1
|
Otulak-Kozieł K, Kozieł E, Treder K, Rusin P. Homogalacturonan Pectins Tuned as an Effect of Susceptible rbohD, Col-0-Reactions, and Resistance rbohF-, rbohD/F-Reactions to TuMV. Int J Mol Sci 2024; 25:5256. [PMID: 38791293 PMCID: PMC11120978 DOI: 10.3390/ijms25105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The plant cell wall is an actively reorganized network during plant growth and triggered immunity in response to biotic stress. While the molecular mechanisms managing perception, recognition, and signal transduction in response to pathogens are well studied in the context of damaging intruders, the current understanding of plant cell wall rebuilding and active defense strategies in response to plant virus infections remains poorly characterized. Pectins can act as major elements of the primary cell wall and are dynamic compounds in response to pathogens. Homogalacturonans (HGs), a main component of pectins, have been postulated as defensive molecules in plant-pathogen interactions and linked to resistance responses. This research focused on examining the regulation of selected pectin metabolism components in susceptible (rbohD-, Col-0-TuMV) and resistance (rbohF-, rbohD/F-TuMV) reactions. Regardless of the interaction type, ultrastructural results indicated dynamic cell wall rebuilding. In the susceptible reaction promoted by RbohF, there was upregulation of AtPME3 (pectin methylesterase) but not AtPME17, confirmed by induction of PME3 protein deposition. Moreover, the highest PME activity along with a decrease in cell wall methylesters compared to resistance interactions in rbohD-TuMV were noticed. Consequently, the susceptible reaction of rbohD and Col-0 to TuMV was characterized by a significant domination of low/non-methylesterificated HGs. In contrast, cell wall changes during the resistance response of rbohF and rbohD/F to TuMV were associated with dynamic induction of AtPMEI2, AtPMEI3, AtGAUT1, and AtGAUT7 genes, confirmed by significant induction of PMEI2, PMEI3, and GAUT1 protein deposition. In both resistance reactions, a dynamic decrease in PME activity was documented, which was most intense in rbohD/F-TuMV. This decrease was accompanied by an increase in cell wall methylesters, indicating that the domination of highly methylesterificated HGs was associated with cell wall rebuilding in rbohF and rbohD/F defense responses to TuMV. These findings suggest that selected PME with PMEI enzymes have a diverse impact on the demethylesterification of HGs and metabolism as a result of rboh-TuMV interactions, and are important factors in regulating cell wall changes depending on the type of interaction, especially in resistance responses. Therefore, PMEI2 and PMEI3 could potentially be important signaling resistance factors in the rboh-TuMV pathosystem.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, Bonin Str. 3, 76-009 Bonin, Poland;
| | - Krzysztof Treder
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, Bonin Str. 3, 76-009 Bonin, Poland;
| | - Piotr Rusin
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| |
Collapse
|
2
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Jiang T, Du K, Xie J, Sun G, Wang P, Chen X, Cao Z, Wang B, Chao Q, Li X, Fan Z, Zhou T. Activated malate circulation contributes to the manifestation of light-dependent mosaic symptoms. Cell Rep 2023; 42:112333. [PMID: 37018076 DOI: 10.1016/j.celrep.2023.112333] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/19/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Mosaic symptoms are commonly observed in virus-infected plants. However, the underlying mechanism by which viruses cause mosaic symptoms as well as the key regulator(s) involved in this process remain unclear. Here, we investigate maize dwarf mosaic disease caused by sugarcane mosaic virus (SCMV). We find that the manifestation of mosaic symptoms in SCMV-infected maize plants requires light illumination and is correlated with mitochondrial reactive oxidative species (mROS) accumulation. The transcriptomic and metabolomic analyses results together with the genetic and cytopathological evidence indicate that malate and malate circulation pathways play essential roles in promoting mosaic symptom development. Specifically, at the pre-symptomatic infection stage or infection front, SCMV infection elevates the enzymatic activity of pyruvate orthophosphate dikinase by decreasing the phosphorylation of threonine527 under light, resulting in malate overproduction and subsequent mROS accumulation. Our findings indicate that activated malate circulation contributes to the manifestation of light-dependent mosaic symptoms via mROS.
Collapse
Affiliation(s)
- Tong Jiang
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Kaitong Du
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jipeng Xie
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Geng Sun
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Pei Wang
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xi Chen
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Baichen Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Qing Chao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Zaifeng Fan
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tao Zhou
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Simkovich A, Kohalmi SE, Wang A. Purification and Proteomics Analysis of Phloem Tissues from Virus-Infected Plants. Methods Mol Biol 2022; 2400:125-137. [PMID: 34905197 DOI: 10.1007/978-1-0716-1835-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant phloem vasculature is crucial for plant growth and development, and is essential for the systemic movement (SM) of plant viruses. Recent transcriptomic studies of the phloem during virus infection have shown the importance of this tissue, yet transcript levels do not provide definitive answers how virus-host interactions favour successful viral SM. Proteomic analyses have been used to identify host-virus protein interactions, uncovering a variety of ways by which viruses utilize host cellular machinery for completion of the viral infection cycle. Despite this new evidence through proteomics, very few phloem centric studies during viral infection have been performed. Here, we describe a protocol for the isolation of phloem tissues and proteins and the subsequent label-free quantitation (LFQ), for identification of proteomic alterations caused by viral infection.
Collapse
Affiliation(s)
- Aaron Simkovich
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Susanne E Kohalmi
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| |
Collapse
|
5
|
Mustafa G, Komatsu S. Plant proteomic research for improvement of food crops under stresses: a review. Mol Omics 2021; 17:860-880. [PMID: 34870299 DOI: 10.1039/d1mo00151e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Crop improvement approaches have been changed due to technological advancements in traditional plant-breeding methods. Abiotic and biotic stresses limit plant growth and development, which ultimately lead to reduced crop yield. Proteins encoded by genomes have a considerable role in the endurance and adaptation of plants to different environmental conditions. Biotechnological applications in plant breeding depend upon the information generated from proteomic studies. Proteomics has a specific advantage to contemplate post-translational modifications, which indicate the functional effects of protein modifications on crop production. Subcellular proteomics helps in exploring the precise cellular responses and investigating the networking among subcellular compartments during plant development and biotic/abiotic stress responses. Large-scale mass spectrometry-based plant proteomic studies with a more comprehensive overview are now possible due to dramatic improvements in mass spectrometry, sample preparation procedures, analytical software, and strengthened availability of genomes for numerous plant species. Development of stress-tolerant or resilient crops is essential to improve crop productivity and growth. Use of high throughput techniques with advanced instrumentation giving efficient results made this possible. In this review, the role of proteomic studies in identifying the stress-response processes in different crops is summarized. Advanced techniques and their possible utilization on plants are discussed in detail. Proteomic studies accelerate marker-assisted genetic augmentation studies on crops for developing high yielding stress-tolerant lines or varieties under stresses.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
6
|
Herath V, Verchot J. Transcriptional Regulatory Networks Associate with Early Stages of Potato Virus X Infection of Solanum tuberosum. Int J Mol Sci 2021; 22:2837. [PMID: 33799566 PMCID: PMC8001266 DOI: 10.3390/ijms22062837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Potato virus X (PVX) belongs to genus Potexvirus. This study characterizes the cellular transcriptome responses to PVX infection in Russet potato at 2 and 3 days post infection (dpi). Among the 1242 differentially expressed genes (DEGs), 268 genes were upregulated, and 37 genes were downregulated at 2 dpi while 677 genes were upregulated, and 265 genes were downregulated at 3 dpi. DEGs related to signal transduction, stress response, and redox processes. Key stress related transcription factors were identified. Twenty-five pathogen resistance gene analogs linked to effector triggered immunity or pathogen-associated molecular pattern (PAMP)-triggered immunity were identified. Comparative analysis with Arabidopsis unfolded protein response (UPR) induced DEGs revealed genes associated with UPR and plasmodesmata transport that are likely needed to establish infection. In conclusion, this study provides an insight on major transcriptional regulatory networked involved in early response to PVX infection and establishment.
Collapse
Affiliation(s)
- Venura Herath
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA;
- Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA;
| |
Collapse
|
7
|
Efficient Confirmation of Plant Viral Proteins and Identification of Specific Viral Strains by nanoLC-ESI-Q-TOF Using Single-Leaf-Tissue Samples. Pathogens 2020; 9:pathogens9110966. [PMID: 33228257 PMCID: PMC7699591 DOI: 10.3390/pathogens9110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/03/2022] Open
Abstract
Plant viruses are important pathogens that cause significant crop losses. A plant protein extraction protocol that combines crushing the tissue by a pestle in liquid nitrogen with subsequent crushing by a roller-ball crusher in urea solution, followed by RuBisCO depletion, reduction, alkylation, protein digestion, and ZipTip purification allowed us to substantially simplify the sample preparation by removing any other precipitation steps and to detect viral proteins from samples, even with less than 0.2 g of leaf tissue, by a medium resolution nanoLC-ESI-Q-TOF. The presence of capsid proteins or polyproteins of fourteen important viruses from seven different families (Geminiviridae, Luteoviridae, Bromoviridae, Caulimoviridae, Virgaviridae, Potyviridae, and Secoviridae) isolated from ten different economically important plant hosts was confirmed through many identified pathogen-specific peptides from a protein database of host proteins and potential pathogen proteins assembled separately for each host and based on existing online plant virus pathogen databases. The presented extraction protocol, combined with a medium resolution LC-MS/MS, represents a cost-efficient virus protein confirmation method that proved to be effective at identifying virus strains (as demonstrated for PPV, WDV) and distinct disease species of BYDV, as well as putative new viral protein sequences from single-plant-leaf tissue samples. Data are available via ProteomeXchange with identifier PXD022456.
