1
|
Fischer ML, Schmidtberg H, Tidswell O, Weiss B, Dersch L, Lüddecke T, Wielsch N, Kaltenpoth M, Vilcinskas A, Vogel H. Divergent venom effectors correlate with ecological niche in neuropteran predators. Commun Biol 2024; 7:981. [PMID: 39134630 PMCID: PMC11319779 DOI: 10.1038/s42003-024-06666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Neuropteran larvae are fierce predators that use venom to attack and feed on arthropod prey. Neuropterans have adapted to diverse and sometimes extreme habitats, suggesting their venom may have evolved accordingly, but the ecology and evolution of venom deployment in different families is poorly understood. We applied spatial transcriptomics, proteomics, morphological analysis, and bioassays to investigate the venom systems in the antlion Euroleon nostras and the lacewing Chrysoperla carnea, which occupy distinct niches. Although the venom system morphology was similar in both species, we observed remarkable differences at the molecular level. E. nostras produces particularly complex venom secreted from three different glands, indicating functional compartmentalization. Furthermore, E. nostras venom and digestive tissues were devoid of bacteria, strongly suggesting that all venom proteins are of insect origin rather than the products of bacterial symbionts. We identified several toxins exclusive to E. nostras venom, including phospholipase A2 and several undescribed proteins with no homologs in the C. carnea genome. The compositional differences have significant ecological implications because only antlion venom conferred insecticidal activity, indicating its use for the immobilization of large prey. Our results indicate that molecular venom evolution plays a role in the adaptation of antlions to their unique ecological niche.
Collapse
Affiliation(s)
- Maike Laura Fischer
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Henrike Schmidtberg
- Institute for Insect Biotechnology, Justus Liebig University, Giessen, Germany
| | - Olivia Tidswell
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benjamin Weiss
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ludwig Dersch
- Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Tim Lüddecke
- Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, Giessen, Germany
- Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
2
|
Gorbushin A, Ruparčič M, Anderluh G. Littoporins: Novel actinoporin-like proteins in caenogastropod genus Littorina. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109698. [PMID: 38871141 DOI: 10.1016/j.fsi.2024.109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
In the course of searching for genes controlling the immune system in caenogastropod mollusks, we characterized and phylogenetically placed five new actinoporin-like cytolysins expressed in periwinkles of the genus Littorina. These newly discovered proteins, named littoporins (LitP), contain a central cytolysin/lectin domain and exhibit a predicted protein fold that is almost identical to the three-dimensional structures of actinoporins. Two of these proteins, LitP-1 and LitP-2, were found to be upregulated in L. littorea kidney tissues and immune cells in response to natural and experimental infection with the trematode Himasthla elongata, suggesting their potential role as perforins in the systemic anti-trematode immune response. The primary sequence divergence of littoporins is hypothesized to be attributed to the taxonomic range of cell membranes they can recognize and permeabilize.
Collapse
Affiliation(s)
- Alexander Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St Petersburg, Russia.
| | - Matija Ruparčič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
3
|
Lecaudey LA, Netzer R, Wibberg D, Busche T, Bloecher N. Metatranscriptome analysis reveals the putative venom toxin repertoire of the biofouling hydroid Ectopleura larynx. Toxicon 2024; 237:107556. [PMID: 38072317 DOI: 10.1016/j.toxicon.2023.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Cnidarians thriving in biofouling communities on aquaculture net pens represent a significant health risk for farmed finfish due to their stinging cells. The toxins coming into contact with the fish, during net cleaning, can adversely affect their behavior, welfare, and survival, with a particularly serious health risk for the gills, causing direct tissue damage such as formation of thrombi and increasing risks of secondary infections. The hydroid Ectopleura larynx is one of the most common fouling organisms in Northern Europe. However, despite its significant economic, environmental, and operational impact on finfish aquaculture, biological information on this species is scarce and its venom composition has never been investigated. In this study, we generated a whole transcriptome of E. larynx, and identified its putative expressed venom toxin proteins (predicted toxin proteins, not functionally characterized) based on in silico transcriptome annotation mining and protein sequence analysis. The results uncovered a broad and diverse repertoire of putative toxin proteins for this hydroid species. Its toxic arsenal appears to include a wide and complex selection of toxin proteins, covering a large panel of potential biological functions that play important roles in envenomation. The putative toxins identified in this species, such as neurotoxins, GTPase toxins, metalloprotease toxins, ion channel impairing toxins, hemorrhagic toxins, serine protease toxins, phospholipase toxins, pore-forming toxins, and multifunction toxins may cause various major deleterious effects in prey, predators, and competitors. These results provide valuable new insights into the venom composition of cnidarians, and venomous marine organisms in general, and offer new opportunities for further research into novel and valuable bioactive molecules for medicine, agronomics and biotechnology.
Collapse
Affiliation(s)
| | - Roman Netzer
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany; Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Nina Bloecher
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| |
Collapse
|
4
|
Hillberg AK, Smith MK, Lausen BS, Suwansa-ard S, Johnston R, Mitu SA, MacDonald LE, Zhao M, Motti CA, Wang T, Elizur A, Nakashima K, Satoh N, Cummins SF. Crown-of-thorns starfish spines secrete defence proteins. PeerJ 2023; 11:e15689. [PMID: 37637177 PMCID: PMC10448888 DOI: 10.7717/peerj.15689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/14/2023] [Indexed: 08/29/2023] Open
Abstract
Background The crown-of-thorns starfish (COTS; Acanthaster species) is a slow-moving corallivore protected by an extensive array of long, sharp toxic spines. Envenomation can result in nausea, numbness, vomiting, joint aches and sometimes paralysis. Small molecule saponins and the plancitoxin proteins have been implicated in COTS toxicity. Methods Brine shrimp lethality assays were used to confirm the secretion of spine toxin biomolecules. Histological analysis, followed by spine-derived proteomics helped to explain the source and identity of proteins, while quantitative RNA-sequencing and phylogeny confirmed target gene expression and relative conservation, respectively. Results We demonstrate the lethality of COTS spine secreted biomolecules on brine shrimp, including significant toxicity using aboral spine semi-purifications of >10 kDa (p > 0.05, 9.82 µg/ml), supporting the presence of secreted proteins as toxins. Ultrastructure observations of the COTS aboral spine showed the presence of pores that could facilitate the distribution of secreted proteins. Subsequent purification and mass spectrometry analysis of spine-derived proteins identified numerous secretory proteins, including plancitoxins, as well as those with relatively high gene expression in spines, including phospholipase A2, protease inhibitor 16-like protein, ependymin-related proteins and those uncharacterized. Some secretory proteins (e.g., vitellogenin and deleted in malignant brain tumor protein 1) were not highly expressed in spine tissue, yet the spine may serve as a storage or release site. This study contributes to our understanding of the COTS through functional, ultrastructural and proteomic analysis of aboral spines.
Collapse
Affiliation(s)
- Adam K. Hillberg
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Meaghan K. Smith
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Blake S. Lausen
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Saowaros Suwansa-ard
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Ryan Johnston
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Shahida A. Mitu
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Leah E. MacDonald
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Min Zhao
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Cherie A. Motti
- Australian Institute of Marine Science, Townsville, Australia
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Keisuke Nakashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
5
|
Pavlin M, Lojk J, Strojan K, Hafner-Bratkovič I, Jerala R, Leonardi A, Križaj I, Drnovšek N, Novak S, Veranič P, Bregar VB. The Relevance of Physico-Chemical Properties and Protein Corona for Evaluation of Nanoparticles Immunotoxicity-In Vitro Correlation Analysis on THP-1 Macrophages. Int J Mol Sci 2022; 23:6197. [PMID: 35682872 PMCID: PMC9181693 DOI: 10.3390/ijms23116197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Alongside physiochemical properties (PCP), it has been suggested that the protein corona of nanoparticles (NPs) plays a crucial role in the response of immune cells to NPs. However, due to the great variety of NPs, target cells, and exposure protocols, there is still no clear relationship between PCP, protein corona composition, and the immunotoxicity of NPs. In this study, we correlated PCP and the protein corona composition of NPs to the THP-1 macrophage response, focusing on selected toxicological endpoints: cell viability, reactive oxygen species (ROS), and cytokine secretion. We analyzed seven commonly used engineered NPs (SiO2, silver, and TiO2) and magnetic NPs. We show that with the exception of silver NPs, all of the tested TiO2 types and SiO2 exhibited moderate toxicities and a transient inflammatory response that was observed as an increase in ROS, IL-8, and/or IL-1β cytokine secretion. We observed a strong correlation between the size of the NPs in media and IL-1β secretion. The induction of IL-1β secretion was completely blunted in NLR family pyrin domain containing 3 (NLRP3) knockout THP-1 cells, indicating activation of the inflammasome. The correlations analysis also implicated the association of specific NP corona proteins with the induction of cytokine secretion. This study provides new insights toward a better understanding of the relationships between PCP, protein corona, and the inflammatory response of macrophages for different engineered NPs, to which we are exposed on a daily basis.
