1
|
Zhang T, Liu X, Rossio V, Dawson SL, Gygi SP, Paulo JA. Enhancing Proteome Coverage by Using Strong Anion-Exchange in Tandem with Basic-pH Reversed-Phase Chromatography for Sample Multiplexing-Based Proteomics. J Proteome Res 2024; 23:2870-2881. [PMID: 37962907 PMCID: PMC11090996 DOI: 10.1021/acs.jproteome.3c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Sample multiplexing-based proteomic strategies rely on fractionation to improve proteome coverage. Tandem mass tag (TMT) experiments, for example, can currently accommodate up to 18 samples with proteins spanning several orders of magnitude, thus necessitating fractionation to achieve reasonable proteome coverage. Here, we present a simple yet effective peptide fractionation strategy that partitions a pooled TMT sample with a two-step elution using a strong anion-exchange (SAX) spin column prior to gradient-based basic pH reversed-phase (BPRP) fractionation. We highlight our strategy with a TMTpro18-plex experiment using nine diverse human cell lines in biological duplicate. We collected three data sets, one using only BPRP fractionation and two others of each SAX-partition followed by BPRP. The three data sets quantified a similar number of proteins and peptides, and the data highlight noticeable differences in the distribution of peptide charge and isoelectric point between the SAX partitions. The combined SAX partition data set contributed 10% more proteins and 20% more unique peptides that were not quantified by BPRP fractionation alone. In addition to this improved fractionation strategy, we provide an online resource of relative abundance profiles for over 11,000 proteins across the nine human cell lines, as well as two additional experiments using ovarian and pancreatic cancer cell lines.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shane L Dawson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Perera CJ, Hosen SZ, Khan T, Fang H, Mekapogu AR, Xu Z, Falasca M, Chari ST, Wilson JS, Pirola R, Greening DW, Apte MV. Proteomic profiling of small extracellular vesicles derived from mouse pancreatic cancer and stellate cells: Role in pancreatic cancer. Proteomics 2024; 24:e2300067. [PMID: 38570832 DOI: 10.1002/pmic.202300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/17/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Small extracellular vesicles (sEVs) are cell-derived vesicles evolving as important elements involved in all stages of cancers. sEVs bear unique protein signatures that may serve as biomarkers. Pancreatic cancer (PC) records a very poor survival rate owing to its late diagnosis and several cancer cell-derived proteins have been reported as candidate biomarkers. However, given the pivotal role played by stellate cells (PSCs, which produce the collagenous stroma in PC), it is essential to also assess PSC-sEV cargo in biomarker discovery. Thus, this study aimed to isolate and characterise sEVs from mouse PC cells and PSCs cultured alone or as co-cultures and performed proteomic profiling and pathway analysis. Proteomics confirmed the enrichment of specific markers in the sEVs compared to their cells of origin as well as the proteins that are known to express in each of the culture types. Most importantly, for the first time it was revealed that PSC-sEVs are enriched in proteins (including G6PI, PGAM1, ENO1, ENO3, and LDHA) that mediate pathways related to development of diabetes, such as glucose metabolism and gluconeogenesis revealing a potential role of PSCs in pancreatic cancer-related diabetes (PCRD). PCRD is now considered a harbinger of PC and further research will enable to identify the role of these components in PCRD and may develop as novel candidate biomarkers of PC.
Collapse
Affiliation(s)
- Chamini J Perera
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Sm Zahid Hosen
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Tanzila Khan
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Haoyun Fang
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Alpha Raj Mekapogu
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Suresh T Chari
- Department of Gastroenterology, Hepatology and Nutrition, M. D Anderson Cancer Centre, University of Texas, Houston, Texas, USA
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Ron Pirola
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - David W Greening
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
3
|
Liu X, Rossio V, Gygi SP, Paulo JA. Enriching Cysteine-Containing Peptides Using a Sulfhydryl-Reactive Alkylating Reagent with a Phosphonic Acid Group and Immobilized Metal Affinity Chromatography. J Proteome Res 2023; 22:1270-1279. [PMID: 36971515 PMCID: PMC10311885 DOI: 10.1021/acs.jproteome.2c00806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The reduction of disulfide bonds and their subsequent alkylation are commonplace in typical proteomics workflows. Here, we highlight a sulfhydryl-reactive alkylating reagent with a phosphonic acid group (iodoacetamido-LC-phosphonic acid, 6C-CysPAT) that facilitates the enrichment of cysteine-containing peptides for isobaric tag-based proteome abundance profiling. Specifically, we profile the proteome of the SH-SY5Y human cell line following 24 h treatments with two proteasome inhibitors (bortezomib and MG-132) in a tandem mass tag (TMT)pro9-plex experiment. We acquire three datasets─(1) Cys-peptide enriched, (2) the unbound complement, and (3) the non-depleted control─and compare the peptides and proteins quantified in each dataset, with emphasis on Cys-containing peptides. The data show that enrichment using 6C-Cys phosphonate adaptable tag (6C-CysPAT) can quantify over 38,000 Cys-containing peptides in 5 h with >90% specificity. In addition, our combined dataset provides the research community with a resource of over 9900 protein abundance profiles exhibiting the effects of two different proteasome inhibitors. Overall, the seamless incorporation of alkylation by 6C-CysPAT into a current TMT-based workflow permits the enrichment of a Cys-containing peptide subproteome. The acquisition of this "mini-Cys" dataset can be used to preview and assess the quality of a deep, fractionated dataset.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Wang R, Wang Y, Tao Y, Hu L, Qiu Q, Pu Q, Yang J, Wang S, Huang Y, Chen X, Zhu P, Yang H, Xia Q, Du D. Temporal Proteomic and Lipidomic Profiles of Cerulein-Induced Acute Pancreatitis Reveal Novel Insights for Metabolic Alterations in the Disease Pathogenesis. ACS OMEGA 2023; 8:12310-12326. [PMID: 37033809 PMCID: PMC10077560 DOI: 10.1021/acsomega.3c00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The pathophysiological mechanisms of acute pancreatitis (AP) are complex and have remained a mystery to date, but metabolism is gradually recognized as an important driver of AP onset and development. We used a cerulein-induced AP mouse model to conduct liquid chromatography-mass spectrometry (LC-MS/MS)-based time-course proteomics and lipidomics in order to better understand the underlying metabolic alterations linked with AP. Results showed that a series of significant changes in proteins over time with a boost in expression were enriched in lipase activity, lipoprotein, and lipids absorption and transport regulation. Furthermore, 16 proteins associated with lipid metabolism and signaling pathways together with the whole lipid species changing profile led to the vital identification of changing law in glycerides, phosphoglycerides, and free fatty acids. In addition to lipid metabolism and regulation-associated proteins, several digestive enzymes and adaptive anti-trypsin, stress response, and energy metabolism-related proteins showed an increment in abundance. Notably, central carbon and branched chain amino acid metabolism were enhanced during 0-24 h from the first cerulein stimulation. Taken together, this integrated proteomics and lipidomics revealed a novel metabolic insight into metabolites transforming rules that might be relevant to their function and drug targets investigation. (Created with Biorender.com.).