Collapse
|
8
|
Rajamäki ML, Sikorskaite-Gudziuniene S, Sarmah N, Varjosalo M, Valkonen JPT. Nuclear proteome of virus-infected and healthy potato leaves. BMC PLANT BIOLOGY 2020; 20:355. [PMID: 32727361 PMCID: PMC7392702 DOI: 10.1186/s12870-020-02561-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/20/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Infection of plants by viruses interferes with expression and subcellular localization of plant proteins. Potyviruses comprise the largest and most economically damaging group of plant-infecting RNA viruses. In virus-infected cells, at least two potyviral proteins localize to nucleus but reasons remain partly unknown. RESULTS In this study, we examined changes in the nuclear proteome of leaf cells from a diploid potato line (Solanum tuberosum L.) after infection with potato virus A (PVA; genus Potyvirus; Potyviridae) and compared the data with that acquired for healthy leaves. Gel-free liquid chromatography-coupled to tandem mass spectrometry was used to identify 807 nuclear proteins in the potato line v2-108; of these proteins, 370 were detected in at least two samples of healthy leaves. A total of 313 proteins were common in at least two samples of healthy and PVA-infected leaves; of these proteins, 8 showed differential accumulation. Sixteen proteins were detected exclusively in the samples from PVA-infected leaves, whereas other 16 proteins were unique to healthy leaves. The protein Dnajc14 was only detected in healthy leaves, whereas different ribosomal proteins, ribosome-biogenesis proteins, and RNA splicing-related proteins were over-represented in the nuclei of PVA-infected leaves. Two virus-encoded proteins were identified in the samples of PVA-infected leaves. CONCLUSIONS Our results show that PVA infection alters especially ribosomes and splicing-related proteins in the nucleus of potato leaves. The data increase our understanding of potyvirus infection and the role of nucleus in infection. To our knowledge, this is the first study of the nuclear proteome of potato leaves and one of the few studies of changes occurring in nuclear proteomes in response to plant virus infection.
Collapse
Affiliation(s)
- Minna-Liisa Rajamäki
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland.
| | - Sidona Sikorskaite-Gudziuniene
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Street 30, Babtai, LT-54333, Kaunas District, Lithuania
| | - Nandita Sarmah
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, PO Box 56, FI-00014, Helsinki, Finland
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| |
Collapse
|
9
|
iTRAQ-Based Proteomic Analysis of Watermelon Fruits in Response to Cucumber green mottle mosaic virus Infection. Int J Mol Sci 2020; 21:ijms21072541. [PMID: 32268502 PMCID: PMC7178218 DOI: 10.3390/ijms21072541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/07/2023] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV) is an important viral pathogen on cucurbit plants worldwide, which can cause severe fruit decay symptoms on infected watermelon (usually called “watermelon blood flesh”). However, the molecular mechanism of this disease has not been well understood. In this study, we employed the isobaric tags for relative and absolute quantitation (iTRAQ) technique to analyze the proteomic profiles of watermelon fruits in response to CGMMV infection. A total of 595 differentially accumulated proteins (DAPs) were identified, of which 404 were upregulated and 191 were downregulated. Functional annotation analysis showed that these DAPs were mainly involved in photosynthesis, carbohydrate metabolism, secondary metabolite biosynthesis, plant–pathogen interaction, and protein synthesis and turnover. The accumulation levels of several proteins related to chlorophyll metabolism, pyruvate metabolism, TCA cycle, heat shock proteins, thioredoxins, ribosomal proteins, translation initiation factors, and elongation factors were strongly affected by CGMMV infection. Furthermore, a correlation analysis was performed between CGMMV-responsive proteome and transcriptome data of watermelon fruits obtained in our previous study, which could contribute to comprehensively elucidating the molecular mechanism of “watermelon blood flesh”. To confirm the iTRAQ-based proteome data, the corresponding transcripts of ten DAPs were validated by determining their abundance via quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). These results could provide a scientific basis for in-depth understanding of the pathogenic mechanisms underlying CGMMV-induced “watermelon blood flesh”, and lay the foundation for further functional exploration and verification of related genes and proteins.
Collapse
|
10
|
Nováková S, Šubr Z, Kováč A, Fialová I, Beke G, Danchenko M. Cucumber mosaic virus resistance: Comparative proteomics of contrasting Cucumis sativus cultivars after long-term infection. J Proteomics 2019; 214:103626. [PMID: 31881349 DOI: 10.1016/j.jprot.2019.103626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
Plant viruses are a significant threat to a wide range of host species, causing substantial losses in agriculture. Particularly, Cucumber mosaic virus (CMV) evokes severe symptoms, thus dramatically limiting yield. Activation of plant defense reactions is associated with changes in the cellular proteome to ensure virus resistance. Herein, we studied two cultivars of cucumber (Cucumis sativus) resistant host Heliana and susceptible host Vanda. Plant cotyledons were mechanically inoculated with CMV isolate PK1, and systemic leaves were harvested at 33 days post-inoculation. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility enhanced mass spectrometry. From 1516 reproducibly quantified proteins using a label-free approach, 133 were differentially abundant among cultivars or treatments by strict statistic and effect size criteria. Pigments and hydrogen peroxide measurements corroborated proteomic findings. Comparison of both cultivars in the uninfected state highlighted more abundant photosynthetic and development-related proteins in resistant cucumber cultivar. Long-term CMV infection caused worse preservation of energy processes and less robust translation in the susceptible cultivar. Contrary, compatible plants had numerous more abundant stress and defense-related proteins. We proposed promising targets for functional validation in transgenic lines: A step toward durable virus resistance in cucurbits and other crops. SIGNIFICANCE: Sustainable production of crops requires an understanding of natural mechanisms of resistance/susceptibility to ubiquitous viral infections. We report original findings of comparative analysis of plant genotypes exposed to CMV. Deep discovery proteomics of resistant and susceptible cucumber cultivars, inoculated with widespread phytovirus, allowed to suggest several novel molecular targets for functional testing in plant protection strategies.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava; Mala Hora 4C, 03601 Martin, Slovak Republic.
| | - Zdeno Šubr
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences; Dubravska cesta 9, 84510 Bratislava, Slovak Republic.
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences; Dubravska cesta 21, 84551 Bratislava, Slovak Republic.
| | - Maksym Danchenko
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| |
Collapse
|
11
|
Lan J, Zhang R, Yu H, Wang J, Xue W, Chen J, Lin S, Wang Y, Xie Z, Jiang S. Quantitative Proteomic Analysis Uncovers the Mediation of Endoplasmic Reticulum Stress-Induced Autophagy in DHAV-1-Infected DEF Cells. Int J Mol Sci 2019; 20:ijms20246160. [PMID: 31817666 PMCID: PMC6940786 DOI: 10.3390/ijms20246160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a tightly regulated catabolic process and is activated in cells in response to stress signals. Despite extensive study, the interplay between duck hepatitis A virus type 1 (DHAV-1) and the autophagy of host cells is not clear. In this study, we applied proteomics analysis to investigate the interaction mechanism between DHAV-1 and duck embryo fibroblast (DEF) cells. In total, 507 differentially expressed proteins (DEPs) were identified, with 171 upregulated proteins and 336 downregulated proteins. The protein expression level of heat shock proteins (Hsps) and their response to stimulus proteins and zinc finger proteins (ZFPs) were significantly increased while the same aspects of ribosome proteins declined. Bioinformatics analysis indicated that DEPs were mainly involved in the “response to stimulus”, the “defense response to virus”, and the “phagosome pathway”. Furthermore, Western blot results showed that the conversion of microtubule-associated protein 1 light chain 3-I (LC3-I) to the lipidation form of LC3-II increased, and the conversion rate decreased when DEF cells were processed with 4-phenylbutyrate (4-PBA). These findings indicated that DHAV-1 infection could cause endoplasmic reticulum (ER) stress-induced autophagy in DEF cells, and that ER stress was an important regulatory factor in the activation of autophagy. Our data provide a new clue regarding the host cell response to DHAV-1 and identify proteins involved in the DHAV-1 infection process or the ER stress-induced autophagy process.
Collapse
Affiliation(s)
- Jingjing Lan
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Ruihua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Honglei Yu
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Jingyu Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Wenxiang Xue
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Junhao Chen
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- College of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Shaoli Lin
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA;
| | - Yu Wang
- Department of Basic Medical Sciences, Taishan Medical College, Taian 271000, China;
| | - Zhijing Xie
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Shijin Jiang
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
- Correspondence: ; Tel.: +86-538-8245799
| |
Collapse
|
12
|
Li Y, Xia F, Wang Y, Yan C, Jia A, Zhang Y. Characterization of a highly divergent Sugarcane mosaic virus from Canna indica L. by deep sequencing. BMC Microbiol 2019; 19:260. [PMID: 31752686 PMCID: PMC6873528 DOI: 10.1186/s12866-019-1636-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Cannas are popular ornamental plants and widely planted for the beautiful foliage and flower. Viral disease is a major threaten to canna horticulture industry. In the city of Beijing, mosaic disease in canna was frequently observed, but the associated causal agent and its biological characterization is still unknown. Results After small RNA deep sequencing, 36,776 contigs were assembled and 16 of them shared high sequence identities with the different proteins of Sugarcane mosaic virus (SCMV) of the size ranging from 86 to 1911 nt. The complete genome of SCMV isolate (canna) was reconstructed by sequencing all cDNA clones obtained from RT-PCR and 5′\3′ RACE amplifications. SCMV-canna isolate showed to have a full RNA genome of 9579 nt in length and to share 78% nt and 85% aa sequence identities with SCMV isolates from other hosts. The phylogenetic tree constructed based on the full genome sequence of SCMV isolates allocated separately the canna-isolate in a distinct clade, indicating a new strain. Recombination analyses demonstrated that SCMV-canna isolate was a recombinant originating from a sugarcane-infecting isolate (major parent, acc. no. AJ310103) and a maize-infecting isolate (minor parent, acc. no. AJ297628). Pathogenicity test showed SCMV-canna could cause typical symptoms of mosaic and necrosis in some tested plants with varying levels of severity but was less virulent than the isolate SCMV-BJ. Field survey showed that the virus was widely distributed. Conclusions This study identified SCMV as the major agent causing the prevalent mosaic symptom in canna plants in Beijing and its genomic and biological characterizations were further explored. All these data enriched the knowledge of the viruses infecting canna and would be helpful in effective disease management in canna.
