1
|
Zhao XJG, Cao H. Linking research of biomedical datasets. Brief Bioinform 2022; 23:6712704. [PMID: 36151775 DOI: 10.1093/bib/bbac373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Biomedical data preprocessing and efficient computing can be as important as the statistical methods used to fit the data; data processing needs to consider application scenarios, data acquisition and individual rights and interests. We review common principles, knowledge and methods of integrated research according to the whole-pipeline processing mechanism diverse, coherent, sharing, auditable and ecological. First, neuromorphic and native algorithms integrate diverse datasets, providing linear scalability and high visualization. Second, the choice mechanism of different preprocessing, analysis and transaction methods from raw to neuromorphic was summarized on the node and coordinator platforms. Third, combination of node, network, cloud, edge, swarm and graph builds an ecosystem of cohort integrated research and clinical diagnosis and treatment. Looking forward, it is vital to simultaneously combine deep computing, mass data storage and massively parallel communication.
Collapse
Affiliation(s)
- Xiu-Ju George Zhao
- Wuhan Institute of Physics and Mathematics (WIPM), China.,Wuhan Polytechnic University, China
| | - Hui Cao
- Wuhan Polytechnic University, China
| |
Collapse
|
2
|
Evaluation of the metabolomic profile through 1H-NMR spectroscopy in ewes affected by postpartum hyperketonemia. Sci Rep 2022; 12:16463. [PMID: 36183000 PMCID: PMC9526738 DOI: 10.1038/s41598-022-20371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Ketosis is one of the most important health problems in dairy sheep. The aim of this study was to evaluate the metabolic alterations in hyperketonemic (HYK) ewes. Forty-six adult Sardinian ewes were enrolled between 7 ± 3 days post-partum. Blood samples were collected from the jugular vein using Venosafe tubes containing clot activator from jugular vein after clinical examination. The concentration of β-hydroxybutyrate (BHB) was determined in serum and used to divide ewes into assign ewes into: Non-HYK (serum BHB < 0.80 mmol/L) and HYK (serum BHB ≥ 0.80 mmol/L) groups. Animal data and biochemical parameters of groups were examined with one-way ANOVA, and metabolite differences were tested using a t-test. A robust principal component analysis model and a heatmap were used to highlight common trends among metabolites. Over-representation analysis was performed to investigate metabolic pathways potentially altered in connection with BHB alterations. The metabolomic analysis identified 54 metabolites with 14 different between groups. These metabolites indicate altered ruminal microbial populations and fermentations; an interruption of the tricarboxylic acid cycle; initial lack of glucogenic substrates; mobilization of body reserves; the potential alteration of electron transport chain; influence on urea synthesis; alteration of nervous system, inflammatory response, and immune cell function.
Collapse
|
3
|
Maan K, Baghel R, Bakhshi R, Dhariwal S, Tyagi R, Rana P. An integrative chemometric approach and correlative metabolite networking of LC-MS and 1H NMR based urine metabolomics for radiation signatures. Mol Omics 2022; 18:214-225. [PMID: 34982087 DOI: 10.1039/d1mo00399b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing threat of nuclear terrorism or radiological accident has made high throughput radiation biodosimetry a requisite for the immediate response for triage. Owing to detection of subtle alterations in biological pathways before the onset of clinical conditions, metabolomics has become an important tool for studying biomarkers and the related mechanisms for radiation induced damage. Here, we have attempted to combine two detection techniques, LC-MS and 1H NMR spectroscopy, to obtain a comprehensive metabolite profile of urine at 24 h following lethal (7.5 Gy) and sub-lethal (5 Gy) irradiation in mice. Integrated data analytics using multiblock-OPLSDA (MB-OPLSDA), correlation networking and pathway analysis was used to identify metabolic disturbances associated with radiation exposure. MB-OPLSDA revealed better clustering and separation of irradiated groups compared with controls without overfitting (p-value of CV-ANOVA: 1.5 × 10-3). Metabolites identified through MB-OPLSDA, namely, taurine, creatine, citrate and 2-oxoglutarate, were found to be dose independent markers and further support and validate our earlier findings as potential radiation injury biomarkers. Integrated analysis resulted in the enhanced coverage of metabolites and better correlation networking in energy, taurine, gut flora, L-carnitine and nucleotide metabolism observed post irradiation in urine. Our study thus emphasizes the major advantage of using the two detection techniques along with integrated analysis for better detection and comprehensive understanding of disturbed metabolites in biological pathways.
Collapse
Affiliation(s)
- Kiran Maan
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India. .,Department of Biomedical Sciences, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Ruchi Baghel
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| | - Radhika Bakhshi
- Department of Biomedical Sciences, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Seema Dhariwal
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| | - Ritu Tyagi
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| | - Poonam Rana
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| |
Collapse
|
4
|
Zhang S, Xu Z, Cao X, Xie Y, Lin L, Zhang X, Zou B, Liu D, Cai Y, Liao Q, Xie Z. Shenling Baizhu San improves functional dyspepsia in rats as revealed by 1H-NMR based metabolomics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2363-2375. [PMID: 32930262 DOI: 10.1039/d0ay00580k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Functional dyspepsia (FD), a common gastrointestinal disorder around the world, is driven by multiple factors, making prevention and treatment a major challenge. Shenling Baizhu San (SBS), a classical prescription of traditional Chinese medicine, has been proven to be effective in gastrointestinal disorders. However, studies on SBS improving FD are few. Thus, our study aimed to evaluate the effect of SBS on FD and further to explore the mechanism underlying the interactions between FD and SBS by the metabolomics approach. A FD rat model was induced by multiple forms of mild stimulation, and proton nuclear magnetic resonance (1H-NMR) spectroscopy and multivariate data analysis were used to profile the fecal and urinary metabolome in the FD rats during SBS intervention. Significant dyspeptic symptoms such as weight loss, poor appetite, reduced gastrointestinal motility and decreased absorptive capacity were observed in the FD rats, which were subsequently improved by SBS. Additionally, the levels of citrate, branched chain acids and pyruvate decreased, and the levels of choline, trimethylamine and taurine increased in the FD rats. Furthermore, the metabolic disorders were amended with SBS intervention mainly by modulating the metabolic pathways involved in energy metabolism, amino acid metabolism, and gut microbiota and host co-metabolism. Overall, our study highlighted the effect of SBS on the disturbed metabolic pathways in the FD rats, providing new insight into the mechanism of SBS treatment for FD from the perspective of metabolomics.
Collapse
Affiliation(s)
- Shaobao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Zengmei Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xueqing Cao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yuzhen Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lei Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Xiao Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Baorong Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Deliang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ying Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiongfeng Liao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China
| |
Collapse
|
5
|
Ding L, Zhang C, Liu Z, Huang Q, Zhang Y, Li S, Nie G, Tang H, Wang Y. Metabonomic Investigation of Biological Effects of a New Vessel Target Protein tTF-pHLIP in a Mouse Model. J Proteome Res 2019; 19:238-247. [DOI: 10.1021/acs.jproteome.9b00507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Laifeng Ding
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 10049, P.R. China
| | - Congcong Zhang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Zhigang Liu
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Qingxia Huang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
6
|
Tian JS, Liu SB, He XY, Xiang H, Chen JL, Gao Y, Zhou YZ, Qin XM. Metabolomics studies on corticosterone-induced PC12 cells: A strategy for evaluating an in vitro depression model and revealing the metabolic regulation mechanism. Neurotoxicol Teratol 2018; 69:27-38. [PMID: 30076895 DOI: 10.1016/j.ntt.2018.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022]
Abstract
There are three types of differentiated (un-, poorly- and well-differentiated) PC12 cells, which have been widely used as a model system for depression studies after the administration of corticosterone (CORT). In order to investigate the underlying metabolic profiles of CORT-induced PC12 cells and evaluate the suitable differentiated types of PC12 cells for use in depressive studies, proton nuclear magnetic resonance (1H NMR) metabolomics coupled with network analysis approaches were employed. The results showed that CORT induced metabolic alterations in PC12 cells. There were 8 and 13 common differential metabolites in intracellular and extracellular extracts, respectively, of the three types of differentiated PC12 cells in response to CORT treatment, and the perturbed metabolic pathways were involved in amino acid metabolism, glutathione metabolism, pyruvate metabolism and inositol phosphate metabolism. Eighteen protein targets of depression were identified from the five different metabolic pathways from metabolomics and network analysis among the three types of CORT-induced differentiated PC12 cells, and these proteins were all found in the pathways that were perturbed by CORT treatment of poorly-differentiated PC12 cells. These results may indicate that the metabolism of CORT-induced PC12 cells is similar to the pathogenesis of depression, and poorly-differentiated PC12 cells are the most suitable cells for depressive research among the distinct types of differentiated PC12 cells. Thus, an effective predicative strategy to evaluate the in vitro disease models could be referenced.