Collapse
Affiliation(s)
- Rui Wang
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
- Advanced
Mass Spectrometry Center, Research Core Facility, Frontiers Science
Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqin Wang
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Yiran Tao
- West
China-California Research Center for Predictive Intervention Medicine,
West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liqiang Hu
- Advanced
Mass Spectrometry Center, Research Core Facility, Frontiers Science
Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi Qiu
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Qianlun Pu
- Advanced
Mass Spectrometry Center, Research Core Facility, Frontiers Science
Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juqin Yang
- Biobank,
West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shisheng Wang
- Proteomics-Metabolomics
Platform of Core Facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Huang
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Xiaoting Chen
- Animal Experimental
Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Zhu
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Hao Yang
- Proteomics-Metabolomics
Platform of Core Facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Xia
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Dan Du
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| |
Collapse
|
5
|
Liu X, Rossio V, Paulo JA. Spin column-based peptide fractionation alternatives for streamlined tandem mass tag (SL-TMT) sample processing. J Proteomics 2023; 276:104839. [PMID: 36758854 PMCID: PMC9990130 DOI: 10.1016/j.jprot.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Fractionation is essential to achieving deep proteome coverage for sample multiplexing experiments where currently up to 18 samples can be analyzed concurrently. However, peptide fractionation (i.e., upstream of LC-MS/MS analysis) with a liquid chromatography system constrains sample processing as only a single sample can be fractionated at once. Here, we highlight the use of spin column-based methods which permit multiple multiplexed samples to be fractionated simultaneously. These methods require only a centrifuge and eliminate the need for a dedicated liquid chromatography system. We investigate peptide fractionation with strong anion exchange (SAX) and high-pH reversed phase (HPRP) spin columns, as well as a combination of both. In two separate experiments, we acquired deep proteome coverage (>8000 quantified proteins), while starting with <25 μg of protein per channel. Our datasets showcase the proteome alterations in two human cell lines resulting from treatment with inhibitors acting on the ubiquitin-proteasome system. We recommend this spin column-based peptide fractionation strategy for high-throughput screening applications or whenever a liquid chromatograph is not readily available. SIGNIFICANCE: Fractionation is a means to achieve deep proteome coverage for global proteomics analysis. Typical liquid chromatography systems may be a prohibitive expense for many laboratories. Here, we investigate prefractionation with strong anion exchange (SAX) and high-pH reversed phase (HPRP) spin columns, as well as a combination of both, as peptide fractionation methods. These spin columns have advantages over liquid chromatography systems, which include relative affordability, higher throughput capability, no carry over, and fewer potential instrument-related malfunctions. In two separate experiments, we acquired deep proteome coverage (>8000 quantified proteins), thereby showing the utility of each or a combination of both spin columns for global proteome analysis.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
6
|
Popow O, Liu X, Haigis KM, Gygi SP, Paulo JA. A Compendium of Murine (Phospho)Peptides Encompassing Different Isobaric Labeling and Data Acquisition Strategies. J Proteome Res 2021; 20:3678-3688. [PMID: 34043369 PMCID: PMC8254770 DOI: 10.1021/acs.jproteome.1c00247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted mass spectrometry-based assays typically rely on previously acquired large data sets for peptide target selection. Such repositories are widely available for unlabeled peptides. However, they are less common for isobaric tagged peptides. Here we have assembled two series of six data sets originating from a mouse embryonic fibroblast cell line (NIH/3T3). One series is of peptides derived from a tryptic digest of a whole cell proteome and a second from enriched phosphopeptides. These data sets encompass three labeling approaches (unlabeled, TMT11-labeled, and TMTpro16-labeled) and two data acquisition strategies (ion trap MS2 with and without FAIMS-based gas phase separation). We identified a total of 1 509 526 peptide-spectrum matches which covered 11 482 proteins from the whole cell proteome tryptic digest, and 188 849 phosphopeptides from the phosphopeptide enrichment. The data sets were of similar depth, and while overlap across data sets was modest, protein overlap was high, thus reinforcing the comprehensiveness of these data sets. The data also supported FAIMS as a means to increase data set depth. These data sets provide a rich resource of peptides that may be used as starting points for targeted assays. Future data sets may be compiled for any genome-sequenced organism using the technologies and strategies highlighted herein. The data have been deposited in the ProteomeXchange Consortium with data set identifier PXD024298.
Collapse
Affiliation(s)
- Olesja Popow
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Liu X, Gygi SP, Paulo JA. Isobaric Tag-Based Protein Profiling across Eight Human Cell Lines Using High-Field Asymmetric Ion Mobility Spectrometry and Real-Time Database Searching. Proteomics 2020; 21:e2000218. [PMID: 33015980 DOI: 10.1002/pmic.202000218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/26/2020] [Indexed: 12/11/2022]
Abstract
A vast number of human cell lines are available for cell culture model-based studies, and as such the potential exists for discrepancies in findings due to cell line selection. To investigate this concept, the authors determine the relative protein abundance profiles of a panel of eight diverse, but commonly studied human cell lines. This panel includes HAP1, HEK293T, HeLa, HepG2, Jurkat, Panc1, SH-SY5Y, and SVGp12. A mass spectrometry-based proteomics workflow designed to enhance quantitative accuracy while maintaining analytical depth is used. To this end, this strategy leverages TMTpro16-based sample multiplexing, high-field asymmetric ion mobility spectrometry, and real-time database searching. The data show that the differences in the relative protein abundance profiles reflect cell line diversity. The authors also determine several hundred proteins to be highly enriched for a given cell line, and perform gene ontology and pathway analysis on these cell line-enriched proteins. An R Shiny application is designed to query protein abundance profiles and retrieve proteins with similar patterns. The workflows used herein can be applied to additional cell lines to aid cell line selection for addressing a given scientific inquiry or for improving an experimental design.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Zhang T, Gygi SP, Paulo JA. Temporal Proteomic Profiling of SH-SY5Y Differentiation with Retinoic Acid Using FAIMS and Real-Time Searching. J Proteome Res 2020; 20:704-714. [PMID: 33054241 DOI: 10.1021/acs.jproteome.0c00614] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The SH-SY5Y cell line is often used as a surrogate for neurons in cell-based studies. This cell line is frequently differentiated with all-trans retinoic acid (ATRA) over a 7-day period, which confers neuron-like properties to the cells. However, no analysis of proteome remodeling has followed the progress of this transition. Here, we quantitatively profiled over 9400 proteins across a 7-day treatment with retinoic acid using state-of-the-art mass spectrometry-based proteomics technologies, including FAIMS, real-time database searching, and TMTpro16 sample multiplexing. Gene ontology analysis revealed that categories with the highest increases in protein abundance were related to the plasma membrane/extracellular space. To showcase our data set, we surveyed the protein abundance profiles linked to neurofilament bundle assembly, neuron projections, and neuronal cell body formation. These proteins exhibited increases in abundance level, yet we observed multiple patterns among the queried proteins. The data presented represent a rich resource for investigating temporal protein abundance changes in SH-SY5Y cells differentiated with retinoic acid. Moreover, the sample preparation and data acquisition strategies used here can be readily applied to any analogous cell line differentiation analysis.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Paulo JA, Navarrete-Perea J, Erickson AR, Knott J, Gygi SP. An Internal Standard for Assessing Phosphopeptide Recovery from Metal Ion/Oxide Enrichment Strategies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1505-1511. [PMID: 29671274 PMCID: PMC6004253 DOI: 10.1007/s13361-018-1946-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
Phosphorylation-mediated signaling pathways have major implications in cellular regulation and disease. However, proteins with roles in these pathways are frequently less abundant and phosphorylation is often sub-stoichiometric. As such, the efficient enrichment, and subsequent recovery of phosphorylated peptides, is vital. Mass spectrometry-based proteomics is a well-established approach for quantifying thousands of phosphorylation events in a single experiment. We designed a peptide internal standard-based assay directed toward sample preparation strategies for mass spectrometry analysis to understand better phosphopeptide recovery from enrichment strategies. We coupled mass-differential tandem mass tag (mTMT) reagents (specifically, TMTzero and TMTsuper-heavy), nine mass spectrometry-amenable phosphopeptides (phos9), and peak area measurements from extracted ion chromatograms to determine phosphopeptide recovery. We showcase this mTMT/phos9 recovery assay by evaluating three phosphopeptide enrichment workflows. Our assay provides data on the recovery of phosphopeptides, which complement other metrics, namely the number of identified phosphopeptides and enrichment specificity. Our mTMT/phos9 assay is applicable to any enrichment protocol in a typical experimental workflow irrespective of sample origin or labeling strategy. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA.