Collapse
Affiliation(s)
- Yongqiang Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China. .,Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China.
| | - Fei Xia
- Beijing Institute of Landscape Architecture, Beijing, China
| | - Yixuan Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China
| | - Chenge Yan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China.,Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China.,Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Anning Jia
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China.,Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China.
| |
Collapse
|
13
|
Gao D, Wang D, Chen K, Huang M, Xie X, Li X. Activation of biochemical factors in CMV-infected tobacco by ningnanmycin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:116-122. [PMID: 31027570 DOI: 10.1016/j.pestbp.2019.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/09/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Cucumber mosaic virus (CMV) is a plant virus with one of the largest host ranges, the widest distribution, and economic importance, and ningnanmycin (NNM) is a commercial antiviral agent. Studies have shown that NNM induces and promotes pathogenesis-related proteins in tobacco mosaic virus-inoculated tobacco. In the present study, the defense enzymes and the biochemical factors of CMV-inoculated tobacco treated with NNM were measured. The biochemical factors of CMV-inoculated tobacco leaves treated with NNM were analyzed. Results showed that the phenylalanine ammonia-lyase, peroxidase, polypheuoloxidase, and superoxide in the CMV-inoculated tobacco leaves treated with NNM were higher than those in non-treated tobacco leaves. Furthermore, NNM activated the oxidation-reduction process, metabolic process, and oxidoreductase activity in the CMV-infected tobacco.
Collapse
Affiliation(s)
- Di Gao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Dongmei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Kai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Maoxi Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
14
|
Das PP, Lin Q, Wong SM. Comparative proteomics of Tobacco mosaic virus-infected Nicotiana tabacum plants identified major host proteins involved in photosystems and plant defence. J Proteomics 2019; 194:191-199. [PMID: 30503828 DOI: 10.1016/j.jprot.2018.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/29/2018] [Accepted: 11/16/2018] [Indexed: 11/18/2022]
Abstract
Tobacco mosaic virus (TMV) is a positive single-stranded RNA virus. Its 5' end ORF codes for the replicase proteins, namely 126 kDa and 183 kDa, respectively. These proteins interact with many host proteins to form a virus replication complex (VRC). This study aims to dissect the proteome profile of TMV-infected Nicotiana tabacum in host cellular and molecular pathways. We used the isobaric tags for relative and absolute quantification (iTRAQ) technique to analyse the differential global proteomic profile of TMV infected and mock infected plants. Out of 1897 total proteins, we identified 407 differentially abundant proteins and grouped them into three functional categories, namely metabolism, cellular processes and signalling processing. Our results showed that photosynthesis, carbon metabolism, plant defence, protein synthesis, and protein processing in the endoplasmic reticulum were significantly altered. Carbon metabolism and photosynthesis were present in very low abundance, whereas accumulation of reactive oxygen species and misfolded proteins lead to the accumulation of thioredoxin H-type 1. In conclusion, we identified several key host proteins that are involved in TMV infection/replication in N. tabacum plants. SIGNIFICANCE OF THE STUDY: TMV is one of the most widely studied plant virus. It is used as a tool to study host-virus interaction. There are several host proteins reported that facilitate VRC formation and replication of TMV. However, there is limited knowledge in the expression regulation of these host proteins upon TMV infection. This study is the first report that investigates the response of host protein expression involved in TMV infection through a quantitative proteomics technique iTRAQ, combined with LC-MS/MS analysis. We used TMV-infected Nicotiana tabacum plants to investigate the effects of TMV infection on host proteins. Our results revealed differential abundance of proteins involving various pathways in protein translation, protein processing, photosynthesis and plant defence. There was a high abundance of thioredoxin H-type 1, a protein that counters oxidative stress and accelerated regulation of fatty acid synthesis to provide additional lipid molecules for VRC formation. There was a significant reduction in abundance of psaA and psbB proteins in the photosynthetic pathways. Our results identified key candidate host proteins involved in TMV-infected N. tabacum for functional studies in future.
Collapse
Affiliation(s)
- Prem Prakash Das
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
15
|
Souza PFN, Garcia-Ruiz H, Carvalho FEL. What proteomics can reveal about plant-virus interactions? Photosynthesis-related proteins on the spotlight. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2019; 31:227-248. [PMID: 31355128 PMCID: PMC6660014 DOI: 10.1007/s40626-019-00142-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant viruses are responsible for losses in worldwide production of numerous economically important food and fuel crops. As obligate cellular parasites with very small genomes, viruses rely on their hosts for replication, assembly, intra- and intercellular movement, and attraction of vectors for dispersal. Chloroplasts are photosynthesis and are the site of replication for several viruses. When viruses replicate in chloroplasts, photosynthesis, an essential process in plant physiology, is inhibited. The mechanisms underlying molecular and biochemical changes during compatible and incompatible plants-virus interactions, are only beginning to be elucidated, including changes in proteomic profiles induced by virus infections. In this review, we highlight the importance of proteomic studies to understand plant-virus interactions, especially emphasizing the changes in photosynthesis-related protein accumulation. We focus on: (a) chloroplast proteins that differentially accumulate during viral infection; (b) the significance with respect to chloroplast-virus interaction; and (c) alterations in plant's energetic metabolism and the subsequently the plant defense mechanisms to overcome viral infection.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
16
|
Wu G, Cui X, Chen H, Renaud JB, Yu K, Chen X, Wang A. Dynamin-Like Proteins of Endocytosis in Plants Are Coopted by Potyviruses To Enhance Virus Infection. J Virol 2018; 92:e01320-18. [PMID: 30258010 PMCID: PMC6232491 DOI: 10.1128/jvi.01320-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023] Open
Abstract
Endocytosis and endosomal trafficking regulate the proteins targeted to the plasma membrane and play essential roles in diverse cellular processes, including responses to pathogen attack. Here, we report the identification of Glycine max (soybean) endocytosis dynamin-like protein 5A (GmSDL5A) associated with purified soybean mosaic virus (SMV) virions from soybean using a bottom-up proteomics approach. Knockdown of GmSDL5A and its homologous gene GmSDL12A inhibits SMV infection in soybean. The role of analogous dynamin-like proteins in potyvirus infection was further confirmed and investigated using the Arabidopsis/turnip mosaic virus (TuMV) pathosystem. We demonstrate that dynamin-related proteins 2A and 2B in Arabidopsis thaliana (AtDRP2A, AtDRP2B), homologs of GmSDL5A, are recruited to the virus replication complex (VRC) of TuMV. TuMV infection is inhibited in both A. thalianadrp2a (atdrp2a) and atdrp2b knockout mutants. Overexpression of AtDRP2 promotes TuMV replication and intercellular movement. AtRDP2 interacts with TuMV VPg, CP, CI, and 6K2. Of these viral proteins, VPg, CP, and CI are essential for viral intercellular movement, and 6K2, VPg, and CI are critical components of the VRC. We reveal that VPg and CI are present in the punctate structures labeled by the endocytic tracer FM4-64, suggesting that VPg and CI can be endocytosed. Treatment of plant leaves with a dynamin-specific inhibitor disrupts the delivery of VPg and CI to endocytic structures and suppresses TuMV replication and intercellular movement. Taken together, these data suggest that dynamin-like proteins are novel host factors of potyviruses and that endocytic processes are involved in potyvirus infection.IMPORTANCE It is well known that animal viruses enter host cells via endocytosis, whereas plant viruses require physical assistance, such as human and insect activities, to penetrate the host cell to establish their infection. In this study, we report that the endocytosis pathway is also involved in virus infection in plants. We show that plant potyviruses recruit endocytosis dynamin-like proteins to support their infection. Depletion of them by knockout of the corresponding genes suppresses virus replication, whereas overexpression of them enhances virus replication and intercellular movement. We also demonstrate that the dynamin-like proteins interact with several viral proteins that are essential for virus replication and cell-to-cell movement. We further show that treatment of a dynamin-specific inhibitor disrupts endocytosis and inhibits virus replication and intercellular movement. Therefore, the dynamin-like proteins are novel host factors of potyviruses. The corresponding genes may be manipulated using advanced biotechnology to control potyviral diseases.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Xiaoyan Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Hui Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Kangfu Yu
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
17
|
Couture JJ, Singh A, Charkowski AO, Groves RL, Gray SM, Bethke PC, Townsend PA. Integrating Spectroscopy with Potato Disease Management. PLANT DISEASE 2018; 102:2233-2240. [PMID: 30145947 DOI: 10.1094/pdis-01-18-0054-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Spectral phenotyping is an efficient method for the nondestructive characterization of plant biochemical and physiological status. We examined the ability of a full range (350 to 2,500 nm) of foliar spectral data to (i) detect Potato virus Y (PVY) and physiological effects of the disease in visually asymptomatic leaves, (ii) classify different strains of PVY, and (iii) identify specific potato cultivars. Across cultivars, foliar spectral profiles of PVY-infected leaves were statistically different (F = 96.1, P ≤ 0.001) from noninfected leaves. Partial least-squares discriminate analysis (PLS-DA) accurately classified leaves as PVY infected (validation κ = 0.73) and the shortwave infrared spectral regions displayed the strongest correlations with infection status. Although spectral profiles of different PVY strains were statistically different (F = 6.4, P ≤ 0.001), PLS-DA did not classify different strains well (validation κ = 0.12). Spectroscopic retrievals revealed that PVY infection decreased photosynthetic capacity and increased leaf lignin content. Spectral profiles of potato cultivars also differed (F = 9.2, P ≤ 0.001); whereas average spectral classification was high (validation κ = 0.76), the accuracy of classification varied among cultivars. Our study expands the current knowledge base by (i) identifying disease presence before the onset of visual symptoms, (ii) providing specific biochemical and physiological responses to disease infection, and (iii) discriminating between multiple cultivars within a single plant species.