Collapse
Grants
- J7-7424, J2-6758, J3-1746, J3-6794, J3-7494, Z4-8229, P1-0055, P3-0108, P1-0207, P4-0220, P2-0087, P4-0176, young researchers program and MRIC UL IP-0510 Infrastructure program Slovenian Research Agency
- ISO-FOOD (FP7-REGPOT) European Commission
Collapse
Affiliation(s)
- Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| | - Jasna Lojk
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| | - Klemen Strojan
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (I.H.-B.); (R.J.)
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (I.H.-B.); (R.J.)
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (A.L.); (I.K.)
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (A.L.); (I.K.)
| | - Nataša Drnovšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (N.D.); (S.N.)
| | - Saša Novak
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (N.D.); (S.N.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia;
| | - Vladimir Boštjan Bregar
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| |
Collapse
|
6
|
Americus B, Hams N, Klompen AML, Alama-Bermejo G, Lotan T, Bartholomew JL, Atkinson SD. The cnidarian parasite Ceratonova shasta utilizes inherited and recruited venom-like compounds during infection. PeerJ 2022; 9:e12606. [PMID: 35003924 PMCID: PMC8684318 DOI: 10.7717/peerj.12606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cnidarians are the most ancient venomous organisms. They store a cocktail of venom proteins inside unique stinging organelles called nematocysts. When a cnidarian encounters chemical and physical cues from a potential threat or prey animal, the nematocyst is triggered and fires a harpoon-like tubule to penetrate and inject venom into the prey. Nematocysts are present in all Cnidaria, including the morphologically simple Myxozoa, which are a speciose group of microscopic, spore-forming, obligate parasites of fish and invertebrates. Rather than predation or defense, myxozoans use nematocysts for adhesion to hosts, but the involvement of venom in this process is poorly understood. Recent work shows some myxozoans have a reduced repertoire of venom-like compounds (VLCs) relative to free-living cnidarians, however the function of these proteins is not known. Methods We searched for VLCs in the nematocyst proteome and a time-series infection transcriptome of Ceratonova shasta, a myxozoan parasite of salmonid fish. We used four parallel approaches to detect VLCs: BLAST and HMMER searches to preexisting cnidarian venom datasets, the machine learning tool ToxClassifier, and structural modeling of nematocyst proteomes. Sequences that scored positive by at least three methods were considered VLCs. We then mapped their time-series expressions in the fish host and analyzed their phylogenetic relatedness to sequences from other venomous animals. Results We identified eight VLCs, all of which have closely related sequences in other myxozoan datasets, suggesting a conserved venom profile across Myxozoa, and an overall reduction in venom diversity relative to free-living cnidarians. Expression of the VLCs over the 3-week fish infection varied considerably: three sequences were most expressed at one day post-exposure in the fish’s gills; whereas expression of the other five VLCs peaked at 21 days post-exposure in the intestines, coinciding with the formation of mature parasite spores with nematocysts. Expression of VLC genes early in infection, prior to the development of nematocysts, suggests venoms in C. shasta have been repurposed to facilitate parasite invasion and proliferation within the host. Molecular phylogenetics suggested some VLCs were inherited from a cnidarian ancestor, whereas others were more closely related to sequences from venomous non-Cnidarian organisms and thus may have gained qualities of venom components via convergent evolution. The presence of VLCs and their differential expression during parasite infection enrich the concept of what functions a “venom” can have and represent targets for designing therapeutics against myxozoan infections.
Collapse
Affiliation(s)
- Benjamin Americus
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Nicole Hams
- Columbia River Fish and Wildlife Conservation Office, U.S. Fish and Wildlife Service, Vancouver, Washington, United States of America
| | - Anna M L Klompen
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gema Alama-Bermejo
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
7
|
Insect Protein-Based Diet as Potential Risk of Allergy in Dogs. Animals (Basel) 2021; 11:ani11071942. [PMID: 34209808 PMCID: PMC8300419 DOI: 10.3390/ani11071942] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Before insects can be used widely as an alternative source of dietary protein, their allerginicity should be investigated. Therefore, the aim of our study was to assess the potential adverse reactions of the immune system of dogs against Tenebrio molitor proteins. Dogs sensitised to storage mites T. putrescentiae and A. siro were included. Clinically healthy and clinically allergic dogs were compared. Proteins were extracted from mealworm larvae and their digestibility determined by in vitro incubation with digestive proteases. Mealworm protein extracts and digests were analysed by SDS-PAGE. Canine sera tested for the presence of mite-specific IgEs were used for subsequent Western blotting. LC-MS/MS analysis was used to identify mealworm proteins and their allergenic potential was predicted with the AllermatchTM tool. The binding of canine sera IgEs to mealworm proteins was confirmed; however, the differences between the two groups of dogs were not significant. Moreover, no clear correlation was found between sensitisation to storage mites and clinical status of the dogs. Altogether, 17 different proteins were identified, including tropomyosin, α-amylase, and Tm-E1a cuticular protein that are known cross-reacting IgE-binding allergens. Our results suggest that dogs allergic to mites may clinically express also the cross-reactivity with mealworm proteins.
Collapse
|
8
|
De novo transcriptome sequencing of triton shell Charonia lampas sauliae: Identification of genes related to neurotoxins and discovery of genetic markers. Mar Genomics 2021; 59:100862. [PMID: 33827771 DOI: 10.1016/j.margen.2021.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 11/20/2022]
Abstract
Charonia lampas sauliae (triton snails, triton shells or tritons; Mollusca, Caenogastropoda, Littorinimorpha, Ranellidae) is a marine species with a wide distribution. In Korea, this species is listed as vulnerable and is regionally protected as an endangered species. Here, we report the first comprehensive transcriptome dataset of C. lampas sauliae obtained using the Illumina HiSeq 2500 platform. In total, 97.68% of raw read sequences were processed as clean reads. Of the 577,478 contigs obtained, 146,026 sequences were predicted to contain coding regions. About 89.34% of all annotated unigene sequences showed homologous matches to protein sequences in PANM DB (Protostome database). Further, about one-third of the unigene sequences were annotated using the UniGene, Swiss-Prot, Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases. In total, 190 enzymes were predicted under key metabolic pathways under stood through Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotation. Repetitive elements such as long terminal repeats (LTRs), short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), and DNA elements were enriched in the unigene sequences. Among the identified transcripts were the channel proteins, some of which were blocked by tetrodotoxin, which is thought to be synthesized by symbiotic bacteria inhabiting the shells. In addition, conotoxin superfamily peptides, such as B-conotoxin, conotoxin superfamily T and alpha-conotoxin, were identified, which may have relevance to biomedical and evolutionary research. A transcriptome-wide search for polymorphic loci identified 21,568 simple sequence repeats (SSRs) in the unigene sequences. Most SSRs were dinucleotides, among which AC/GT was the dominant SSR type. The molecular and genetic resources revealed in this study could be utilized for investigations on the fitness of the species in the marine environment and sustainability in a changing habitat.