Collapse
Affiliation(s)
- Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China.
| | - Shao-Bo Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Xiao-Yan He
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Huan Xiang
- Departments of Physical Education of Shanxi University, Taiyuan 030006, PR China
| | - Jian-Li Chen
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
7
|
Song Y, Zhou JL, He YL, Li W, Zou L. [Link between sortase A function and cariogenicity of Streptococcus mutans: a preliminary metabolomics analysis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:360-366. [PMID: 30182561 DOI: 10.7518/hxkq.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study intends to explore the mechanism underlying the support of sortase A (SrtA) of the cariogenicity of Streptococcus mutans (S. mutans). METHODS We performed a metabonomics study based on ¹H nuclear magnetic resonance spectroscopy (NMR), in which we compared the extracellular metabolites of wild-type S. mutans UA159 with those of its SrtA-deficient strain. Metabolite differences among strains were identified using a combination of principal component analysis and orthogonality partial least square discriminant analysis. RESULTS Several differences corresponding mostly to unknown metabolites were identified. Some amino acids such as leucine and valine (δ 0.92×10⁻⁶-1.20×10⁻⁶), lactic acid ( δ1.28×10⁻⁶), oxoglutaric acid (δ 3.00×10⁻⁶), and glycine (δ 3.60×10⁻⁶) differed among strains. CONCLUSIONS This work establishes the feasibility of using ¹H NMR-based metabonomics to provide leads for research into molecular factors that promote caries. The database of microbial metabolites should be also improved in further studies.
Collapse
Affiliation(s)
- Ying Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;Dept. of Conservative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences,Chongqing 401147, China
| | - Jing-Lin Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuan-Li He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Liu Q, Lei Z, Guo J, Liu A, Lu Q, Fatima Z, Khaliq H, Shabbir MAB, Maan MK, Wu Q, Dai M, Wang X, Pan Y, Yuan Z. Mequindox-Induced Kidney Toxicity Is Associated With Oxidative Stress and Apoptosis in the Mouse. Front Pharmacol 2018; 9:436. [PMID: 29765325 PMCID: PMC5938394 DOI: 10.3389/fphar.2018.00436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/12/2018] [Indexed: 12/29/2022] Open
Abstract
Mequindox (MEQ), belonging to quinoxaline-di-N-oxides (QdNOs), is a synthetic antimicrobial agent widely used in China. Previous studies found that the kidney was one of the main toxic target organs of the QdNOs. However, the mechanisms underlying the kidney toxicity caused by QdNOs in vivo still remains unclear. The present study aimed to explore the molecular mechanism of kidney toxicity in mice after chronic exposure to MEQ. MEQ led to the oxidative stress, apoptosis, and mitochondrial damage in the kidney of mice. Meanwhile, MEQ upregulated Bax/Bcl-2 ratio, disrupted mitochondrial permeability transition pores, caused cytochrome c release, and a cascade activation of caspase, eventually induced apoptosis. The oxidative stress mediated by MEQ might led to mitochondria damage and apoptosis in a mitochondrial-dependent apoptotic pathway. Furthermore, upregulation of the Nrf2-Keap1 signaling pathway was also observed. Our findings revealed that the oxidative stress, mitochondrial dysfunction, and the Nrf2-Keap1 signaling pathway were associated with the kidney apoptosis induced by MEQ in vivo.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Zhixin Lei
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Jingchao Guo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Aimei Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qirong Lu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zainab Fatima
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Haseeb Khaliq
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Muhammad A B Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Kashif Maan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
9
|
Chen R, Wang J, Liao C, Zhang L, Guo Q, Wang X. Exploring the biomarkers and therapeutic mechanism of kidney-yang deficiency syndrome treated by You-gui pill using systems pharmacology and serum metabonomics. RSC Adv 2018; 8:1098-1115. [PMID: 35539000 PMCID: PMC9077015 DOI: 10.1039/c7ra12451a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
In this study, systems pharmacology was used to predict the molecular targets of You-gui pill (YGP) and explore the therapeutic mechanism of Kidney-Yang Deficiency Syndrome (KYDS) treated with YGP. On the basis of this, serum samples from control group, KYDS model group and YGP group rats were studied using 1H NMR to verify the results of systems pharmacology from the level of metabonomics. Simultaneously, 1H NMR spectra of serum samples were obtained and statistically assessed using pattern recognition analysis. Biochemical analyses of serums were performed via radioimmunoassays. Furthermore, histopathological studies were conducted on the pituitary, adrenal, and thyroid glands, and testicles of the control, KYDS and YGP rats. Using systems pharmacology to analyze the active components of YGP, 61 active compounds were finally found. These compounds were likely to have an effect on 3177 target proteins and involve 234 pathways. Using metabonomics to analyze serum from KYDS rats treated with YGP, 22 endogenous biomarkers were found. These biomarkers were mainly involved in 10 metabolic pathways. Combining systems pharmacology and metabonomics, we found that the regulation of KYDS was primarily associated with 19 active compounds of 5 Chinese herbal medicines in YGP. These active compounds mainly had an effect on 8 target proteins, including phosphoenolpyruvate carboxykinase, betaine-homocysteine s-methyltransferase 1, alcohol dehydrogenase 1C, etc. These target proteins were primarily involved in 6 overlapping pathways, namely aminoacyl-tRNA biosynthesis, glycolysis/gluconeogenesis, glycine, serine and threonine metabolism, valine, leucine and isoleucine biosynthesis, arginine and proline metabolism, and pyruvate metabolism. In addition, there were 4 non-overlapping pathways, respectively alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and galactose metabolism. In summary, the therapeutic effects of YGP on KYDS were mainly associated with neuroendocrine regulation, energy metabolism, amino acid metabolism, inflammatory responses, apoptosis, oxidative stress and intestinal flora metabolism. What's more, we also found that YGP possessed the potential to protect liver and kidney function. Our study demonstrated that systems pharmacology and metabonomics methods were novel strategies for the exploration of the mechanisms of KYDS and TCM formulas.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Jia Wang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Chengbin Liao
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Lei Zhang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Qian Guo
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Xiufeng Wang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| |
Collapse
|
10
|
Ceciliani F, Lecchi C, Urh C, Sauerwein H. Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows. J Proteomics 2017; 178:92-106. [PMID: 29055723 DOI: 10.1016/j.jprot.2017.10.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 01/15/2023]
Abstract
The transition from late pregnancy to early lactation is a critical period in a dairy cow's life due to the rapidly increasing drain of nutrients from the maternal organism towards the foetus and into colostrum and milk. In order to cope with the challenges of parturition and lactation, comprehensive adaptive reactions comprising the endocrine and the immune system need to be accomplished. There is high variation in this coping ability and both metabolic and infectious diseases, summarized as "production diseases", such as hypocalcaemia (milk fever), fatty liver syndrome, laminitis and ketosis, may occur and impact welfare, productive lifespan and economic outcomes. Proteomics and metabolomics have emerged as valuable techniques to characterize proteins and metabolite assets from tissue and biological fluids, such as milk, blood and urine. In this review we provide an overview on metabolic status and physiological changes during the transition period and the related production diseases in dairy cows, and summarize the state of art on proteomics and metabolomics of biological fluids and tissues involved in metabolic stress during the peripartum period. We also provide a current and prospective view of the application of the recent achievements generated by omics for biomarker discovery and their potential in diagnosis. BIOLOGICAL SIGNIFICANCE For high-yielding dairy cows there are several "occupational diseases" that occur mainly during the metabolic challenges related to the transition from pregnancy to lactation. Such diseases and their sequelae form a major concern for dairy production, and often lead to early culling of animals. Beside the economical perspective, metabolic stress may severely influence animal welfare. There is a multitude of studies about the metabolic backgrounds of such so called production diseases like ketosis, fatty liver, or hypocalcaemia, although the investigations aiming to assess the complexity of the pathophysiological reactions are largely focused on gene expression, i.e. transcriptomics. For extending the knowledge towards the proteome and the metabolome, the respective technologies are of increasing importance and can provide an overall view of how dairy cows react to metabolic stress, which is needed for an in-depth understanding of the molecular mechanisms of the related diseases. We herein review the current findings from studies applying proteomics and metabolomics to transition-related diseases, including fatty liver, ketosis, endometritis, hypocalcaemia and laminitis. For each disease, a brief overview of the up to date knowledge about its pathogenesis is provided, followed by an insight into the most recent achievements on the proteome and metabolome of tissues and biological fluids, such as blood serum and urine, highlighting potential biomarkers. We believe that this review would help readers to be become more familiar with the recent progresses of molecular background of transition-related diseases thus encouraging research in this field.
