline E Snider
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Petra Erdmann-Gilmore
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - David L Tabb
- Department of Biomedical Informatics, Vanderbilt University Medical School , Nashville, Tennessee 37232, United States
| | - R Reid Townsend
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Matthew J Ellis
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Steven A Carr
- The Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| |
Collapse
|
18
|
Secretome profiling reveals temperature-dependent growth of Aspergillus fumigatus. SCIENCE CHINA-LIFE SCIENCES 2017; 61:578-592. [PMID: 29067645 DOI: 10.1007/s11427-017-9168-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/29/2017] [Indexed: 12/11/2022]
Abstract
Aspergillus fumigatus is a ubiquitous opportunistic fungus. In this study, systematic analyses were carried out to study the temperature adaptability of A. fumigatus. A total of 241 glycoside hydrolases and 69 proteases in the secretome revealed the strong capability of A. fumigatus to degrade plant biomass and protein substrates. In total, 129 pathogenesis-related proteins detected in the secretome were strongly correlated with glycoside hydrolases and proteases. The variety and abundance of proteins remained at temperatures of 34°C-45°C. The percentage of endo-1,4-xylanase increased when the temperature was lowered to 20°C, while the percentage of cellobiohydrolase increased as temperature was increased, suggesting that the strain obtains carbon mainly by degrading xylan and cellulose, and the main types of proteases in the secretome were aminopeptidases and carboxypeptidases. Only half of the proteins were retained and their abundance declined to 9.7% at 55°C. The activities of the remaining β-glycosidases and proteases were merely 35% and 24%, respectively, when the secretome was treated at 60°C for 2 h. Therefore, temperatures >60°C restrict the growth of A. fumigatus.
Collapse
|
19
|
Tu C, Shen S, Sheng Q, Shyr Y, Qu J. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification. J Proteomics 2016; 152:276-282. [PMID: 27903464 DOI: 10.1016/j.jprot.2016.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 11/27/2022]
Abstract
Reliable quantification of low-abundance proteins in complex proteomes is challenging largely owing to the limited number of spectra/peptides identified. In this study we developed a straightforward method to improve the quantitative accuracy and precision of proteins by strategically retrieving the less confident peptides that were previously filtered out using the standard target-decoy search strategy. The filtered-out MS/MS spectra matched to confidently-identified proteins were recovered, and the peptide-spectrum-match FDR were re-calculated and controlled at a confident level of FDR≤1%, while protein FDR maintained at ~1%. We evaluated the performance of this strategy in both spectral count- and ion current-based methods. >60% increase of total quantified spectra/peptides was respectively achieved for analyzing a spike-in sample set and a public dataset from CPTAC. Incorporating the peptide retrieval strategy significantly improved the quantitative accuracy and precision, especially for low-abundance proteins (e.g. one-hit proteins). Moreover, the capacity of confidently discovering significantly-altered proteins was also enhanced substantially, as demonstrated with two spike-in datasets. In summary, improved quantitative performance was achieved by this peptide recovery strategy without compromising confidence of protein identification, which can be readily implemented in a broad range of quantitative proteomics techniques including label-free or labeling approaches. SIGNIFICANCE We hypothesize that more quantifiable spectra and peptides in a protein, even including less confident peptides, could help reduce variations and improve protein quantification. Hence the peptide retrieval strategy was developed and evaluated in two spike-in sample sets with different LC-MS/MS variations using both MS1- and MS2-based quantitative approach. The list of confidently identified proteins using the standard target-decoy search strategy was fixed and more spectra/peptides with less confidence matched to confident proteins were retrieved. However, the total peptide-spectrum-match false discovery rate (PSM FDR) after retrieval analysis was still controlled at a confident level of FDR≤1%. As expected, the penalty for occasionally incorporating incorrect peptide identifications is negligible by comparison with the improvements in quantitative performance. More quantifiable peptides, lower missing value rate, better quantitative accuracy and precision were significantly achieved for the same protein identifications by this simple strategy. This strategy is theoretically applicable for any quantitative approaches in proteomics and thereby provides more quantitative information, especially on low-abundance proteins.
Collapse
Affiliation(s)
- Chengjian Tu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, 285 Kapoor Hall, Buffalo, NY 14260, United States; New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, United States.
| | - Shichen Shen
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, 285 Kapoor Hall, Buffalo, NY 14260, United States; New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, United States
| | - Quanhu Sheng
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, United States
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, 285 Kapoor Hall, Buffalo, NY 14260, United States; New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, United States.
| |
Collapse
|
20
|
The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet 2016; 48:1551-1556. [PMID: 27798625 DOI: 10.1038/ng.3709] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022]
Abstract
Acute myeloid leukemia (AML) comprises a heterogeneous group of leukemias frequently defined by recurrent cytogenetic abnormalities, including rearrangements involving the core-binding factor (CBF) transcriptional complex. To better understand the genomic landscape of CBF-AMLs, we analyzed both pediatric (n = 87) and adult (n = 78) samples, including cases with RUNX1-RUNX1T1 (n = 85) or CBFB-MYH11 (n = 80) rearrangements, by whole-genome or whole-exome sequencing. In addition to known mutations in the Ras pathway, we identified recurrent stabilizing mutations in CCND2, suggesting a previously unappreciated cooperating pathway in CBF-AML. Outside of signaling alterations, RUNX1-RUNX1T1 and CBFB-MYH11 AMLs demonstrated remarkably different spectra of cooperating mutations, as RUNX1-RUNX1T1 cases harbored recurrent mutations in DHX15 and ZBTB7A, as well as an enrichment of mutations in epigenetic regulators, including ASXL2 and the cohesin complex. This detailed analysis provides insights into the pathogenesis and development of CBF-AML, while highlighting dramatic differences in the landscapes of cooperating mutations for these related AML subtypes.