Collapse
|
9
|
Latinović Z, Leonardi A, Koh CY, Kini RM, Trampuš Bakija A, Pungerčar J, Križaj I. The Procoagulant Snake Venom Serine Protease Potentially Having a Dual, Blood Coagulation Factor V and X-Activating Activity. Toxins (Basel) 2020; 12:toxins12060358. [PMID: 32485989 PMCID: PMC7354534 DOI: 10.3390/toxins12060358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
A procoagulant snake venom serine protease was isolated from the venom of the nose-horned viper (Vipera ammodytes ammodytes). This 34 kDa glycoprotein, termed VaaSP-VX, possesses five kDa N-linked carbohydrates. Amino acid sequencing showed VaaSP-VX to be a chymotrypsin-like serine protease. Structurally, it is highly homologous to VaaSP-6 from the same venom and to nikobin from the venom of Vipera nikolskii, neither of which have known functions. VaaSP-VX does not affect platelets. The specific proteolysis of blood coagulation factors X and V by VaaSP-VX suggests that its blood-coagulation-inducing effect is due to its ability to activate these two blood coagulation factors, which following activation, combine to form the prothrombinase complex. VaaSP-VX may thus represent the first example of a serine protease with such a dual activity, which makes it a highly suitable candidate to replace diluted Russell’s viper venom in lupus anticoagulant testing, thus achieving greater reliability of the analysis. As a blood-coagulation-promoting substance that is resistant to serpin inhibition, VaaSP-VX is also interesting from the therapeutic point of view for treating patients suffering from hemophilia.
Collapse
Affiliation(s)
- Zorica Latinović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.L.); (J.P.)
- Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.L.); (J.P.)
| | - Cho Yeow Koh
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (C.Y.K.); (R.M.K.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - R. Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (C.Y.K.); (R.M.K.)
| | - Alenka Trampuš Bakija
- Division of Pediatrics, University Medical Center, Bohoričeva 20, SI-1000 Ljubljana, Slovenia;
| | - Jože Pungerčar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.L.); (J.P.)
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.L.); (J.P.)
- Correspondence:
| |
Collapse
|
10
|
Klein AH, Ballard KR, Storey KB, Motti CA, Zhao M, Cummins SF. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: from ecological application to breakthrough phylogenomic studies. Brief Funct Genomics 2020; 18:377-394. [PMID: 31609407 DOI: 10.1093/bfgp/elz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Gastropods are the largest and most diverse class of mollusc and include species that are well studied within the areas of taxonomy, aquaculture, biomineralization, ecology, microbiome and health. Gastropod research has been expanding since the mid-2000s, largely due to large-scale data integration from next-generation sequencing and mass spectrometry in which transcripts, proteins and metabolites can be readily explored systematically. Correspondingly, the huge data added a great deal of complexity for data organization, visualization and interpretation. Here, we reviewed the recent advances involving gastropod omics ('gastropodomics') research from hundreds of publications and online genomics databases. By summarizing the current publicly available data, we present an insight for the design of useful data integrating tools and strategies for comparative omics studies in the future. Additionally, we discuss the future of omics applications in aquaculture, natural pharmaceutical biodiscovery and pest management, as well as to monitor the impact of environmental stressors.
Collapse
Affiliation(s)
- Anne H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kaylene R Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville Queensland 4810, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
11
|
Biological Activities and Proteomic Profile of the Venom of Vipera ursinii ssp., a very Rare Karst Viper from Croatia. Toxins (Basel) 2020; 12:toxins12030187. [PMID: 32188060 PMCID: PMC7150868 DOI: 10.3390/toxins12030187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The karst viper (Vipera ursinii ssp.) favours high-mountain dry grasslands in southern and south-eastern Croatia. It is medically less important than other Vipera species, because of its remote habitat and the very small amount of venom that it injects by its relatively short fangs. The scientific literature on Vipera ursinii deals mostly with the morphology, ecology and distribution range of this snake, due to the species’ conservation issues, while the toxinological aspects of its venom have not so far been investigated. Here we report on the composition and biological activity of the Vipera ursinii ssp. venom. Using a proteomics approach, we have identified 25 proteins in the venom that belong to seven protein families: snake venom metalloproteinase, serine protease, secreted phospholipase A2, cysteine-rich secretory protein, snake C-type lectin-like protein, serine protease inhibitor and nerve growth factor. The Vipera ursinii ssp. venom was found to be distinctively insecticidal. Its lethal toxicity towards crickets was more than five times greater than that of Vipera ammodytes ammodytes venom, while the opposite held in mice. Interestingly, the mode of dying after injecting a mouse with Vipera ursinii ssp. venom may suggest the presence of a neurotoxic component. Neurotoxic effects of European vipers have so far been ascribed exclusively to ammodytoxins and ammodytoxin-like basic secreted phospholipases A2. Structural and immunological analyses of the Vipera ursinii ssp. venom, however, confirmed that ammodytoxin-like proteins are not present in this venom.
Collapse
|
12
|
Ceolin Mariano DO, de Oliveira ÚC, Zaharenko AJ, Pimenta DC, Rádis-Baptista G, Prieto-da-Silva ÁRDB. Bottom-Up Proteomic Analysis of Polypeptide Venom Components of the Giant Ant Dinoponera Quadriceps. Toxins (Basel) 2019; 11:toxins11080448. [PMID: 31362422 PMCID: PMC6722740 DOI: 10.3390/toxins11080448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 12/26/2022] Open
Abstract
Ant species have specialized venom systems developed to sting and inoculate a biological cocktail of organic compounds, including peptide and polypeptide toxins, for the purpose of predation and defense. The genus Dinoponera comprises predatory giant ants that inoculate venom capable of causing long-lasting local pain, involuntary shaking, lymphadenopathy, and cardiac arrhythmias, among other symptoms. To deepen our knowledge about venom composition with regard to protein toxins and their roles in the chemical-ecological relationship and human health, we performed a bottom-up proteomics analysis of the crude venom of the giant ant D. quadriceps, popularly known as the "false" tocandiras. For this purpose, we used two different analytical approaches: (i) gel-based proteomics approach, wherein the crude venom was resolved by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and all protein bands were excised for analysis; (ii) solution-based proteomics approach, wherein the crude venom protein components were directly fragmented into tryptic peptides in solution for analysis. The proteomic data that resulted from these two methodologies were compared against a previously annotated transcriptomic database of D. quadriceps, and subsequently, a homology search was performed for all identified transcript products. The gel-based proteomics approach unequivocally identified nine toxins of high molecular mass in the venom, as for example, enzymes [hyaluronidase, phospholipase A1, dipeptidyl peptidase and glucose dehydrogenase/flavin adenine dinucleotide (FAD) quinone] and diverse venom allergens (homologous of the red fire ant Selenopsis invicta) and venom-related proteins (major royal jelly-like). Moreover, the solution-based proteomics revealed and confirmed the presence of several hydrolases, oxidoreductases, proteases, Kunitz-like polypeptides, and the less abundant inhibitor cysteine knot (ICK)-like (knottin) neurotoxins and insect defensin. Our results showed that the major components of the D. quadriceps venom are toxins that are highly likely to damage cell membranes and tissue, to cause neurotoxicity, and to induce allergic reactions, thus, expanding the knowledge about D. quadriceps venom composition and its potential biological effects on prey and victims.