| | - Jose Navarrete-Perea
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Alison R Erickson
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Paulo JA, Gygi SP. Isobaric Tag-Based Protein Profiling of a Nicotine-Treated Alpha7 Nicotinic Receptor-Null Human Haploid Cell Line. Proteomics 2018; 18:e1700475. [PMID: 29663646 PMCID: PMC5990481 DOI: 10.1002/pmic.201700475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/04/2018] [Indexed: 12/16/2022]
Abstract
Nicotinic acetylcholine receptors (nAChR), the primary cell surface targets of nicotine, have implications in various neurological disorders. Here we investigate the proteome-wide effects of nicotine on human haploid cell lines (wildtype HAP1 and α7KO-HAP1) to address differences in nicotine-induced protein abundance profiles between these cell lines. We performed an SPS-MS3-based TMT10-plex experiment arranged in a 2-3-2-3 design with two replicates of the untreated samples and three of the treated samples for each cell line. We quantified 8775 proteins across all ten samples, of which several hundred differed significantly in abundance. Comparing α7KO-HAP1 and HAP1wt cell lines to each other revealed significant protein abundance alterations; however, we also measured differences resulting from nicotine treatment in both cell lines. Among proteins with increased abundance levels due to nicotine treatment included those previously identified: APP, APLP2, and ITM2B. The magnitude of these changes was greater in HAP1wt compared to the α7KO-HAP1 cell line, implying a potential role for the α7 nAChR in HAP1 cells. Moreover, the data revealed that membrane proteins and proteins commonly associated with neurons were predominant among those with altered abundance. This study, which is the first TMT-based proteome profiling of HAP1 cells, defines further the effects of nicotine on non-neuronal cellular proteomes.
Collapse
Affiliation(s)
- Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
11
|
Stepanova E, Gygi SP, Paulo JA. Filter-Based Protein Digestion (FPD): A Detergent-Free and Scaffold-Based Strategy for TMT Workflows. J Proteome Res 2018; 17:1227-1234. [PMID: 29402085 PMCID: PMC5984590 DOI: 10.1021/acs.jproteome.7b00840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-throughput proteome profiling requires thorough optimization to achieve comprehensive analysis. We developed a filter aided sample preparation (FASP)-like, detergent-free method, termed Filter-Based Protein Digestion (FPD). We compared FPD to protein extraction methods commonly used in isobaric tag-based proteome profiling, namely trichloroacetic acid (TCA) and chloroform-methanol (C-M) precipitation. We divided a mammalian whole cell lysate from the SH-SY5Y neuroblastoma cell line for parallel protein processing with TCA (n = 3), C-M (n = 2), and FPD using either 10 kDa (n = 3) or 30 kDa (n = 3) molecular weight cutoff membranes. We labeled each sample with tandem mass tag (TMT) reagents to construct a TMT11-plex experiment. In total, 8654 proteins were quantified across all samples. Pairwise comparisons showed very little deviation for individual protein abundance measurements between the two FPD methods, whereas TCA and FPD showed the most difference. Specifically, membrane proteins were more readily quantified when samples were processed using TCA precipitation than other methods tested. However, globally, only 4% of proteins differed greater than 4-fold in the most divergent pair of protein extraction methods (i.e., FPD10 and TCA). We conclude that the detergent-free FPD strategy, particularly using the faster-flowing 30 kDa filter, is a seamless alteration to high-throughput TMT workflows.
Collapse
Affiliation(s)
- Ekaterina Stepanova
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
12
|
Inhibition of Jak/STAT signaling reduces the activation of pancreatic stellate cells in vitro and limits caerulein-induced chronic pancreatitis in vivo. Sci Rep 2017; 7:1787. [PMID: 28496202 PMCID: PMC5431930 DOI: 10.1038/s41598-017-01973-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/03/2017] [Indexed: 12/24/2022] Open
Abstract
Chronic pancreatitis (CP) is a fibro-inflammatory disease leading to pain, maldigestion, and pancreatic insufficiency. No therapeutic options exist due to a limited understanding of the biology of CP pathology. Recent findings implicate pancreatic stellate cells (PSC) as prominent mediators of inflammatory and fibrotic processes during CP. Here, we utilized primary and immortalized PSC obtained from mice and patients with CP or pancreatic cancer to examine the effect of Jak/STAT and MAPK pathway inhibition in vitro. The well-characterized caerulein model of CP was used to assess the therapeutic efficacy of Jak1/2 inhibition in vivo. Treatment of cultured PSC with the Jak1/2 inhibitor ruxolitinib reduced STAT3 phosphorylation, cell proliferation, and expression of alpha-smooth muscle actin (α-SMA), a marker of PSC activation. Treatment with the MAPK inhibitor, MEK162, had less consistent effects on PSC proliferation and no impact on activation. In the caerulein-induced murine model of CP, administration of ruxolitinib for one week significantly reduced biomarkers of inflammation and fibrosis. These data suggest that the Jak/STAT pathway plays a prominent role in PSC proliferation and activation. In vivo treatment with the Jak1/2 inhibitor ruxolitinib reduced the severity of experimental CP, suggesting that targeting Jak/STAT signaling may represent a promising therapeutic strategy for CP.
Collapse
|
13
|
Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV, Reddy DN, Talukdar R. Pancreatic stellate cell: Pandora's box for pancreatic disease biology. World J Gastroenterol 2017; 23:382-405. [PMID: 28210075 PMCID: PMC5291844 DOI: 10.3748/wjg.v23.i3.382] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/09/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic stellate cells (PSCs) were identified in the early 1980s, but received much attention after 1998 when the methods to isolate and culture them from murine and human sources were developed. PSCs contribute to a small proportion of all pancreatic cells under physiological condition, but are essential for maintaining the normal pancreatic architecture. Quiescent PSCs are characterized by the presence of vitamin A laden lipid droplets. Upon PSC activation, these perinuclear lipid droplets disappear from the cytosol, attain a myofibroblast like phenotype and expresses the activation marker, alpha smooth muscle actin. PSCs maintain their activated phenotype via an autocrine loop involving different cytokines and contribute to progressive fibrosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Several pathways (e.g., JAK-STAT, Smad, Wnt signaling, Hedgehog etc.), transcription factors and miRNAs have been implicated in the inflammatory and profibrogenic function of PSCs. The role of PSCs goes much beyond fibrosis/desmoplasia in PDAC. It is now shown that PSCs are involved in significant crosstalk between the pancreatic cancer cells and the cancer stroma. These interactions result in tumour progression, metastasis, tumour hypoxia, immune evasion and drug resistance. This is the rationale for therapeutic preclinical and clinical trials that have targeted PSCs and the cancer stroma.
Collapse
|
14
|
Storck H, Hild B, Schimmelpfennig S, Sargin S, Nielsen N, Zaccagnino A, Budde T, Novak I, Kalthoff H, Schwab A. Ion channels in control of pancreatic stellate cell migration. Oncotarget 2017; 8:769-784. [PMID: 27903970 PMCID: PMC5352195 DOI: 10.18632/oncotarget.13647] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 12/30/2022] Open
Abstract
Pancreatic stellate cells (PSCs) play a critical role in the progression of pancreatic ductal adenocarcinoma (PDAC). Once activated, PSCs support proliferation and metastasis of carcinoma cells. PSCs even co-metastasise with carcinoma cells. This requires the ability of PSCs to migrate. In recent years, it has been established that almost all "hallmarks of cancer" such as proliferation or migration/invasion also rely on the expression and function of ion channels. So far, there is only very limited information about the function of ion channels in PSCs. Yet, there is growing evidence that ion channels in stromal cells also contribute to tumor progression. Here we investigated the function of KCa3.1 channels in PSCs. KCa3.1 channels are also found in many tumor cells of different origin. We revealed the functional expression of KCa3.1 channels by means of Western blot, immunofluorescence and patch clamp analysis. The impact of KCa3.1 channel activity on PSC function was determined with live-cell imaging and by measuring the intracellular Ca2+ concentration ([Ca2+]i). KCa3.1 channel blockade or knockout prevents the stimulation of PSC migration and chemotaxis by reducing the [Ca2+]i and calpain activity. KCa3.1 channels functionally cooperate with TRPC3 channels that are upregulated in PDAC stroma. Knockdown of TRPC3 channels largely abolishes the impact of KCa3.1 channels on PSC migration. In summary, our results clearly show that ion channels are crucial players in PSC physiology and pathophysiology.