Collapse
|
21
|
Ilavenil S, Al-Dhabi NA, Srigopalram S, Kim YO, Agastian P, Baaru R, Choi KC, Arasu MV, Park CG, Park KH. Removal of SDS from biological protein digests for proteomic analysis by mass spectrometry. Proteome Sci 2016; 14:11. [PMID: 27601941 PMCID: PMC5012027 DOI: 10.1186/s12953-016-0098-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 08/04/2016] [Indexed: 11/15/2022] Open
Abstract
Background Metal-organic frameworks (MOFs - MIL-101) are the most exciting, high profiled developments in nanotechnology in the last ten years, and it attracted considerable attention owing to their uniform nanoporosity, large surface area, outer-surface modification and in-pore functionality for tailoring the chemical properties of the material for anchoring specific guest moieties. MOF’s have been particularly highlighted for their excellent gas storage and separation properties. Recently biomolecules-based MOF’s were used as nanoencapsulators for antitumor and antiretroviral controlled drug delivery studies. However, usage of MOF material for removal of ionic detergent-SDS from biological samples has not been reported to date. Here, first time we demonstrate its novel applications in biological sample preparation for mass spectrometry analysis. Methods SDS removal using MIL-101 was assessed for proteomic analysis by mass spectrometry. We analysed removal of SDS from 0.5 % SDS solution alone, BSA mixture and HMEC cells lysate protein mixture. The removal of SDS by MIL-101 was confirmed by MALDI-TOF-MS and LC-MS techniques. Results In an initial demonstration, SDS has removed effectively from 0.5 % SDS solution by MIL-101via its binding attraction with SDS. Further, the experiment also confirmed that MIL-101 strongly removed the SDS from BSA and cell lysate mixtures. Conclusions These results suggest that SDS removal by the MIL-101 method is a practical, simple and broad applicable in proteomic sample processing for MALDI-TOF-MS and LC-MS analysis.
Collapse
Affiliation(s)
- Soundharrajan Ilavenil
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam, 330801 Korea
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Srisesharam Srigopalram
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam, 330801 Korea
| | - Young Ock Kim
- Department of Medicinal Crop Research, Rural Development Administration, Eumseong, Chungbuk, 369-873 Republic of Korea
| | - Paul Agastian
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai-34, Tamil Nadu India
| | | | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam, 330801 Korea
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Chun Geon Park
- Department of Medicinal Crop Research, Rural Development Administration, Eumseong, Chungbuk, 369-873 Republic of Korea
| | - Kyung Hun Park
- Department of Medicinal Crop Research, Rural Development Administration, Eumseong, Chungbuk, 369-873 Republic of Korea
| |
Collapse
|
22
|
Singec I, Crain AM, Hou J, Tobe BTD, Talantova M, Winquist AA, Doctor KS, Choy J, Huang X, La Monaca E, Horn DM, Wolf DA, Lipton SA, Gutierrez GJ, Brill LM, Snyder EY. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (Phospho)Proteomic Profiling. Stem Cell Reports 2016; 7:527-542. [PMID: 27569059 PMCID: PMC5032292 DOI: 10.1016/j.stemcr.2016.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 10/27/2022] Open
Abstract
Controlled differentiation of human embryonic stem cells (hESCs) can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs). This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites) provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families), phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt.