Collapse
Affiliation(s)
| | | | | | - Daniel Carvalho Pimenta
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo SP 05503-900, Brazil
| | - Gandhi Rádis-Baptista
- Laboratorio of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza CE 60165-081, Brazil.
| | | |
Collapse
|
13
|
Gerdol M, Cervelli M, Oliverio M, Modica MV. Piercing Fishes: Porin Expansion and Adaptation to Hematophagy in the Vampire Snail Cumia reticulata. Mol Biol Evol 2019; 35:2654-2668. [PMID: 30099551 PMCID: PMC6231492 DOI: 10.1093/molbev/msy156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytolytic pore-forming proteins are widespread in living organisms, being mostly involved in both sides of the host-pathogen interaction, either contributing to the innate defense or promoting infection. In venomous organisms, such as spiders, insects, scorpions, and sea anemones, pore-forming proteins are often secreted as key components of the venom. Coluporins are pore-forming proteins recently discovered in the Mediterranean hematophagous snail Cumia reticulata (Colubrariidae), highly expressed in the salivary glands that discharge their secretion at close contact with the host. To understand their putative functional role, we investigated coluporins' molecular diversity and evolutionary patterns. Coluporins is a well-diversified family including at least 30 proteins, with an overall low sequence similarity but sharing a remarkably conserved actinoporin-like predicted structure. Tracking the evolutionary history of the molluscan porin genes revealed a scattered distribution of this family, which is present in some other lineages of predatory gastropods, including venomous conoidean snails. Comparative transcriptomic analyses highlighted the expansion of porin genes as a lineage-specific feature of colubrariids. Coluporins seem to have evolved from a single ancestral porin gene present in the latest common ancestor of all Caenogastropoda, undergoing massive expansion and diversification in this colubrariid lineage through repeated gene duplication events paired with widespread episodic positive selection. As for other parasites, these findings are congruent with a "one-sided arms race," equipping the parasite with multiple variants in order to broaden its host spectrum. Overall, our results pinpoint a crucial adaptive role for coluporins in the evolution of the peculiar trophic ecology of vampire snails.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, Trieste University, Italy
| | | | - Marco Oliverio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Roma, Italy
| | - Maria Vittoria Modica
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.,UMR5247, University of Montpellier, France
| |
Collapse
|
14
|
Gredar T, Leonardi A, Novak M, Sepčić K, Mali LB, Križaj I, Kostanjšek R. Vitellogenin in the European cave salamander, Proteus anguinus: Its characterization and dynamics in a captive female as a basis for non-destructive sex identification. Comp Biochem Physiol B Biochem Mol Biol 2019; 235:30-37. [PMID: 31170475 DOI: 10.1016/j.cbpb.2019.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 11/29/2022]
Abstract
Vitellogenin (Vtg) is a precursor protein of egg yolk proteins in oviparous and ovoviviparous vertebrates. Except in a case of exposure to estrogenic endocrine disruptors, Vtg is a female-specific protein and could be used as a molecular marker for sex identification. This would be especially useful in the case of the endangered European cave salamander Proteus anguinus in which sexes are indistinguishable according to external morphology, which hinders the establishment of a successful captive breeding program. Here we describe the identification, partial characterization, and purification of Vtg from P. anguinus. Vtg was identified in the plasma of a vitellogenic proteus female with visible oocytes. The identification of this protein was accomplished by mass spectrometry analysis. Two-dimensional gel electrophoresis revealed proteus Vtg as a mix of 190 kDa isoforms with isoelectric points in the pH range 5.3-6.0. Vtg was purified from proteus blood by gel filtration followed by anion-exchange chromatography. Using specific staining of SDS-PAGE gels, the Vtg was found to be phosphorylated and lipidated. Unlike the case in some other aquatic vertebrates, in P. anguinus, Vtg was not present in detectable amounts in cutaneous mucus. Degradation of oocytes in the captive vitellogenic female was accompanied by simultaneous decrease of Vtg concentration. Over a period of 10 months, the concentration of Vtg dropped from maximal to sub-detectable. Our results show that Vtg is a promising molecular marker for sex identification and ovary maturation in P. anguinus, which could contribute to the development of a viable program for captive reproduction of this unique species.
Collapse
Affiliation(s)
- Tajda Gredar
- Department of Biology, Biotechnical faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Maruša Novak
- Department of Biology, Biotechnical faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | - Kristina Sepčić
- Department of Biology, Biotechnical faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | - Lilijana Bizjak Mali
- Department of Biology, Biotechnical faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia.
| | - Rok Kostanjšek
- Department of Biology, Biotechnical faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Leonardi A, Sajevic T, Pungerčar J, Križaj I. Comprehensive Study of the Proteome and Transcriptome of the Venom of the Most Venomous European Viper: Discovery of a New Subclass of Ancestral Snake Venom Metalloproteinase Precursor-Derived Proteins. J Proteome Res 2019; 18:2287-2309. [PMID: 31017792 PMCID: PMC6727599 DOI: 10.1021/acs.jproteome.9b00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
nose-horned viper, its nominotypical subspecies Vipera
ammodytes ammodytes (Vaa), in particular,
is, medically, one of the most relevant snakes in Europe. The local
and systemic clinical manifestations of poisoning by the venom of
this snake are the result of the pathophysiological effects inflicted
by enzymatic and nonenzymatic venom components acting, most prominently,
on the blood, cardiovascular, and nerve systems. This venom is a very
complex mixture of pharmacologically active proteins and peptides.
To help improve the current antivenom therapy toward higher specificity
and efficiency and to assist drug discovery, we have constructed,
by combining transcriptomic and proteomic analyses, the most comprehensive
library yet of the Vaa venom proteins and peptides.
Sequence analysis of the venom gland cDNA library has revealed the
presence of messages encoding 12 types of polypeptide precursors.
The most abundant are those for metalloproteinase inhibitors (MPis),
bradykinin-potentiating peptides (BPPs), and natriuretic peptides
(NPs) (all three on a single precursor), snake C-type lectin-like
proteins (snaclecs), serine proteases (SVSPs), P-II and P-III metalloproteinases
(SVMPs), secreted phospholipases A2 (sPLA2s),
and disintegrins (Dis). These constitute >88% of the venom transcriptome.
At the protein level, 57 venom proteins belonging to 16 different
protein families have been identified and, with SVSPs, sPLA2s, snaclecs, and SVMPs, comprise ∼80% of all venom proteins.
Peptides detected in the venom include NPs, BPPs, and inhibitors of
SVSPs and SVMPs. Of particular interest, a transcript coding for a
protein similar to P-III SVMPs but lacking the MP domain was also
found at the protein level in the venom. The existence of such proteins,
also supported by finding similar venom gland transcripts in related
snake species, has been demonstrated for the first time, justifying
the proposal of a new P-IIIe subclass of ancestral SVMP precursor-derived
proteins.
Collapse
Affiliation(s)
- Adrijana Leonardi
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Tamara Sajevic
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Jože Pungerčar
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
16
|
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
| | - Manuel J. Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias; Universidad de Cádiz; Puerto Real Spain
| | - Juan E. Uribe
- Departamento de Biodiversidad y Biología Evolutiva; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
- Department of Invertebrate Zoology, Smithsonian Institution; National Museum of Natural History; Washington District of Columbia USA
- Grupo de Evolución, Sistemática y Ecología Molecular; Universidad del Magdalena; Santa Marta Colombia
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
| |
Collapse
|
17
|
Möller C, Davis WC, Clark E, DeCaprio A, Marí F. Conodipine-P1-3, the First Phospholipases A 2 Characterized from Injected Cone Snail Venom. Mol Cell Proteomics 2019; 18:876-891. [PMID: 30765458 DOI: 10.1074/mcp.ra118.000972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2s) superfamily are ubiquitous small enzymes that catalyze the hydrolysis of phospholipids at the sn-2 ester bond. PLA2s in the venom of cone snails (conodipines, Cdpi) are composed of two chains termed as alpha and beta subunits. Conodipines are categorized within the group IX of PLA2s. Here we describe the purification and biochemical characterization of three conodipines (Cdpi-P1, -P2 and -P3) isolated from the injected venom of Conus purpurascens Using proteomics methods, we determined the full sequences of all three conodipines. Conodipine-P1-3 have conserved consensus catalytic domain residues, including the Asp/His dyad. Additionally, these enzymes are expressed as a mixture of proline hydroxylated isoforms. The activities of the native Conodipine-Ps were evaluated by conventional colorimetric and by MS-based methods, which provide the first detailed cone snail venom conodipine activity monitored by mass spectrometry. Conodipines can have medicinal applications such inhibition of cancer proliferation, bacterial and viral infections among others.
