1
|
Jia Y, Wei K, Qin J, Zhai W, Li Q, Li Y. The Roles of MicroRNAs in the Regulation of Rice-Pathogen Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:136. [PMID: 39795396 PMCID: PMC11722856 DOI: 10.3390/plants14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
Rice is exposed to attacks by the three most destructive pathogens, Magnaporthe oryzae (M. oryzae), Xanthomonas oryzae pv. oryzae (Xoo), and Rhizoctonia solani (R. solani), which cause substantial yield losses and severely threaten food security. To cope with pathogenic infections, rice has evolved diverse molecular mechanisms to respond to a wide range of pathogens. Among these strategies, plant microRNAs (miRNAs), endogenous single-stranded short non-coding RNA molecules, have emerged as promising candidates in coordinating plant-pathogen interactions. MiRNAs can modulate target gene expression at the post-transcriptional level through mRNA cleavage and/or translational inhibition. In rare instances, they also influence gene expression at the transcriptional level through DNA methylation. In recent years, substantial advancements have been achieved in the investigation of microRNA-mediated molecular mechanisms in rice immunity. Therefore, we attempt to summarize the current advances of immune signaling mechanisms in rice-pathogen interactions that are regulated by osa-miRNAs, including their functions and molecular mechanisms. We also focus on recent findings concerning the role of osa-miRNAs that respond to M. oryzae, Xoo, and R. solani, respectively. These insights enhance our understanding of how the mechanisms of osa-miRNAs mediate rice immunity and may facilitate the development of improved strategies for breeding pathogen-resistant rice varieties.
Collapse
Affiliation(s)
- Yanfeng Jia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Kai Wei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Jiawang Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Quanlin Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Yalan Li
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
2
|
Mohanty SS, Mohanty K. Valorization of Chlorella thermophila biomass cultivated in dairy wastewater for biopesticide production against bacterial rice blight: a circular biorefinery approach. BMC PLANT BIOLOGY 2023; 23:644. [PMID: 38097976 PMCID: PMC10722807 DOI: 10.1186/s12870-023-04579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
Biopesticides offer a sustainable and efficient alternative to synthetic pesticides, providing a safer and more eco-friendly solution to pest management. The present work proposes an innovative approach that integrates crop protection and wastewater treatment using thermophilic microalgal strain Chlorella thermophila (CT) cultivated in nutrient-rich dairy wastewater as a growth medium. The microalgae was cultivated mixotrophically and was able to reduce both organic carbon as well as nutrient load of the dairy wastewater efficiently. The integrated circular biorefinery approach combines biomass cultivation, extraction of biopesticide compounds, and conversion to biocrude. The antimicrobial activity of the biopesticidal extracts against Xanthomonas oryzae and Pantoea agglomerans, the causative agent of bacterial rice blight, is assessed through in vitro studies. The biomass extract obtained is able to inhibit the growth of both the above-mentioned plant pathogens successfully. Mass spectroscopy analysis indicates the presence of Neophytadiene that has previously been reported for the inhibition of several pathogenic bacteria and fungi. Several other value-added products such as linoleic acid and nervonic acids were also been detected in the microalgal biomass which have extremely high nutraceutical and medicinal values. Furthermore, the study investigates the potential for co-production of biocrude from the biorefinery process via hydrothermal liquefaction. Overall, the findings of this present work represent an innovative and sustainable approach that combines wastewater treatment and crop protection using microalgal biomass.
Collapse
Affiliation(s)
- Satya Sundar Mohanty
- School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Assam, India
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Kaustubha Mohanty
- School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Assam, India.
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India.
| |
Collapse
|
3
|
Sanya DRA, Syed-Ab-Rahman SF, Jia A, Onésime D, Kim KM, Ahohuendo BC, Rohr JR. A review of approaches to control bacterial leaf blight in rice. World J Microbiol Biotechnol 2022; 38:113. [PMID: 35578069 DOI: 10.1007/s11274-022-03298-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/29/2022] [Indexed: 01/16/2023]
Abstract
The Gram-negative bacteria Xanthomonas oryzae pv. oryzae, the causative agent of bacterial leaf blight (BLB), received attention for being an economically damaging pathogen of rice worldwide. This damage prompted efforts to better understand the molecular mechanisms governing BLB disease progression. This research revealed numerous virulence factors that are employed by this vascular pathogen to invade the host, outcompete host defence mechanisms, and cause disease. In this review, we emphasize the virulence factors and molecular mechanisms that X. oryzae pv. oryzae uses to impair host defences, recent insights into the cellular and molecular mechanisms underlying host-pathogen interactions and components of pathogenicity, methods for developing X. oryzae pv. oryzae-resistant rice cultivars, strategies to mitigate disease outbreaks, and newly discovered genes and tools for disease management. We conclude that the implementation and application of cutting-edge technologies and tools are crucial to avoid yield losses from BLB and ensure food security.