Collapse
Affiliation(s)
- Ilyas Singec
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Andrew M Crain
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Junjie Hou
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Brian T D Tobe
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Maria Talantova
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alicia A Winquist
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kutbuddin S Doctor
- Informatics and Data Management, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jennifer Choy
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xiayu Huang
- Informatics and Data Management, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Esther La Monaca
- Department of Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - David M Horn
- Thermo Fisher Scientific Inc., San Jose, CA 95134, USA
| | - Dieter A Wolf
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gustavo J Gutierrez
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Department of Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Laurence M Brill
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Evan Y Snyder
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Węsierska-Gądek J, Mauritz M, Mitulovic G, Cupo M. Differential Potential of Pharmacological PARP Inhibitors for Inhibiting Cell Proliferation and Inducing Apoptosis in Human Breast Cancer Cells. J Cell Biochem 2016; 116:2824-39. [PMID: 25981734 DOI: 10.1002/jcb.25229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
Abstract
BRCA1/2-mutant cells are hypersensitive to inactivation of poly(ADP-ribose) polymerase 1 (PARP-1). We recently showed that inhibition of PARP-1 by NU1025 is strongly cytotoxic for BRCA1-positive BT-20 cells, but not BRCA1-deficient SKBr-3 cells. These results raised the possibility that other PARP-1 inhibitors, particularly those tested in clinical trials, may be more efficacious against BRCA1-deficient SKBr-3 breast cancer cells than NU1025. Thus, in the presented study the cytotoxicity of four PARP inhibitors under clinical evaluation (olaparib, rucaparib, iniparib and AZD2461) was examined and compared to that of NU1025. The sensitivity of breast cancer cells to the PARP-1 inhibition strongly varied. Remarkably, BRCA-1-deficient SKBr-3 cells were almost completely insensitive to NU1025, olaparib and rucaparib, whereas BRCA1-expressing BT-20 cells were strongly affected by NU1025 even at low doses. In contrast, iniparib and AZD2461 were cytotoxic for both BT-20 and SKBr-3 cells. Of the four tested PARP-1 inhibitors only AZD2461 strongly affected cell cycle progression. Interestingly, the anti-proliferative and pro-apoptotic potential of the tested PARP-1 inhibitors clearly correlated with their capacity to damage DNA. Further analyses revealed that proteomic signatures of the two studied breast cancer cell lines strongly differ, and a set of 197 proteins was differentially expressed in NU1025-treated BT-20 cancer cells. These results indicate that BT-20 cells may harbor an unknown defect in DNA repair pathway(s) rendering them sensitive to PARP-1 inhibition. They also imply that therapeutic applicability of PARP-1 inhibitors is not limited to BRCA mutation carriers but can be extended to patients harboring deficiencies in other components of the pathway(s).
Collapse
Affiliation(s)
- Józefa Węsierska-Gądek
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Cell Cycle Regulation Group, Vienna, Austria
| | - Matthias Mauritz
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Cell Cycle Regulation Group, Vienna, Austria
| | - Goran Mitulovic
- Clinical Department of Laboratory Medicine Proteomics Core Facility, Medical University of Vienna, Borschkegasse 8a, Vienna, 1090, Austria
| | - Maria Cupo
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Cell Cycle Regulation Group, Vienna, Austria
| |
Collapse
|
24
|
Branson OE, Freitas MA. A multi-model statistical approach for proteomic spectral count quantitation. J Proteomics 2016; 144:23-32. [PMID: 27260494 DOI: 10.1016/j.jprot.2016.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/16/2023]
Abstract
UNLABELLED The rapid development of mass spectrometry (MS) technologies has solidified shotgun proteomics as the most powerful analytical platform for large-scale proteome interrogation. The ability to map and determine differential expression profiles of the entire proteome is the ultimate goal of shotgun proteomics. Label-free quantitation has proven to be a valid approach for discovery shotgun proteomics, especially when sample is limited. Label-free spectral count quantitation is an approach analogous to RNA sequencing whereby count data is used to determine differential expression. Here we show that statistical approaches developed to evaluate differential expression in RNA sequencing experiments can be applied to detect differential protein expression in label-free discovery proteomics. This approach, termed MultiSpec, utilizes open-source statistical platforms; namely edgeR, DESeq and baySeq, to statistically select protein candidates for further investigation. Furthermore, to remove bias associated with a single statistical approach a single ranked list of differentially expressed proteins is assembled by comparing edgeR and DESeq q-values directly with the false discovery rate (FDR) calculated by baySeq. This statistical approach is then extended when applied to spectral count data derived from multiple proteomic pipelines. The individual statistical results from multiple proteomic pipelines are integrated and cross-validated by means of collapsing protein groups. BIOLOGICAL SIGNIFICANCE Spectral count data from shotgun proteomics experiments is semi-quantitative and semi-random, yet a robust way to estimate protein concentration. Tag-count approaches are routinely used to analyze RNA sequencing data sets. This approach, termed MultiSpec, utilizes multiple tag-count based statistical tests to determine differential protein expression from spectral counts. The statistical results from these tag-count approaches are combined in order to reach a final MultiSpec q-value to re-rank protein candidates. This re-ranking procedure is completed to remove bias associated with a single approach in order to better understand the true proteomic differences driving the biology in question. The MultiSpec approach can be extended to multiple proteomic pipelines. In such an instance, MultiSpec statistical results are integrated by collapsing protein groups across proteomic pipelines to provide a single ranked list of differentially expressed proteins. This integration mechanism is seamlessly integrated with the statistical analysis and provides the means to cross-validate protein inferences from multiple proteomic pipelines.
Collapse
Affiliation(s)
- Owen E Branson
- The Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael A Freitas
- The Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
25
|
Maaß S, Becher D. Methods and applications of absolute protein quantification in microbial systems. J Proteomics 2016; 136:222-33. [PMID: 26825536 DOI: 10.1016/j.jprot.2016.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/05/2016] [Accepted: 01/21/2016] [Indexed: 02/05/2023]
Abstract
In the last years the scientific community faced an increased need to provide high-quality data on the concentration of single proteins within a cell. Especially against the background of the fast evolving field of systems biology this does not only apply for a few proteins but preferably for the whole proteome of the organism. Therefore there has been a rapid development from pure identification of proteins via characterization of changes between different conditions by relative protein quantification towards determination of absolute protein amounts for hundreds of protein species in a cell. This review aims for discussion of different small-scale and large-scale approaches for absolute protein quantification in bacterial cells to picture biological processes and explore life in deeper detail. The presented advantages and limitations of various methods may provide interested researchers help to appraise available methods, select the most appropriate technique and avoid common pitfalls during determination of protein concentration in a complex sample.