Collapse
Affiliation(s)
| | | | | | - Sarah Sargin
- Institut für Physiologie II, 48149 Münster, Gemany
| | | | - Angela Zaccagnino
- UKSH, Campus Kiel, Institut für Experimentelle Tumorforschung (IET), Sektion Molekulare Onkologie, D-24105 Kiel, Germany
| | - Thomas Budde
- Institut für Physiologie I, 48149 Münster, Gemany
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, DK 2100 Copenhagen, Denmark
| | - Holger Kalthoff
- UKSH, Campus Kiel, Institut für Experimentelle Tumorforschung (IET), Sektion Molekulare Onkologie, D-24105 Kiel, Germany
| | | |
Collapse
|
15
|
Abstract
OBJECTIVES Mass spectrometry-based proteomics enables near-comprehensive protein expression profiling. We aimed to compare quantitatively the relative expression levels of thousands of proteins across 5 pancreatic cell lines. METHODS Using tandem mass tags (TMT10-plex), we profiled the global proteomes of 5 cell lines in duplicate in a single multiplexed experiment. We selected cell lines commonly used in pancreatic research: CAPAN-1, HPAC, HPNE, PANC1, and PaSCs. In addition, we examined the effects of different proteases (Lys-C and Lys-C plus trypsin) on the dataset depth. RESULTS We quantified over 8000 proteins across the 5 cell lines. Analysis of variance testing of cell lines within each data set resulted in over 1400 statistically significant differences in protein expression levels. Comparing the data sets, 10% more proteins and 30% more peptides were identified in the Lys-C/trypsin data set than in the Lys-C-only data set. The correlation coefficient of quantified proteins common between the data sets was greater than 0.85. CONCLUSIONS We illustrate protein level differences across pancreatic cell lines. In addition, we highlight the advantages of Lys-C/trypsin over Lys-C-only digests for discovery proteomics. These data sets provide a valuable resource of cell line-dependent peptide and protein differences for future targeted analyses, including those investigating on- or off-target drug effects across cell lines.
Collapse
|
16
|
Paulo JA, Gygi SP. Nicotine-induced protein expression profiling reveals mutually altered proteins across four human cell lines. Proteomics 2016; 17. [PMID: 27862958 DOI: 10.1002/pmic.201600319] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/11/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022]
Abstract
Mass spectrometry-based proteomic strategies can profile the expression level of proteins in response to external stimuli. Nicotine affects diverse cellular pathways, however, the nicotine-induced alterations on the global proteome across human cell lines have not been fully elucidated. We measured perturbations in protein levels resulting from nicotine treatment in four cell lines-HEK, HeLa, PaSC, and SH-SY5Y-in a single experiment using tandem mass tags (TMT10-plex) and high-resolution mass spectrometry. We quantified 8590 proteins across all cell lines. Of these, nicotine increased the abundance of 31 proteins 1.5-fold or greater in all cell lines. Likewise, considering proteins with altered levels in at least three of the four cell lines, 64 were up-regulated, while one was down-regulated. Gene ontology analysis revealed that ∼40% of these proteins were membrane bound, and functioned in transmembrane signaling and receptor activity. We highlighted proteins, including APP, APLP2, LAPTM4B, and NCOA4, which were dysregulated by nicotine in all cell lines investigated and may have implications in downstream signaling pathways, particularly autophagy. Using the outlined methodology, studies in additional (including primary) cell lines will provide further evidence that alterations in the levels of these proteins are indeed a general response to nicotine and thereby merit further investigation.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Yang J, Waldron RT, Su HY, Moro A, Chang HH, Eibl G, Ferreri K, Kandeel FR, Lugea A, Li L, Pandol SJ. Insulin promotes proliferation and fibrosing responses in activated pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2016; 311:G675-G687. [PMID: 27609771 PMCID: PMC5142202 DOI: 10.1152/ajpgi.00251.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 01/31/2023]
Abstract
Epidemiological studies support strong links between obesity, diabetes, and pancreatic disorders including pancreatitis and pancreatic adenocarcinoma (PDAC). Type 2 diabetes (T2DM) is associated with insulin resistance, hyperglycemia, and hyperinsulinemia, the latter due to increased insulin secretion by pancreatic beta-cells. We reported that high-fat diet-induced PDAC progression in mice is associated with hyperglycemia, hyperinsulinemia, and activation of pancreatic stellate cells (PaSC). We investigated here the effects of high concentrations of insulin and glucose on mouse and human PaSC growth and fibrosing responses. We found that compared with normal, pancreata from T2DM patients displayed extensive collagen deposition and activated PaSC in islet and peri-islet exocrine pancreas. Mice fed a high-fat diet for up to 12 mo similarly displayed increasing peri-islet fibrosis compared with mice fed control diet. Both quiescent and activated PaSC coexpress insulin (IR; mainly A type) and IGF (IGF-1R) receptors, and both insulin and glucose modulate receptor expression. In cultured PaSC, insulin induced rapid tyrosine autophosphorylation of IR/IGF-1R at specific kinase domain activation loop sites, activated Akt/mTOR/p70S6K signaling, and inactivated FoxO1, a transcription factor that restrains cell growth. Insulin did not promote activation of quiescent PaSC in either 5 mM or 25 mM glucose containing media. However, in activated PaSC, insulin enhanced cell proliferation and augmented production of extracellular matrix proteins, and these effects were abolished by specific inhibition of mTORC1 and mTORC2. In conclusion, our data support the concept that increased local glucose and insulin concentrations associated with obesity and T2DM promote PaSC growth and fibrosing responses.