Collapse
Affiliation(s)
| | - A Singh
- Department of Forest and Wildlife Ecology
| | | | - R L Groves
- Department of Entomology, University of Wisconsin-Madison, Madison 53706
| | - S M Gray
- Emerging Pest and Pathogen Research Unit, United States Department of Agriculture Agricultural Research Service (USDA-ARS), and Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14850
| | - P C Bethke
- Vegetable Crops Research Unit, USDA-ARS, and Department of Horticulture, University of Wisconsin-Madison
| | - P A Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison
| |
Collapse
|
18
|
DeBlasio SL, Rebelo AR, Parks K, Gray SM, Heck MC. Disruption of Chloroplast Function Through Downregulation of Phytoene Desaturase Enhances the Systemic Accumulation of an Aphid-Borne, Phloem-Restricted Virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1095-1110. [PMID: 29767548 DOI: 10.1094/mpmi-03-18-0057-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chloroplasts play a central role in pathogen defense in plants. However, most studies explaining the relationship between pathogens and chloroplasts have focused on pathogens that infect mesophyll cells. In contrast, the family Luteoviridae includes RNA viruses that replicate and traffic exclusively in the phloem. Recently, our lab has shown that Potato leafroll virus (PLRV), the type species in the genus Polerovirus, forms an extensive interaction network with chloroplast-localized proteins that is partially dependent on the PLRV capsid readthrough domain (RTD). In this study, we used virus-induced gene silencing to disrupt chloroplast function and assess the effects on PLRV accumulation in two host species. Silencing of phytoene desaturase (PDS), a key enzyme in carotenoid, chlorophyll, and gibberellic acid (GA) biosynthesis, resulted in a substantial increase in the systemic accumulation of PLRV. This increased accumulation was attenuated when plants were infected with a viral mutant that does not express the RTD. Application of GA partially suppressed the increase in virus accumulation in PDS-silenced plants, suggesting that GA signaling also plays a role in limiting PLRV infection. In addition, the fecundity of the aphid vector of PLRV was increased when fed on PDS-silenced plants relative to PLRV-infected plants.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- 1 USDA-Agricultural Research Service, Ithaca, NY 14853, U.S.A
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
| | - Ana Rita Rebelo
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
| | - Katherine Parks
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
| | - Stewart M Gray
- 1 USDA-Agricultural Research Service, Ithaca, NY 14853, U.S.A
- 3 Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A
| | - Michelle C Heck
- 1 USDA-Agricultural Research Service, Ithaca, NY 14853, U.S.A
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
- 3 Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
19
|
Kozieł E, Otulak-Kozieł K, Bujarski JJ. Ultrastructural Analysis of Prune DwarfVirus Intercellular Transport and Pathogenesis. Int J Mol Sci 2018; 19:E2570. [PMID: 30158483 PMCID: PMC6163902 DOI: 10.3390/ijms19092570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
Prune dwarf virus (PDV) is an important viral pathogen of plum, sweet cherry, peach, and many herbaceous test plants. Although PDV has been intensively investigated, mainly in the context of phylogenetic relationship of its genes and proteins, many gaps exist in our knowledge about the mechanism of intercellular transport of this virus. The aim of this work was to investigate alterations in cellular organelles and the cell-to-cell transport of PDV in Cucumis sativus cv. Polan at ultrastructural level. To analyze the role of viral proteins in local transport, double-immunogold assays were applied to localize PDV coat protein (CP) and movement protein (MP). We observe structural changes in chloroplasts, mitochondria, and cellular membranes. We prove that PDV is transported as viral particles via MP-generated tubular structures through plasmodesmata. Moreover, the computer-run 3D modeling reveals structural resemblances between MPs of PDV and of Alfalfa mosaic virus (AMV), implying similarities of transport mechanisms for both viruses.
Collapse
Affiliation(s)
- Edmund Kozieł
- Faculty of Agriculture and Biology, Department of Botany, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| | - Katarzyna Otulak-Kozieł
- Faculty of Agriculture and Biology, Department of Botany, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| | - Józef J Bujarski
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
20
|
Megias E, do Carmo LST, Nicolini C, Silva LP, Blawid R, Nagata T, Mehta A. Chloroplast Proteome of Nicotiana benthamiana Infected by Tomato Blistering Mosaic Virus. Protein J 2018; 37:290-299. [PMID: 29802510 DOI: 10.1007/s10930-018-9775-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Tymovirus is a genus of plant pathogenic viruses that infects several dicotyledonous plants worldwide, causing serious diseases in economically important crops. The known cytopathic effect on the host cell organelles involves chloroplast membrane deformation and the induction of vesicles in its periphery. These vesicles are known to be the location where tymoviral genomic RNA replication occurs. Tomato blistering mosaic virus (ToBMV) is a tymovirus recently identified in tomato plants in Brazil, which is able to infect several other plants, including tobacco. In this work, we investigated the chloroplast proteomic profile of ToBMV-infected N. benthamiana using bidimensional electrophoresis (2-DE) and mass spectrometry, aiming to study the virus-host interaction related to the virus replication and infection. A total of approximately 200 spots were resolved, out of which 36 were differentially abundant. Differential spots were identified by mass spectrometry including photosynthesis-related and defense proteins. We identified proteins that may be targets of a direct interaction with viral proteins, such as ATP synthase β subunit, RNA polymerase beta-subunit, 50S ribosomal protein L6 and Trigger factor-like protein. The identification of these candidate proteins gives support for future protein-protein interaction studies to confirm their roles in virus replication and disease development.
Collapse
Affiliation(s)
- Esau Megias
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte final, Brasília, DF, 70770-917, Brazil
| | | | | | - Luciano Paulino Silva
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte final, Brasília, DF, 70770-917, Brazil
| | - Rosana Blawid
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte final, Brasília, DF, 70770-917, Brazil.
| |
Collapse
|
21
|
Otulak-Kozieł K, Kozieł E, Lockhart BEL. Plant Cell Wall Dynamics in Compatible and Incompatible Potato Response to Infection Caused by Potato Virus Y (PVY NTN). Int J Mol Sci 2018; 19:ijms19030862. [PMID: 29543714 PMCID: PMC5877723 DOI: 10.3390/ijms19030862] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 02/04/2023] Open
Abstract
The cell wall provides the structure of the plant, and also acts as a barier against biotic stress. The vein necrosis strain of Potato virus Y (PVYNTN) induces necrotic disease symptoms that affect both plant growth and yield. Virus infection triggers a number of inducible basal defense responses, including defense proteins, especially those involved in cell wall metabolism. This study investigates the comparison of cell wall host dynamics induced in a compatible (potato cv. Irys) and incompatible (potato cv. Sárpo Mira with hypersensitive reaction gene Ny-Smira) PVYNTN–host–plant interaction. Ultrastructural analyses revealed numerous cell wall changes induced by virus infection. Furthermore, the localization of essential defensive wall-associated proteins in susceptible and resistant potato host to PVYNTN infection were investigated. The data revealed a higher level of detection of pathogenesis-related protein 2 (PR-2) in a compatible compared to an incompatible (HR) interaction. Immunofluorescence analyses indicated that hydroxyproline-rich glycoproteins (HRGP) (extensin) synthesis was induced, whereas that of cellulose synthase catalytic subunits (CesA4) decreased as a result of PVYNTN infection. The highest level of extensin localization was found in HR potato plants. Proteins involved in cell wall metabolism play a crucial role in the interaction because they affect the spread of the virus. Analysis of CesA4, PR-2 and HRGP deposition within the apoplast and symplast confirmed the active trafficking of these proteins as a step-in potato cell wall remodeling in response to PVYNTN infection. Therefore, cell wall reorganization may be regarded as an element of “signWALLing”—involving apoplast and symplast activation as a specific response to viruses.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.
| | - Edmund Kozieł
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.
| | - Benham E L Lockhart
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
22
|
Qiu Y, Zhang Y, Wang C, Lei R, Wu Y, Li X, Zhu S. Cucumber mosaic virus coat protein induces the development of chlorotic symptoms through interacting with the chloroplast ferredoxin I protein. Sci Rep 2018; 8:1205. [PMID: 29352213 PMCID: PMC5775247 DOI: 10.1038/s41598-018-19525-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/28/2017] [Indexed: 11/15/2022] Open
Abstract
Cucumber mosaic virus (CMV) infection could induce mosaic symptoms on a wide-range of host plants. However, there is still limited information regarding the molecular mechanism underlying the development of the symptoms. In this study, the coat protein (CP) was confirmed as the symptom determinant by exchanging the CP between a chlorosis inducing CMV-M strain and a green-mosaic inducing CMV-Q strain. A yeast two-hybrid analysis and bimolecular fluorescence complementation revealed that the chloroplast ferredoxin I (Fd I) protein interacted with the CP of CMV-M both in vitro and in vivo, but not with the CP of CMV-Q. The severity of chlorosis was directly related to the expression of Fd1, that was down-regulated in CMV-M but not in CMV-Q. Moreover, the silencing of Fd I induced chlorosis symptoms that were similar to those elicited by CMV-M. Subsequent analyses indicated that the CP of CMV-M interacted with the precursor of Fd I in the cytoplasm and disrupted the transport of Fd I into chloroplasts, leading to the suppression of Fd I functions during a viral infection. Collectively, our findings accentuate that the interaction between the CP of CMV and Fd I is the primary determinant for the induction of chlorosis in tobacco.