Collapse
Affiliation(s)
- Sandra Maaß
- Institute for Microbiology, Ernst Moritz Arndt Universität Greifswald, D-17487 Greifswald, Germany.
| | - Dörte Becher
- Institute for Microbiology, Ernst Moritz Arndt Universität Greifswald, D-17487 Greifswald, Germany
| |
Collapse
|
26
|
El Ouaamari A, Dirice E, Gedeon N, Hu J, Zhou JY, Shirakawa J, Hou L, Goodman J, Karampelias C, Qiang G, Boucher J, Martinez R, Gritsenko MA, De Jesus DF, Kahraman S, Bhatt S, Smith RD, Beer HD, Jungtrakoon P, Gong Y, Goldfine AB, Liew CW, Doria A, Andersson O, Qian WJ, Remold-O'Donnell E, Kulkarni RN. SerpinB1 Promotes Pancreatic β Cell Proliferation. Cell Metab 2016; 23:194-205. [PMID: 26701651 PMCID: PMC4715773 DOI: 10.1016/j.cmet.2015.12.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/20/2015] [Accepted: 11/30/2015] [Indexed: 01/09/2023]
Abstract
Although compensatory islet hyperplasia in response to insulin resistance is a recognized feature in diabetes, the factor(s) that promote β cell proliferation have been elusive. We previously reported that the liver is a source for such factors in the liver insulin receptor knockout (LIRKO) mouse, an insulin resistance model that manifests islet hyperplasia. Using proteomics we show that serpinB1, a protease inhibitor, which is abundant in the hepatocyte secretome and sera derived from LIRKO mice, is the liver-derived secretory protein that regulates β cell proliferation in humans, mice, and zebrafish. Small-molecule compounds, that partially mimic serpinB1 effects of inhibiting elastase activity, enhanced proliferation of β cells, and mice lacking serpinB1 exhibit attenuated β cell compensation in response to insulin resistance. Finally, SerpinB1 treatment of islets modulated proteins in growth/survival pathways. Together, these data implicate serpinB1 as an endogenous protein that can potentially be harnessed to enhance functional β cell mass in patients with diabetes.
Collapse
Affiliation(s)
- Abdelfattah El Ouaamari
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Ercument Dirice
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Nicholas Gedeon
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Jiang Hu
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Jian-Ying Zhou
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jun Shirakawa
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Lifei Hou
- Program in Cellular and Molecular Medicine at Boston Children's Hospital, 3 Blackfan Circle, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Jessica Goodman
- Program in Cellular and Molecular Medicine at Boston Children's Hospital, 3 Blackfan Circle, Boston, MA 02215, USA
| | - Christos Karampelias
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 17177 Stockholm, Sweden
| | - Guifeng Qiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jeremie Boucher
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Cardiovascular and Metabolic Diseases iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Rachael Martinez
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Marina A Gritsenko
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Dario F De Jesus
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Sevim Kahraman
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Shweta Bhatt
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Hans-Dietmar Beer
- University Hospital Zurich, Department of Dermatology, 8006 Zurich, Switzerland
| | - Prapaporn Jungtrakoon
- Section on Genetics and Epidemiology, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yanping Gong
- Program in Cellular and Molecular Medicine at Boston Children's Hospital, 3 Blackfan Circle, Boston, MA 02215, USA
| | - Allison B Goldfine
- Section on Clinical Research, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alessandro Doria
- Section on Genetics and Epidemiology, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 17177 Stockholm, Sweden
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Eileen Remold-O'Donnell
- Program in Cellular and Molecular Medicine at Boston Children's Hospital, 3 Blackfan Circle, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Comparative Secretome Analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum During Solid-State Fermentation. Appl Biochem Biotechnol 2015; 177:1252-71. [DOI: 10.1007/s12010-015-1811-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
|
28
|
El Ouaamari A, Zhou JY, Liew CW, Shirakawa J, Dirice E, Gedeon N, Kahraman S, De Jesus DF, Bhatt S, Kim JS, Clauss TR, Camp DG, Smith RD, Qian WJ, Kulkarni RN. Compensatory Islet Response to Insulin Resistance Revealed by Quantitative Proteomics. J Proteome Res 2015; 14:3111-3122. [PMID: 26151086 DOI: 10.1021/acs.jproteome.5b00587] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compensatory islet response is a distinct feature of the prediabetic insulin-resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from 5 month old male control, high-fat diet fed (HFD), or obese ob/ob mice by LC-MS/MS and quantified ~1100 islet proteins (at least two peptides) with a false discovery rate < 1%. Significant alterations in abundance were observed for ~350 proteins among groups. The majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selected reaction monitoring and western blots, respectively. The insulin-resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin-resistant models. In summary, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin-resistant rodent models that are not overtly diabetic. These data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, under accession no. MSV000079093.