Collapse
Affiliation(s)
- Carolina Möller
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412
| | - W Clay Davis
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412
| | - Evan Clark
- §Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| | - Anthony DeCaprio
- ¶Department of Chemistry and Biochemistry, Florida International University, SW 8th St, Miami, Florida, 33119
| | - Frank Marí
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412;.
| |
Collapse
|
18
|
Bose U, Wang T, Zhao M, Motti CA, Hall MR, Cummins SF. Multiomics analysis of the giant triton snail salivary gland, a crown-of-thorns starfish predator. Sci Rep 2017; 7:6000. [PMID: 28729681 PMCID: PMC5519703 DOI: 10.1038/s41598-017-05974-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/02/2017] [Indexed: 01/13/2023] Open
Abstract
The giant triton snail (Charonia tritonis) is one of the few natural predators of the adult Crown-of-Thorns starfish (COTS), a corallivore that has been damaging to many reefs in the Indo-Pacific. Charonia species have large salivary glands (SGs) that are suspected to produce either a venom and/or sulphuric acid which can immobilize their prey and neutralize the intrinsic toxic properties of COTS. To date, there is little information on the types of toxins produced by tritons. In this paper, the predatory behaviour of the C. tritonis is described. Then, the C. tritonis SG, which itself is made up of an anterior lobe (AL) and posterior lobe (PL), was analyzed using an integrated transcriptomics and proteomics approach, to identify putative toxin- and feeding-related proteins. A de novo transcriptome database and in silico protein analysis predicts that ~3800 proteins have features consistent with being secreted. A gland-specific proteomics analysis confirmed the presence of numerous SG-AL and SG-PL proteins, including those with similarity to cysteine-rich venom proteins. Sulfuric acid biosynthesis enzymes were identified, specific to the SG-PL. Our analysis of the C. tritonis SG (AL and PL) has provided a deeper insight into the biomolecular toolkit used for predation and feeding by C. tritonis.
Collapse
Affiliation(s)
- U Bose
- Faculty of Science, Health, Education and Engineering, Genecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
- Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia
| | - T Wang
- Faculty of Science, Health, Education and Engineering, Genecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - M Zhao
- Faculty of Science, Health, Education and Engineering, Genecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - C A Motti
- Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia
| | - M R Hall
- Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia
| | - S F Cummins
- Faculty of Science, Health, Education and Engineering, Genecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia.
| |
Collapse
|
19
|
Isolation and characterization of Conohyal-P1, a hyaluronidase from the injected venom of Conus purpurascens. J Proteomics 2017; 164:73-84. [PMID: 28479398 DOI: 10.1016/j.jprot.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/13/2017] [Accepted: 05/02/2017] [Indexed: 11/21/2022]
Abstract
Hyaluronidases are ubiquitous enzymes commonly found in venom and their main function is to degrade hyaluran, which is the major glycosaminoglycan of the extracellular matrix in animal tissues. Here we describe the purification and characterization of a 60kDa hyaluronidase found in the injected venom from Conus purpurascens, Conohyal-P1. Using a combined strategy based on transcriptomic and proteomic analysis, we determined the Conohyal-P1 sequence. Conohyal-P1 has conserved consensus catalytic and positioning domain residues characteristic of hyaluronidases and a C-terminus EGF-like domain. Additionally, the enzyme is expressed as a mixture of glycosylated isoforms at five asparagine sites. The activity of the native Conohyal-P1 was assess MS-based methods and confirmed by classical turbidimetric methods. The MS-based assay is particularly sensitive and provides the first detailed analysis of a venom hyaluronidase activity monitored with this method. The discovery of new hyaluronidases and the development of techniques to evaluate their performance can advance several therapeutic procedures, as these enzymes are widely used for enhanced drug delivery applications. BIOLOGICAL SIGNIFICANCE Cone snail venom is a remarkable source of therapeutically important molecules, as is the case of conotoxins, which have undergone extensive clinical trials for several applications. In addition to the conotoxins, a large array of proteins have been reported in the venom of several species of cone snails, including enzymes that were found in dissected and injected Conus venom. Here we describe the isolation and characterization of the hyaluronidase Conohyal-P1 from the injected venom of C. purpurascens. We employed a combined transcriptomic and proteomic analysis to obtain the full sequence of this hyaluronidase. The activity of Conohyal-P1 was assessed by a mass spectrometry-based method, which provide the first detailed venom hyaluronidase activity analysis monitored by mass spectrometry allowing the visualization of the substrate degradation by the enzyme.
Collapse
|
20
|
Marine genomics: News and views. Mar Genomics 2017; 31:1-8. [DOI: 10.1016/j.margen.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 11/23/2022]
|
21
|
Aili SR, Touchard A, Petitclerc F, Dejean A, Orivel J, Padula MP, Escoubas P, Nicholson GM. Combined Peptidomic and Proteomic Analysis of Electrically Stimulated and Manually Dissected Venom from the South American Bullet Ant Paraponera clavata. J Proteome Res 2017; 16:1339-1351. [DOI: 10.1021/acs.jproteome.6b00948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Samira R. Aili
- Neurotoxin
Research Group, School of Life Sciences, University of Technology Sydney, New South Wales 2007, Australia
| | - Axel Touchard
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
| | - Frédéric Petitclerc
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
| | - Alain Dejean
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
- Ecolab, Université de Toulouse, CNRS, INPT, UPS, 31400 Toulouse, France
| | - Jérôme Orivel
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
| | - Matthew P. Padula
- Proteomics
Core Facility, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines — Villa
3, Valbonne 06560, France
| | - Graham M. Nicholson
- Neurotoxin
Research Group, School of Life Sciences, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
22
|
Strojan K, Leonardi A, Bregar VB, Križaj I, Svete J, Pavlin M. Dispersion of Nanoparticles in Different Media Importantly Determines the Composition of Their Protein Corona. PLoS One 2017; 12:e0169552. [PMID: 28052135 PMCID: PMC5215476 DOI: 10.1371/journal.pone.0169552] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/19/2016] [Indexed: 12/28/2022] Open
Abstract
Protein corona of nanoparticles (NPs), which forms when these particles come in to contact with protein-containing fluids, is considered as an overlooked factor in nanomedicine. Through numerous studies it has been becoming increasingly evident that it importantly dictates the interaction of NPs with their surroundings. Several factors that determine the compositions of NPs protein corona have been identified in recent years, but one has remained largely ignored-the composition of media used for dispersion of NPs. Here, we determined the effect of dispersion media on the composition of protein corona of polyacrylic acid-coated cobalt ferrite NPs (PAA NPs) and silica NPs. Our results confirmed some of the basic premises such as NPs type-dependent specificity of the protein corona. But more importantly, we demonstrated the effect of the dispersion media on the protein corona composition. The differences between constituents of the media used for dispersion of NPs, such as divalent ions and macromolecules were responsible for the differences in protein corona composition formed in the presence of fetal bovine serum (FBS). Our results suggest that the protein corona composition is a complex function of the constituents present in the media used for dispersion of NPs. Regardless of the dispersion media and FBS concentration, majority of proteins from either PAA NPs or silica NPs coronas were involved in the process of transport and hemostasis. Interestingly, corona of silica NPs contained three complement system related proteins: complement factor H, complement C3 and complement C4 while PAA NPs bound only one immune system related protein, α-2-glycoprotein. Importantly, relative abundance of complement C3 protein in corona of silica NPs was increased when NPs were dispersed in NaCl, which further implies the relevance of dispersion media used to prepare NPs.