Collapse
Affiliation(s)
- Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy.
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| | - Christiane Urh
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Liu Q, Lei Z, Huang A, Lu Q, Wang X, Ahmed S, Awais I, Yuan Z. Mechanisms of the Testis Toxicity Induced by Chronic Exposure to Mequindox. Front Pharmacol 2017; 8:679. [PMID: 29018347 PMCID: PMC5622959 DOI: 10.3389/fphar.2017.00679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Mequindox (MEQ) is a synthetic antimicrobial agent widely used in China since the 1980s. Although the toxicity of MEQ is well recognized, its testis toxicity has not been adequately investigated. In the present study, we provide evidence that MEQ triggers oxidative stress, mitochondrion dysfunction and spermatogenesis deficiency in mice after exposure to MEQ (0, 25, 55, and 110 mg/kg in the diet) for up to 18 months. The genotoxicity and adrenal toxicity may contribute to sperm abnormalities caused by MEQ. Moreover, using LC/MS-IT-TOF analysis, two metabolites, 3-methyl-2-(1-hydroxyethyl) quinoxaline-N4-monoxide (M4) and 3-methyl-2-(1-hydroxyethyl) quinoxaline-N1-monoxide (M8), were detected in the serum of mice, which directly confirms the relationship between the N→O group reduction metabolism of MEQ and oxidative stress. Interestingly, only M4 was detected in the testes, suggesting that the higher reproductive toxicity of M4 than M8 might be due to the increased stability of M4-radical (M4-R) compared to M8-radical (M8-R). Furthermore, the expression of the blood-testis barrier (BTB)-associated junctions such as tight junctions, gap junctions and basal ectoplasmic specializations were also examined. The present study demonstrated for the first time the role of the M4 in testis toxicity, and illustrated that the oxidative stress, mitochondrion dysfunction and interference in spermatogenesis, as well as the altered expression of BTB related junctions, were involved in the reproductive toxicity mediated by MEQ in vivo.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Zhixin Lei
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Anxiong Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qirong Lu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Xu Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Saeed Ahmed
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Ihsan Awais
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
12
|
Yang Y, Zhang H, Yan B, Zhang T, Gao Y, Shi Y, Le G. Health Effects of Dietary Oxidized Tyrosine and Dityrosine Administration in Mice with Nutrimetabolomic Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6957-6971. [PMID: 28742334 DOI: 10.1021/acs.jafc.7b02003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aims to investigate the health effects of long-term dietary oxidized tyrosine (O-Tyr) and its main product (dityrosine) administration on mice metabolism. Mice received daily intragastric administration of either O-Tyr (320 μg/kg body weight), dityrosine (Dityr, 320 μg/kg body weight), or saline for consecutive 6 weeks. Urine and plasma samples were analyzed by NMR-based metabolomics strategies. Body weight, clinical chemistry, oxidative damage indexes, and histopathological data were obtained as complementary information. O-Tyr and Dityr exposure changed many systemic metabolic processes, including reduced choline bioavailability, led to fat accumulation in liver, induced hepatic injury, and renal dysfunction, resulted in changes in gut microbiota functions, elevated risk factor for cardiovascular disease, altered amino acid metabolism, induced oxidative stress responses, and inhibited energy metabolism. These findings implied that it is absolutely essential to reduce the generation of oxidation protein products in food system through improving modern food processing methods.
Collapse
Affiliation(s)
- Yuhui Yang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Hui Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Biao Yan
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Tianyu Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Ying Gao
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
|
14
|
Wang EB, Jin BF, Li X, Liu RL, Xie XR, Guo WF, Zheng HX, Zhao ZB. Comparative analysis between aerial parts and roots (Astragali Radix) of astragalus membranaceus by NMR-based metabolomics. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1332007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Er-Bing Wang
- Institute of Chemical and Biological Technology, Taiyuan University of Science and Technology, Taiyuan, People’s Republic of China
| | - Bao-Fen Jin
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, People’s Republic of China
- Fuyong People’s Hospital, Shenzhen, People’s Republic of China
| | - Xia Li
- Department of Pathophysiology of Shanxi medical college for continuing education, Taiyuan, People’s Republic of China
| | - Rui-Ling Liu
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xin-Ran Xie
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Wei-Feng Guo
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hui-Xia Zheng
- Department of Pathology of First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zheng-Bao Zhao
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
15
|
Yongxia Y, Xi C, Shumei W, Zhanhong W, Jiansheng L, Shengwang L. Neuroprotective effect of Naomaitong extract following focal cerebral ischemia induced by middle cerebral artery occlusion in rats. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30069-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Chen YL, Xiao CH, Hu ZX, Liu XS, Liu Z, Zhang WN, Zhao XJ. Dynamic lipid profile of hyperlipidemia mice. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1055-1056:165-171. [PMID: 28478194 DOI: 10.1016/j.jchromb.2017.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/01/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Biomarkers of serum fatty acids in hyperlipidemia need to be elucidated. 90 SPF KM male mice were randomly divided into 18 groups (n=5/group), control groups, and high fat diet (HFD) groups at 9 time points. On day 7, 10, 15, 18, 21, 24, 28, 31, and 35, the mice were sacrificed; blood was collected into tubes from the eyes, serum samples for clinical biochemistry assays and gas chromatography-mass spectroscopy were attained after centrifugation, and the contents of serum fatty acids were detected with GC-MS. Sections of livers were taken and stored in formalin solution for histological assessments. No species differences existed in all these groups. The contents of C16:1, C18:1, C22:6 were significantly different between HFD groups and the corresponding controls; meanwhile, the proportion of fatty acids, especially the monounsaturated degree, the polyunsaturated degree, changed significantly and regularly (P<0.05). Thus the three unsaturated fatty acids C16:1, C18:1, C22:6 and the monounsaturated/polyunsaturated unsaturated degrees may be as potential biomarkers of hyperlipidemia.
Collapse
Affiliation(s)
- Yu-Lian Chen
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University,No.68 South Xuefu Road, Changqing Garden, Wuhan 430023, China
| | - Chuan-Hao Xiao
- Puyang Vocational and Technical College, Puyang 457000, China
| | - Zhi-Xiong Hu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University,No.68 South Xuefu Road, Changqing Garden, Wuhan 430023, China
| | - Xiao-Shan Liu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University,No.68 South Xuefu Road, Changqing Garden, Wuhan 430023, China
| | - Zhiguo Liu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University,No.68 South Xuefu Road, Changqing Garden, Wuhan 430023, China
| | - Wei-Nong Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University,No.68 South Xuefu Road, Changqing Garden, Wuhan 430023, China.