Collapse
Affiliation(s)
- Abdelfattah El Ouaamari
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Jian-Ying Zhou
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Shirakawa
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Ercument Dirice
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Nicholas Gedeon
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Sevim Kahraman
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Dario F De Jesus
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Shweta Bhatt
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Jong-Seo Kim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Therese Rw Clauss
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - David G Camp
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Rohit N Kulkarni
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
29
|
Nouri-Nigjeh E, Sukumaran S, Tu C, Li J, Shen X, Duan X, DuBois DC, Almon RR, Jusko WJ, Qu J. Highly multiplexed and reproducible ion-current-based strategy for large-scale quantitative proteomics and the application to protein expression dynamics induced by methylprednisolone in 60 rats. Anal Chem 2014; 86:8149-57. [PMID: 25072516 PMCID: PMC4139173 DOI: 10.1021/ac501380s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
A proteome-level time-series study
of drug effects (i.e., pharmacodynamics)
is critical for understanding mechanisms of action and systems pharmacology,
but is challenging, because of the requirement of a proteomics method
for reliable quantification of many biological samples. Here, we describe a highly reproducible strategy, enabling a global,
large-scale investigation of the expression dynamics of corticosteroid-regulated
proteins in livers from adrenalectomized rats over 11 time points
after drug dosing (0.5–66 h, N = 5/point).
The analytical advances include (i) exhaustive tissue extraction with
a Polytron/sonication procedure in a detergent cocktail buffer, and
a cleanup/digestion procedure providing very consistent protein yields
(relative standard deviation (RSD%) of 2.7%–6.4%) and peptide
recoveries (4.1–9.0%) across the 60 animals; (ii) an ultrahigh-pressure
nano-LC setup with substantially improved temperature stabilization,
pump-noise suppression, and programmed interface cleaning, enabling
excellent reproducibility for continuous analyses of numerous samples;
(iii) separation on a 100-cm-long column (2-μm particles) with
high reproducibility for days to enable both in-depth profiling and
accurate peptide ion-current match; and (iv) well-controlled ion-current-based
quantification. To obtain high-quality quantitative data necessary
to describe the 11 time-points protein expression temporal profiles,
strict criteria were used to define “quantifiable proteins”.
A total of 323 drug-responsive proteins were revealed with confidence,
and the time profiles of these proteins provided new insights into
the diverse temporal changes of biological cascades associated with
hepatic metabolism, response to hormone stimuli, gluconeogenesis,
inflammatory responses, and protein translation processes. Most profile
changes persisted well after the drug was eliminated. The developed
strategy can also be broadly applied in preclinical and clinical research,
where the analysis of numerous biological replicates is crucial.
Collapse
Affiliation(s)
- Eslam Nouri-Nigjeh
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York , Buffalo, New York 14214, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Proteogenomic characterization of human colon and rectal cancer. Nature 2014; 513:382-7. [PMID: 25043054 DOI: 10.1038/nature13438] [Citation(s) in RCA: 1065] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 05/02/2014] [Indexed: 12/11/2022]
Abstract
Extensive genomic characterization of human cancers presents the problem of inference from genomic abnormalities to cancer phenotypes. To address this problem, we analysed proteomes of colon and rectal tumours characterized previously by The Cancer Genome Atlas (TCGA) and perform integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. Messenger RNA transcript abundance did not reliably predict protein abundance differences between tumours. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA 'microsatellite instability/CpG island methylation phenotype' transcriptomic subtype, but had distinct mutation, methylation and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates, including HNF4A (hepatocyte nuclear factor 4, alpha), TOMM34 (translocase of outer mitochondrial membrane 34) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase). Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.
Collapse
|
31
|
Aryal UK, Callister SJ, McMahon BH, McCue LA, Brown J, Stöckel J, Liberton M, Mishra S, Zhang X, Nicora CD, Angel TE, Koppenaal DW, Smith RD, Pakrasi HB, Sherman LA. Proteomic Profiles of Five Strains of Oxygenic Photosynthetic Cyanobacteria of the Genus Cyanothece. J Proteome Res 2014; 13:3262-76. [DOI: 10.1021/pr5000889] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Uma K. Aryal
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Stephen J. Callister
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Lee-Ann McCue
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joseph Brown
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jana Stöckel
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
- MOgene Green Chemicals LC, St. Louis, Missouri 63132, United States
| | - Michelle Liberton
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Sujata Mishra
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaohui Zhang
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Thomas E. Angel
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Kinemed, Inc., Horton Street, Emeryville, California 94608, United States
| | - David W. Koppenaal
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Himadri B. Pakrasi
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Louis A. Sherman
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
32
|
Abstract
Despite advances in understanding pluripotency through traditional cell biology and gene expression profiling, the signaling networks responsible for maintenance of pluripotency and lineage-specific differentiation are poorly defined. To aid in an improved understanding of these networks at the systems level, we present procedures for the combined analysis of the total proteome and total phosphoproteome (termed (phospho)proteome) from human embryonic stem cells (hESCs), human induced pluripotent stem cells (hiPSCs), and their differentiated derivatives. Because there has been considerable heterogeneity in the literature on the culture of pluripotent cells, we first briefly describe our feeder-free cell culture protocol. The focus, however, is on procedures necessary to generate large-scale (phospho)proteomic data from the cells. Human cells are described here, but the (phospho)proteomic procedures are broadly applicable. Detailed procedures are given for lysis of the cells, protein sample preparation and digestion, multidimensional liquid chromatography, analysis by tandem mass spectrometry, and database searches for peptide/protein identification (ID). We summarize additional data analysis procedures, the subject of ongoing efforts.