Collapse
Affiliation(s)
- Jiayue Yang
- 1Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; ,2Department of Endocrinology, Zhongda Hospital Southeast University, China;
| | - Richard T. Waldron
- 1Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; ,4Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Hsin-Yuan Su
- 1Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California;
| | - Aune Moro
- 3Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California;
| | - Hui-Hua Chang
- 3Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California;
| | - Guido Eibl
- 3Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California;
| | - Kevin Ferreri
- 5Department of Translational Research & Cellular Therapeutics, City of Hope, Duarte, California
| | - Fouad R. Kandeel
- 5Department of Translational Research & Cellular Therapeutics, City of Hope, Duarte, California
| | - Aurelia Lugea
- 1Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; ,4Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Ling Li
- 2Department of Endocrinology, Zhongda Hospital Southeast University, China;
| | - Stephen J. Pandol
- 1Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; ,4Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| |
Collapse
|
18
|
Su HY, Waldron RT, Gong R, Ramanujan VK, Pandol SJ, Lugea A. The Unfolded Protein Response Plays a Predominant Homeostatic Role in Response to Mitochondrial Stress in Pancreatic Stellate Cells. PLoS One 2016; 11:e0148999. [PMID: 26849807 PMCID: PMC4743835 DOI: 10.1371/journal.pone.0148999] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023] Open
Abstract
Activated pancreatic stellate cells (PaSC) are key participants in the stroma of pancreatic cancer, secreting extracellular matrix proteins and inflammatory mediators. Tumors are poorly vascularized, creating metabolic stress conditions in cancer and stromal cells that necessitate adaptive homeostatic cellular programs. Activation of autophagy and the endoplasmic reticulum unfolded protein response (UPR) have been described in hepatic stellate cells, but the role of these processes in PaSC responses to metabolic stress is unknown. We reported that the PI3K/mTOR pathway, which AMPK can regulate through multiple inputs, modulates PaSC activation and fibrogenic potential. Here, using primary and immortalized mouse PaSC, we assess the relative contributions of AMPK/mTOR signaling, autophagy and the UPR to cell fate responses during metabolic stress induced by mitochondrial dysfunction. The mitochondrial uncoupler rottlerin at low doses (0.5-2.5 μM) was added to cells cultured in 10% FBS complete media. Mitochondria rapidly depolarized, followed by altered mitochondrial dynamics and decreased cellular ATP levels. This mitochondrial dysfunction elicited rapid, sustained AMPK activation, mTOR pathway inhibition, and blockade of autophagic flux. Rottlerin treatment also induced rapid, sustained PERK/CHOP UPR signaling. Subsequently, high doses (>5 μM) induced loss of cell viability and cell death. Interestingly, AMPK knock-down using siRNA did not prevent rottlerin-induced mTOR inhibition, autophagy, or CHOP upregulation, suggesting that AMPK is dispensable for these responses. Moreover, CHOP genetic deletion, but not AMPK knock-down, prevented rottlerin-induced apoptosis and supported cell survival, suggesting that UPR signaling is a major modulator of cell fate in PaSC during metabolic stress. Further, short-term rottlerin treatment reduced both PaSC fibrogenic potential and IL-6 mRNA expression. In contrast, expression levels of the angiogenic factors HGF and VEGFα were unaffected, and the immune modulator IL-4 was markedly upregulated. These data imply that metabolic stress-induced PaSC reprogramming differentially modulates neighboring cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Hsin-Yuan Su
- Pancreatic Research Group, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Richard T. Waldron
- Pancreatic Research Group, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, UCLA/VA Greater Los Angeles Health Sciences Center, Los Angeles, California, United States of America
| | - Raymond Gong
- Pancreatic Research Group, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - V. Krishnan Ramanujan
- Department of Medicine, David Geffen School of Medicine, UCLA/VA Greater Los Angeles Health Sciences Center, Los Angeles, California, United States of America
- Metabolic Photonics Laboratory, Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical center, Los Angeles, California, United States of America
| | - Stephen J. Pandol
- Pancreatic Research Group, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, UCLA/VA Greater Los Angeles Health Sciences Center, Los Angeles, California, United States of America
| | - Aurelia Lugea
- Pancreatic Research Group, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, UCLA/VA Greater Los Angeles Health Sciences Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Strobel O, Dadabaeva N, Felix K, Hackert T, Giese NA, Jesenofsky R, Werner J. Isolation and culture of primary human pancreatic stellate cells that reflect the context of their tissue of origin. Langenbecks Arch Surg 2015; 401:89-97. [PMID: 26712717 DOI: 10.1007/s00423-015-1343-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/18/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND Pancreatic stellate cells (PSCs) play a critical role in pancreatic ductal adenocarcinoma (PDAC). Activated PSCs are the main source of fibrosis in chronic pancreatitis and of desmoplasia in PDAC. The majority of studies on PSC are based on in vitro experiments relying on immortalized cell lines derived from diseased human pancreas or from animal models. These PSCs are usually activated and may not represent the biological context of their tissue of origin. PURPOSE (1) To isolate and culture primary human PSC from different disease contexts with minimal impact on their state of activation. (2) To perform a comparative analysis of phenotypes of PSC derived from different contexts. METHODS PSCs were isolated from normal pancreas, chronic pancreatitis, and PDAC using a hybrid method of digestion and outgrowth. To minimize activation by serum compounds, cells were cultured in a low-serum environment (2.5 % fetal bovine serum (FBS)). Expression patterns of commonly used markers for PSC phenotype and activity were compared between primary PSC lines derived from different contexts and correlated to expression in their original tissues. RESULTS Isolation was successful from 14 of 17 tissues (82 %). Isolated PSC displayed stable viability and phenotype in low-serum environment. Expression profiles of isolated PSC and matched original tissues were closely correlated. PDAC-derived PSC tended to have a higher status of activation if compared to PSC derived from non-cancerous tissues. CONCLUSIONS Primary human PSCs isolated from different contexts and cultured in a low-serum environment maintain a phenotype that reflects the stromal activity present in their tissue of origin.
Collapse
Affiliation(s)
- Oliver Strobel
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| | - Nigora Dadabaeva
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Klaus Felix
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Ralf Jesenofsky
- Department of Internal Medicine 2, University Medicine Mannheim, Mannheim, Germany
| | - Jens Werner
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| |
Collapse
|
20
|
Primary outgrowth cultures are a reliable source of human pancreatic stellate cells. J Transl Med 2015; 95:1331-40. [PMID: 26322418 DOI: 10.1038/labinvest.2015.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
Recent advances demonstrate a critical yet poorly understood role for the pancreatic stellate cell (PSC) in the pathogenesis of chronic pancreatitis (CP) and pancreatic cancer (PC). Progress in this area has been hampered by the availability, fidelity, and/or reliability of in vitro models of PSCs. We examined whether outgrowth cultures from human surgical specimens exhibited reproducible phenotypic and functional characteristics of PSCs. PSCs were cultured from surgical specimens of healthy pancreas, CP and PC. Growth dynamics, phenotypic characteristics, soluble mediator secretion profiles and co-culture with PC cells both in vitro and in vivo were assessed. Forty-seven primary cultures were established from 52 attempts, demonstrating universal α-smooth muscle actin and glial fibrillary acidic protein but negligible epithelial surface antigen expression. Modification of culture conditions consistently led to cytoplasmic lipid accumulation, suggesting induction of a quiescent phenotype. Secretion of growth factors, chemokines and cytokines did not significantly differ between donor pathologies, but did evolve over time in culture. Co-culture of PSCs with established PC cell lines resulted in significant changes in levels of multiple secreted mediators. Primary PSCs co-inoculated with PC cells in a xenograft model led to augmented tumor growth and metastasis. Therefore, regardless of donor pathology, outgrowth cultures produce PSCs that demonstrate consistent growth and protein secretion properties. Primary cultures from pancreatic surgical specimens, including malignancies, may represent a reliable source of human PSCs.