Collapse
Affiliation(s)
| | | | - Aiqun Jia
- School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei No. 200, Xuanwu District, 210014, Nanjing, Jiangsu, China
| | - Djamila Onésime
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Kyung-Min Kim
- School of Applied BioSciences, College of Agriculture & Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-Gu, 41566, Daegu, Korea
| | - Bonaventure Cohovi Ahohuendo
- Faculty of Agricultural Sciences, University of Abomey-Calavi, 526 Recette Principale, Cotonou 01, 01 BP, Abomey-Calavi, Benin
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Eck Institute of Global Health, Environmental Change Initiative, 178 Galvin Life Science Center, 46556, Notre Dame, IN, USA
| |
Collapse
|
4
|
Exploiting the antibacterial mechanism of phenazine substances from Lysobacter antibioticus 13-6 against Xanthomonas oryzae pv. oryzicola. J Microbiol 2022; 60:496-510. [PMID: 35362894 DOI: 10.1007/s12275-022-1542-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 10/18/2022]
Abstract
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most destructive diseases affecting rice production worldwide. In this study, we extracted and purified phenazine substances from the secondary metabolites of Lysobacter antibioticus 13-6. The bacteriostatic mechanism of phenazine substances against Xoc was investigated through physiological response and transcriptomic analysis. Results showed that phenazine substances affects the cell membrane permeability of Xoc, which causes cell swelling and deformation, blockage of flagellum synthesis, and imbalance of intracellular environment. The changes in intracellular environment affect the physiological and metabolic functions of Xoc, which reduces the formation of pathogenic factors and pathogenicity. Through transcriptomic analysis, we found that among differentially expressed genes, the expression of 595 genes was induced significantly (275 up-regulated and 320 down-regulated). In addition, we observed that phenazine substances affects three main functions of Xoc, i.e., transmembrane transporter activity, DNA-mediated transposition, and structural molecular activity. Phenazine substances also inhibits the potassium ion transport system that reduces Xoc resistance and induces the phosphate ion transport system to maintain the stability of the internal environment. Finally, we conclude that phenazine substances could retard cell growth and reduce the pathogenicity of Xoc by affecting cell structure and physiological metabolism. Altogether, our study highlights latest insights into the antibacterial mechanism of phenazine substances against Xoc and provides basic guidance to manage the incidence of bacterial leaf streak of rice.
Collapse
|
5
|
Lo HH, Chang HC, Liao CT, Hsiao YM. Expression and function of clpS and clpA in Xanthomonas campestris pv. campestris. Antonie van Leeuwenhoek 2022; 115:589-607. [PMID: 35322326 DOI: 10.1007/s10482-022-01725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
ATP-dependent proteases (FtsH, Lon, and Clp family proteins) are ubiquitous in bacteria and play essential roles in numerous regulatory cell processes. Xanthomonas campestris pv. campestris is a Gram-negative pathogen that can cause black rot diseases in crucifers. The genome of X. campestris pv. campestris has several clp genes, namely, clpS, clpA, clpX, clpP, clpQ, and clpY. Among these genes, only clpX and clpP is known to be required for pathogenicity. Here, we focused on two uncharacterized clp genes (clpS and clpA) that encode the adaptor (ClpS) and ATPase subunit (ClpA) of the ClpAP protease complex. Transcriptional analysis revealed that the expression of clpS and clpA was growth phase-dependent and affected by the growth temperature. The inactivation of clpA, but not of clpS, resulted in susceptibility to high temperature and attenuated virulence in the host plant. The altered phenotypes of the clpA mutant could be complemented in trans. Site-directed mutagenesis revealed that K223 and K504 were the amino acid residues critical for ClpA function in heat tolerance. The protein expression profile shown by the clpA mutant in response to heat stress was different from that exhibited by the wild type. In summary, we characterized two clp genes (clpS and clpA) by examining their expression profiles and functions in different processes, including stress tolerance and pathogenicity. We demonstrated that clpS and clpA were expressed in a temperature-dependent manner and that clpA was required for the survival at high temperature and full virulence of X. campestris pv. campestris. This work represents the first time that clpS and clpA were characterized in Xanthomonas.
