1
|
Gorman H, Moreau F, Dufour A, Chadee K. IgGFc-binding protein and MUC2 mucin produced by colonic goblet-like cells spatially interact non-covalently and regulate wound healing. Front Immunol 2023; 14:1211336. [PMID: 37359538 PMCID: PMC10285406 DOI: 10.3389/fimmu.2023.1211336] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The colonic mucus bilayer is the first line of innate host defense that at the same time houses and nourishes the commensal microbiota. The major components of mucus secreted by goblet cells are MUC2 mucin and the mucus-associated protein, FCGBP (IgGFc-binding protein). In this study, we determine if FCGBP and MUC2 mucin were biosynthesized and interacted together to spatially enhance the structural integrity of secreted mucus and its role in epithelial barrier function. MUC2 and FCGBP were coordinately regulated temporally in goblet-like cells and in response to a mucus secretagogue but not in CRISPR-Cas9 gene-edited MUC2 KO cells. Whereas ~85% of MUC2 was colocalized with FCGBP in mucin granules, ~50% of FCGBP was diffusely distributed in the cytoplasm of goblet-like cells. STRING-db v11 analysis of the mucin granule proteome revealed no protein-protein interaction between MUC2 and FCGBP. However, FCGBP interacted with other mucus-associated proteins. FCGBP and MUC2 interacted via N-linked glycans and were non-covalently bound in secreted mucus with cleaved low molecular weight FCGBP fragments. In MUC2 KO, cytoplasmic FCGBP was significantly increased and diffusely distributed in wounded cells that healed by enhanced proliferation and migration within 2 days, whereas, in WT cells, MUC2 and FCGBP were highly polarized at the wound margin which impeded wound closure by 6 days. In DSS colitis, restitution and healed lesions in Muc2+/+ but not Muc2-/- littermates, were accompanied by a rapid increase in Fcgbp mRNA and delayed protein expression at 12- and 15-days post DSS, implicating a potential novel endogenous protective role for FCGBP in wound healing to maintain epithelial barrier function.
Collapse
Affiliation(s)
- Hayley Gorman
- Department of Microbiology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - France Moreau
- Department of Microbiology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Kris Chadee
- Department of Microbiology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Dolan B, Ermund A, Martinez-Abad B, Johansson ME, Hansson GC. Clearance of small intestinal crypts involves goblet cell mucus secretion by intracellular granule rupture and enterocyte ion transport. Sci Signal 2022; 15:eabl5848. [PMID: 36126118 PMCID: PMC9749883 DOI: 10.1126/scisignal.abl5848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Goblet cells in the small intestinal crypts contain large numbers of mucin granules that are rapidly discharged to clean bacteria from the crypt. Because acetylcholine released by neuronal and nonneuronal cells controls many aspects of intestinal epithelial function, we used tissue explants and organoids to investigate the response of the small intestinal crypt to cholinergic stimulation. The activation of muscarinic acetylcholine receptors initiated a coordinated and rapid emptying of crypt goblet cells that flushed the crypt contents into the intestinal lumen. Cholinergic stimulation induced an expansion of the granule contents followed by intracellular rupture of the mucin granules. The mucus expanded intracellularly before the rupture of the goblet cell apical membrane and continued to expand after its release into the crypt lumen. The goblet cells recovered from membrane rupture and replenished their stores of mucin granules. Mucus secretion from the goblet cells depended on Ca2+ signaling and the expansion of the mucus in the crypt depended on gap junctions and on ion and water transport by enterocytes adjacent to the goblet cells. This distinctive mode of mucus secretion, which we refer to as "expanding secretion," efficiently cleans the small intestine crypt through coordinated mucus, ion, and fluid secretion by goblet cells and enterocytes.
Collapse
Affiliation(s)
- Brendan Dolan
- Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, 405 30 Gothenburg, Sweden
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, 405 30 Gothenburg, Sweden
| | - Beatriz Martinez-Abad
- Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin E.V. Johansson
- Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
3
|
Wu Y, Li J, Ding W, Ruan Z, Zhang L. Enhanced Intestinal Barriers by Puerarin in Combination with Tryptophan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15575-15584. [PMID: 34928145 DOI: 10.1021/acs.jafc.1c05830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestinal barrier is essential for maintaining human intestinal health. The growing number of studies has shown that both puerarin and tryptophan and its metabolites have a beneficial effect on the intestinal barrier. This study aims at the combination of puerarin and tryptophan or its metabolites for improving the intestinal barrier. In our study, 40 female Sprague-Dawley rats were randomly divided into five groups (n = 8) for a 4-week experiment and dextran sodium sulfate was used to induce an intestinal barrier injury in rats. Our results showed that puerarin combined with tryptophan or its metabolites (indole-3-propionic acid, IPA) improved the intestinal barrier by enhancing the mucus layer barrier, which was mainly achieved by increasing the number of goblet cells and promoting the secretion of MUC2. Both TRPM5 and VAMP8 promoted MUC2 secretion in goblet cells through exocytosis, but their mechanisms of action are different. In our study, we found that puerarin and tryptophan showed different effects on TRPM5 and VAMP8, respectively. Puerarin enhances the expression of TRPM5, and tryptophan inhibits the expression of TRPM5; however, puerarin and tryptophan have no significant effect on the expression of VAMP8.