Collapse
|
33
|
Valledor L, Romero-Rodríguez MC, Jorrin-Novo JV. Standardization of data processing and statistical analysis in comparative plant proteomics experiment. Methods Mol Biol 2014; 1072:51-60. [PMID: 24136514 DOI: 10.1007/978-1-62703-631-3_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Two-dimensional gel electrophoresis remains the most widely used technique for protein separation in plant proteomics experiments. Despite the continuous technical advances and improvements in current 2-DE protocols, an adequate and correct experimental design and statistical analysis of the data tend to be ignored or not properly documented in current literature. Both proper experimental design and appropriate statistical analysis are requested in order to confidently discuss our results and to conclude from experimental data.In this chapter, we describe a model procedure for a correct experimental design and a complete statistical analysis of proteomic dataset. Our model procedure covers all of the steps in data mining and processing, starting with the data preprocessing (transformation, missing value imputation, definition of outliers) and univariate statistics (parametric and nonparametric tests), and finishing with multivariate statistics (clustering, heat-mapping, PCA, ICA, PLS-DA).
Collapse
Affiliation(s)
- Luis Valledor
- Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
34
|
Zhou JY, Krovvidi RK, Gao Y, Gao H, Petritis BO, De AK, Miller-Graziano CL, Bankey PE, Petyuk VA, Nicora CD, Clauss TR, Moore RJ, Shi T, Brown JN, Kaushal A, Xiao W, Davis RW, Maier RV, Tompkins RG, Qian WJ, Camp DG, Smith RD. Trauma-associated human neutrophil alterations revealed by comparative proteomics profiling. Proteomics Clin Appl 2013; 7:571-83. [PMID: 23589343 DOI: 10.1002/prca.201200109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/31/2013] [Accepted: 02/25/2013] [Indexed: 12/29/2022]
Abstract
PURPOSE Polymorphonuclear neutrophils (PMNs) play an important role in mediating the innate immune response after severe traumatic injury; however, the cellular proteome response to traumatic condition is still largely unknown. EXPERIMENTAL DESIGN We applied 2D-LC-MS/MS-based shotgun proteomics to perform comparative proteome profiling of human PMNs from severe trauma patients and healthy controls. RESULTS A total of 197 out of ~2500 proteins (being identified with at least two peptides) were observed with significant abundance changes following the injury. The proteomics data were further compared with transcriptomics data for the same genes obtained from an independent patient cohort. The comparison showed that the protein abundance changes for the majority of proteins were consistent with the mRNA abundance changes in terms of directions of changes. Moreover, increased protein secretion was suggested as one of the mechanisms contributing to the observed discrepancy between protein and mRNA abundance changes. Functional analyses of the altered proteins showed that many of these proteins were involved in immune response, protein biosynthesis, protein transport, NRF2-mediated oxidative stress response, the ubiquitin-proteasome system, and apoptosis pathways. CONCLUSIONS AND CLINICAL RELEVANCE Our data suggest increased neutrophil activation and inhibited neutrophil apoptosis in response to trauma. The study not only reveals an overall picture of functional neutrophil response to trauma at the proteome level, but also provides a rich proteomics data resource of trauma-associated changes in the neutrophil that will be valuable for further studies of the functions of individual proteins in PMNs.
Collapse
Affiliation(s)
- Jian-Ying Zhou
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Valledor L, Recuenco-Munoz L, Egelhofer V, Wienkoop S, Weckwerth W. The different proteomes of Chlamydomonas reinhardtii. J Proteomics 2012; 75:5883-7. [DOI: 10.1016/j.jprot.2012.07.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/22/2012] [Accepted: 07/30/2012] [Indexed: 11/16/2022]
|
36
|
Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ. A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:52. [PMID: 22835028 PMCID: PMC3413557 DOI: 10.1186/1754-6834-5-52] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/26/2012] [Indexed: 05/12/2023]
Abstract
BACKGROUND Fungi are important players in the turnover of plant biomass because they produce a broad range of degradative enzymes. Aspergillus nidulans, a well-studied saprophyte and close homologue to industrially important species such as A. niger and A. oryzae, was selected for this study. RESULTS A. nidulans was grown on sorghum stover under solid-state culture conditions for 1, 2, 3, 5, 7 and 14 days. Based on analysis of chitin content, A. nidulans grew to be 4-5% of the total biomass in the culture after 2 days and then maintained a steady state of 4% of the total biomass for the next 12 days. A hyphal mat developed on the surface of the sorghum by day one and as seen by scanning electron microscopy the hyphae enmeshed the sorghum particles by day 5. After 14 days hyphae had penetrated the entire sorghum slurry. Analysis (1-D PAGE LC-MS/MS) of the secretome of A. nidulans, and analysis of the breakdown products from the sorghum stover showed a wide range of enzymes secreted. A total of 294 extracellular proteins were identified with hemicellulases, cellulases, polygalacturonases, chitinases, esterases and lipases predominating the secretome. Time course analysis revealed a total of 196, 166, 172 and 182 proteins on day 1, 3, 7 and 14 respectively. The fungus used 20% of the xylan and cellulose by day 7 and 30% by day 14. Cellobiose dehydrogenase, feruloyl esterases, and CAZy family 61 endoglucanases, all of which are thought to reduce the recalcitrance of biomass to hydrolysis, were found in high abundance. CONCLUSIONS Our results show that A. nidulans secretes a wide array of enzymes to degrade the major polysaccharides and lipids (but probably not lignin) by 1 day of growth on sorghum. The data suggests simultaneous breakdown of hemicellulose, cellulose and pectin. Despite secretion of most of the enzymes on day 1, changes in the relative abundances of enzymes over the time course indicates that the set of enzymes secreted is tailored to the specific substrates available. Our findings reveal that A. nidulans is capable of degrading the major polysaccharides in sorghum without any chemical pre-treatment.