Collapse
Affiliation(s)
- Klemen Strojan
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Vladimir B. Bregar
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Svete
- Department of Organic Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Pavlin
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
23
|
Skočaj M, Yu Y, Grundner M, Resnik N, Bedina Zavec A, Leonardi A, Križaj I, Guella G, Maček P, Kreft ME, Frangež R, Veranič P, Sepčić K. Characterisation of plasmalemmal shedding of vesicles induced by the cholesterol/sphingomyelin binding protein, ostreolysin A-mCherry. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:2882-2893. [PMID: 27591807 DOI: 10.1016/j.bbamem.2016.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/10/2016] [Accepted: 08/30/2016] [Indexed: 12/27/2022]
Abstract
Ostreolysin A (OlyA) is a 15-kDa protein that binds selectively to cholesterol/sphingomyelin membrane nanodomains. This binding induces the production of extracellular vesicles (EVs) that comprise both microvesicles with diameters between 100nm and 1μm, and larger vesicles of around 10-μm diameter in Madin-Darby canine kidney cells. In this study, we show that vesiculation of these cells by the fluorescent fusion protein OlyA-mCherry is not affected by temperature, is not mediated via intracellular Ca2+ signalling, and does not compromise cell viability and ultrastructure. Seventy-one proteins that are mostly of cytosolic and nuclear origin were detected in these shed EVs using mass spectroscopy. In the cells and EVs, 218 and 84 lipid species were identified, respectively, and the EVs were significantly enriched in lysophosphatidylcholines and cholesterol. Our collected data suggest that OlyA-mCherry binding to cholesterol/sphingomyelin membrane nanodomains induces specific lipid sorting into discrete patches, which promotes plasmalemmal blebbing and EV shedding from the cells. We hypothesize that these effects are accounted for by changes of local membrane curvature upon the OlyA-mCherry-plasmalemma interaction. We suggest that the shed EVs are a potentially interesting model for biophysical and biochemical studies of cell membranes, and larger vesicles could represent tools for non-invasive sampling of cytosolic proteins from cells and thus metabolic fingerprinting.
Collapse
Affiliation(s)
- Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia; Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| | - Yang Yu
- Bioorganic Chemistry Laboratory, Department of Physics, Via Sommarive 14, University of Trento, Povo (TN), Italy.
| | - Maja Grundner
- Institute of Biophysics, Faculty of Medicine, Vrazov trg 2, University of Ljubljana, Ljubljana, Slovenia.
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| | - Apolonija Bedina Zavec
- Laboratory of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia; Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, Večna pot 113, University of Ljubljana, Ljubljana, Slovenia.
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, Via Sommarive 14, University of Trento, Povo (TN), Italy.
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia.
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| | - Robert Frangež
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, Gerbičeva 60, University of Ljubljana, Ljubljana, Slovenia.
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Obradović D, Gašperšič R, Caserman S, Leonardi A, Jamnik M, Podlesek Z, Seme K, Anderluh G, Križaj I, Maček P, Butala M. A Cytolethal Distending Toxin Variant from Aggregatibacter actinomycetemcomitans with an Aberrant CdtB That Lacks the Conserved Catalytic Histidine 160. PLoS One 2016; 11:e0159231. [PMID: 27414641 PMCID: PMC4945079 DOI: 10.1371/journal.pone.0159231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
The periodontopathogen Aggregatibacter actinomycetemcomitans synthesizes several virulence factors, including cytolethal distending toxin (CDT). The active CDT holoenzyme is an AB-type tripartite genotoxin that affects eukaryotic cells. Subunits CdtA and CdtC (B-components) allow binding and intracellular translocation of the active CdtB (A-component), which elicits nuclear DNA damage. Different strains of A. actinomycetemcomitans have diverse virulence genotypes, which results in varied pathogenic potential and disease progression. Here, we identified an A. actinomycetemcomitans strain isolated from two patients with advance chronic periodontitis that has a regular cdtABC operon, which, however, codes for a unique, shorter, variant of the CdtB subunit. We describe the characteristics of this CdtBΔ116–188, which lacks the intact nuclear localisation signal and the catalytic histidine 160. We show that the A. actinomycetemcomitans DO15 isolate secretes CdtBΔ116–188, and that this subunit cannot form a holotoxin and is also not genotoxic if expressed ectopically in HeLa cells. Furthermore, the A. actinomycetemcomitans DO15 isolate is not toxic, nor does it induce cellular distention upon infection of co-cultivated HeLa cells. Biological significance of this deletion in the cdtB remains to be explained.
Collapse
Affiliation(s)
- Davor Obradović
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Gašperšič
- Department of Oral Medicine and Periodontology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Caserman
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Jamnik
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Zdravko Podlesek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (PM); (MB)
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (PM); (MB)
| |
Collapse
|
25
|
Latinović Z, Leonardi A, Šribar J, Sajevic T, Žužek MC, Frangež R, Halassy B, Trampuš-Bakija A, Pungerčar J, Križaj I. Venomics of Vipera berus berus to explain differences in pathology elicited by Vipera ammodytes ammodytes envenomation: Therapeutic implications. J Proteomics 2016; 146:34-47. [PMID: 27327134 DOI: 10.1016/j.jprot.2016.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/12/2023]
Abstract
UNLABELLED Vipera berus berus (Vbb) is the most widely distributed and Vipera ammodytes ammodytes (Vaa) the most venomous viper in Europe. In particular areas of the Old continent their toxic bites constitute a considerable public health problem. To make the current envenomation therapy more effective we have analysed the proteome of Vbb venom and compared it with that of Vaa. We found the proteome of Vbb to be much less complex and to contain smaller levels of particularly snaclecs and sPLA2s. Snaclecs are probably responsible for thrombocytopenia. The neurotoxic sPLA2s, ammodytoxins, are responsible for the most specific feature of the Vaa venom poisoning - induction of signs of neurotoxicity in patients. These molecules were not found in Vbb venom. Both venoms induce haemorrhage and coagulopathy in man. As Vaa and Vbb venoms possess homologous P-III snake venom metalloproteinases, the main haemorrhagic factors, the severity of the haemorrhage is dictated by concentration and specific activity of these molecules. The much greater anticoagulant effect of Vaa venom than that of Vbb venom lies in its higher extrinsic pathway coagulation factor-proteolysing activity and content of ammodytoxins which block the prothrombinase complex formation. BIOLOGICAL SIGNIFICANCE Envenomations by venomous snakes constitute a considerable public health problem worldwide, and also in Europe. In the submitted work we analysed the venom proteome of Vipera berus berus (Vbb), the most widely distributed venomous snake in Europe and compared it with the venom proteome of the most venomous viper in Europe, Vipera ammodytes ammodytes (Vaa). We have offered a possible explanation, at the molecular level, for the differences in clinical pictures inflicted by the Vbb and Vaa venoms. We have provided an explanation for the effectiveness of treatment of Vbb envenomation by Vaa antiserum and explained why full protection of Vaa venom poisoning by Vbb antiserum should not be always expected, especially not in cases of severe poisoning. The latter makes a strong case for Vaa antiserum production as we are faced with its shortage due to ceasing of production of two most frequently used products.
Collapse
Affiliation(s)
- Zorica Latinović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tamara Sajevic
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Monika C Žužek
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Frangež
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Croatia
| | | | - Jože Pungerčar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
26
|
Oldrati V, Arrell M, Violette A, Perret F, Sprüngli X, Wolfender JL, Stöcklin R. Advances in venomics. MOLECULAR BIOSYSTEMS 2016; 12:3530-3543. [DOI: 10.1039/c6mb00516k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The term “venomics” was coined to describe the global study of venom and venom glands, targeting comprehensive characterization of the whole toxin profile of a venomous animal by means of proteomics, transcriptomics, genomics and bioinformatics studies.
Collapse
Affiliation(s)
- Vera Oldrati
- Atheris SA
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
- EPGL
| | | | - Aude Violette
- Alphabiotoxine Laboratory Sprl
- Montroeul-au-Bois B-7911
- Belgium
| | | | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences
- EPGL
- University of Geneva
- University of Lausanne
- CMU
| | | |
Collapse
|
27
|
Drnovšek N, Kocen R, Gantar A, Drobnič-Košorok M, Leonardi A, Križaj I, Rečnik A, Novak S. Size of silk fibroin β-sheet domains affected by Ca2+. J Mater Chem B 2016; 4:6597-6608. [DOI: 10.1039/c6tb01101b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of bioactive glass or other Ca2+ source to fibroin changes scaffold degradation and the mechanical and protein secondary structure properties due to the reduction in the size of β-sheet domains.