| | - Xiu-Ju Zhao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University,No.68 South Xuefu Road, Changqing Garden, Wuhan 430023, China; Hubei Key Lab of Lipid Chemistry and Nutrition of Oil, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
17
|
Zhao XJ, Chen YL, Fu B, Zhang W, Liu Z, Zhuo H. Intervention of pumpkin seed oil on metabolic disease revealed by metabonomics and transcript profile. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1158-1163. [PMID: 27293203 DOI: 10.1002/jsfa.7842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/04/2015] [Accepted: 06/05/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Understanding the metabolic and transcription basis of pumpkin seed oil (PSO) intervention on metabolic disease (MD) is essential to daily nutrition and health. RESULTS This study analyzed the liver metabolic variations of Wistar rats fed normal diet (CON), high-fat diet (HFD) and high-fat plus PSO diet (PSO) to establish the relationship between the liver metabolite composition/transcript profile and the effects of PSO on MD. By using proton nuclear magnetic resonance spectroscopy together with multivariate data analysis, it was found that, compared with CON rats, HFD rats showed clear dysfunctions of choline metabolism, glucose metabolism and nucleotide and amino acid metabolism. Using quantitative real-time polymerase chain reaction (qPCR), it was found that, compared with HFD rats, PSO rats showed alleviated endoplasmic reticulum stress accompanied by lowered unfolded protein response. CONCLUSION These findings provide useful information to understand the metabolic alterations triggered by MD and to evaluate the effects of PSO intervention. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiu-Ju Zhao
- School of Biology and Pharmaceutical Engineering, Collaborative Innovation Center for Processing of Agricultural Products (Hubei Province), Wuhan Polytechnic University, No. 68 South Xuefu Road, Changqing Garden, Wuhan, 430023, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition of Oil, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yu-Lian Chen
- School of Biology and Pharmaceutical Engineering, Collaborative Innovation Center for Processing of Agricultural Products (Hubei Province), Wuhan Polytechnic University, No. 68 South Xuefu Road, Changqing Garden, Wuhan, 430023, China
| | - Bing Fu
- Changyuan Cuisine Vocational and Technical College, Changyuan, 453400, China
| | - Wen Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhiguo Liu
- School of Biology and Pharmaceutical Engineering, Collaborative Innovation Center for Processing of Agricultural Products (Hubei Province), Wuhan Polytechnic University, No. 68 South Xuefu Road, Changqing Garden, Wuhan, 430023, China
| | - Hexian Zhuo
- Xinxiang Institute for Drug Control, Food and Drug Administration of Xinxiang, No. 17 Jiankang Road, Xinxiang, 453000, China
| |
Collapse
|
18
|
Xing J, Sun HM, Jia JP, Qin XM, Li ZY. Integrative hepatoprotective efficacy comparison of raw and vinegar-baked Radix Bupleuri using nuclear magnetic resonance-based metabolomics. J Pharm Biomed Anal 2017; 138:215-222. [PMID: 28219798 DOI: 10.1016/j.jpba.2017.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
Radix Bupleuri (RB), with a Chinese name Chaihu, is one of the most popular Traditional Chinese herbal drug. It can be baked with vinegar to afford vinegar-baked Radix Bupleuri (VBRB), which is used in Traditional Chinese Medicine (TCM) for liver diseases treatment. In the present study, nuclear magnetic resonance-based metabolomic approach was used to compare the liver protective effect of RB and two types of VBRBs, which were prepared by two kinds of vinegar. The contents of 14 metabolites in the liver of carbon tetrachloride (CCl4) treated mice were significantly altered in comparison with control group, and VBRB prepared by Shanxi vinegar showed best effect as revealed by the amount and regulatory degree of the perturbed metabolites. The metabolism pathways analysis showed that the liver protective effect was related with the energy metabolism, lipid metabolism, ketone body metabolism, glutathione metabolism, amino acids metabolism and nucleotide synthesis. The results presented here showed that metabolomic approach made it possible to disclose the subtle biological difference between two types of VBRB, which highlight the potential of metabolomic approach to quantitatively compare the pharmacological effect of the herbal drugs.
Collapse
Affiliation(s)
- Jie Xing
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China; College of Chemistry and Chemical Engineering of Shanxi University, No. 92, Wucheng Road 92, Taiyuan 030006, Shanxi, People's Republic of China
| | - Hui-Min Sun
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China
| | - Jin-Ping Jia
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China.
| | - Zhen-Yu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China.
| |
Collapse
|
19
|
Toxic metabolites, MAPK and Nrf2/Keap1 signaling pathways involved in oxidative toxicity in mice liver after chronic exposure to Mequindox. Sci Rep 2017; 7:41854. [PMID: 28157180 PMCID: PMC5291092 DOI: 10.1038/srep41854] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/30/2016] [Indexed: 12/21/2022] Open
Abstract
Mequindox (MEQ) is a synthetic antimicrobial agent of quinoxaline-1,4-dioxide group (QdNOs). The liver is regarded as the toxicity target of QdNOs, and the role of N → O group-associated various toxicities mediated by QdNOs is well recognized. However, the mechanism underlying the in vivo effects of MEQ on the liver, and whether the metabolic pathway of MEQ is altered in response to the pathophysiological conditions still remain unclear. We now provide evidence that MEQ triggers oxidative damage in the liver. Moreover, using LC/MS-ITTOF analysis, two metabolites of MEQ were detected in the liver, which directly confirms the potential connection between N → O group reduction metabolism of MEQ and liver toxicity. The gender difference in MEQ-induced oxidative stress might be due to adrenal toxicity and the generation of M4 (2-isoethanol 1-desoxymequindox). Furthermore, up-regulation of the MAPK and Nrf2-Keap1 family and phase II detoxifying enzymes (HO-1, GCLC and NQO1) were also observed. The present study demonstrated for the first time the protein peroxidation and a proposal metabolic pathway after chronic exposure of MEQ, and illustrated that the MAPK, Nrf2-Keap1 and NF-кB signaling pathways, as well as the altered metabolism of MEQ, were involved in oxidative toxicity mediated by MEQ in vivo.
Collapse
|
20
|
Yang Y, Yan B, Cheng X, Ding Y, Tian X, Shi Y, Le G. Metabolomic studies on the systemic responses of mice with oxidative stress induced by short-term oxidized tyrosine administration. RSC Adv 2017. [DOI: 10.1039/c7ra02665j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidized tyrosine (O-Tyr) has attracted more interest in recent years because many researchers have discovered that it and its product (dityrosine) are associated with pathological conditions, especially various age-related disorders in biological systems.
Collapse
Affiliation(s)
- Yuhui Yang
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Biao Yan
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Xiangrong Cheng
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yinyi Ding
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Xu Tian
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
21
|
Wang P, Rong ZM, Ma CX, Zhao XF, Xiao CN, Zheng XH. Distribution of Metabolites in Root Barks of Seven Tree Peony Cultivars for Quality Assessment Using NMR-based Metabolomics. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60073-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
22
|
Wang X, Martínez MA, Cheng G, Liu Z, Huang L, Dai M, Chen D, Martínez-Larrañaga MR, Anadón A, Yuan Z. The critical role of oxidative stress in the toxicity and metabolism of quinoxaline 1,4-di-N-oxides in vitro and in vivo. Drug Metab Rev 2016; 48:159-82. [PMID: 27285897 DOI: 10.1080/03602532.2016.1189560] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quinoxaline 1,4-dioxide derivatives (QdNOs) have been widely used as growth promoters and antibacterial agents. Carbadox (CBX), olaquindox (OLA), quinocetone (QCT), cyadox (CYA) and mequindox (MEQ) are the classical members of QdNOs. Some members of QdNOs are known to cause a variety of toxic effects. To date, however, almost no review has addressed the toxicity and metabolism of QdNOs in relation to oxidative stress. This review focused on the research progress associated with oxidative stress as a plausible mechanism for QdNO-induced toxicity and metabolism. The present review documented that the studies were performed over the past 10 years to interpret the generation of reactive oxygen species (ROS) and oxidative stress as the results of QdNO treatment and have correlated them with various types of QdNO toxicity, suggesting that oxidative stress plays critical roles in their toxicities. The major metabolic pathways of QdNOs are N→O group reduction and hydroxylation. Xanthine oxidoreductase (XOR), aldehyde oxidase (SsAOX1), carbonyl reductase (CBR1) and cytochrome P450 (CYP) enzymes were involved in the QdNOs metabolism. Further understanding the role of oxidative stress in QdNOs-induced toxicity will throw new light onto the use of antioxidants and scavengers of ROS as well as onto the blind spots of metabolism and the metabolizing enzymes of QdNOs. The present review might contribute to revealing the QdNOs toxicity, protecting against oxidative damage and helping to improve the rational use of concurrent drugs, while developing novel QdNO compounds with more efficient potentials and less toxic effects.
Collapse
Affiliation(s)
- Xu Wang
- a National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues , Wuhan , Hubei , China ;,b Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - María-Aránzazu Martínez
- b Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - Guyue Cheng
- c MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei , China
| | - Zhaoying Liu
- d Hunan Engineering Research Center of Veterinary Drugs, College of Veterinary Medicine , Hunan Agricultural University , Changsha , Hunan , China
| | - Lingli Huang
- c MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei , China
| | - Menghong Dai
- c MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei , China
| | - Dongmei Chen
- c MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei , China
| | - María-Rosa Martínez-Larrañaga
- b Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - Arturo Anadón
- b Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - Zonghui Yuan
- a National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues , Wuhan , Hubei , China ;,c MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei , China ;,e Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| |
Collapse
|
23
|
Investigation on Endogenous Metabolites in Pancreas of Diabetic Rats after Treatment by Genipin through 1H-NMR-based Metabolomic Profiles. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60022-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Wan Q, He Q, Deng X, Hao F, Tang H, Wang Y. Systemic Metabolic Responses of Broiler Chickens and Piglets to Acute T-2 Toxin Intravenous Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:714-723. [PMID: 26714875 DOI: 10.1021/acs.jafc.5b05076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this study is to thoroughly investigate the toxicity mechanism of mycotoxin T-2 toxin and to further understand the endogenous metabolic alterations induced by T-2 toxin. To achieve this, a nuclear magnetic resonance (NMR)-based metabonomics approach was used to analyze the metabolic alterations induced by a single intravenous injection of T-2 toxin (0.5 mg/kg of body weight) in piglets and broiler chickens. A range of metabolites in the plasma, liver, kidney, and spleen of broiler chickens and plasma of piglets was changed following T-2 toxin injection. For example, a rapid increase of amino acids together with a significant reduction of glucose and lipid occurred in the plasma of broiler chickens and piglets following T-2 toxin treatment. A significant accumulation of amino acids and modulated nucleotides were detected in the liver, kidney, and spleen of T-2 toxin-treated broiler chickens. These data indicated that T-2 toxin caused endogenous metabolic changes in multiple organs and perturbed various metabolic pathways, including energy, amino acid, and nucleotide metabolism, as well as oxidative stress. We also observed elevated levels of tryptophan in the T-2 toxin-treated broiler chickens, which may explain the reported neurotoxic effects of T-2 toxin. These findings provide important information on the toxicity of T-2 toxin and demonstrate the power of the NMR-based metabonomics approach in exploring the toxicity mechanism of xenobiotics.