Collapse
Affiliation(s)
- You Wu
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiaojiao Li
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenjiao Ding
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
4
|
The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. Cells 2021; 10:cells10123358. [PMID: 34943865 PMCID: PMC8699384 DOI: 10.3390/cells10123358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.
Collapse
|
5
|
Tiwari S, Begum S, Moreau F, Gorman H, Chadee K. Autophagy is required during high MUC2 mucin biosynthesis in colonic goblet cells to contend metabolic stress. Am J Physiol Gastrointest Liver Physiol 2021; 321:G489-G499. [PMID: 34494458 DOI: 10.1152/ajpgi.00221.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023]
Abstract
Goblet cells are specialized for the production and secretion of MUC2 glycoproteins that forms a thick layer covering the mucosal epithelium as a protective barrier against noxious substances and invading microbes. High MUC2 mucin biosynthesis induces endoplasmic reticulum (ER) stress and apoptosis in goblet cells during inflammatory and infectious diseases. Autophagy is an intracellular degradation process required for maintenance of intestinal homeostasis. In this study, we hypothesized that autophagy was triggered during high MUC2 mucin biosynthesis from colonic goblet cells to cope with metabolic stress. To interrogate this, we analyzed the autophagy process in high MUC2-producing human HT29-H and a clone HT29-L silenced for MUC2 expression by lentivirus-mediated shRNA, and WT and CRISPR/Cas9 MUC2 KO LS174T cells. Autophagy was constitutively increased in high MUC2-producing cells characterized by elevated pULK1S555 expression and increased numbers of autophagosomes as compared with MUC2 silenced or gene edited cells. Similarly, colonoids from Muc2+/+ but not Muc2-/- littermates differentiated into goblet cells showed increased autophagy. IL-22 treatment corrected misfolded MUC2 protein and alleviated the autophagy process in LS174T cells. This study highlights that autophagy plays an essential role in goblet cells to survive during high mucin biosynthesis by regulating cellular homeostasis.NEW & NOTEWORTHY It is unclear how colonic goblet cells survive by producing high output MUC2 mucin that triggers endoplasmic stress by misfolded MUC2 proteins. To cope with metabolic stress, we interrogated if autophagy played an essential role in regulating cellular homeostasis. Indeed, high MUC2 mucin biosynthesis dysregulated autophagy processes that was regulated by IL-22 to maintain gut barrier innate host defenses.
Collapse
Affiliation(s)
- Sameer Tiwari
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Sharmin Begum
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Hayley Gorman
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Wilson R, Gundamaraju R, Vemuri R, Angelucci C, Geraghty D, Gueven N, Eri RD. Identification of Key Pro-Survival Proteins in Isolated Colonic Goblet Cells of Winnie, a Murine Model of Spontaneous Colitis. Inflamm Bowel Dis 2020; 26:80-92. [PMID: 31504521 DOI: 10.1093/ibd/izz179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Accumulating evidence suggests that the goblet cell-derived mucin-2 (Muc2) is a major component of the immune system and that perturbations in Muc2 lead to an ulcerative colitis-like phenotype. The animal model Winnie carries a missense mutation in Muc2 that causes Muc2 misfolding, accumulation in goblet cells, and ER stress. Excessive ER stress is a hallmark of many diseases, including ulcerative colitis, cancer, diabetes and Parkinson's disease. However, rather than committing to cell death, which is the typical outcome of unresolved ER stress, Winnie goblet cells are characterized by hyperproliferation, suggesting additional regulation of this cellular stress response. METHODS To elucidate the molecular mechanisms underlying ulcerative colitis in the Winnie model, we isolated goblet cells from Winnie and wild-type mice and used label-free quantitative proteomics and bioinformatics to understand the functional consequences of Muc2 misfolding and accumulation. RESULTS A large number of changes were identified that highlight a dramatic reprogramming of energy production, including enhanced utilization of butyrate, a key energy source of colonic cells. A major finding was the marked upregulation of the coiled-coil-helix-coiled-coil-helix domain proteins Chchd2, Chchd3, and Chchd6. In particular, we identified and confirmed the upregulation and nuclear translocation of Chchd2, a protein known to inhibit oxidative stress induced apoptosis. CONCLUSIONS This study is the first to apply proteome-level analysis to the preclinical Winnie model of ulcerative colitis. Identification of proteins and pathways affected in isolated Winnie goblet cells provides evidence for novel adaptive mechanisms underlying cell survival under conditions of chronic ER stress.