Collapse
Affiliation(s)
- N. Drnovšek
- Department for Nanostructured Materials
- Jožef Stefan Institute
- Ljubljana
- Slovenia
| | - R. Kocen
- Department for Nanostructured Materials
- Jožef Stefan Institute
- Ljubljana
- Slovenia
| | - A. Gantar
- Department for Nanostructured Materials
- Jožef Stefan Institute
- Ljubljana
- Slovenia
| | - M. Drobnič-Košorok
- Institute of Physiology
- Pharmacology and Toxicology
- Veterinary Faculty
- University of Ljubljana
- Ljubljana
| | - A. Leonardi
- Department of Molecular and Biomedical Sciences
- Jožef Stefan Institute
- Ljubljana
- Slovenia
| | - I. Križaj
- Department of Molecular and Biomedical Sciences
- Jožef Stefan Institute
- Ljubljana
- Slovenia
- Faculty of Chemistry and Chemical Technology
| | - A. Rečnik
- Department for Nanostructured Materials
- Jožef Stefan Institute
- Ljubljana
- Slovenia
| | - S. Novak
- Department for Nanostructured Materials
- Jožef Stefan Institute
- Ljubljana
- Slovenia
- Jožef Stefan International Postgraduate School
| |
Collapse
|
28
|
Intraspecific variations in Conus purpurascens injected venom using LC/MALDI-TOF-MS and LC-ESI-TripleTOF-MS. Anal Bioanal Chem 2015; 407:6105-16. [PMID: 26048056 DOI: 10.1007/s00216-015-8787-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/07/2015] [Accepted: 05/18/2015] [Indexed: 12/31/2022]
Abstract
The venom of cone snails is composed of highly modified peptides (conopeptides) that target a variety of ion channels and receptors. The venom of these marine gastropods represents a largely untapped resource of bioactive compounds of potential pharmaceutical value. Here, we use a combination of bioanalytical techniques to uncover the extent of venom expression variability in Conus purpurascens, a fish-hunting cone snail species. The injected venom of nine specimens of C. purpurascens was separated by reversed-phase high-performance liquid chromatography (RP-HPLC), and fractions were analyzed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) in parallel with liquid chromatography-electrospray ionization (LC-ESI)-TripleTOF-MS to compare standard analytical protocols used in preparative bioassay-guided fractionations with a deeper peptidomic analysis. Here, we show that C. purpurascens exhibits pronounced intraspecific venom variability. RP-HPLC fractionation followed by MALDI-TOF-MS analysis of the injected venom of these nine specimens identified 463 distinct masses, with none common to all specimens. Using LC-ESI-TripleTOF-MS, the injected venom of these nine specimens yielded a total of 5517 unique masses. We also compare the injected venom of two specimens with their corresponding dissected venom. We found 2566 and 1990 unique masses for the dissected venom compared to 941 and 1959 masses in their corresponding injected venom. Of these, 742 and 1004 masses overlapped between the dissected and injected venom, respectively. The results indicate that larger conopeptide libraries can be assessed by studying multiple individuals of a given cone snail species. This expanded library of conopeptides enhances the opportunities for discovery of molecular modulators with direct relevance to human therapeutics. Graphical Abstract The venom of cone snails are extraordinarily complex mixtures of highly modified peptides. Venom analysis requires separation through RP-HPLC followed by MALDI-TOF mass spectrometry or direct analysis using LC-ESI-TripleTOF-MS. Using these techniques, venom intraspecific variability and comparison between injected and dissected were assessed.
Collapse
|
29
|
Upert G, Mourier G, Pastor A, Verdenaud M, Alili D, Servent D, Gilles N. High-throughput production of two disulphide-bridge toxins. Chem Commun (Camb) 2015; 50:8408-11. [PMID: 24947561 DOI: 10.1039/c4cc02679a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A quick and efficient production method compatible with high-throughput screening was developed using 36 toxins belonging to four different families of two disulphide-bridge toxins. Final toxins were characterized using HPLC co-elution, CD and pharmacological studies.
Collapse
Affiliation(s)
- Grégory Upert
- CEA, DSV, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA Saclay, Gif sur Yvette F-91191, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Biass D, Violette A, Hulo N, Lisacek F, Favreau P, Stöcklin R. Uncovering Intense Protein Diversification in a Cone Snail Venom Gland Using an Integrative Venomics Approach. J Proteome Res 2015; 14:628-38. [DOI: 10.1021/pr500583u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Daniel Biass
- Atheris Laboratories, case postale
314, CH-1233 Bernex-Geneva, Switzerland
| | - Aude Violette
- Atheris Laboratories, case postale
314, CH-1233 Bernex-Geneva, Switzerland
| | - Nicolas Hulo
- Atheris Laboratories, case postale
314, CH-1233 Bernex-Geneva, Switzerland
| | - Frédérique Lisacek
- Proteome
Informatics Group, Swiss Institute of Bioinformatics, rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
- Section
of Biology, University of Geneva, CH-1211 Geneva
4, Switzerland
| | - Philippe Favreau
- Atheris Laboratories, case postale
314, CH-1233 Bernex-Geneva, Switzerland
| | - Reto Stöcklin
- Atheris Laboratories, case postale
314, CH-1233 Bernex-Geneva, Switzerland
| |
Collapse
|
31
|
Conotoxin gene superfamilies. Mar Drugs 2014; 12:6058-101. [PMID: 25522317 PMCID: PMC4278219 DOI: 10.3390/md12126058] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022] Open
Abstract
Conotoxins are the peptidic components of the venoms of marine cone snails (genus Conus). They are remarkably diverse in terms of structure and function. Unique potency and selectivity profiles for a range of neuronal targets have made several conotoxins valuable as research tools, drug leads and even therapeutics, and has resulted in a concerted and increasing drive to identify and characterise new conotoxins. Conotoxins are translated from mRNA as peptide precursors, and cDNA sequencing is now the primary method for identification of new conotoxin sequences. As a result, gene superfamily, a classification based on precursor signal peptide identity, has become the most convenient method of conotoxin classification. Here we review each of the described conotoxin gene superfamilies, with a focus on the structural and functional diversity present in each. This review is intended to serve as a practical guide to conotoxin superfamilies and to facilitate interpretation of the increasing number of conotoxin precursor sequences being identified by targeted-cDNA sequencing and more recently high-throughput transcriptome sequencing.
Collapse
|
32
|
Looso M. Opening the genetic toolbox of niche model organisms with high throughput techniques: novel proteins in regeneration as a case study. Bioessays 2014; 36:407-18. [PMID: 24741707 DOI: 10.1002/bies.201300093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding in vivo regeneration of complex structures offers a fascinating perspective for translation into medical applications. Unfortunately, mammals in general lack large-scale regenerative capacity, whereas planarians, newts or Hydra can regenerate complete body parts. Such organisms are, however, poorly annotated because of the lack of sequence information. This leads to limited access for molecular biological investigations. In the last decade, high throughput technologies and new methods enabling the effective generation of transgenic animals have rapidly evolved. These developments have allowed the extensive use of niche model organisms as part of a trend towards the accessibility of a greater panel of model species for scientific research. The case study that follows provides an insight into the impact of high throughput techniques on the landscape of models of regeneration. The cases presented here give evidence of alternative stem cell maintenance pathways, the identification of new protein families and new stem cell markers.