Collapse
Affiliation(s)
- Qianfen Wan
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, Hubei 430071, People's Republic of China
| | - Qinghua He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University , Shenzhen, Guangdong 518060, People's Republic of China
| | - Xianbai Deng
- College of Veterinary Medicine, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Fuhua Hao
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, Hubei 430071, People's Republic of China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Metabolomics and Systems Biology Laboratory, School of Life Sciences, Fudan University , Shanghai 200433, People's Republic of China
| | - Yulan Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, Hubei 430071, People's Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
25
|
Qu T, Li Z, Zhao S, Li A, Qin X. A metabonomic analysis reveals novel regulatory mechanism of Huangqi injection on leucopenia mice. Immunopharmacol Immunotoxicol 2016; 38:113-23. [DOI: 10.3109/08923973.2015.1128950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Xu C, Sun LW, Xia C, Zhang HY, Zheng JS, Wang JS. (1)H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:219-29. [PMID: 26732447 PMCID: PMC4698702 DOI: 10.5713/ajas.15.0439] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/29/2015] [Accepted: 08/24/2015] [Indexed: 11/28/2022]
Abstract
Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using 1H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in β-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows.
Collapse
Affiliation(s)
- Chuang Xu
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling-Wei Sun
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Xia
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-You Zhang
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-San Zheng
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science Technology, Nanjing, 210095, China
| |
Collapse
|
27
|
Qu T, Wang E, Li A, Du G, Li Z, Qin X. NMR based metabolomic approach revealed cyclophosphamide-induced systematic alterations in a rat model. RSC Adv 2016. [DOI: 10.1039/c6ra18600a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A 1H NMR based metabolomics approach combined with biochemical assay had been employed to study the toxicity of CY.
Collapse
Affiliation(s)
- Tingli Qu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University
- Taiyuan 030006
- People's Republic of China
- School of Pharmaceutical Science of Shanxi Medical University
- Taiyuan 030001
| | - Erbing Wang
- Chemical and Biological Engineering College of Taiyuan University of Science and Technology
- Taiyuan 030024
- People's Republic of China
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University
- Taiyuan 030006
- People's Republic of China
| | - GuanHua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University
- Taiyuan 030006
- People's Republic of China
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University
- Taiyuan 030006
- People's Republic of China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University
- Taiyuan 030006
- People's Republic of China
| |
Collapse
|
28
|
Song Y, Zhao R, Hu Y, Hao F, Li N, Nie G, Tang H, Wang Y. Assessment of the Biological Effects of a Multifunctional Nano-Drug-Carrier and Its Encapsulated Drugs. J Proteome Res 2015; 14:5193-201. [PMID: 26531143 DOI: 10.1021/acs.jproteome.5b00513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polymer-nanoparticle-encapsulated doxorubicin (DOX) and paclitaxel (TAX) have the potential for novel therapeutic use against cancer in the clinic. However, the systemic biological effect of the nanoparticle material, namely, methoxypoly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA), and its encapsulated drugs have not been fully studied. We have applied NMR-based metabonomics methodology to characterize and analyze the systemic metabolic changes in mice after being exposed to mPEG-PLGA, mPEG-PLGA-encapsulated DOX and TAX (NP-D/T), and their free forms. The study revealed that mPEG-PLGA exposure only induces temporary and slight metabolic alternations and that there are detoxification effects of nanoparticle packed with D/T drugs on the heart when comparing with free-form D/T drugs. Both NP-D/T and their free forms induce a shift in energy metabolism, stimulate antioxidation pathways, and disturb the gut microbial activity of the host. However, mPEG-PLGA packaging can relieve the energy metabolism inhibition and decrease the activation of antioxidation pathways caused by D/T exposure. These findings provide a holistic insight into the biological effect of polymer nanoparticle and nanoparticle-encapsulated drugs. This study also furthers our understanding of the molecular mechanisms involved in the amelioration effects of mPEG-PLGA packaging on the toxicity of the incorporated drugs.
Collapse
Affiliation(s)
- Yipeng Song
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | - Ruifang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences , Beijing, 100190, P. R. China
| | - Yili Hu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | - Ning Li
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | - Guangjun Nie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences , Beijing, 100190, P. R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Biospectroscopy and Metabolomics, School of Life Sciences, Fudan University , Shanghai, 200433, P. R. China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310058, P. R. China
| |
Collapse
|
29
|
Huang L, Yin F, Pan Y, Chen D, Li J, Wan D, Liu Z, Yuan Z. Metabolism, Distribution, and Elimination of Mequindox in Pigs, Chickens, and Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9839-9849. [PMID: 26376954 DOI: 10.1021/acs.jafc.5b02780] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mequindox (MEQ), a quinoxaline-N,N-dioxide antibacterial agent used to control bacterial enteritis in various food-producing animals, is a potential violative residue in food animal-derived products. The disposition and elimination of MEQ in rats, pigs, and chickens was comprehensively investigated to identify the marker residue and target tissue of MEQ in food animals for residue monitoring. Following a single oral administration, 62-71% of MEQ was rapidly excreted via urine and feces in all species within 24 h. Urinary excretion of radioactivity was 84 and 83.5% of the administered dose in rats and pigs, respectively. More than 92% of the administered dose was excreted in all species within 15 days. Radioactivity was found in nearly all tissues at the first 6 h after dosing, with the majority of radioactivity cleared within 4-6 days. The highest radioactivity and longest persisting time were found to be in the liver and kidney. Totals of 11, 12, and 7 metabolites were identified in rats, chickens, and pigs, respectively. No parent drug could be detected in any of the tissues of pigs and chickens. 3-Methyl-2-acetyl quinoxaline (M1), 3-methyl-2-(1-hydroxyethyl) quinoxaline-N4-monoxide (M4), and 3-methyl-2-(1-hydroxyethyl) quinoxaline-1,4-dioxide (M6) were the common and major metabolites of MEQ in all three species. Additionally, 3-methyl-2-(1-hydroxyethyl) quinoxaline (M5), 3-hydroxymethyl-2-ethanol quinoxaline-1,4-dioxide (M7), and 3-methyl-2-(1-hydroxyethyl) quinoxaline-N1-monoxide (M8) were the major metabolites of MEQ in rats, pigs, and chickens, respectively. M1 was designated to be the marker residue of MEQ in pigs and chickens. These results provide scientific data for the determination of marker residues and withdrawal time of MEQ in food animals and improve the understanding of the toxicity and disposition of MEQ in animals.
Collapse
Affiliation(s)
- Lingli Huang
- MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products and ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University , Wuhan, Hubei 430070, China
| | - Fujun Yin
- MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products and ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University , Wuhan, Hubei 430070, China
| | - Yuanhu Pan
- MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products and ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University , Wuhan, Hubei 430070, China
| | - Dongmei Chen
- MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products and ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University , Wuhan, Hubei 430070, China
| | - Juan Li
- MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products and ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University , Wuhan, Hubei 430070, China
| | - Dan Wan
- MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products and ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University , Wuhan, Hubei 430070, China
| | - Zhenli Liu
- MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products and ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University , Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products and ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University , Wuhan, Hubei 430070, China
| |
Collapse
|
30
|
Chen JL, Shi BY, Xiang H, Hou WJ, Qin XM, Tian JS, Du GH. (1)H NMR-based metabolic profiling of liver in chronic unpredictable mild stress rats with genipin treatment. J Pharm Biomed Anal 2015. [PMID: 26204246 DOI: 10.1016/j.jpba.2015.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genipin, a hydrolyzed metabolite of geniposide extracted from the fruit of Gardenia jasminoides Ellis, has shown promise in alleviating depressive symptoms, however, the antidepressant mechanism of genipin remains unclear and incomprehensive. In this study, the metabolic profiles of aqueous and lipophilic extracts in liver of the chronic unpredictable mild stress (CUMS)-induced rat with genipin treatment were investigated using proton nuclear magnetic resonance ((1)H NMR) spectroscopy coupled with multivariate data analysis. Significant differences in the metabolic profiles of rats in the CUMS model group (MS) and the control group (NS) were observed with metabolic effects including decreasing in choline, glycerol and glycogen, increasing in lactate, alanine and succinate, and a disordered lipid metabolism, while the moderate dose (50mg/kg) of genipin could significantly regulate the concentrations of glycerol, lactate, alanine, succinate and the lipid to their normal levels. These biomakers were involved in metabolism pathways such as glycolysis/gluconeogensis, tricarboxylic acid (TCA) cycle and lipid metabolism, which may be helpful for understanding of antidepressant mechanism of genipin.