Collapse
Affiliation(s)
- Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Hsiao-Ching Chang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan.
| |
Collapse
|
6
|
Yue H, Miller AL, Khetrapal V, Jayaseker V, Wright S, Du L. Biosynthesis, regulation, and engineering of natural products from Lysobacter. Nat Prod Rep 2022; 39:842-874. [PMID: 35067688 DOI: 10.1039/d1np00063b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: up to August 2021Lysobacter is a genus of Gram-negative bacteria that was classified in 1987. Several Lysobacter species are emerging as new biocontrol agents for crop protection in agriculture. Lysobacter are prolific producers of new bioactive natural products that are largely underexplored. So far, several classes of structurally interesting and biologically active natural products have been isolated from Lysobacter. This article reviews the progress in Lysobacter natural product research over the past ten years, including molecular mechanisms for biosynthesis, regulation and mode of action, genome mining of cryptic biosynthetic gene clusters, and metabolic engineering using synthetic biology tools.
Collapse
Affiliation(s)
- Huan Yue
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Amanda Lynn Miller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vimmy Khetrapal
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vishakha Jayaseker
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Stephen Wright
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
7
|
Gan X, Wang Z, Hu D. Synthesis of Novel Antiviral Ferulic Acid-Eugenol and Isoeugenol Hybrids Using Various Link Reactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13724-13733. [PMID: 34751031 DOI: 10.1021/acs.jafc.1c05521] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To develop novel antiviral agents, some novel conjugates between ferulic acid and eugenol or isoeugenol were designed and synthesized by the link reaction. The antiviral activities of compounds were evaluated using the half leaf dead spot method. Bioassay results showed acceptable antiviral activities of some conjugates against the tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). Compounds A9, A10, E1, and E4 showed remarkable curative, protective, and inactivating effects on TMV and CMV at 500 μg mL-1. Notably, these compounds exhibited excellent protective effects on TMV and CMV. The EC50 values of compounds A9, A10, E1, and E4 against TMV were 180.5, 169.5, 211.4, and 135.5 μg mL-1, respectively, and those against CMV were 210.5, 239.1, 218.4, and 178.6 μg mL-1, respectively, which were superior to those of ferulic acid (471.5 and 489.2 μg mL-1), eugenol (456.3 and 463.2 μg mL-1), isoeugenol (478.4 and 487.5 μg mL-1), and ningnanmycin (246.5 and 286.6 μg mL-1). Then, the antiviral mechanisms of compound E4 were investigated by determining defensive enzyme activities and multi-omics analysis. The results indicated that compound E4 resisted the virus infection by enhancing defensive responses via inducing the accumulation of secondary metabolites from the phenylpropanoid biosynthesis pathway in tobacco.
Collapse
Affiliation(s)
- Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
8
|
Deb S, Madhavan VN, Gokulan CG, Patel HK, Sonti RV. Arms and ammunitions: effectors at the interface of rice and it's pathogens and pests. RICE (NEW YORK, N.Y.) 2021; 14:94. [PMID: 34792681 PMCID: PMC8602583 DOI: 10.1186/s12284-021-00534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - C. G. Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Hitendra K. Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507 India
| |
Collapse
|
9
|
Wan X, Yang J, Ahmed W, Liu Q, Wang Y, Wei L, Ji G. Functional analysis of pde gene and its role in the pathogenesis of Xanthomonas oryzae pv. oryzicola. INFECTION GENETICS AND EVOLUTION 2021; 94:105008. [PMID: 34284137 DOI: 10.1016/j.meegid.2021.105008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/16/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a devastating disease of rice worldwide, including China. The second messenger c-di-GMP plays an important role in the transduction of intercellular signals. However, little is known about the function of EAL domain protein in c-di-GMP that regulates the virulence in Xoc. In this study, the function of EAL domain protein encoded by pde (FE36_09715) gene in the regulation of c-di-GMP was investigated. Results of this study, showed that the deletion of pde gene led to a significant reduction in the virulence of Xoc and was positively related to the reduction of exopolysaccharides production, biofilm formation, and flagellar motility. However, these significantly impaired properties from the ∆pde mutant strain were partially recovered in the complementary strain. In addition, the deletion of pde gene in Xoc strain YM15 had no visible effect on the colony morphology, amylase, and protease activities of Xoc. It is concluded that, as a regulator for the c-di-GMP level, the pde gene plays an important role in partial biological processes in Xoc and is essential for its virulence.