Collapse
Affiliation(s)
- Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Rohit Gundamaraju
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Ravichandra Vemuri
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Constanza Angelucci
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dominic Geraghty
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Nuri Gueven
- Pharmacy, School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS, Australia
| | - Rajaraman D Eri
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
7
|
van der Post S, Jabbar KS, Birchenough G, Arike L, Akhtar N, Sjovall H, Johansson MEV, Hansson GC. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 2019; 68:2142-2151. [PMID: 30914450 PMCID: PMC6872445 DOI: 10.1136/gutjnl-2018-317571] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The colonic inner mucus layer protects us from pathogens and commensal-induced inflammation, and has been shown to be defective in active UC. The aim of this study was to determine the underlying compositional alterations, their molecular background and potential contribution to UC pathogenesis. DESIGN In this single-centre case-control study, sigmoid colon biopsies were obtained from patients with UC with ongoing inflammation (n=36) or in remission (n=28), and from 47 patients without colonic disease. Mucus samples were collected from biopsies ex vivo, and their protein composition analysed by nanoliquid chromatography-tandem mass spectrometry. Mucus penetrability and goblet cell responses to microbial stimulus were assessed in a subset of patients. RESULTS The core mucus proteome was found to consist of a small set of 29 secreted/transmembrane proteins. In active UC, major structural mucus components including the mucin MUC2 (p<0.0001) were reduced, also in non-inflamed segments. Active UC was associated with decreased numbers of sentinel goblet cells and attenuation of the goblet cell secretory response to microbial challenge. Abnormal penetrability of the inner mucus layer was observed in a subset of patients with UC (12/40; 30%). Proteomic alterations in penetrable mucus samples included a reduction of the SLC26A3 apical membrane anion exchanger, which supplies bicarbonate required for colonic mucin barrier formation. CONCLUSION Core mucus structural components were reduced in active UC. These alterations were associated with attenuation of the goblet cell secretory response to microbial challenge, but occurred independent of local inflammation. Thus, mucus abnormalities are likely to contribute to UC pathogenesis.
Collapse
Affiliation(s)
- Sjoerd van der Post
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Karolina S Jabbar
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden,Department of Gastroenterology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - George Birchenough
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Noreen Akhtar
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Sjovall
- Department of Gastroenterology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Worfolk JC, Bell S, Simpson LD, Carne NA, Francis SL, Engelbertsen V, Brown AP, Walker J, Viswanath YK, Benham AM. Elucidation of the AGR2 Interactome in Esophageal Adenocarcinoma Cells Identifies a Redox-Sensitive Chaperone Hub for the Quality Control of MUC-5AC. Antioxid Redox Signal 2019; 31:1117-1132. [PMID: 31436131 DOI: 10.1089/ars.2018.7647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: AGR2 is a tissue-restricted member of the protein disulfide isomerase family that has attracted interest because it is highly expressed in a number of cancers, including gastroesophageal adenocarcinoma. The behavior of AGR2 was analyzed under oxidizing conditions, and an alkylation trapping and immunoprecipitation approach were developed to identify novel AGR2 interacting proteins. Results: The data show that AGR2 is induced in esophageal adenocarcinoma, where it participates in redox-responsive, disulfide-dependent complexes. AGR2 preferentially engages with MUC-5 as a primary client and is coexpressed with the acidic mucin in Barrett's esophagus and esophageal adenocarcinoma tissue. Innovation: New partner chaperones for AGR2 have been identified, including peroxiredoxin IV, ERp44, P5, ERp29, and Ero1α. AGR2 interacts with unexpected metabolic enzymes, including aldehyde dehydrogenase (ALDH)3A1, and engages in an alkylation-sensitive association with the autophagy receptor SQSTM1, suggesting a potential mechanism for the postendoplasmic reticulum targeting of AGR2 to mucin granules. Disulfide-driven AGR2 complex formation provides a framework for a limited number of client proteins to interact, rather than for the recruitment of multiple novel clients. Conclusion: The extended AGR2 interactome will facilitate the development of therapeutics to target AGR2/mucin pathways in esophageal cancer and other conditions, including chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jack C Worfolk
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Steven Bell
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Lee D Simpson
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Naomi A Carne
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Sarah L Francis
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Vibecke Engelbertsen
- Department of Surgery, James Cook University Hospital, Middlesbrough, United Kingdom
| | - Adrian P Brown
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Julie Walker
- Department of Surgery, James Cook University Hospital, Middlesbrough, United Kingdom
| | | | - Adam M Benham
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
9
|
Cornick S, Kumar M, Moreau F, Gaisano H, Chadee K. VAMP8-mediated MUC2 mucin exocytosis from colonic goblet cells maintains innate intestinal homeostasis. Nat Commun 2019; 10:4306. [PMID: 31541089 PMCID: PMC6754373 DOI: 10.1038/s41467-019-11811-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
The mucus layer is the first line of innate host defense in the gut that protects the epithelium by spatially separating commensal bacteria. MUC2 mucin is produced and stored by goblet cells that is constitutively exocytosed or hyper secreted upon sensing a threat. How coordinated mucus exocytosis maintains homeostasis in the intestinal epithelium and modulates the immunological landscape remains elusive. Here we describe how the vesicle SNARE protein VAMP8 coordinates mucin exocytosis from goblet cells. Vamp8-/- exhibit a mild pro-inflammatory state basally due to an altered mucus layer and increased encounters with microbial antigens. Microbial diversity shifts to a detrimental microbiota with an increase abundance of pathogenic and mucolytic bacteria. To alleviate the heavy microbial burden and inflammatory state basally, Vamp8-/- skews towards tolerance. Despite this, Vamp8-/- is highly susceptible to both chemical and infectious colitis demonstrating the fragility of the intestinal mucosa without proper mucus exocytosis mechanisms.