Collapse
|
21
|
Paulo JA, Gaun A, Gygi SP. Global Analysis of Protein Expression and Phosphorylation Levels in Nicotine-Treated Pancreatic Stellate Cells. J Proteome Res 2015; 14:4246-56. [PMID: 26265067 DOI: 10.1021/acs.jproteome.5b00398] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Smoking is a risk factor in pancreatic disease; however, the biochemical mechanisms correlating smoking with pancreatic dysfunction remain poorly understood. Strategies using multiplexed isobaric tag-based mass spectrometry facilitate the study of drug-induced perturbations on biological systems. Here, we present the first large-scale analysis of the proteomic and phosphoproteomic alterations in pancreatic stellate cells following treatment with two nicotinic acetylcholine receptor (nAChR) ligands: nicotine and α-bungarotoxin. We treated cells with nicotine or α-bungarotoxin for 12 h in triplicate and compared alterations in protein expression and phosphorylation levels to mock-treated cells using a tandem mass tag (TMT9plex)-based approach. Over 8100 proteins were quantified across all nine samples, of which 46 were altered in abundance upon treatment with nicotine. Proteins with increased abundance included those associated with neurons, defense mechanisms, indicators of pancreatic disease, and lysosomal proteins. In addition, we measured differences for ∼16 000 phosphorylation sites across all nine samples using a titanium dioxide-based strategy, of which 132 sites were altered with nicotine and 451 with α-bungarotoxin treatment. Many altered phosphorylation sites were involved in nuclear function and transcriptional events. This study supports the development of future targeted investigations to establish a better understanding for the role of nicotine and associated receptors in pancreatic disease.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Aleksandr Gaun
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Apte MV, Pirola RC, Wilson JS. Pancreatic Stellate Cells. STELLATE CELLS IN HEALTH AND DISEASE 2015:271-306. [DOI: 10.1016/b978-0-12-800134-9.00016-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Paulo JA. Nicotine alters the proteome of two human pancreatic duct cell lines. JOP : JOURNAL OF THE PANCREAS 2014; 15:465-74. [PMID: 25262714 DOI: 10.6092/1590-8577/2559] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Cigarette smoking is a known risk factor of pancreatic disease. Nicotine--a major cigarette tobacco component--can traffic through the circulatory system and may induce fibrosis and metastasis, hallmarks of chronic pancreatitis and pancreatic adenocarcinoma, respectively. However, at the biomolecular level, particularly in pancreatic research, the effects of nicotine remain unresolved. METHODS The effects of nicotine on the proteomes of two pancreatic duct cell lines-an immortalized normal cell line (HPNE) and a cancer cell line (PanC1)- were investigated using mass spectrometry-based proteomics. For each cell line, the global proteomes of cells exposed to nicotine for 24 hrs were compared with untreated cells in triplicate using 6-plex tandem mass tag-based isobaric labeling techniques. RESULTS Over 5,000 proteins were detected per cell line. Of these, over 900 proteins were differentially abundant with statistical significance (corrected P-value <0.01) upon nicotine treatment, 57 of which were so in both cell lines. Amyloid precursor protein, previously observed to increase expression in pancreatic stellate cells when exposed to nicotine, was also up-regulated in both cell lines.In general, the two cell lines varied in the classes of proteins altered by nicotine treatment, supporting published evidence that nicotine may play different roles in the initiation and progression of pancreatic disease. CONCLUSIONS Understanding the underlying mechanisms associating nicotine with pancreatic function is paramount to intervention aiming to retard, arrest, or ameliorate pancreatic disease.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, USA.
| |
Collapse
|
24
|
Thomas PV, Cheng AL, Colby CC, Liu L, Patel CK, Josephs L, Duncan RK. Localization and proteomic characterization of cholesterol-rich membrane microdomains in the inner ear. J Proteomics 2014; 103:178-93. [PMID: 24713161 DOI: 10.1016/j.jprot.2014.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Biological membranes organize and compartmentalize cell signaling into discrete microdomains, a process that often involves stable, cholesterol-rich platforms that facilitate protein-protein interactions. Polarized cells with distinct apical and basolateral cell processes rely on such compartmentalization to maintain proper function. In the cochlea, a variety of highly polarized sensory and non-sensory cells are responsible for the early stages of sound processing in the ear, yet little is known about the mechanisms that traffic and organize signaling complexes within these cells. We sought to determine the prevalence, localization, and protein composition of cholesterol-rich lipid microdomains in the cochlea. Lipid raft components, including the scaffolding protein caveolin and the ganglioside GM1, were found in sensory, neural, and glial cells. Mass spectrometry of detergent-resistant membrane (DRM) fractions revealed over 600 putative raft proteins associated with subcellular localization, trafficking, and metabolism. Among the DRM constituents were several proteins involved in human forms of deafness including those involved in ion homeostasis, such as the potassium channel KCNQ1, the co-transporter SLC12A2, and gap junction proteins GJA1 and GJB6. The presence of caveolin in the cochlea and the abundance of proteins in cholesterol-rich DRM suggest that lipid microdomains play a significant role in cochlear physiology. BIOLOGICAL SIGNIFICANCE Although mechanisms underlying cholesterol synthesis, homeostasis, and compartmentalization in the ear are poorly understood, there are several lines of evidence indicating that cholesterol is a key modulator of cochlear function. Depletion of cholesterol in mature sensory cells alters calcium signaling, changes excitability during development, and affects the biomechanical processes in outer hair cells that are responsible for hearing acuity. More recently, we have established that the cholesterol-modulator beta-cyclodextrin is capable of inducing significant and permanent hearing loss when delivered subcutaneously at high doses. We hypothesize that proteins involved in cochlear homeostasis and otopathology are partitioned into cholesterol-rich domains. The results of a large-scale proteomic analysis point to metabolic processes, scaffolding/trafficking, and ion homeostasis as particularly associated with cholesterol microdomains. These data offer insight into the proteins and protein families that may underlie cholesterol-mediated effects in sensory cell excitability and cyclodextrin ototoxicity.
Collapse
Affiliation(s)
- Paul V Thomas
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Andrew L Cheng
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Candice C Colby
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Liqian Liu
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Chintan K Patel
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Lydia Josephs
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - R Keith Duncan
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA.
| |
Collapse
|
25
|
Paulo JA, Urrutia R, Kadiyala V, Banks P, Conwell DL, Steen H. Cross-species analysis of nicotine-induced proteomic alterations in pancreatic cells. Proteomics 2013; 13:1499-1512. [PMID: 23456891 DOI: 10.1002/pmic.201200492] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/03/2013] [Accepted: 02/07/2013] [Indexed: 12/13/2022]
Abstract
Toxic compounds in tobacco, such as nicotine, may adversely affect pancreatic function. We aim to determine nicotine-induced protein alterations in pancreatic cells, thereby revealing links between nicotine exposure and pancreatic disease. We compared the proteomic alterations induced by nicotine treatment in cultured pancreatic cells (mouse, rat, and human stellate cells and human duct cells) using MS-based techniques, specifically SDS-PAGE (gel) coupled with LC-MS/MS and spectral counting. We identified thousands of proteins in pancreatic cells, hundreds of which were identified exclusively or in higher abundance in either nicotine-treated or untreated cells. Interspecies comparisons of stellate cell proteins revealed several differentially abundant proteins (in nicotine treated versus untreated cells) common among the three species. Proteins appearing in all nicotine-treated stellate cells include amyloid beta (A4), procollagen type VI alpha 1, integral membrane protein 2B, and toll-interacting protein. Proteins that were differentially expressed upon nicotine treatment across cell lines were enriched in certain pathways, including nicotinic acetylcholine receptor, cytokine, and integrin signaling. At this analytical depth, we conclude that similar pathways are affected by nicotine, but alterations at the protein level among stellate cells of different species vary. Further interrogation of such pathways will lead to insights into the potential effect of nicotine on pancreatic cells at the biomolecular level and the extension of this concept to the effect of nicotine on pancreatic disease.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Pathology, Children's Hospital Boston, Boston, MA Proteomics Center at Children's Hospital Boston, Boston, MA Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Raul Urrutia