Collapse
Affiliation(s)
- Jian-Li Chen
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Bi-Yun Shi
- Departments of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Huan Xiang
- Physical Education Departments of Shanxi University, Taiyuan 030006, PR China
| | - Wen-Jing Hou
- Department of Pharmacy, Beijing Charity Hospital of China Rehabilitation Research Center, Beijing 100068, PR China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China.
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
31
|
Yang Y, Zheng L, Wang L, Wang S, Wang Y, Han Z. Effects of high fructose and salt feeding on systematic metabonome probed via (1) H NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:295-303. [PMID: 25641270 DOI: 10.1002/mrc.4198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/01/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
Diets rich in high fructose and salt are increasingly popular in our daily life. A combination consumption of excessive fructose and salt can induce insulin resistance (IR) and hypertension (HT), which are major public health problems around the world. However, the effects of high fructose and salt on systematic metabonome remain unknown, which is very important for revealing the molecular mechanism of IR and HT induced by this dietary pattern. The metabolic profiling in urine, plasma, and fecal extracts from high fructose and salt-fed rats was investigated by use of (1) H nuclear magnetic resonance (NMR)-based metabonomics approach in this study. Multivariate analysis of NMR data showed the effects of high fructose and salt on the global metabonome. The metabolite analysis in urine and fecal extracts showed the time-dependent metabolic changes, which displayed metabonomic progression axes from normal to IR and HT status. The changes of 2-oxoglutarate, creatine and creatinine, citrate, hippurate, trimethylamine N-oxide (TMAO), and betaine in urine, together with gut microbiota disorder in feces, were observed at the preliminary formation stage of IR and HT (fourth week). At the severe stage (eighth week), the previously mentioned metabolic changes were aggravated, and the changes of lipid and choline metabolism in plasma suggested the increased risk of cardiovascular diseases. These findings provide an overview of biochemistry consequences of high fructose and salt feeding and comprehensive insights into the progression of systematic metabonome for IR and HT induced by this dietary pattern.
Collapse
Affiliation(s)
- Yongxia Yang
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | | | | | | | | | | |
Collapse
|
32
|
Wan Q, Wu G, He Q, Tang H, Wang Y. The toxicity of acute exposure to T-2 toxin evaluated by the metabonomics technique. MOLECULAR BIOSYSTEMS 2015; 11:882-91. [PMID: 25588579 DOI: 10.1039/c4mb00622d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
T-2 toxin is a common contaminant in grains and animal feedstuff, which becomes an increasing threat to human and animal health due to its high toxicity. Investigating the systemic effects of T-2 toxin is important to evaluate the toxicity and facilitate the assessment of food safety. In our investigation, rats were treated with a single dose of T-2 toxin at dosage levels of 0, 0.5, 2.0 and 4.0 mg kg(-1) body weight via gavage. The metabolic profiles of body fluids and multiple organs were obtained by NMR spectroscopy and analyzed by multivariate data analysis methods. The results showed that low and moderate doses of T-2 toxin only influenced the urinary metabonomes, while a high dose of T-2 toxin induced metabolic alterations in urine and multiple organs. These changes included alterations in the levels of membrane metabolites, TCA cycle intermediates, a range of amino acids, nucleosides and nucleotides. T-2 toxin exposure impaired spleen function, causing immunotoxicity, and inhibited protein and DNA biosynthesis. In addition, T-2 toxin also caused oxidative stress and disturbance in energy metabolism and gut microbiome. Our work provided a comprehensive insight into T-2 toxicity and revealed the great potential of metabonomics in assessing the impact of a toxic compound.
Collapse
Affiliation(s)
- Qianfen Wan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | | | | | | | | |
Collapse
|
33
|
Wang L, Zheng L, Luo R, Zhao X, Han Z, Wang Y, Yang Y. A1H NMR-based metabonomic investigation of time-dependent metabolic trajectories in a high salt-induced hypertension rat model. RSC Adv 2015. [DOI: 10.1039/c4ra07215d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The time-dependent metabolic profiles in urine, plasma and feces of salt-fed hypertensive rats were systematically investigated using NMR-based metabonomics.
Collapse
Affiliation(s)
- Linlin Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Traditional Chinese Medicine
| | - Lingyun Zheng
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Ren Luo
- Department of Traditional Chinese Medicine
- Southern Medical University
- Guangzhou
- P. R. China
| | - Xiaoshan Zhao
- Department of Traditional Chinese Medicine
- Southern Medical University
- Guangzhou
- P. R. China
| | - Zhihui Han
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Traditional Chinese Medicine
| | - Yaling Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Traditional Chinese Medicine
| | - Yongxia Yang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| |
Collapse
|
34
|
ECR-MAPK regulation in liver early development. BIOMED RESEARCH INTERNATIONAL 2014; 2014:850802. [PMID: 25580437 PMCID: PMC4281454 DOI: 10.1155/2014/850802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023]
Abstract
Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region)-socs2 (-SH2-containing signals/receptor tyrosine kinases)-ppp2r2a/pik3c3 (MAPK signaling)-hsd3b5/cav2 (metabolism/organization) plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.
Collapse
|
35
|
Li ZY, He P, Sun HF, Qin XM, Du GH. 1H NMR based metabolomic study of the antifatigue effect of Astragali Radix. ACTA ACUST UNITED AC 2014; 10:3022-30. [DOI: 10.1039/c4mb00370e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Jiang L, Zhao X, Huang C, Lei H, Tang H, Wang Y. Dynamic changes in metabolic profiles of rats subchronically exposed to mequindox. ACTA ACUST UNITED AC 2014; 10:2914-22. [DOI: 10.1039/c4mb00218k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Yang Y, Wang L, Wang S, Huang R, Zheng L, Liang S, Zhang L, Xu J. An integrated metabonomic approach to studying metabolic profiles in rat models with insulin resistance induced by high fructose. MOLECULAR BIOSYSTEMS 2014; 10:1803-11. [PMID: 24722466 DOI: 10.1039/c3mb70618d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin resistance (IR) is a common risk factor for the development of metabolic diseases, and has gradually become a hot issue for research. It was reported that excessive feeding with high fructose induced insulin resistance in both humans and rats. The aim of this study was to investigate the progression of IR and identify potential biomarkers in urine, plasma and fecal extracts of high fructose-fed rats using a (1)H NMR-based metabonomics approach. The biochemical analysis was also performed. The levels of pyruvate and lactate in the plasma of the IR model rats were reduced significantly, and the levels of citrate and α-ketoglutaric acid (α-KG) in their urine, and the levels of succinate in their feces also decreased, suggesting perturbation of energy metabolism. Decreased levels of taurine in urine and fecal extracts during the whole experiment, together with increased levels of creatine/creatinine in urine, revealed liver and kidney injuries. Decreased levels of choline-containing metabolites in urine and increased levels of betaine in urine and plasma demonstrated altered transmethylation. Changes in hippurate, acetate, propionate and n-butyrate levels suggested disturbance of the intestinal flora in the IR rats. This study indicated that (1)H NMR-based metabonomics can provide biochemical information on the progression of IR and offers a non-invasive means for the discovery of potential biomarkers.