Collapse
Affiliation(s)
- Steve Cornick
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Manish Kumar
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Herbert Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
10
|
Gatto L, Breckels LM, Lilley KS. Assessing sub-cellular resolution in spatial proteomics experiments. Curr Opin Chem Biol 2019; 48:123-149. [PMID: 30711721 PMCID: PMC6391913 DOI: 10.1016/j.cbpa.2018.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/04/2022]
Abstract
The sub-cellular localisation of a protein is vital in defining its function, and a protein's mis-localisation is known to lead to adverse effect. As a result, numerous experimental techniques and datasets have been published, with the aim of deciphering the localisation of proteins at various scales and resolutions, including high profile mass spectrometry-based efforts. Here, we present a meta-analysis assessing and comparing the sub-cellular resolution of 29 such mass spectrometry-based spatial proteomics experiments using a newly developed tool termed QSep. Our goal is to provide a simple quantitative report of how well spatial proteomics resolve the sub-cellular niches they describe to inform and guide developers and users of such methods.
Collapse
Affiliation(s)
- Laurent Gatto
- Computational Proteomics Unit, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK; Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK; de Duve Institute, UCLouvain, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Lisa M Breckels
- Computational Proteomics Unit, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK; Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| |
Collapse
|
11
|
The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends Immunol 2018; 39:677-696. [DOI: 10.1016/j.it.2018.04.002] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
|
12
|
Allaire JM, Morampudi V, Crowley SM, Stahl M, Yu H, Bhullar K, Knodler LA, Bressler B, Jacobson K, Vallance BA. Frontline defenders: goblet cell mediators dictate host-microbe interactions in the intestinal tract during health and disease. Am J Physiol Gastrointest Liver Physiol 2018; 314:G360-G377. [PMID: 29122749 PMCID: PMC5899238 DOI: 10.1152/ajpgi.00181.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Goblet cells (GCs) are the predominant secretory epithelial cells lining the luminal surface of the mammalian gastrointestinal (GI) tract. Best known for their apical release of mucin 2 (Muc2), which is critical for the formation of the intestinal mucus barrier, GCs have often been overlooked for their active contributions to intestinal protection and host defense. In part, this oversight reflects the limited tools available to study their function but also because GCs have long been viewed as relatively passive players in promoting intestinal homeostasis and host defense. In light of recent studies, this perspective has shifted, as current evidence suggests that Muc2 as well as other GC mediators are actively released into the lumen to defend the host when the GI tract is challenged by noxious stimuli. The ability of GCs to sense and respond to danger signals, such as bacterial pathogens, has recently been linked to inflammasome signaling, potentially intrinsic to the GCs themselves. Moreover, further work suggests that GCs release Muc2, as well as other mediators, to modulate the composition of the gut microbiome, leading to both the expansion as well as the depletion of specific gut microbes. This review will focus on the mechanisms by which GCs actively defend the host from noxious stimuli, as well as describe advanced technologies and new approaches by which their responses can be addressed. Taken together, we will highlight current insights into this understudied, yet critical, aspect of intestinal mucosal protection and its role in promoting gut defense and homeostasis.