Collapse
Affiliation(s)
- Yanhong Qiu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Chaonan Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- China Agricultural University, Beijing, 100129, China
| | - Rong Lei
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yupin Wu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Xinshi Li
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
23
|
Daddiego L, Bianco L, Capodicasa C, Carbone F, Dalmastri C, Daroda L, Del Fiore A, De Rossi P, Di Carli M, Donini M, Lopez L, Mengoni A, Paganin P, Perrotta G, Bevivino A. Omics approaches on fresh-cut lettuce reveal global molecular responses to sodium hypochlorite and peracetic acid treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:737-750. [PMID: 28675480 DOI: 10.1002/jsfa.8521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Lettuce is a leafy vegetable that is extensively commercialized as a ready-to-eat product because of its widespread use in human nutrition as salad. It is well known that washing treatments can severely affect the quality and shelf-life of ready-to-eat vegetables. The study presented here evaluated the effect of two washing procedures on fresh-cut lettuce during storage. RESULTS An omics approach was applied to reveal global changes at molecular level induced by peracetic acid washing in comparison with sodium hypochlorite treatment. Microbiological analyses were also performed to quantify total bacterial abundance and composition. The study revealed wide metabolic alterations induced by the two sanitizers. In particular, transcriptomic and proteomic analyses pointed out a number of transcripts and proteins differentially accumulated in response to peracetic acid washing, mainly occurring on the first day of storage. In parallel, different microbiota composition and significant reduction in total bacterial load following washing were also observed. CONCLUSION The results provide useful information for the fresh-cut industry to select an appropriate washing procedure preserving fresh-like attributes as much as possible during storage of the end product. Molecular evidence indicated peracetic acid to be a valid alternative to sodium hypochlorite as sanitizer solution. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Loretta Daddiego
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Trisaia Research Center, Rotondella, MT, Italy
| | - Linda Bianco
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Trisaia Research Center, Rotondella, MT, Italy
| | - Cristina Capodicasa
- Department of Sustainability and Productivity of Territorial Systems, Biotechnology and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Fabrizio Carbone
- Council for Agricultural Research and Economics (CREA), Research Centre for Olive, Citrus and Tree Fruit, Rende, (CS), Italy
| | - Claudia Dalmastri
- Department of Sustainability and Productivity of Territorial Systems, Biotechnology and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Lorenza Daroda
- Department of Sustainability and Productivity of Territorial Systems, Biotechnology and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Antonella Del Fiore
- Department of Sustainability and Productivity of Territorial Systems, Biotechnology and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Patrizia De Rossi
- Department of Sustainability and Productivity of Territorial Systems, Biotechnology and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Mariasole Di Carli
- Department of Sustainability and Productivity of Territorial Systems, Biotechnology and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Marcello Donini
- Department of Sustainability and Productivity of Territorial Systems, Biotechnology and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Loredana Lopez
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Trisaia Research Center, Rotondella, MT, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | - Patrizia Paganin
- Department of Sustainability and Productivity of Territorial Systems, Biotechnology and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Gaetano Perrotta
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Trisaia Research Center, Rotondella, MT, Italy
| | - Annamaria Bevivino
- Department of Sustainability and Productivity of Territorial Systems, Biotechnology and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| |
Collapse
|
24
|
Park SH, Li F, Renaud J, Shen W, Li Y, Guo L, Cui H, Sumarah M, Wang A. NbEXPA1, an α-expansin, is plasmodesmata-specific and a novel host factor for potyviral infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:846-861. [PMID: 28941316 DOI: 10.1111/tpj.13723] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 05/23/2023]
Abstract
Plasmodesmata (PD), unique to the plant kingdom, are structurally complex microchannels that cross the cell wall to establish symplastic communication between neighbouring cells. Viral intercellular movement occurs through PD. To better understand the involvement of PD in viral infection, we conducted a quantitative proteomic study on the PD-enriched fraction from Nicotiana benthamiana leaves in response to infection by Turnip mosaic virus (TuMV). We report the identification of a total of 1070 PD protein candidates, of which 100 (≥2-fold increase) and 48 (≥2-fold reduction) are significantly differentially accumulated in the PD-enriched fraction, when compared with protein levels in the corresponding healthy control. Among the differentially accumulated PD protein candidates, we show that an α-expansin designated NbEXPA1, a cell wall loosening protein, is PD-specific. TuMV infection downregulates NbEXPA1 mRNA expression and protein accumulation. We further demonstrate that NbEXPA1 is recruited to the viral replication complex via the interaction with NIb, the only RNA-dependent RNA polymerase of TuMV. Silencing of NbEXPA1 inhibits plant growth and TuMV infection, whereas overexpression of NbEXPA1 promotes viral replication and intercellular movement. These data suggest that NbEXPA1 is a host factor for potyviral infection. This study not only generates a PD-proteome dataset that is useful in future studies to expound PD biology and PD-mediated virus-host interactions but also characterizes NbEXPA1 as the first PD-specific cell wall loosening protein and its essential role in potyviral infection.
Collapse
Affiliation(s)
- Sang-Ho Park
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Fangfang Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Justin Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Wentao Shen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Lihua Guo
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongguang Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Mark Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| |
Collapse
|
25
|
Chen H, Cao Y, Li Y, Xia Z, Xie J, Carr JP, Wu B, Fan Z, Zhou T. Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection. THE NEW PHYTOLOGIST 2017; 215:1156-1172. [PMID: 28627019 DOI: 10.1111/nph.14645] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/30/2017] [Indexed: 05/25/2023]
Abstract
Sugarcane mosaic virus (SCMV) is the most important cause of maize dwarf mosaic disease. To identify maize genes responsive to SCMV infection and that may be involved in pathogenesis, a comparative proteomic analysis was performed using the first and second systemically infected leaves (termed 1 SL and 2 SL, respectively). Seventy-one differentially expressed proteins were identified in 1 SL and 2 SL upon SCMV infection. Among them, eight proteins showed the same changing patterns in both 1 SL and 2 SL. Functional annotations of regulated proteins and measurement of photosynthetic activity revealed that photosynthesis was more inhibited and defensive gene expression more pronounced in 1 SL than in 2 SL. Knockdown of regulated proteins in both 1 SL and 2 SL by a brome mosaic virus-based gene silencing vector in maize indicated that protein disulfide isomerase-like and phosphoglycerate kinase were required for optimal SCMV replication. By contrast, knockdown of polyamine oxidase (ZmPAO) significantly increased SCMV accumulation, implying that ZmPAO activity might contribute to resistance or tolerance. The results suggest that combining comparative proteomic analyses of different tissues and virus-induced gene silencing is an efficient way to identify host proteins supporting virus replication or enhancing resistance to virus infection.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yanyong Cao
- Cereal Crops Institute, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yiqing Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zihao Xia
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jipeng Xie
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Boming Wu
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Stare T, Stare K, Weckwerth W, Wienkoop S, Gruden K. Comparison between Proteome and Transcriptome Response in Potato (Solanum tuberosum L.) Leaves Following Potato Virus Y (PVY) Infection. Proteomes 2017; 5:proteomes5030014. [PMID: 28684682 PMCID: PMC5620531 DOI: 10.3390/proteomes5030014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/27/2017] [Accepted: 07/01/2017] [Indexed: 12/17/2022] Open
Abstract
Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato (Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it.
Collapse
Affiliation(s)
- Tjaša Stare
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia.
| | - Katja Stare
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia.
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, 1010 Wien, Austria.
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, 1010 Wien, Austria.
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia.
| |
Collapse
|
27
|
Nawrot R, Lippmann R, Matros A, Musidlak O, Nowicki G, Mock HP. Proteomic comparison of Chelidonium majus L. latex in different phases of plant development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:312-325. [PMID: 28131060 DOI: 10.1016/j.plaphy.2017.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Chelidonium majus L. (Papaveraceae) latex is used in traditinonal folk medicine to treat papillae, warts, condylomas, which are visible effects of human papilloma virus (HPV) infections. The aim of this work was to provide new insights into the biology and medicinal use of C. majus milky sap in the flowering and fruit ripening period of the plant by comparing the protein content between samples collected on respective developmental stages using LC-MS-based label-free proteome approach. For quantification, the multiplexed LC-MS data were processed using comparative chemometric approach. Progenesis LC-MS results showed that in green fruit phase (stage IV), comparing to flowering phase (stage III) of plant development, a range of proteins with higher abundance were identified as stress- and defense-related. On the other hand at stage III very intense protein synthesis, processes of transcription, protein folding and active transport of molecules (ABC transporters) are well represented. 2-DE protein maps showed an abundant set of spots with similar MWs (about 30-35 kDa) and pIs (ca. 5.5-6.5), which were identified as major latex proteins (MLPs). Therefore we suggest that biological activity of C. majus latex could be related to its protein content, which shifts during plant development from intense biosynthetic processes (biosynthesis and transport of small molecules, like alkaloids) to plant defense mechanisms against pathogens. Further studies will help to elucidate if these defense-related and pathogenesis-related proteins, like MLP, together with small-molecule compounds, could inhibit viral infection, what could be a step to fully understand the medicinal activity of C. majus latex.
Collapse
Affiliation(s)
- Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, PL-61-614 Poznań, Poland.
| | - Rico Lippmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Oskar Musidlak
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, PL-61-614 Poznań, Poland
| | - Grzegorz Nowicki
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, PL-61-614 Poznań, Poland
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| |
Collapse
|
28
|
Cerna H, Černý M, Habánová H, Šafářová D, Abushamsiya K, Navrátil M, Brzobohatý B. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV). J Proteomics 2017; 153:78-88. [PMID: 27235724 DOI: 10.1016/j.jprot.2016.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/22/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Pea seed-borne mosaic virus (PSbMV) significantly reduces yields in a broad spectra of legumes. The eukaryotic translation initiation factor has been shown to confer resistance to this pathogen, thus implying that translation and proteome dynamics play a role in resistance. This study presents the results of a proteome-wide analysis of Pisum sativum L. response to PSbMV infection. LC-MS profiling of two contrasting pea cultivars, resistant (B99) and susceptible (Raman) to PSbMV infection, detected >2300 proteins, 116 of which responded to PSbMV ten and/or twenty days post-inoculation. These differentially abundant proteins are involved in number of processes that have previously been reported in the plant-pathogen response, including protein and amino acid metabolism, stress signaling, redox homeostasis, carbohydrate metabolism, and lipid metabolism. We complemented our proteome-wide analysis work with targeted analyses of free amino acids and selected small molecules, fatty acid profiling, and enzyme activity assays. Data from these additional experiments support our findings and validate the biological relevance of the observed proteome changes. We found surprising similarities in the resistant and susceptible cultivars, which implies that a seemingly unaffected plant, with no detectable levels of PSbMV, actively suppresses viral replication. BIOLOGICAL SIGNIFICANCE Plant resistance to PSbMV is connected to translation initiation factors, yet the processes involved are still poorly understood at the proteome level. To the best of our knowledge, this is the first survey of the global proteomic response to PSbMV in plants. The combination of label-free LC-MS profiling and two contrasting cultivars (resistant and susceptible) provided highly sensitive snapshots of protein abundance in response to PSbMV infection. PSbMV is a member of the largest family of plant viruses and our results are in accordance with previously characterized potyvirus-responsive proteomes. Hence, the results of this study can further extend our knowledge about these pathogens. We also show that even though no viral replication is detected in the PSbMV-resistant cultivar B99, it is still significantly affected by PSbMV inoculation.