Collapse
Affiliation(s)
- Sayali Saykhedkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Anamika Ray
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Patricia Ayoubi-Canaan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Rolf Prade
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Andrew J Mort
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
37
|
Lee DY, Park JJ, Barupal DK, Fiehn O. System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Mol Cell Proteomics 2012; 11:973-88. [PMID: 22787274 DOI: 10.1074/mcp.m111.016733] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drastic alterations in macronutrients are known to cause large changes in biochemistry and gene expression in the photosynthetic alga Chlamydomonas reinhardtii. However, metabolomic and proteomic responses to subtle reductions in macronutrients have not yet been studied. When ammonium levels were reduced by 25-100% compared with control cultures, ammonium uptake and growth rates were not affected at 25% or 50% nitrogen-reduction for 28 h. However, primary metabolism and enzyme expression showed remarkable changes at acute conditions (4 h and 10 h after ammonium reduction) compared with chronic conditions (18 h and 28 h time points). Responses of 145 identified metabolites were quantified using gas chromatography-time of flight mass spectrometry; 495 proteins (including 187 enzymes) were monitored using liquid chromatography-ion trap mass spectrometry with label-free spectral counting. Stress response and carbon assimilation processes (Calvin cycle, acetate uptake and chlorophyll biosynthesis) were altered first, in addition to increase in enzyme contents for lipid biosynthesis and accumulation of short chain free fatty acids. Nitrogen/carbon balance metabolism was found changed only under chronic conditions, for example in the citric acid cycle and amino acid metabolism. Metabolism in Chlamydomonas readily responds to total available media nitrogen with temporal increases in short-chain free fatty acids and turnover of internal proteins, long before nitrogen resources are depleted.
Collapse
Affiliation(s)
- Do Yup Lee
- University of California, Davis Genome Center, Davis, California 95616, USA
| | | | | | | |
Collapse
|
38
|
Zhou JY, Dann GP, Liew CW, Smith RD, Kulkarni RN, Qian WJ. Unraveling pancreatic islet biology by quantitative proteomics. Expert Rev Proteomics 2012; 8:495-504. [PMID: 21819304 DOI: 10.1586/epr.11.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pancreatic islets of Langerhans play a critical role in maintaining blood glucose homeostasis by secreting insulin and several other important peptide hormones. Impaired insulin secretion due to islet dysfunction is linked to the pathogenesis underlying both Type 1 and Type 2 diabetes. Over the past 5 years, emerging proteomic technologies have been applied to dissect the signaling pathways that regulate islet functions and gain an understanding of the mechanisms of islet dysfunction relevant to diabetes. Herein, we briefly review some of the recent quantitative proteomic studies involving pancreatic islets geared towards gaining a better understanding of islet biology relevant to metabolic diseases.
Collapse
Affiliation(s)
- Jian-Ying Zhou
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 2012; 404:939-65. [PMID: 22772140 DOI: 10.1007/s00216-012-6203-4] [Citation(s) in RCA: 539] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 02/08/2023]
Abstract
Mass-spectrometry-based proteomics is continuing to make major contributions to the discovery of fundamental biological processes and, more recently, has also developed into an assay platform capable of measuring hundreds to thousands of proteins in any biological system. The field has progressed at an amazing rate over the past five years in terms of technology as well as the breadth and depth of applications in all areas of the life sciences. Some of the technical approaches that were at an experimental stage back then are considered the gold standard today, and the community is learning to come to grips with the volume and complexity of the data generated. The revolution in DNA/RNA sequencing technology extends the reach of proteomic research to practically any species, and the notion that mass spectrometry has the potential to eventually retire the western blot is no longer in the realm of science fiction. In this review, we focus on the major technical and conceptual developments since 2007 and illustrate these by important recent applications.