Collapse
Affiliation(s)
- Joannie M. Allaire
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vijay Morampudi
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shauna M. Crowley
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Stahl
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongbing Yu
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirandeep Bhullar
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leigh A. Knodler
- 2Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Brian Bressler
- 3Division of Gastroenterology, Department of Medicine, St. Paul’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A. Vallance
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Entamoeba histolytica-Induced Mucin Exocytosis Is Mediated by VAMP8 and Is Critical in Mucosal Innate Host Defense. mBio 2017; 8:mBio.01323-17. [PMID: 28974617 PMCID: PMC5626970 DOI: 10.1128/mbio.01323-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intestinal mucus secretion is critical in maintaining mucosal host defense against a myriad of pathogens by preventing direct association with the epithelium. Entamoeba histolytica specifically binds colonic MUC2 mucin and also induces potent hypersecretion from goblet cells; however, characterization of the nature of the mechanisms controlling mucus release remains elusive. In this report, we identify vesicle SNARE vesicle-associated membrane protein 8 (VAMP8) present on mucin granules as orchestrating regulated exocytosis in human goblet cells in response to the presence of E. histolytica. VAMP8 was specifically activated during E. histolytica infection, and ablation of VAMP8 led to impaired mucin secretion. As a consequence, loss of VAMP8 increased E. histolytica adherence to epithelial cells associated with enhanced cell death through apoptosis characterized by caspase 3 and 9 cleavages and DNA fragmentation. With the mucosal barrier compromised in Vamp8−/− animals, E. histolytica induced an aggressive proinflammatory response with elevated levels of interleukin-1 alpha (IL-1α), IL-1β, and tumor necrosis factor alpha (TNF-α) secretion. This report is the first to characterize regulated mucin exocytosis in intestinal goblet cells in response to a pathogen and the downstream consequences of improper mucin secretion in mucosal barrier defense. The intestinal tract is exposed to countless substances and pathogens, and yet homeostasis is maintained, in part by the mucus layer that houses the microbiota and spatially separates potential threats from the underlying single layer of epithelium. Despite the critical role of mucus in innate host defense, characterization of the mechanisms by which mucus is secreted from specialized goblet cells in the gut remains elusive. Here, we describe the machinery that regulates mucus secretion as well as the consequence during infection with the colonic pathogen Entamoeba histolytica. Abolishment of the key machinery protein VAMP8 abrogated mucus release in cultured human colonic goblet cells and during E. histolytica infection in Vamp8−/− mice, which showed enhanced amoeba contact and killing of epithelial cells, triggering a potent proinflammatory response. This report highlights the importance of the VAMP8 secretory machinery in facilitating mucus release from intestinal goblet cells and the dire consequences that occur during disease pathogenesis if these pathways are not functional.
Collapse
|
14
|
MetaMass, a tool for meta-analysis of subcellular proteomics data. Nat Methods 2016; 13:837-40. [PMID: 27571551 DOI: 10.1038/nmeth.3967] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/21/2016] [Indexed: 11/08/2022]
Abstract
We report a tool for the analysis of subcellular proteomics data, called MetaMass, based on the use of standardized lists of subcellular markers. We analyzed data from 11 studies using MetaMass, mapping the subcellular location of 5,970 proteins. Our analysis revealed large variations in the performance of subcellular fractionation protocols as well as systematic biases in protein annotation databases. The Excel and R versions of MetaMass should enhance transparency and reproducibility in subcellular proteomics.
Collapse
|
15
|
Young JC, Pan C, Adams RM, Brooks B, Banfield JF, Morowitz MJ, Hettich RL. Metaproteomics reveals functional shifts in microbial and human proteins during a preterm infant gut colonization case. Proteomics 2015; 15:3463-73. [PMID: 26077811 DOI: 10.1002/pmic.201400563] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 01/01/2023]
Abstract
Microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. To this end, we employed shotgun proteomics to simultaneously monitor microbial and human proteins in fecal samples from a preterm infant during the first month of life. Microbial community complexity increased over time, with compositional changes that were consistent with previous metagenomic and rRNA gene data. More specifically, the function of the microbial community initially involved biomass growth, protein production, and lipid metabolism, and then switched to more complex metabolic functions, such as carbohydrate metabolism, once the community stabilized and matured. Human proteins detected included those responsible for epithelial barrier function and antimicrobial activity. Some neutrophil-derived proteins increased in abundance early in the study period, suggesting activation of the innate immune system. Likewise, abundances of cytoskeletal and mucin proteins increased later in the time course, suggestive of subsequent adjustment to the increased microbial load. This study provides the first snapshot of coordinated human and microbial protein expression in a preterm infant's gut during early development.