Collapse
Affiliation(s)
- Hana Cerna
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Habánová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Dana Šafářová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc 27, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | - Kifah Abushamsiya
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Milan Navrátil
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc 27, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
29
|
Zhong X, Wang ZQ, Xiao R, Wang Y, Xie Y, Zhou X. iTRAQ analysis of the tobacco leaf proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense against geminivirus-betasatellite infection. J Proteomics 2017; 152:88-101. [PMID: 27989946 DOI: 10.1016/j.jprot.2016.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 11/22/2022]
Abstract
Geminiviruses have caused serious losses in crop production. To investigate the mechanisms underlying host defenses against geminiviruses, an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic approach was used to explore the expression profiles of proteins in Nicotiana benthamiana (N. benthamiana) leaves in response to tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB) at an early phase. In total, 4155 proteins were identified and 272 proteins were changed differentially in response to TYLCCNV/TYLCCNB infection. Bioinformatics analysis indicated that S-adenosyl-l-methionine cycle II was the most significantly up-regulated biochemical process during TYLCCNV/TYLCCNB infection. The mRNA levels of three proteins in S-adenosyl-l-methionine cycle II were further analyzed by qPCR, each was found significantly up-regulated in TYLCCNV/TYLCCNB-infected N. benthamiana. This result suggested a strong promotion of the biosynthesis of available methyl groups during geminivirus infections. We further tested the potential role of RdDM in N. benthamiana by virus-induced gene silencing (VIGS) and found that a disruption in RdDM resulted in more severe infectious symptoms and higher accumulation of viral DNA after TYLCCNV/TYLCCNB infection. Although the precise functions of these proteins still need to be determined, our proteomic results enhance the understanding of plant antiviral mechanisms. BIOLOGICAL SIGNIFICANCE One of the major limitations to crop growth in the worldwide is the prevalence of geminiviruses. They are able to infect food and cash crops and cause serious crop failures and economic losses worldwide, especially in Africa and Asia. Tomato yellow leaf curl China virus (TYLCCNV), which causes severe viral diseases in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). However, the mechanisms underlying the TYLCCNV/TYLCCNB defense in plants are still not fully understood at the molecular level. In this study, the combined proteomic, bioinformatic and VIGS analyses revealed that TYLCCNV/TYLCCNB invasion caused complex proteomic alterations in the leaves of N. benthamiana involving the processes of stress and defense, energy production, photosynthesis, protein homeostasis, metabolism, cell structure, signal transduction, transcription, transportation, and cell growth/division. Promotion of available methyl groups via the S-adenosyl-l-methionine cycle II pathway in N. benthamiana appeared crucial for antiviral responses. These findings enhance our understanding in the proteomic aspects of host antiviral defenses against geminiviruses, and also demonstrate that the combination of proteomics with bioinformatics and VIGS analysis is an effective approach to investigate systemic plant responses to geminiviruses and to shed light on plant-virus interactions.
Collapse
Affiliation(s)
- Xueting Zhong
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Zhan Qi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Ruyuan Xiao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
30
|
Makarov VV, Kalinina NO. Structure and Noncanonical Activities of Coat Proteins of Helical Plant Viruses. BIOCHEMISTRY (MOSCOW) 2016; 81:1-18. [PMID: 26885578 DOI: 10.1134/s0006297916010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The main function of virus coat protein is formation of the capsid that protects the virus genome against degradation. However, besides the structural function, coat proteins have many additional important activities in the infection cycle of the virus and in the defense response of host plants to viral infection. This review focuses on noncanonical functions of coat proteins of helical RNA-containing plant viruses with positive genome polarity. Analysis of data on the structural organization of coat proteins of helical viruses has demonstrated that the presence of intrinsically disordered regions within the protein structure plays an important role in implementation of nonstructural functions and largely determines the multifunctionality of coat proteins.
Collapse
Affiliation(s)
- V V Makarov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
31
|
Laino P, Russo MP, Guardo M, Reforgiato-Recupero G, Valè G, Cattivelli L, Moliterni VMC. Rootstock-scion interaction affecting citrus response to CTV infection: a proteomic view. PHYSIOLOGIA PLANTARUM 2016; 156:444-67. [PMID: 26459956 DOI: 10.1111/ppl.12395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/28/2015] [Accepted: 09/12/2015] [Indexed: 05/19/2023]
Abstract
Citrus tristeza virus (CTV) is the causal agent of various diseases with dramatic effects on citrus crops worldwide. Most Citrus species, grown on their own roots, are symptomless hosts for many CTV isolates. However, depending on different scion-rootstock combination, CTV infection should result in distinct syndromes, being 'tristeza' the more severe one, leading to a complete decline of the susceptible plants in a few weeks. Transcriptomic analyses revealed several genes involved either in defense response, or systemic acquired resistance, as well as transcription factors and components of the phosphorylation cascades, to be differentially regulated during CTV infection in Citrus aurantifolia species. To date little is known about the molecular mechanism of this host-pathogen interaction, and about the rootstock effect on citrus response to CTV infection. In this work, the response to CTV infection has been investigated in tolerant and susceptible scion-rootstock combinations by two-dimensional gel electrophoresis (2DE). A total of 125 protein spots have been found to be differently accumulated and/or phosphorylated between the two rootstock combinations. Downregulation in tolerant plants upon CTV infection was detected for proteins involved in reactive oxygen species (ROS) scavenging and defense response, suggesting a probable acclimation response able to minimize the systemic effects of virus infection. Some of these proteins resulted to be modulated also in absence of virus infection, revealing a rootstock effect on scion proteome modulation. Moreover, the phospho-modulation of proteins involved in ROS scavenging and defense response, further supports their involvement either in scion-rootstock crosstalk or in the establishment of tolerance/susceptibility to CTV infection.
Collapse
Affiliation(s)
- Paolo Laino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Maria P Russo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Acireale (CT), Italy
| | - Maria Guardo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Acireale (CT), Italy
| | - Giuseppe Reforgiato-Recupero
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Acireale (CT), Italy
| | - Giampiero Valè
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rice Research Unit, Vercelli, Italy
| | - Luigi Cattivelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Vita M C Moliterni
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| |
Collapse
|
32
|
DeBlasio SL, Chavez JD, Alexander MM, Ramsey J, Eng JK, Mahoney J, Gray SM, Bruce JE, Cilia M. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology. J Virol 2016; 90:1973-87. [PMID: 26656710 PMCID: PMC4733995 DOI: 10.1128/jvi.01706-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. IMPORTANCE The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA USDA-Agricultural Research Service, Ithaca, New York, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Mariko M Alexander
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - John Ramsey
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Jimmy K Eng
- University of Washington Proteomics Resources, Seattle, Washington, USA
| | - Jaclyn Mahoney
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Stewart M Gray
- USDA-Agricultural Research Service, Ithaca, New York, USA Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michelle Cilia
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA USDA-Agricultural Research Service, Ithaca, New York, USA Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
33
|
Di Carli M, De Rossi P, Paganin P, Del Fiore A, Lecce F, Capodicasa C, Bianco L, Perrotta G, Mengoni A, Bacci G, Daroda L, Dalmastri C, Donini M, Bevivino A. Bacterial community and proteome analysis of fresh-cut lettuce as affected by packaging. FEMS Microbiol Lett 2016; 363:fnv209. [PMID: 26511951 DOI: 10.1093/femsle/fnv209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 01/11/2023] Open
Abstract
With the growing demand of fresh-cut vegetables, a variety of packaging films are produced specifically to improve safety and quality of the fresh vegetables over the storage period. The aim of our work was to evaluate the influence of different packaging films on the quality of fresh-cut lettuce analyzing changes in bacterial community composition and modifications at the proteome level, by means of culture-dependent/culture-independent methods and differential gel electrophoresis combined with mass spectrometry analysis. Total viable counts indicated the presence of a highly variable and complex microbial flora, around a mean value of 6.26 log10 CFU g(-1). Analysis of terminal-restriction fragment length polymorphism data indicated that bacterial communities changed with packaging films and time, showing differences in community composition and diversity indices between the commercially available package (F) and the new packages (A and C), in the first days after packaging. Also proteomic analysis revealed significant changes, involving proteins related to energy metabolism, photosynthesis, plant defense and oxidative stress processes, between F and A/C packages. In conclusion, microbiological and proteomic analysis have proved to be powerful tools to provide new insights into both the composition of leaf-associated bacterial communities and protein content of fresh-cut lettuce during the shelf-life storage process.