Collapse
|
40
|
Zhou JY, Dann GP, Shi T, Wang L, Gao X, Su D, Nicora CD, Shukla AK, Moore RJ, Liu T, Camp DG, Smith RD, Qian WJ. Simple sodium dodecyl sulfate-assisted sample preparation method for LC-MS-based proteomics applications. Anal Chem 2012; 84:2862-7. [PMID: 22339560 DOI: 10.1021/ac203394r] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for biological sample extraction; however, the presence of this reagent in samples challenges LC-MS-based proteomics analyses because it can interfere with reversed-phase LC separations and electrospray ionization. This study reports a simple SDS-assisted proteomics sample preparation method facilitated by a novel peptide-level SDS removal step. In an initial demonstration, SDS was effectively (>99.9%) removed from peptide samples through ion substitution-mediated DS(-) precipitation using potassium chloride (KCl), and excellent peptide recovery (>95%) was observed for <20 μg of peptides. Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage obtained for both mammalian tissues and bacterial samples was comparable to or better than that obtained for the same sample types prepared using standard proteomics preparation methods and analyzed using LC-MS/MS. These results suggest the SDS-assisted protocol is a practical, simple, and broadly applicable proteomics sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.
Collapse
Affiliation(s)
- Jian-Ying Zhou
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tobe BT, Hou J, Crain AM, Singec I, Snyder EY, Brill LM. Phosphoproteomic analysis: an emerging role in deciphering cellular signaling in human embryonic stem cells and their differentiated derivatives. Stem Cell Rev Rep 2012; 8:16-31. [PMID: 22009073 PMCID: PMC3839940 DOI: 10.1007/s12015-011-9317-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cellular signaling is largely controlled by protein phosphorylation. This post-translational modification (PTM) has been extensively analyzed when examining one or a few protein phosphorylation events that effect cell signaling. However, protein kinase-driven signaling networks, comprising total (phospho)proteomes, largely control cell fate. Therefore, large-scale analysis of differentially regulated protein phosphorylation is central to elucidating complex cellular events, including maintenance of pluripotency and differentiation of embryonic stem cells (ESCs). The current technology of choice for total phosphoproteome and combined total proteome plus total phosphoproteome (termed (phospho)proteome) analyses is multidimensional liquid chromatography-(MDLC) tandem mass spectrometry (MS/MS). Advances in the use of MDLC for separation of peptides comprising total (phospho)proteomes, phosphopeptide enrichment, separation of enriched fractions, and quantitative peptide identification by MS/MS have been rapid in recent years, as have improvements in the sensitivity, speed, and accuracy of mass spectrometers. Increasingly deep coverage of (phospho)proteomes is allowing an improved understanding of changes in protein phosphorylation networks as cells respond to stimuli and progress from one undifferentiated or differentiated state to another. Although MDLC-MS/MS studies are powerful, understanding the interpretation of the data is important, and targeted experimental pursuit of biological predictions provided by total (phospho)proteome analyses is needed. (Phospho)proteomic analyses of pluripotent stem cells are in their infancy at this time. However, such studies have already begun to contribute to an improved and accelerated understanding of basic pluripotent stem cell signaling and fate control, especially at the systems-biology level.
Collapse
Affiliation(s)
- Brian T.D. Tobe
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Junjie Hou
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Andrew M. Crain
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Ilyas Singec
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Evan Y. Snyder
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Laurence M. Brill
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| |
Collapse
|
42
|
Cooper B, Chen R, Garrett WM, Murphy C, Chang C, Tucker ML, Bhagwat AA. Proteomic Pleiotropy of OpgGH, an Operon Necessary for Efficient Growth of Salmonella enterica serovar Typhimurium under Low-Osmotic Conditions. J Proteome Res 2012; 11:1720-7. [DOI: 10.1021/pr200933d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Ruiqiang Chen
- Department of Cell Biology and
Molecular Genetics, University of Maryland, College Park, Maryland 20742, United States
| | | | | | - Caren Chang
- Department of Cell Biology and
Molecular Genetics, University of Maryland, College Park, Maryland 20742, United States
| | | | | |
Collapse
|
43
|
Xie F, Liu T, Qian WJ, Petyuk VA, Smith RD. Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem 2011; 286:25443-9. [PMID: 21632532 DOI: 10.1074/jbc.r110.199703] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
LC-MS-based quantitative proteomics has become increasingly applied to a wide range of biological applications due to growing capabilities for broad proteome coverage and good accuracy and precision in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations and highlight their potential applications.
Collapse
Affiliation(s)
- Fang Xie
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | |
Collapse
|
44
|
Booth JG, Eilertson KE, Olinares PDB, Yu H. A bayesian mixture model for comparative spectral count data in shotgun proteomics. Mol Cell Proteomics 2011; 10:M110.007203. [PMID: 21602509 DOI: 10.1074/mcp.m110.007203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent developments in mass-spectrometry-based shotgun proteomics, especially methods using spectral counting, have enabled large-scale identification and differential profiling of complex proteomes. Most such proteomic studies are interested in identifying proteins, the abundance of which is different under various conditions. Several quantitative methods have recently been proposed and implemented for this purpose. Building on some techniques that are now widely accepted in the microarray literature, we developed and implemented a new method using a Bayesian model to calculate posterior probabilities of differential abundance for thousands of proteins in a given experiment simultaneously. Our Bayesian model is shown to deliver uniformly superior performance when compared with several existing methods.
Collapse
Affiliation(s)
- James G Booth
- Department of Biological Statistics and Computational Biology, Cornell University, Comstock Hall, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|