Collapse
Affiliation(s)
- Yongxia Yang
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
NMR-Based Metabonomic Studies on Stomach Heat and Cold Syndromes and Intervention Effects of the Corresponding Formulas. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:528396. [PMID: 24701240 PMCID: PMC3950656 DOI: 10.1155/2014/528396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/04/2014] [Accepted: 01/04/2014] [Indexed: 12/29/2022]
Abstract
Zuojin Wan (ZJW) and Lizhong Wan (LZW) have been widely used in the treatment of Stomach heat and cold syndrome (SH and SC), respectively. In this study, a proton nuclear magnetic resonance (1H NMR) based metabonomic approach was developed to profile SH and SC-related metabolic perturbations in rat serum and to investigate the intervention effects of ZJW and LZW on the corresponding SH and SC. Compared to the conventional macroscopic and histopathological examinations, the metabonomic approach could enable discrimination between SH and SC based on serum metabolic profiles. Meanwhile, 17 and 15 potential biomarkers associated with SH and SC, respectively, which were mainly involved in gastric dysfunction and mucosal lesions, gut microbiotal activity, transmethylation, glucose and lipid metabolism, and amino acid metabolism, were identified. Furthermore, taking the potential biomarkers as drug targets, it was revealed that administration of ZJW and LZW could exclusively reverse the pathological process of SH and SC, respectively, through partially regulating the disturbed metabolic pathways. This work showed biological basis related to SH and SC at metabolic level and offered a new paradigm for better understanding and explanation of “Fang Zheng Dui Ying” principle in traditional Chinese medicine from a systemic view.
Collapse
|
39
|
Tian JS, Shi BY, Xiang H, Gao S, Qin XM, Du GH. 1H-NMR-based metabonomic studies on the anti-depressant effect of genipin in the chronic unpredictable mild stress rat model. PLoS One 2013; 8:e75721. [PMID: 24058700 PMCID: PMC3776757 DOI: 10.1371/journal.pone.0075721] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/16/2013] [Indexed: 11/23/2022] Open
Abstract
The purpose of this work was to investigate the anti-depressant effect of genipin and its mechanisms using (1)H-NMR spectroscopy and multivariate data analysis on a chronic unpredictable mild stress (CUMS) rat model. Rat serum and urine were analyzed by nuclear magnetic resonance (NMR)-based metabonomics after oral administration of either genipin or saline for 2 weeks. Significant differences in the metabolic profile of the CUMS-treated group and the control group were observed, which were consistent with the results of behavioral tests. Metabolic effects of CUMS included decreases in serum trimetlylamine oxide (TMAO) and β-hydroxybutyric acid (β-HB), and increases in lipid, lactate, alanine and N-acetyl-glycoproteins. In urine, decreases in creatinine and betaine were observed, while citrate, trimethylamine (TMA) and dimethylamine were increased. These changes suggest that depression may be associated with gut microbes, energy metabolism and glycometabolism. Genipin showed the best anti-depressive effects at a dose of 100 mg/kg in rats. These results indicate that metabonomic approaches could be powerful tools for the investigation of the biochemical changes in pathological conditions or drug treatment.
Collapse
Affiliation(s)
- Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, P. R. China
| | - Bi-Yun Shi
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, P. R. China
| | - Huan Xiang
- Physical Education Departments of Shanxi University, Taiyuan, P. R. China
| | - Shan Gao
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, P. R. China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, P. R. China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
40
|
Metabonomic analysis of Allium macrostemon Bunge as a treatment for acute myocardial ischemia in rats. J Pharm Biomed Anal 2013; 88:225-34. [PMID: 24080525 DOI: 10.1016/j.jpba.2013.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 11/23/2022]
Abstract
Myocardial ischemia (MI) refers to a pathological state of the heart caused by reduced cardiac blood perfusion, which leads to a decreased oxygen supply in the heart and an abnormal myocardial energy metabolism. Acute myocardial ischemia (AMI) has posed a significant health risk for humans. Allium macrostemon Bunge (AMB), a popular traditional Chinese medicine, is used for MI treatment. The therapeutic effects of AMB were assessed and the detailed mechanisms of AMB for AMI treatment were investigated. We characterized the metabonomic variations in rats from the sham surgery, AMI, and AMB-pretreated AMI groups through a combination of nuclear magnetic resonance (NMR) spectroscopy and multivariate statistical analysis. Thirty-five metabolites including carbohydrates, a range of amino acids, and organic acids were detected. The (1)H NMR spectra of the rat serum were analyzed using the principal component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA). Results showed that AMI induced some physiological changes in rats and also led to metabolic disorders related to glycolysis promotion, amino acid metabolism disruption, and other metabolite metabolism perturbation. AMB pretreatment reduced the AMI injury and maintained metabolic balance, possibly by limiting the change in energy metabolism and regulating amino acid metabolism. These findings provide a comprehensive insight on the metabolic response of AMI rats to AMB pretreatment and are important for the use of AMB for AMI therapy.
Collapse
|
41
|
Li H, Wei H, Wang Y, Tang H, Wang Y. Enhanced green fluorescent protein transgenic expression in vivo is not biologically inert. J Proteome Res 2013; 12:3801-8. [PMID: 23827011 DOI: 10.1021/pr400567g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enhanced green fluorescent protein (EGFP) is a widely used biological reporter. However, the effects of EGFP expression in vivo are still unclear. To investigate the effects of EGFP transgenic expression in vivo, we employed an NMR-based metabonomics method to analyze the metabonome of EGFP transgenic mice. The results show that the metabonomes of urine, liver, and kidney of the EGFP transgenic mice are different from their wild-type counterparts. The EGFP mice expressed high levels of urinary 3-ureidopropionate, which is due to the down-regulated transcriptional level of β-ureidopropionase. The expression of EGFP in vivo also affects other metabolic pathways, including nucleic acid metabolism, energy utilization, and amino acids catabolism. These findings indicate that EGFP transgenic expression is not as inert as has been considered. Our investigation provides a holistic view on the effect of EGFP expression in vivo, which is useful when EGFP is employed as a functional biological indicator. Our work also highlights the potential of a metabonomics strategy in studying the association between molecular phenotypes and gene function.
Collapse
Affiliation(s)
- Hongde Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | | | | | | | | |
Collapse
|
42
|
An Y, Xu W, Li H, Lei H, Zhang L, Hao F, Duan Y, Yan X, Zhao Y, Wu J, Wang Y, Tang H. High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. J Proteome Res 2013; 12:3755-68. [PMID: 23746045 DOI: 10.1021/pr400398b] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a condition resulting from the interactions of individual biology and environmental factors causing multiple complications. To understand the system's metabolic changes associated with the obesity development and progression, we systematically analyzed the dynamic metabonomic changes induced by a high-fat diet (HFD) in multiple biological matrices of rats using NMR and GC-FID/MS techniques. Clinical chemistry and histopathological data were obtained as complementary information. We found that HFD intakes caused systematic metabolic changes in blood plasma, liver, and urine samples involving multiple metabolic pathways including glycolysis, TCA cycle, and gut microbiota functions together with the metabolisms of fatty acids, amino acids, choline, B-vitamins, purines, and pyrimidines. The HFD-induced metabolic variations were detectable in rat urine a week after HFD intake and showed clear dependence on the intake duration. B-vitamins and gut microbiota played important roles in the obesity development and progression together with changes in TCA cycle intermediates (citrate, α-ketoglutarate, succinate, and fumarate). 83-day HFD intakes caused significant metabolic alterations in rat liver highlighted with the enhancements in lipogenesis, lipid accumulation and lipid oxidation, suppression of glycolysis, up-regulation of gluconeogenesis and glycogenesis together with altered metabolisms of choline, amino acids and nucleotides. HFD intakes reduced the PUFA-to-MUFA ratio in both plasma and liver, indicating the HFD-induced oxidative stress. These findings provided essential biochemistry information about the dynamic metabolic responses to the development and progression of HFD-induced obesity. This study also demonstrated the combined metabonomic analysis of multiple biological matrices as a powerful approach for understanding the molecular basis of pathogenesis and disease progression.