Collapse
Affiliation(s)
- Mariasole Di Carli
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Patrizia De Rossi
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Patrizia Paganin
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Antonella Del Fiore
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Francesca Lecce
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Cristina Capodicasa
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Linda Bianco
- Energy Technologies Department, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, 75026 Rotondella (MT), Italy
| | - Gaetano Perrotta
- Energy Technologies Department, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, 75026 Rotondella (MT), Italy
| | - Alessio Mengoni
- Biology Department, University of Florence, I-50019 Sesto F.no, Florence, Italy
| | - Giovanni Bacci
- Biology Department, University of Florence, I-50019 Sesto F.no, Florence, Italy
| | - Lorenza Daroda
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Claudia Dalmastri
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Marcello Donini
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| | - Annamaria Bevivino
- Sustainable Territorial and Production Systems Department, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, 00123, Rome, Italy
| |
Collapse
|
34
|
DeBlasio SL, Johnson R, Sweeney MM, Karasev A, Gray SM, MacCoss MJ, Cilia M. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection. Proteomics 2015; 15:2098-112. [PMID: 25787689 DOI: 10.1002/pmic.201400594] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/08/2015] [Accepted: 03/16/2015] [Indexed: 01/20/2023]
Abstract
Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA.,USDA-Agricultural Research Service, Ithaca, NY, USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Alexander Karasev
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID, USA
| | - Stewart M Gray
- USDA-Agricultural Research Service, Ithaca, NY, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michelle Cilia
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA.,USDA-Agricultural Research Service, Ithaca, NY, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
35
|
Nováková S, Flores-Ramírez G, Glasa M, Danchenko M, Fiala R, Skultety L. Partially resistant Cucurbita pepo showed late onset of the Zucchini yellow mosaic virus infection due to rapid activation of defense mechanisms as compared to susceptible cultivar. FRONTIERS IN PLANT SCIENCE 2015; 6:263. [PMID: 25972878 PMCID: PMC4411989 DOI: 10.3389/fpls.2015.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/02/2015] [Indexed: 05/29/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) is an emerging viral pathogen in cucurbit-growing areas wordwide. Infection causes significant yield losses in several species of the family Cucurbitaceae. To identify proteins potentially involved with resistance toward infection by the severe ZYMV-H isolate, two Cucurbita pepo cultivars (Zelena susceptible and Jaguar partially resistant) were analyzed using a two-dimensional gel electrophoresis-based proteomic approach. Initial symptoms on leaves (clearing veins) developed 6-7 days post-inoculation (dpi) in the susceptible C. pepo cv. Zelena. In contrast, similar symptoms appeared on the leaves of partially resistant C. pepo cv. Jaguar only after 15 dpi. This finding was confirmed by immune-blot analysis which showed higher levels of viral proteins at 6 dpi in the susceptible cultivar. Leaf proteome analyses revealed 28 and 31 spots differentially abundant between cultivars at 6 and 15 dpi, respectively. The variance early in infection can be attributed to a rapid activation of proteins involved with redox homeostasis in the partially resistant cultivar. Changes in the proteome of the susceptible cultivar are related to the cytoskeleton and photosynthesis.
Collapse
Affiliation(s)
| | | | - Miroslav Glasa
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Maksym Danchenko
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Roderik Fiala
- Institute of Botany, Slovak Academy of SciencesBratislava, Slovakia
| | - Ludovit Skultety
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
- Institute of Microbiology, Academy of Sciences of Czech RepublicPrague, Czech Republic
| |
Collapse
|
36
|
Serra-Soriano M, Navarro JA, Genoves A, Pallás V. Comparative proteomic analysis of melon phloem exudates in response to viral infection. J Proteomics 2015; 124:11-24. [PMID: 25892132 DOI: 10.1016/j.jprot.2015.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/03/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Phloem vasculature is the route that most plant viruses use to spread widely around the plant. In addition, phloem sap transports signals that trigger systemic defense responses to infection. We investigated the proteome-level changes that occur in phloem sap during virus infection using the 2D-DIGE technique. Total proteins were extracted from phloem exudates of healthy and Melon necrotic spot virus infected melon plants and analyzed by 2D-DIGE. A total of 1046 spots were detected but only 25 had significant changes in abundance. After mass spectrometry, 19 different proteins corresponding to 22 spots were further identified (13 of them up-accumulated and 9 down-accumulated). Most of them were involved in controlling redox balance and cell death. Only two of the differentially altered proteins had never been described to be present in the phloem before: a carboxylesterase and the fumarylacetoacetate hydrolase 1, both considered negative regulators of cell death. RT-PCR analysis of phloem sap RNAs revealed that the transcripts corresponding to some of the identified protein could be also loaded into the sieve elements. The impact of these proteins in the host response against viral infections and the potential involvement in regulating development, growth and stress response in melon plants is discussed. BIOLOGICAL SIGNIFICANCE Despite the importance of phloem as an integrative pathway for resource distribution, signaling and plant virus transport little is known about the modifications induced by these pathogens in phloem sap proteome. Only one previous study has actually examined the phloem sap proteome during viral infection using conventional two-dimensional electrophoresis. Since the major limitation of this technique has been its low sensitivity, the authors only identified five phloem proteins with altered abundance. To circumvent this issue we use two-dimensional difference in-gel electrophoresis (2D DIGE) technique, which combined with DeCyder Differential Analysis Software allows a more accurate and sensitive quantitative analysis than with conventional 2D PAGE. We identified 19 different proteins which accumulation in phloem sap was altered during a compatible plant virus infection including redox and hypersensitivity response-related proteins. Therefore, this work would help to understand the basic processes that occur in phloem during plant-virus interaction.
Collapse
Affiliation(s)
- Marta Serra-Soriano
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - Ainhoa Genoves
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| |
Collapse
|
37
|
Durmuş S, Çakır T, Özgür A, Guthke R. A review on computational systems biology of pathogen-host interactions. Front Microbiol 2015; 6:235. [PMID: 25914674 PMCID: PMC4391036 DOI: 10.3389/fmicb.2015.00235] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/10/2015] [Indexed: 12/27/2022] Open
Abstract
Pathogens manipulate the cellular mechanisms of host organisms via pathogen-host interactions (PHIs) in order to take advantage of the capabilities of host cells, leading to infections. The crucial role of these interspecies molecular interactions in initiating and sustaining infections necessitates a thorough understanding of the corresponding mechanisms. Unlike the traditional approach of considering the host or pathogen separately, a systems-level approach, considering the PHI system as a whole is indispensable to elucidate the mechanisms of infection. Following the technological advances in the post-genomic era, PHI data have been produced in large-scale within the last decade. Systems biology-based methods for the inference and analysis of PHI regulatory, metabolic, and protein-protein networks to shed light on infection mechanisms are gaining increasing demand thanks to the availability of omics data. The knowledge derived from the PHIs may largely contribute to the identification of new and more efficient therapeutics to prevent or cure infections. There are recent efforts for the detailed documentation of these experimentally verified PHI data through Web-based databases. Despite these advances in data archiving, there are still large amounts of PHI data in the biomedical literature yet to be discovered, and novel text mining methods are in development to unearth such hidden data. Here, we review a collection of recent studies on computational systems biology of PHIs with a special focus on the methods for the inference and analysis of PHI networks, covering also the Web-based databases and text-mining efforts to unravel the data hidden in the literature.
Collapse
Affiliation(s)
- Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, KocaeliTurkey
| | - Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, KocaeliTurkey
| | - Arzucan Özgür
- Department of Computer Engineering, Boǧaziçi University, IstanbulTurkey
| | - Reinhard Guthke
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knoell-Institute, JenaGermany
| |
Collapse
|
38
|
DeBlasio SL, Johnson R, Mahoney J, Karasev A, Gray SM, MacCoss MJ, Cilia M. Insights into the polerovirus-plant interactome revealed by coimmunoprecipitation and mass spectrometry. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:467-81. [PMID: 25496593 DOI: 10.1094/mpmi-11-14-0363-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Identification of host proteins interacting with the aphidborne Potato leafroll virus (PLRV) from the genus Polerovirus, family Luteoviridae, is a critical step toward understanding how PLRV and related viruses infect plants. However, the tight spatial distribution of PLRV to phloem tissues poses challenges. A polyclonal antibody raised against purified PLRV virions was used to coimmunoprecipitate virus-host protein complexes from Nicotiana benthamiana tissue inoculated with an infectious PLRV cDNA clone using Agrobacterium tumefaciens. A. tumefaciens-mediated delivery of PLRV enabled infection and production of assembled, insect-transmissible virus in most leaf cells, overcoming the dynamic range constraint posed by a systemically infected host. Isolated protein complexes were characterized using high-resolution mass spectrometry and consisted of host proteins interacting directly or indirectly with virions, as well as the nonincorporated readthrough protein (RTP) and three phosphorylated positional isomers of the RTP. A bioinformatics analysis using ClueGO and STRING showed that plant proteins in the PLRV protein interaction network regulate key biochemical processes, including carbon fixation, amino acid biosynthesis, ion transport, protein folding, and trafficking.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- 1 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | | | | | | | | | | | | |
Collapse
|
39
|
Fang X, Chen J, Dai L, Ma H, Zhang H, Yang J, Wang F, Yan C. Proteomic dissection of plant responses to various pathogens. Proteomics 2015; 15:1525-43. [DOI: 10.1002/pmic.201400384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/28/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Xianping Fang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and Hunan Provincial Key Laboratory of Biology and Control of Plant Diseases and Insect Pests; Hunan Agricultural University; Changsha Hunan P. R. China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
- Institute of Biology; Hangzhou Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Jianping Chen
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and Hunan Provincial Key Laboratory of Biology and Control of Plant Diseases and Insect Pests; Hunan Agricultural University; Changsha Hunan P. R. China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Liangying Dai
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and Hunan Provincial Key Laboratory of Biology and Control of Plant Diseases and Insect Pests; Hunan Agricultural University; Changsha Hunan P. R. China
| | - Huasheng Ma
- Institute of Biology; Hangzhou Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Hengmu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Jian Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Fang Wang
- Laboratory of Biotechnology; Institute of Biotechnology; Ningbo Academy of Agricultural Sciences; Ningbo P. R. China
| | - Chengqi Yan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
| |
Collapse
|
40
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
41
|
Samperi R, Capriotti AL, Cavaliere C, Colapicchioni V, Chiozzi RZ, Laganà A. Food Proteins and Peptides. ADVANCED MASS SPECTROMETRY FOR FOOD SAFETY AND QUALITY 2015. [DOI: 10.1016/b978-0-444-63340-8.00006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
42
|
Multiple functions of capsid proteins in (+) stranded RNA viruses during plant–virus interactions. Virus Res 2015; 196:140-9. [DOI: 10.1016/j.virusres.2014.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/18/2022]
|
43
|
Wu L, Wang S, Wu J, Han Z, Wang R, Wu L, Zhang H, Chen Y, Hu X. Phosphoproteomic analysis of the resistant and susceptible genotypes of maize infected with sugarcane mosaic virus. Amino Acids 2014; 47:483-96. [PMID: 25488425 DOI: 10.1007/s00726-014-1880-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
Protein phosphorylation plays a pivotal role in the regulation of many cellular events. No information is yet available, however, on protein phosphorylation in plants in response to virus infection. In this study, we characterized phosphoproteomes of resistant and susceptible genotypes of maize (Zea mays L.) in response to Sugarcane mosaic virus (SCMV) infection. Based on isotope tags for relative and absolute quantification technology, TiO2 enrichment method and LC-MS/MS analysis, we identified 65 and 59 phosphoproteins respectively, whose phosphorylation level regulated significantly in susceptible and resistant plants. Some identified phosphoproteins were shared by both genotypes, suggesting a partial overlapping of the responsive pathways to virus infection. While several phosphoproteins are well-known pathogen response phosphoproteins, virus infection differentially regulates most other phosphoproteins, which has not been reported in literature. Changes in protein phosphorylation status indicated that response to SCMV infection encompass a reformatting of major cellular processes. Our data provide new valuable insights into plant-virus interactions.