Collapse
Affiliation(s)
- Jacque C Young
- Genome Sciences and Technology Graduate School, University of Tennessee, Knoxville, TN, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Chongle Pan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Rachel M Adams
- Genome Sciences and Technology Graduate School, University of Tennessee, Knoxville, TN, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Brandon Brooks
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | - Michael J Morowitz
- Division of Pediatric General & Thoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
16
|
Messenger SW, Falkowski MA, Thomas DDH, Jones EK, Hong W, Gaisano HY, Giasano HY, Boulis NM, Groblewski GE. Vesicle associated membrane protein 8 (VAMP8)-mediated zymogen granule exocytosis is dependent on endosomal trafficking via the constitutive-like secretory pathway. J Biol Chem 2014; 289:28040-53. [PMID: 25138214 DOI: 10.1074/jbc.m114.593913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acinar cell zymogen granules (ZG) express 2 isoforms of the vesicle-associated membrane protein family (VAMP2 and -8) thought to regulate exocytosis. Expression of tetanus toxin to cleave VAMP2 in VAMP8 knock-out (-/-) acini confirmed that VAMP2 and -8 are the primary VAMPs for regulated exocytosis, each contributing ∼50% of the response. Analysis of VAMP8(-/-) acini indicated that although stimulated secretion was significantly reduced, a compensatory increase in constitutive secretion maintained total secretion equivalent to wild type (WT). Using a perifusion system to follow secretion over time revealed VAMP2 mediates an early rapid phase peaking and falling within 2-3 min, whereas VAMP8 controls a second prolonged phase that peaks at 4 min and slowly declines over 20 min to support the protracted secretory response. VAMP8(-/-) acini show increased expression of the endosomal proteins Ti-VAMP7 (2-fold) and Rab11a (4-fold) and their redistribution from endosomes to ZGs. Expression of GDP-trapped Rab11a-S25N inhibited secretion exclusively from the VAMP8 but not the VAMP2 pathway. VAMP8(-/-) acini also showed a >90% decrease in the early endosomal proteins Rab5/D52/EEA1, which control anterograde trafficking in the constitutive-like secretory pathway. In WT acini, short term (14-16 h) culture also results in a >90% decrease in Rab5/D52/EEA1 and a complete loss of the VAMP8 pathway, whereas VAMP2-secretion remains intact. Remarkably, rescue of Rab5/D52/EEA1 expression restored the VAMP8 pathway. Expressed D52 shows extensive colocalization with Rab11a and VAMP8 and partially copurifies with ZG fractions. These results indicate that robust trafficking within the constitutive-like secretory pathway is required for VAMP8- but not VAMP2-mediated ZG exocytosis.
Collapse
Affiliation(s)
- Scott W Messenger
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Michelle A Falkowski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana D H Thomas
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Elaina K Jones
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Wanjin Hong
- Institute of Molecular and Cellular Biology, National University of Singapore, Singapore 138673
| | | | - Herbert Y Giasano
- Departments of Medicine and Physiology, University of Toronto, Ontario M5S 1A8, Canada, and
| | - Nicholas M Boulis
- Department of Neurosurgery, Georgia Institute of Technology, Atlanta, Georgia 30322
| | - Guy E Groblewski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706,
| |
Collapse
|
17
|
NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014; 156:1045-59. [PMID: 24581500 PMCID: PMC4017640 DOI: 10.1016/j.cell.2014.01.026] [Citation(s) in RCA: 539] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/12/2013] [Accepted: 01/10/2014] [Indexed: 02/07/2023]
Abstract
Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP:
Collapse
|
18
|
Chik JHL, Zhou J, Moh ESX, Christopherson R, Clarke SJ, Molloy MP, Packer NH. Comprehensive glycomics comparison between colon cancer cell cultures and tumours: implications for biomarker studies. J Proteomics 2014; 108:146-62. [PMID: 24840470 DOI: 10.1016/j.jprot.2014.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 01/27/2023]
Abstract
UNLABELLED Altered glycosylation is commonly observed in colorectal cancer. In vitro models are frequently used to study this cancer but little is known about the differences that may exist between these model cell systems and tumour tissue. We have compared the membrane protein glycosylation of five colorectal cancer cell lines (SW1116, SW480, SW620, SW837, LS174T) with epithelial cells from colorectal tumours using liquid chromatography tandem mass spectrometry. Remarkably, there were five abundant O-glycans in the tumour cells that were undetected in the low-mucin producing cell lines, although two were found in the mucinous LS174T cells. The O-glycans included the well-known glycan cancer marker, sialyl-Tn, which has been associated with mucins. Using qRT-PCR, sialyl-Tn expression was found to be associated with an increase in α2,6-sialyltransferase gene (ST6GALNAC1) and a decrease in core 1 synthase gene (C1GALT1) in LS174T cells. The expression of a subset of mucins (MUC2, MUC6, MUC5B) was also correlated with sialyl-Tn expression in LS174T cells. Overall, the membrane protein glycosylation of the model cell lines was found to differ from each other and from the epithelial cells of tumour tissue. These findings should be noted in the design of biomarker discovery experiments particularly when cell surface targets are being investigated. BIOLOGICAL SIGNIFICANCE The extent of protein glycosylation differences between in vitro cell lines and ex vivo tumours in colorectal cancer research is unknown. Our study expands current knowledge by characterising the membrane protein glycosylation profiles of five different colorectal cancer cell lines and of epithelial cells derived from resected colorectal cancer tumour tissue, using liquid chromatography tandem mass spectrometry. The detailed structural differences found in both N- and O-linked glycan structures on the membrane glycoproteins were determined and correlated with the mRNA expression of the relevant proteins in the cell lines. The glycosylation differences found between cultured cancer cell lines and epithelial cells from tumour tissue have important implications for glycan biomarker discovery.