Collapse
|
33
|
|
34
|
Li R, Yu H, Xue W, Yue Y, Liu S, Xing R, Li P. Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting. J Proteomics 2014; 106:17-29. [PMID: 24747124 DOI: 10.1016/j.jprot.2014.04.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/18/2014] [Accepted: 04/05/2014] [Indexed: 01/22/2023]
Abstract
UNLABELLED Jellyfish Stomolophus meleagris is a very dangerous animal because of its strong toxicity. However, the composition of the venom is still unclear. Both proteomics and transcriptomics approaches were applied in present study to investigate the major components and their possible relationships to the sting. The proteomics of the venom from S. meleagris was conducted by tryptic digestion of the crude venom followed by RP-HPLC separation and MS/MS analysis of the tryptic peptides. The venom gland transcriptome was analyzed using a high-throughput Illumina sequencing platform HiSeq 2000 with de novo assembly. A total of 218 toxins were identified including C-type lectin, phospholipase A₂ (PLA₂), potassium channel inhibitor, protease inhibitor, metalloprotease, hemolysin and other toxins, most of which should be responsible for the sting. Among them, serine protease inhibitor, PLA₂, potassium channel inhibitor and metalloprotease are predominant, representing 28.44%, 21.56%, 16.06% and 15.14% of the identified venom proteins, respectively. Overall, our combined proteomics and transcriptomics approach provides a systematic overview of the toxins in the venom of jellyfish S. meleagris and it will be significant to understand the mechanism of the sting. BIOLOGICAL SIGNIFICANCE Jellyfish Stomolophus meleagris is a very dangerous animal because of its strong toxicity. It often bloomed in the coast of China in recent years and caused thousands of people stung and even deaths every year. However, the components which caused sting are still unknown yet. In addition, no study about the venomics of jellyfish S. meleagris has been reported. In the present study, both proteomics and transcriptomics approaches were applied to investigate the major components related to the sting. The result showed that major component included C-type lectin, phospholipase A₂, potassium channel inhibitor, protease inhibitor, metalloprotease, hemolysin and other toxins, which should be responsible for the effect of sting. This is the first research about the venomics of jellyfish S. meleagris. It will be significant to understand the mechanism of the biological effects and helpful to develop ways to deal with the sting.
Collapse
Affiliation(s)
- Rongfeng Li
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Huahua Yu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Wei Xue
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Yang Yue
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Song Liu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Ronge Xing
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Pengcheng Li
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
35
|
Safavi-Hemami H, Hu H, Gorasia DG, Bandyopadhyay PK, Veith PD, Young ND, Reynolds EC, Yandell M, Olivera BM, Purcell AW. Combined proteomic and transcriptomic interrogation of the venom gland of Conus geographus uncovers novel components and functional compartmentalization. Mol Cell Proteomics 2014; 13:938-53. [PMID: 24478445 DOI: 10.1074/mcp.m113.031351] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cone snails are highly successful marine predators that use complex venoms to capture prey. At any given time, hundreds of toxins (conotoxins) are synthesized in the secretory epithelial cells of the venom gland, a long and convoluted organ that can measure 4 times the length of the snail's body. In recent years a number of studies have begun to unveil the transcriptomic, proteomic and peptidomic complexity of the venom and venom glands of a number of cone snail species. By using a combination of DIGE, bottom-up proteomics and next-generation transcriptome sequencing the present study identifies proteins involved in envenomation and conotoxin maturation, significantly extending the repertoire of known (poly)peptides expressed in the venom gland of these remarkable animals. We interrogate the molecular and proteomic composition of different sections of the venom glands of 3 specimens of the fish hunter Conus geographus and demonstrate regional variations in gene expression and protein abundance. DIGE analysis identified 1204 gel spots of which 157 showed significant regional differences in abundance as determined by biological variation analysis. Proteomic interrogation identified 342 unique proteins including those that exhibited greatest fold change. The majority of these proteins also exhibited significant changes in their mRNA expression levels validating the reliability of the experimental approach. Transcriptome sequencing further revealed a yet unknown genetic diversity of several venom gland components. Interestingly, abundant proteins that potentially form part of the injected venom mixture, such as echotoxins, phospholipase A2 and con-ikots-ikots, classified into distinct expression clusters with expression peaking in different parts of the gland. Our findings significantly enhance the known repertoire of venom gland polypeptides and provide molecular and biochemical evidence for the compartmentalization of this organ into distinct functional entities.
Collapse
|
36
|
Sajevic T, Leonardi A, Križaj I. An overview of hemostatically active components ofVipera ammodytes ammodytesvenom. TOXIN REV 2013. [DOI: 10.3109/15569543.2013.835827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Safavi-Hemami H, Möller C, Marí F, Purcell AW. High molecular weight components of the injected venom of fish-hunting cone snails target the vascular system. J Proteomics 2013; 91:97-105. [PMID: 23872086 DOI: 10.1016/j.jprot.2013.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/26/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022]
Abstract
UNLABELLED The venom of marine cone snails is a rich source of pharmacotherapeutic compounds with striking target specificity and functional diversity. Small, disulfide-rich peptide toxins are the most well characterized active compounds in cone snail venom. However, reports on the presence of larger polypeptides have recently emerged. The majority of these studies have focused on the content of the dissected venom gland rather than the injected venom itself. Recent breakthroughs in the sensitivity of protein and nucleotide sequencing techniques allow for the exploration of the proteomic diversity of injected venom. Using mass spectrometric analysis of injected venoms of the two fish-hunting cone snails Conus purpurascens and Conus ermineus, we demonstrate the presence of angiotensin-converting enzyme-1 (ACE-1) and endothelin converting enzyme-1 (ECE-1), metalloproteases that activate potent vasoconstrictive peptides. ACE activity was confirmed in the venom of C. purpurascens and was significantly reduced in venom preincubated with the ACE inhibitor captopril. Reverse-transcription PCR demonstrated that these enzymes are expressed in the venom glands of other cone snail species with different prey preferences. These findings strongly suggest that cone snails employ compounds that cause disruption of cardiovascular function as part of their complex envenomation strategy, leading to the enhancement of neurotropic peptide toxin activity. BIOLOGICAL SIGNIFICANCE To our knowledge, this is the first study to show the presence of ACE and ECE in the venom of cone snails. Identification of these vasoactive peptide-releasing proteases in the injected venoms of two fish-hunting cone snails highlights their role in envenomation and enhances our understanding of the complex hunting strategies utilized by these marine predators. Our findings on the expression of these enzymes in other cone snail species suggests an important biological role of ACE and ECE in these animals and points towards recruitment into venom from general physiological processes.
Collapse
Affiliation(s)
- Helena Safavi-Hemami
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia.
| | | | | | | |
Collapse
|
38
|
Glycosylation of conotoxins. Mar Drugs 2013; 11:623-42. [PMID: 23455513 PMCID: PMC3705362 DOI: 10.3390/md11030623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/25/2013] [Accepted: 02/06/2013] [Indexed: 01/02/2023] Open
Abstract
Conotoxins are small peptides present in the venom of cone snails. The snail uses this venom to paralyze and capture prey. The constituent conopeptides display a high level of chemical diversity and are of particular interest for scientists as tools employed in neurological studies and for drug development, because they target with exquisite specificity membrane receptors, transporters, and various ion channels in the nervous system. However, these peptides are known to contain a high frequency and variability of post-translational modifications-including sometimes O-glycosylation-which are of importance for biological activity. The potential application of specific conotoxins as neuropharmalogical agents and chemical probes requires a full characterization of the relevant peptides, including the structure of the carbohydrate part. In this review, the currently existing knowledge of O-glycosylation of conotoxins is described.
Collapse
|
39
|
Comparative analysis of proteases in the injected and dissected venom of cone snail species. Toxicon 2013; 65:59-67. [PMID: 23339854 DOI: 10.1016/j.toxicon.2012.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 11/24/2022]
Abstract
The venom of cone snails has been the subject of intense studies because it contains small neuroactive peptides of therapeutic value. However, much less is known about their larger proteins counterparts and their role in prey envenomation. Here, we analyzed the proteolytic enzymes in the injected venom of Conus purpurascens and Conus ermineus (piscivorous), and the dissected venom of C. purpurascens, Conus marmoreus (molluscivorous) and Conus virgo (vermivorous). Zymograms show that all venom samples displayed proteolytic activity on gelatin. However, the electrophoresis patterns and sizes of the proteases varied considerably among these four species. The protease distribution also varied dramatically between the injected and dissected venom of C. purpurascens. Protease inhibitors demonstrated that serine and metalloproteases are responsible for the gelatinolytic activity. We found fibrinogenolytic activity in the injected venom of C. ermineus suggesting that this venom might have effects on the hemostatic system of the prey. Remarkable differences in protein and protease expression were found in different sections of the venom duct, indicating that these components are related to the storage granules and that they participate in venom biosynthesis. Consequently, different conoproteases play major roles in venom processing and prey envenomation.
Collapse
|