Collapse
Affiliation(s)
- Liuji Wu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ivanov KI, Eskelin K, Lõhmus A, Mäkinen K. Molecular and cellular mechanisms underlying potyvirus infection. J Gen Virol 2014; 95:1415-1429. [DOI: 10.1099/vir.0.064220-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Potyviruses represent one of the most economically important and widely distributed groups of plant viruses. Despite considerable progress towards understanding the cellular and molecular basis of their pathogenicity, many questions remain about the mechanisms by which potyviruses suppress host defences and create an optimal intracellular environment for viral translation, replication, assembly and spread. The review focuses on the multifunctional roles of potyviral proteins and their interplay with various host factors in different compartments of the infected cell. We place special emphasis on the recently discovered and currently putative mechanisms by which potyviruses subvert the normal functions of different cellular organelles in order to establish an efficient and productive infection.
Collapse
Affiliation(s)
- K. I. Ivanov
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - K. Eskelin
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - A. Lõhmus
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - K. Mäkinen
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| |
Collapse
|
45
|
Webb KM, Broccardo CJ, Prenni JE, Wintermantel WM. Proteomic Profiling of Sugar Beet ( Beta vulgaris) Leaves during Rhizomania Compatible Interactions. Proteomes 2014; 2:208-223. [PMID: 28250378 PMCID: PMC5302737 DOI: 10.3390/proteomes2020208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/15/2014] [Accepted: 03/27/2014] [Indexed: 11/16/2022] Open
Abstract
Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV), severely impacts sugar beet (Beta vulgaris) production throughout the world, and is widely prevalent in most production regions. Initial efforts to characterize proteome changes focused primarily on identifying putative host factors that elicit resistant interactions with BNYVV, but as resistance breaking strains become more prevalent, effective disease control strategies will require the application of novel methods based on better understanding of disease susceptibility and symptom development. Herein, proteomic profiling was conducted on susceptible sugar beet, infected with two strains of BNYVV, to clarify the types of proteins prevalent during compatible virus-host plant interactions. Total protein was extracted from sugar beet leaf tissue infected with BNYVV, quantified, and analyzed by mass spectrometry. A total of 203 proteins were confidently identified, with a predominance of proteins associated with photosynthesis and energy, metabolism, and response to stimulus. Many proteins identified in this study are typically associated with systemic acquired resistance and general plant defense responses. These results expand on relatively limited proteomic data available for sugar beet and provide the ground work for additional studies focused on understanding the interaction of BNYVV with sugar beet.
Collapse
Affiliation(s)
- Kimberly M Webb
- USDA-ARS-SBRU, Crops Research Laboratory, 1701 Centre Ave., Fort Collins, CO 80526, USA.
| | - Carolyn J Broccardo
- Proteomics and Metabolomics Facility, Colorado State University, C130 Microbiology, 2021 Campus Delivery, Fort Collins, CO 80523, USA.
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, C130 Microbiology, 2021 Campus Delivery, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
46
|
Pasin F, Simón-Mateo C, García JA. The hypervariable amino-terminus of P1 protease modulates potyviral replication and host defense responses. PLoS Pathog 2014; 10:e1003985. [PMID: 24603811 PMCID: PMC3946448 DOI: 10.1371/journal.ppat.1003985] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/23/2014] [Indexed: 12/22/2022] Open
Abstract
The replication of many RNA viruses involves the translation of polyproteins, whose processing by endopeptidases is a critical step for the release of functional subunits. P1 is the first protease encoded in plant potyvirus genomes; once activated by an as-yet-unknown host factor, it acts in cis on its own C-terminal end, hydrolyzing the P1-HCPro junction. Earlier research suggests that P1 cooperates with HCPro to inhibit host RNA silencing defenses. Using Plum pox virus as a model, we show that although P1 does not have a major direct role in RNA silencing suppression, it can indeed modulate HCPro function by its self-cleavage activity. To study P1 protease regulation, we used bioinformatic analysis and in vitro activity experiments to map the core C-terminal catalytic domain. We present evidence that the hypervariable region that precedes the protease domain is predicted as intrinsically disordered, and that it behaves as a negative regulator of P1 proteolytic activity in in vitro cleavage assays. In viral infections, removal of the P1 protease antagonistic regulator is associated with greater symptom severity, induction of salicylate-dependent pathogenesis-related proteins, and reduced viral loads. We suggest that fine modulation of a viral protease activity has evolved to keep viral amplification below host-detrimental levels, and thus to maintain higher long-term replicative capacity.
Collapse
Affiliation(s)
- Fabio Pasin
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carmen Simón-Mateo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
47
|
Baebler Š, Witek K, Petek M, Stare K, Tušek-Žnidarič M, Pompe-Novak M, Renaut J, Szajko K, Strzelczyk-Żyta D, Marczewski W, Morgiewicz K, Gruden K, Hennig J. Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1095-109. [PMID: 24420577 PMCID: PMC3935562 DOI: 10.1093/jxb/ert447] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The purpose of the study was to investigate the role of salicylic acid (SA) signalling in Ny-1-mediated hypersensitive resistance (HR) of potato (Solanum tuberosum L.) to Potato virus Y (PVY). The responses of the Ny-1 allele in the Rywal potato cultivar and transgenic NahG-Rywal potato plants that do not accumulate SA were characterized at the cytological, biochemical, transcriptome, and proteome levels. Analysis of noninoculated and inoculated leaves revealed that HR lesions started to develop from 3 d post inoculation and completely restricted the virus spread. At the cytological level, features of programmed cell death in combination with reactive oxygen species burst were observed. In response to PVY infection, SA was synthesized de novo. The lack of SA accumulation in the NahG plants led to the disease phenotype due to unrestricted viral spreading. Grafting experiments show that SA has a critical role in the inhibition of PVY spreading in parenchymal tissue, but not in vascular veins. The whole transcriptome analysis confirmed the central role of SA in orchestrating Ny-1-mediated responses and showed that the absence of SA leads to significant changes at the transcriptome level, including a delay in activation of expression of genes known to participate in defence responses. Moreover, perturbations in the expression of hormonal signalling genes were detected, shown as a switch from SA to jasmonic acid/ethylene signalling. Viral multiplication in the NahG plants was accompanied by downregulation of photosynthesis genes and activation of multiple energy-producing pathways.
Collapse
Affiliation(s)
- Š Baebler
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Delaunois B, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. FRONTIERS IN PLANT SCIENCE 2014; 5:249. [PMID: 24917874 PMCID: PMC4042593 DOI: 10.3389/fpls.2014.00249] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 05/14/2023]
Abstract
Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Sylvain Cordelier
- *Correspondence: Sylvain Cordelier, Laboratoire Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne-EA 4707, Université de Reims Champagne-Ardenne, Moulin de la Housse – BP 1039, 51687 Reims cedex 2, France e-mail:
| |
Collapse
|
49
|
Proteomics of model and crop plant species: Status, current limitations and strategic advances for crop improvement. J Proteomics 2013; 93:5-19. [DOI: 10.1016/j.jprot.2013.05.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 12/22/2022]
|
50
|
Sankaranarayanan S, Jamshed M, Samuel MA. Proteomics approaches advance our understanding of plant self-incompatibility response. J Proteome Res 2013; 12:4717-26. [PMID: 24047343 DOI: 10.1021/pr400716r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Self-incompatibility (SI) in plants is a genetic mechanism that prevents self-fertilization and promotes out-crossing needed to maintain genetic diversity. SI has been classified into two broad categories: the gametophytic self-incompatibility (GSI) and the sporophytic self-incompatibility (SSI) based on the genetic mechanisms involved in 'self' pollen rejection. Recent proteomic approaches to identify potential candidates involved in SI have shed light onto a number of previously unidentified mechanisms required for SI response. SI proteome research has progressed from the use of isoelectric focusing in early days to the latest third-generation technique of comparative isobaric tag for relative and absolute quantitation (iTRAQ) used in recent times. We will focus on the proteome-based approaches used to study self-incompatibility (GSI and SSI), recent developments in the field of incompatibility research with emphasis on SSI and future prospects of using proteomic approaches to study self-incompatibility.
Collapse
Affiliation(s)
- Subramanian Sankaranarayanan
- Department of Biological Sciences, University of Calgary , BI 392, 2500 University Drive Northwest, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|