Collapse
Affiliation(s)
- Jenny H L Chik
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia
| | - Jerry Zhou
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Edward S X Moh
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia
| | | | - Stephen J Clarke
- Department of Medicine, Royal North Shore Hospital, University of Sydney, Australia
| | - Mark P Molloy
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia.
| |
Collapse
|
19
|
Reprogrammed and transmissible intestinal microbiota confer diminished susceptibility to induced colitis in TMF-/- mice. Proc Natl Acad Sci U S A 2014; 111:4964-9. [PMID: 24639530 DOI: 10.1073/pnas.1319114111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tata Element Modulatory Factor (TMF/ARA160) is a multifunctional Golgi-associated protein, which accumulates in colonic enterocytes and goblet cells. Mice lacking TMF/ARA160 (TMF(-/-)) produce thick and uniform colonic mucus that resists adherent bacterial colonization and diminishes susceptibility of these mice to induced acute colitis, through a mechanism that is not fully understood. Here, we show that mucus secretion by goblet cells is altered in the colon of TMF(-/-) mice, resulting in the formation of a highly oligomerized colonic gel-forming mucin, MUC2. Microbiome analysis revealed a shift in the microbiota of TMF(-/-) mice leading to predominance of the Firmicutes phylum and a significantly higher abundance of probiotic beneficial bacterial species. Notably, this trait was transmissible, and when cohoused with wild-type animals, TMF(-/-) mice influenced the microbiota and diminished the susceptibility of wild-type mice to chemically induced dextran sulfate sodium colitis. Thus, altered mucus secretion in TMF(-/-) mouse colons is accompanied by a reprogrammed intestinal microbiota, leading to a transmissible reduced sensitivity to induced colitis.
Collapse
|
20
|
Dynamic changes in mucus thickness and ion secretion during Citrobacter rodentium infection and clearance. PLoS One 2013; 8:e84430. [PMID: 24386378 PMCID: PMC3875541 DOI: 10.1371/journal.pone.0084430] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
Citrobacter rodentium is an attaching and effacing pathogen used as a murine model for enteropathogenic Escherichia coli. The mucus layers are a complex matrix of molecules, and mucus swelling, hydration and permeability are affected by many factors, including ion composition. Here, we used the C. rodentium model to investigate mucus dynamics during infection. By measuring the mucus layer thickness in tissue explants during infection, we demonstrated that the thickness changes dynamically during the course of infection and that its thickest stage coincides with the start of a decrease of bacterial density at day 14 after infection. Although quantitative PCR analysis demonstrated that mucin mRNA increases during early infection, the increased mucus layer thickness late in infection was not explained by increased mRNA levels. Proteomic analysis of mucus did not demonstrate the appearance of additional mucins, but revealed an increased number of proteins involved in defense responses. Ussing chamber-based electrical measurements demonstrated that ion secretion was dynamically altered during the infection phases. Furthermore, the bicarbonate ion channel Bestrophin-2 mRNA nominally increased, whereas the Cftr mRNA decreased during the late infection clearance phase. Microscopy of Muc2 immunostained tissues suggested that the inner striated mucus layer present in the healthy colon was scarce during the time point of most severe infection (10 days post infection), but then expanded, albeit with a less structured appearance, during the expulsion phase. Together with previously published literature, the data implies a model for clearance where a change in secretion allows reformation of the mucus layer, displacing the pathogen to the outer mucus layer, where it is then outcompeted by the returning commensal flora. In conclusion, mucus and ion secretion are dynamically altered during the C. rodentium infection cycle.
Collapse
|
21
|
Morgan GW, Kail M, Hollinshead M, Vaux DJ. Combined biochemical and cytological analysis of membrane trafficking using lectins. Anal Biochem 2013; 441:21-31. [PMID: 23756734 DOI: 10.1016/j.ab.2013.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 02/03/2023]
Abstract
We have tested the application of high-mannose-binding lectins as analytical reagents to identify N-glycans in the early secretory pathway of HeLa cells during subcellular fractionation and cytochemistry. Post-endoplasmic reticulum (ER) pre-Golgi intermediates were separated from the ER on Nycodenz-sucrose gradients, and the glycan composition of each gradient fraction was profiled using lectin blotting. The fractions containing the post-ER pre-Golgi intermediates are found to contain a subset of N-linked α-mannose glycans that bind the lectins Galanthus nivalis agglutinin (GNA), Pisum sativum agglutinin (PSA), and Lens culinaris agglutinin (LCA) but not lectins binding Golgi-modified glycans. Cytochemical analysis demonstrates that high-mannose-containing glycoproteins are predominantly localized to the ER and the early secretory pathway. Indirect immunofluorescence microscopy revealed that GNA colocalizes with the ER marker protein disulfide isomerase (PDI) and the COPI coat protein β-COP. In situ competition with concanavalin A (ConA), another high-mannose specific lectin, and subsequent GNA lectin histochemistry refined the localization of N-glyans containing nonreducing mannosyl groups, accentuating the GNA vesicular staining. Using GNA and treatments that perturb ER-Golgi transport, we demonstrate that lectins can be used to detect changes in membrane trafficking pathways histochemically. Overall, we find that conjugated plant lectins are effective tools for combinatory biochemical and cytological analysis of membrane trafficking of glycoproteins.