Collapse
Affiliation(s)
- Yanpeng An
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shi B, Tian J, Xiang H, Guo X, Zhang L, Du G, Qin X. A 1H-NMR plasma metabonomic study of acute and chronic stress models of depression in rats. Behav Brain Res 2013; 241:86-91. [DOI: 10.1016/j.bbr.2012.11.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/20/2012] [Accepted: 11/24/2012] [Indexed: 11/26/2022]
|
44
|
Shi X, Xiao C, Wang Y, Tang H. Gallic Acid Intake Induces Alterations to Systems Metabolism in Rats. J Proteome Res 2012; 12:991-1006. [DOI: 10.1021/pr301041k] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaohuo Shi
- Key Laboratory
of Magnetic Resonance
in Biological Systems, State Key Laboratory of Magnetic Resonance
and Atomic and Molecular Physics, Centre for Biospectroscpoy and Metabonomics,
Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic
of China
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi’an 710069, People's
Republic of China
| | - Yulan Wang
- Key Laboratory
of Magnetic Resonance
in Biological Systems, State Key Laboratory of Magnetic Resonance
and Atomic and Molecular Physics, Centre for Biospectroscpoy and Metabonomics,
Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Huiru Tang
- Key Laboratory
of Magnetic Resonance
in Biological Systems, State Key Laboratory of Magnetic Resonance
and Atomic and Molecular Physics, Centre for Biospectroscpoy and Metabonomics,
Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|
45
|
Dong F, Wang B, Zhang L, Tang H, Li J, Wang Y. Metabolic response to Klebsiella pneumoniae infection in an experimental rat model. PLoS One 2012; 7:e51060. [PMID: 23226457 PMCID: PMC3511377 DOI: 10.1371/journal.pone.0051060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/29/2012] [Indexed: 01/04/2023] Open
Abstract
Bacteremia, the presence of viable bacteria in the blood stream, is often associated with several clinical conditions. Bacteremia can lead to multiple organ failure if managed incorrectly, which makes providing suitable nutritional support vital for reducing bacteremia-associated mortality. In order to provide such information, we investigated the metabolic consequences of a Klebsiella pneumoniae (K. pneumoniae) infection in vivo by employing a combination of (1)H nuclear magnetic resonance spectroscopy and multivariate data analysis. K. pneumoniae was intravenously infused in rats; urine and plasma samples were collected at different time intervals. We found that K. pneumoniae-induced bacteremia stimulated glycolysis and the tricarboxylic acid cycle and also promoted oxidation of fatty acids and creatine phosphate to facilitate the energy-demanding host response. In addition, K. pneumoniae bacteremia also induced anti-endotoxin, anti-inflammatory and anti-oxidization responses in the host. Furthermore, bacteremia could cause a disturbance in the gut microbiotal functions as suggested by alterations in a range of amines and bacteria-host co-metabolites. Our results suggest that supplementation with glucose and a high-fat and choline-rich diet could ameliorate the burdens associated with bacteremia. Our research provides underlying pathological processes of bacteremia and a better understanding of the clinical and biochemical manifestations of bacteremia.
Collapse
Affiliation(s)
- Fangcong Dong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
- Graduate School of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bin Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Lulu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
- Graduate School of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Huiru Tang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jieshou Li
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Yulan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
46
|
Wu B, Liu S, Guo X, Zhang Y, Zhang X, Li M, Cheng S. Responses of mouse liver to dechlorane plus exposure by integrative transcriptomic and metabonomic studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10758-10764. [PMID: 22913625 DOI: 10.1021/es301804t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dechlorane plus (DP), a chlorinated flame retardant, has been widely detected in different environmental matrices and biota. However, toxicity data for DP have seldom been reported. In the present study, we investigated hepatic oxidative stress, DNA damage, and transcriptomic and metabonomic responses of male mice administered 500 mg/kg, 2000 mg/kg, and 5000 mg/kg of DP by gavage for 10 days. The results showed that DP exposure increased the level of superoxide dismutase (SOD) and 8-hydroxy-2-deoxyguanosine (8-OHdG). The microarray-based transcriptomic results demonstrated that DP exposure led to significant alteration of gene expression involved in carbohydrate, lipid, nucleotide, and energy metabolism, as well as signal transduction processes. The NMR-based metabonomic analyses corroborated these results showing changes of metabolites associated with the above altered mechanisms. Our results demonstrate that an oral exposure to DP can induce hepatic oxidative damage and perturbations of metabolism and signal transduction. These observations provide novel insight into toxicological effects and mechanisms of action of DP at the transcriptomic and metabonomic levels.
Collapse
Affiliation(s)
- Bing Wu
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhao XJ, Hao F, Huang C, Rantalainen M, Lei H, Tang H, Wang Y. Systems responses of rats to mequindox revealed by metabolic and transcriptomic profiling. J Proteome Res 2012; 11:4712-21. [PMID: 22845897 DOI: 10.1021/pr300533a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mequindox is used as an antibiotic drug in livestock; however, its toxicity remains largely unclear. Previously, we investigated metabolic responses of mice to mequindox exposure. In order to evaluate dependences of animal species in response to mequindox insult, we present the metabolic consequences of mequindox exposure in a rat model, by employing the combination of metabonomics and transcriptomics. Metabolic profiling of urine revealed that metabolic recovery is achieved for rats exposed to a low or moderate dose of mequindox, whereas high levels of mequindox exposure trigger liver dysfunction, causing no such recovery. We found that mequindox exposure causes suppression of the tricarboxylic acid cycle and stimulation of glycolysis, which is in contrast to a mouse model previously investigated. In addition, mequindox dosage induces promotion of β-oxidation of fatty acids, which was confirmed by elevated expressions of acox1, hsd17b2, and cpt1a in liver. Furthermore, altered levels of N-methylnicotinate, 1-methylnicotinamide, and glutathione disulfide highlighted the promotion of vitamin B3 antioxidative cycle in rats exposed to mequindox. Moreover, mequindox exposure altered levels of gut microbiotal related co-metabolites, suggesting a perturbation of the gut microflora of the host. Our work provides a comprehensive view of the toxicological effects of mequindox, which is important in the usage of mequindox in animal and human food safety.
Collapse
Affiliation(s)
- Xiu-Ju Zhao
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China
| | | | | | | | | | | | | |
Collapse
|
48
|
Li J, Huang C, Zheng D, Wang Y, Yuan Z. CcpA-Mediated Enhancement of Sugar and Amino Acid Metabolism in Lysinibacillus sphaericus by NMR-Based Metabolomics. J Proteome Res 2012; 11:4654-61. [DOI: 10.1021/pr300469v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Li
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
People’s Republic of China
| | - Chongyang Huang
- Wuhan Center of
Magnetic Resonance,
State Key Laboratory of Magnetic Resonance and Atomic and Molecular
Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s
Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
People’s Republic of China
| | - Dasheng Zheng
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
| | - Yulan Wang
- Wuhan Center of
Magnetic Resonance,
State Key Laboratory of Magnetic Resonance and Atomic and Molecular
Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s
Republic of China
| | - Zhiming Yuan
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
| |
Collapse
|
49
|
Ye Y, Wang X, Zhang L, Lu Z, Yan X. Unraveling the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress by ¹H NMR-based metabolomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1314-1324. [PMID: 22437205 DOI: 10.1007/s10646-012-0885-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
Nicotine can cause oxidative damage to organisms; however, some bacteria, for example Pseudomonas sp. HF-1, are resistant to such oxidative stress. In the present study, we analyzed the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress using ¹H NMR spectroscopy coupled with multivariate data analysis. We found that the dominant metabolites in Pseudomonas sp. HF-1 were eight aliphatic organic acids, six amino acids, three sugars and 11 nucleotides. After 18 h of cultivation, 1 g/L nicotine caused significant elevation of sugar (glucose, trehalose and maltose), succinate and nucleic acid metabolites (cytidine, 5'-CMP, guanine 2',3'-cyclic phosphate and adenosine 2',3'-cyclic phosphate), but decrease of glutamate, putrescine, pyrimidine, 2-propanol, diethyl ether and acetamide levels. Similar metabolomic changes were induced by 2 g/L nicotine, except that no significant change in trehalose, 5'-UMP levels and diethyl ether were found. However, 3 g/L nicotine led to a significant elevation in the two sugars (trehalose and maltose) levels and decrease in the levels of glutamate, putrescine, pyrimidine and 2-propanol. Our findings indicated that nicotine resulted in the enhanced nucleotide biosynthesis, decreased glucose catabolism, elevated succinate accumulation, severe disturbance in osmoregulation and complex antioxidant strategy. And a further increase of nicotine level was a critical threshold value that triggered the change of metabolic flow in Pseudomonas sp. HF-1. These findings revealed the comprehensive insights into the metabolic response of nicotine-degrading bacteria to nicotine-induced oxidative toxicity.
Collapse
Affiliation(s)
- Yangfang Ye
- School of Marine Science, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | | | | | | | | |
Collapse
|
50
|
Jiang L, Huang J, Wang Y, Tang H. Metabonomic Analysis Reveals the CCl4-Induced Systems Alterations for Multiple Rat Organs. J Proteome Res 2012; 11:3848-59. [DOI: 10.1021/pr3003529] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Limiao Jiang
- State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Centre for Biospectroscopy
and Metabonomics, Wuhan Centre for Magnetic Resonance, Wuhan Institute
of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Huang
- State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Centre for Biospectroscopy
and Metabonomics, Wuhan Centre for Magnetic Resonance, Wuhan Institute
of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yulan Wang
- State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Centre for Biospectroscopy
and Metabonomics, Wuhan Centre for Magnetic Resonance, Wuhan Institute
of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Huiru Tang
- State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Centre for Biospectroscopy
and Metabonomics, Wuhan Centre for Magnetic Resonance, Wuhan Institute
of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|