- Division of Gastroenterology and Hepatology, Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Vivek Kadiyala
- Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Peter Banks
- Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Darwin L Conwell
- Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Hanno Steen
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, MA Proteomics Center at Children's Hospital Boston, Boston, MA
| |
Collapse
|
26
|
Proteomic analysis of rat proximal tubule cells following stretch-induced apoptosis in an in vitro model of kidney obstruction. J Proteomics 2013; 100:125-35. [PMID: 24316357 DOI: 10.1016/j.jprot.2013.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/06/2013] [Accepted: 11/22/2013] [Indexed: 01/05/2023]
Abstract
UNLABELLED Urinary tract obstruction (UTO) is a commonly noted disorder on prenatal ultrasound that has the potential to lead to permanent loss of renal function. To study the molecular processes of the disease, an in vitro model has been developed which involves mechanical stretch of proximal tubule cells grown on flexible plates which mimics the physiological conditions during UTO. This study employs a one dimensional SDS-PAGE fractionation procedure, followed by in-gel digest and LC-MS/MS analysis in a semi-quantitative experiment using spectral counting to relatively quantify changes in protein expression following the established model of UTO. Quantitative analysis shows 317 of the 1630 identified proteins express altered abundance, with 135 increased and 182 decreased in abundance as a result of stretch. Gene ontology (GO) and KEGG annotations implicate a number of physiological processes that have been previously shown in addition to some potentially novel processes in UTO. The quantitative proteomic analysis we performed here provides a more complete characterization of changes in protein abundance as a result of stretch than previous studies, and provides a number of previously undescribed proteins in proximal tubule cells that may play a role in UTO. BIOLOGICAL SIGNIFICANCE Urinary tract obstruction (UTO) is a commonly noted abnormality on prenatal ultrasound that can either resolve spontaneously or require surgical intervention to prevent permanent renal damage or loss of function. While targeted studies of UTO have shown a number of pathological responses in proximal tubule cells, there are currently no large-scale quantitative studies that aim to elucidate a global cellular response. This study uses a semi-quantitative approach and applies a well characterized model of UTO to determine a number of cellular processes affected by UTO simulation and identifies a number of proteins with altered abundance that have not been noted previously in UTO. This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
|
27
|
Marzoq AJ, Giese N, Hoheisel JD, Alhamdani MSS. Proteome variations in pancreatic stellate cells upon stimulation with proinflammatory factors. J Biol Chem 2013; 288:32517-32527. [PMID: 24089530 DOI: 10.1074/jbc.m113.488387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pancreatic stellate cells are key mediators in chronic pancreatitis and play a central role in the development of pancreatic fibrosis, stromal formation, and progression of pancreatic cancer. This study was aimed at investigating molecular changes at the level of the proteome that are associated with the activation of pancreatic stellate cells by proinflammatory factors, namely TNF-α, FGF2, IL6, and chemokine (C-C motif) ligand 4 (CCL4). They were added individually to cells growing in serum-free medium next to controls in medium supplemented with serum, thus containing a mixture of them all, or in serum-free medium alone. Variations were detected by means of a microarray of 810 antibodies targeting relevant proteins. All tested factors triggered increased proliferation and migration. Further analysis showed that TNF-α is the prime factor responsible for the activation of pancreatic stellate cells. CCL4 is associated with cellular neovascularization, whereas FGF2 and IL6 induction led to better cellular survival and decreased apoptotic activity of the stellate cells. The identified direct effects of individual cytokines on human pancreatic stellate cells provide new insights about their contribution to pancreatic cancer promotion.
Collapse
Affiliation(s)
- Aseel J Marzoq
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Nathalia Giese
- the Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jörg D Hoheisel
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Mohamed Saiel Saeed Alhamdani
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Marzoq AJ, Giese N, Hoheisel JD, Alhamdani MSS. Proteome variations in pancreatic stellate cells upon stimulation with proinflammatory factors. J Biol Chem 2013. [PMID: 24089530 DOI: 10.074/jbc.m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic stellate cells are key mediators in chronic pancreatitis and play a central role in the development of pancreatic fibrosis, stromal formation, and progression of pancreatic cancer. This study was aimed at investigating molecular changes at the level of the proteome that are associated with the activation of pancreatic stellate cells by proinflammatory factors, namely TNF-α, FGF2, IL6, and chemokine (C-C motif) ligand 4 (CCL4). They were added individually to cells growing in serum-free medium next to controls in medium supplemented with serum, thus containing a mixture of them all, or in serum-free medium alone. Variations were detected by means of a microarray of 810 antibodies targeting relevant proteins. All tested factors triggered increased proliferation and migration. Further analysis showed that TNF-α is the prime factor responsible for the activation of pancreatic stellate cells. CCL4 is associated with cellular neovascularization, whereas FGF2 and IL6 induction led to better cellular survival and decreased apoptotic activity of the stellate cells. The identified direct effects of individual cytokines on human pancreatic stellate cells provide new insights about their contribution to pancreatic cancer promotion.
Collapse
Affiliation(s)
- Aseel J Marzoq
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Nathalia Giese
- the Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jörg D Hoheisel
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Mohamed Saiel Saeed Alhamdani
- From the Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Orton DJ, Doucette AA. Proteomic Workflows for Biomarker Identification Using Mass Spectrometry - Technical and Statistical Considerations during Initial Discovery. Proteomes 2013; 1:109-127. [PMID: 28250400 PMCID: PMC5302744 DOI: 10.3390/proteomes1020109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 01/13/2023] Open
Abstract
Identification of biomarkers capable of differentiating between pathophysiological states of an individual is a laudable goal in the field of proteomics. Protein biomarker discovery generally employs high throughput sample characterization by mass spectrometry (MS), being capable of identifying and quantifying thousands of proteins per sample. While MS-based technologies have rapidly matured, the identification of truly informative biomarkers remains elusive, with only a handful of clinically applicable tests stemming from proteomic workflows. This underlying lack of progress is attributed in large part to erroneous experimental design, biased sample handling, as well as improper statistical analysis of the resulting data. This review will discuss in detail the importance of experimental design and provide some insight into the overall workflow required for biomarker identification experiments. Proper balance between the degree of biological vs. technical replication is required for confident biomarker identification.
Collapse
Affiliation(s)
- Dennis J Orton
- Department of Pathology, 11th Floor Tupper Medical Building, Room 11B, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Alan A Doucette
- Department of Chemistry, Room 212, Chemistry Building, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
30
|
Abstract
Proteomics is an approach to looking at the identity, amount, proteolysis, compartmentalization, and posttranslational modification of a large number of proteins simultaneously in a cell or tissue. Recently, proteomics has begun to be applied to the study of pancreatitis to ascertain mechanisms of disease and search for biomarkers of disease. Most mechanistic work has been carried out in animal models of acute pancreatitis. In 8 studies, 97 proteins have been reported to increase, 55 to decrease, and 23 to undergo proteolysis. Proteins showing increases are most often related to stress, inflammation, or the cytoskeleton, whereas decreases are seen in digestive enzymes and proteins related to metabolism. Many protein changes however, are not consistent between studies and only the most recent studies are rigorous and quantitative. By contrast, biomarker studies have focused on pancreatic juice and plasma of humans with disease and often are directed at distinguishing chronic pancreatitis from cancer. Chronic pancreatitis has also been investigated in tissue sections of histological samples. In this review, the results of studies to date are described as well as coverage of the methods used and special issues that must be considered. Areas are pointed out that are worthy of future study.