Collapse
Affiliation(s)
- Gareth W Morgan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | | | | | | |
Collapse
|
22
|
Holmén Larsson JM, Thomsson KA, Rodríguez-Piñeiro AM, Karlsson H, Hansson GC. Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin O-glycan patterns reveal a regiospecific distribution. Am J Physiol Gastrointest Liver Physiol 2013; 305:G357-63. [PMID: 23832516 PMCID: PMC3761246 DOI: 10.1152/ajpgi.00048.2013] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mouse intestinal mucus is mainly made up by the gel-forming Muc2 mucin and the stomach surface mucus Muc5ac, both extensively O-glycosylated. The oligosaccharide diversity provides a vast library of potential recognition sites for both commensal and pathogenic organisms. The mucin glycans are thus likely very important for the selection and maintenance of a stable intestinal flora. Here we have explored the O-glycan patterns of the mouse gastrointestinal tract mucins. The mucins from the mucus of the distal and proximal colon, ileum, jejunum, duodenum, and stomach of conventionally raised wild-type (C57BL/6) mice were separated by composite gel electrophoresis. The O-linked glycans were released by reductive elimination and structurally characterized by liquid chromatography-mass spectrometry. The mucins glycans were mostly core 2 type [Galβ1-3(GlcNAcβ1-6)GalNAcol], but also core 1 (Galβ1-3GalNAcol). In the stomach about half of the Muc5ac mucin O-glycans were neutral and many monosulfated, but with a low grade of sialylation and fucosylation. Mouse ileum, jejunum, and duodenum had similar glycan patterns dominated by sialylated and sulfated core 2 glycans, but few fucosylated. Colon was on the other hand dominated by highly charged fucosylated glycans. The distal colon is different from the proximal colon because different biosynthetic pathways are utilized, although sialylated and sulfated glycans were highly abundant in both parts. The sulfation was higher in the distal colon, whereas sialic acid was more common in the proximal colon. Many fucosylated glycans were found in both the proximal and distal colon. Thus the mucin O-glycans vary along the mouse gastrointestinal tract.
Collapse
Affiliation(s)
| | - Kristina A. Thomsson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - Hasse Karlsson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C. Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Rodríguez-Piñeiro AM, Bergström JH, Ermund A, Gustafsson JK, Schütte A, Johansson MEV, Hansson GC. Studies of mucus in mouse stomach, small intestine, and colon. II. Gastrointestinal mucus proteome reveals Muc2 and Muc5ac accompanied by a set of core proteins. Am J Physiol Gastrointest Liver Physiol 2013; 305:G348-56. [PMID: 23832517 PMCID: PMC3761249 DOI: 10.1152/ajpgi.00047.2013] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mucus that protects the surface of the gastrointestinal tract is rich in specialized O-glycoproteins called mucins, but little is known about other mucus proteins or their variability along the gastrointestinal tract. To ensure that only mucus was analyzed, we combined collection from explant tissues mounted in perfusion chambers, liquid sample preparation, single-shot mass spectrometry, and specific bioinformatics tools, to characterize the proteome of the murine mucus from stomach to distal colon. With our approach, we identified ∼1,300 proteins in the mucus. We found no differences in the protein composition or abundance between sexes, but there were clear differences in mucus along the tract. Noticeably, mucus from duodenum showed similarities to the stomach, probably reflecting the normal distal transport. Qualitatively, there were, however, fewer differences than might had been anticipated, suggesting a relatively stable core proteome (∼80% of the total proteins identified). Quantitatively, we found significant differences (∼40% of the proteins) that could reflect mucus specialization throughout the gastrointestinal tract. Hierarchical clustering pinpointed a number of such proteins that correlated with Muc2 (e.g., Clca1, Zg16, Klk1). This study provides a deeper knowledge of the gastrointestinal mucus proteome that will be important in further understanding this poorly studied mucosal protection system.
Collapse
Affiliation(s)
| | - Joakim H. Bergström
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Anna Ermund
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Jenny K. Gustafsson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - André Schütte
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - Gunnar C. Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|