Collapse
|
31
|
Paulo JA, Kadiyala V, Banks PA, Conwell DL, Steen H. Mass spectrometry-based quantitative proteomic profiling of human pancreatic and hepatic stellate cell lines. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:105-13. [PMID: 23528454 PMCID: PMC4123426 DOI: 10.1016/j.gpb.2013.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/05/2013] [Accepted: 01/15/2013] [Indexed: 02/06/2023]
Abstract
The functions of the liver and the pancreas differ; however, chronic inflammation in both organs is associated with fibrosis. Evidence suggests that fibrosis in both organs is partially regulated by organ-specific stellate cells. We explore the proteome of human hepatic stellate cells (hHSC) and human pancreatic stellate cells (hPaSC) using mass spectrometry (MS)-based quantitative proteomics to investigate pathophysiologic mechanisms. Proteins were isolated from whole cell lysates of immortalized hHSC and hPaSC. These proteins were tryptically digested, labeled with tandem mass tags (TMT), fractionated by OFFGEL, and subjected to MS. Proteins significantly different in abundance (P < 0.05) were classified via gene ontology (GO) analysis. We identified 1223 proteins and among them, 1222 proteins were quantifiable. Statistical analysis determined that 177 proteins were of higher abundance in hHSC, while 157 were of higher abundance in hPaSC. GO classification revealed that proteins of relatively higher abundance in hHSC were associated with protein production, while those of relatively higher abundance in hPaSC were involved in cell structure. Future studies using the methodologies established herein, but with further upstream fractionation and/or use of enhanced MS instrumentation will allow greater proteome coverage, achieving a comprehensive proteomic analysis of hHSC and hPaSC.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
32
|
Post-translational modifications of pancreatic fluid proteins collected via the endoscopic pancreatic function test (ePFT). J Proteomics 2013; 92:216-27. [PMID: 23500127 DOI: 10.1016/j.jprot.2013.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/31/2012] [Accepted: 01/09/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Early diagnosis of chronic pancreatitis by mass spectrometry-based proteomics may result in therapies to retard or modify disease progression. We aimed to identify differences in posttranslational modifications (PTMs) in pancreatic fluid proteins from individuals with chronic pancreatitis (n=9) and non-pancreatitis controls (n=9). METHODS We collected proteomic data from pancreatic fluid using mass spectrometry techniques. We performed database searches with emphasis on PTMs using ProteinPilot. We compared the frequency of specific PTMs in pancreatic fluid between cohorts and also to those identified in bile, gastroduodenal fluid, urine, and pancreatic duct and stellate cell lysates. RESULTS We identified 97 PTMs in endoscopically-collected pancreatic fluid, of which 11 were identified exclusively in one cohort and 9 others were significantly different in frequency between cohorts. Comparing pancreatic fluid with other specimens revealed differences in specific PTM frequencies, indicating that the identified PTMs were not merely artifacts of sample processing. CONCLUSIONS We determined PTMs of proteins extracted from pancreatic fluid which differed in frequency in chronic pancreatitis patients verses controls. Such PTMs may serve as biomarker candidates of chronic pancreatitis upon validation with larger cohorts. The analysis of the PTM profile of pancreatic fluid proteins offers an alternative method to standard protein-based biomarker discovery. BIOLOGICAL SIGNIFICANCE The early diagnosis of chronic pancreatitis is paramount in developing strategies to modify, retard, or halt disease progression. In the present study, we compared post-transitional modifications (PTMs) of proteins extracted from pancreatic fluid of chronic pancreatitis patients verses a control cohort. With many mass spectrometry-based proteomics workflows aimed to identify and quantify proteins, data for PTMs typically comes gratis, in that such data are collected during protein sequencing and, as such, require only downstream bioinformatics processing. We identified a total of 20 PTMs which were exclusive to or significantly different between cohorts. Upon validation with larger cohorts and enrichment of these PTMs may serve as biomarker candidates of chronic pancreatitis. PTM profiling of pancreatic fluid proteins is complementary to standard protein-based biomarker discovery, and may be readily applied to studies of pancreatic disease. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
|
33
|
Paulo JA, Gaun A, Kadiyala V, Ghoulidi A, Banks PA, Conwell DL, Steen H. Subcellular fractionation enhances proteome coverage of pancreatic duct cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:791-7. [PMID: 23352835 DOI: 10.1016/j.bbapap.2013.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Subcellular fractionation of whole cell lysates offers a means of simplifying protein mixtures, potentially permitting greater depth of proteomic analysis. Here we compare proteins identified from pancreatic duct cells (PaDC) following organelle enrichment to those identified from PaDC whole cell lysates to determine if the additional procedures of subcellular fractionation increase proteome coverage. METHODS We used differential centrifugation to enrich for nuclear, mitochondrial, membrane, and cytosolic proteins. We then compared - via mass spectrometry-based analysis - the number of proteins identified from these four fractions with four biological replicates of PaDC whole cell lysates. RESULTS We identified similar numbers of proteins among all samples investigated. In total, 1658 non-redundant proteins were identified in the replicate samples, while 2196 were identified in the subcellular fractionation samples, corresponding to a 30% increase. Additionally, we noted that each organelle fraction was in fact enriched with proteins specific to the targeted organelle. CONCLUSIONS Subcellular fractionation of PaDC resulted in greater proteome coverage compared to PaDC whole cell lysate analysis. Although more labor intensive and time consuming, subcellular fractionation provides greater proteome coverage, and enriches for compartmentalized sub-populations of proteins. Application of this subcellular fractionation strategy allows for a greater depth of proteomic analysis and thus a better understanding of the cellular mechanisms of pancreatic disease.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Pathology, Children's Hospital Boston, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Pan S, Brentnall TA, Kelly K, Chen R. Tissue proteomics in pancreatic cancer study: discovery, emerging technologies, and challenges. Proteomics 2013; 13:710-21. [PMID: 23125171 DOI: 10.1002/pmic.201200319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is a highly lethal disease that is difficult to diagnose and treat. The advances in proteomics technology, especially quantitative proteomics, have stimulated a great interest in applying this technology for pancreatic cancer study. A variety of tissue proteomics approaches have been applied to investigate pancreatic cancer and the associated diseases. These studies were carried out with various goals, aiming to better understand the molecular mechanisms underlying pancreatic tumorigenesis, to improve therapeutic treatment and to identify cancer associated protein signatures, signaling events as well as interactions between cancer cells and tumor microenvironment. Here, we provide an overview on the tissue proteomics studies of pancreatic cancer reported in the past few years in light of discovery and technology development.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
35
|
Apte MV, Pirola RC, Wilson JS. Pancreatic stellate cells: a starring role in normal and diseased pancreas. Front Physiol 2012; 3:344. [PMID: 22973234 PMCID: PMC3428781 DOI: 10.3389/fphys.2012.00344] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022] Open
Abstract
While the morphology and function of cells of the exocrine and endocrine pancreas have been studied over several centuries, one important cell type in the gland, the pancreatic stellate cell (PSC), had remained undiscovered until as recently as 20 years ago. Even after its first description in 1982, it was to be another 16 years before its biology could begin to be studied, because it was only in 1998 that methods were developed to isolate and culture PSCs from rodent and human pancreas. PSCs are now known to play a critical role in pancreatic fibrosis, a consistent histological feature of two major diseases of the pancreas—chronic pancreatitis and pancreatic cancer. In health, PSCs maintain normal tissue architecture via regulation of the synthesis and degradation of extracellular matrix (ECM) proteins. Recent studies have also implied other functions for PSCs as progenitor cells, immune cells or intermediaries in exocrine pancreatic secretion in humans. During pancreatic injury, PSCs transform from their quiescent phase into an activated, myofibroblast-like phenotype that secretes excessive amounts of ECM proteins leading to the fibrosis of chronic pancreatitis and pancreatic cancer. An ever increasing number of factors that stimulate and/or inhibit PSC activation via paracrine and autocrine pathways are being identified and characterized. It is also now established that PSCs interact closely with pancreatic cancer cells to facilitate cancer progression. Based on these findings, several therapeutic strategies have been examined in experimental models of chronic pancreatitis as well as pancreatic cancer, in a bid to inhibit/retard PSC activation and thereby alleviate chronic pancreatitis or reduce tumor growth in pancreatic cancer. The challenge that remains is to translate these pre-clinical developments into clinically applicable treatments for patients with chronic pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Minoti V Apte
- Pancreatic Research Group, Faculty of Medicine, South Western Sydney Clinical School, University of New South Wales Sydney, NSW, Australia
| | | | | |
Collapse
|
36
|
Paulo JA, Kadiyala V, Banks PA, Steen H, Conwell DL. Mass spectrometry-based proteomics for translational research: a technical overview. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2012; 85:59-73. [PMID: 22461744 PMCID: PMC3313540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease.
Collapse
Affiliation(s)
- Joao A Paulo
- Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | |
Collapse
|