Collapse
Affiliation(s)
- Xiaoyan Wan
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Yang
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China
| | - Waqar Ahmed
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Qi Liu
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yanfang Wang
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Lanfang Wei
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Guanghai Ji
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
10
|
Wu G, Zhang Y, Wang B, Li K, Lou Y, Zhao Y, Liu F. Proteomic and Transcriptomic Analyses Provide Novel Insights into the Crucial Roles of Host-Induced Carbohydrate Metabolism Enzymes in Xanthomonas oryzae pv. oryzae Virulence and Rice-Xoo Interaction. RICE (NEW YORK, N.Y.) 2021; 14:57. [PMID: 34176023 PMCID: PMC8236019 DOI: 10.1186/s12284-021-00503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/11/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a devastating rice disease. The Xoo-rice interaction, wherein wide ranging host- and pathogen-derived proteins and genes wage molecular arms race, is a research hotspot. Hence, the identification of novel rice-induced Xoo virulence factors and characterization of their roles affecting rice global gene expression profiles will provide an integrated and better understanding of Xoo-rice interactions from the molecular perspective. RESULTS Using comparative proteomics and an in vitro interaction system, we revealed that 5 protein spots from Xoo exhibited significantly different expression patterns (|fold change| > 1.5) at 3, 6, 12 h after susceptible rice leaf extract (RLX) treatment. MALDI-TOF MS analysis and pathogenicity tests showed that 4 host-induced proteins, including phosphohexose mutase, inositol monophosphatase, arginase and septum site-determining protein, affected Xoo virulence. Among them, mutants of two host-induced carbohydrate metabolism enzyme-encoding genes, ΔxanA and Δimp, elicited enhanced defense responses and nearly abolished Xoo virulence in rice. To decipher rice differentially expressed genes (DEGs) associated with xanA and imp, transcriptomic responses of ΔxanA-treated and Δimp-treated susceptible rice were compared to those in rice treated with PXO99A at 1 and 3 dpi. A total of 1521 and 227 DEGs were identified for PXO99A vs Δimp at 1 and 3 dpi, while for PXO99A vs ΔxanA, there were 131 and 106 DEGs, respectively. GO, KEGG and MapMan analyses revealed that the DEGs for PXO99A vs Δimp were mainly involved in photosynthesis, signal transduction, transcription, oxidation-reduction, hydrogen peroxide catabolism, ion transport, phenylpropanoid biosynthesis and metabolism of carbohydrates, lipids, amino acids, secondary metabolites, hormones, and nucleotides, while the DEGs from PXO99A vs ΔxanA were predominantly associated with photosynthesis, signal transduction, oxidation-reduction, phenylpropanoid biosynthesis, cytochrome P450 and metabolism of carbohydrates, lipids, amino acids, secondary metabolites and hormones. Although most pathways were associated with both the Δimp and ΔxanA treatments, the underlying genes were not the same. CONCLUSION Our study identified two novel host-induced virulence factors XanA and Imp in Xoo, and revealed their roles in global gene expression in susceptible rice. These results provide valuable insights into the molecular mechanisms of pathogen infection strategies and plant immunity.
Collapse
Affiliation(s)
- Guichun Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China
| | - Yuqiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, P. R. China
| | - Bo Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China
| | - Kaihuai Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yuanlai Lou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China.
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China.
| |
Collapse
|
11
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
12
|
Luo Y, Yang Q, Zhang D, Yan W. Mechanisms and Control Strategies of Antibiotic Resistance in Pathological Biofilms. J Microbiol Biotechnol 2021; 31:1-7. [PMID: 33323672 PMCID: PMC9706009 DOI: 10.4014/jmb.2010.10021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Bacterial biofilm is a community of bacteria that are embedded and structured in a self-secreted extracellular matrix. An important clinical-related characteristic of bacterial biofilms is that they are much more resistant to antimicrobial agents than the planktonic cells (up to 1,000 times), which is one of the main causes of antibiotic resistance in clinics. Therefore, infections caused by biofilms are notoriously difficult to eradicate, such as lung infection caused by Pseudomonas aeruginosa in cystic fibrosis patients. Understanding the resistance mechanisms of biofilms will provide direct insights into how we overcome such resistance. In this review, we summarize the characteristics of biofilms and chronic infections associated with bacterial biofilms. We examine the current understanding and research progress on the major mechanisms of antibiotic resistance in biofilms, including quorum sensing. We also discuss the potential strategies that may overcome biofilm-related antibiotic resistance, focusing on targeting biofilm EPSs, blocking quorum sensing signaling, and using recombinant phages.
Collapse
Affiliation(s)
- Ying Luo
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Qianqian Yang
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Dan Zhang
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Wei Yan
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, P.R. China,Corresponding author Phone/Fax: +86-571-5600-7510 E-mail:
| |
Collapse
|
13
|
Jin P, Wang Y, Tan Z, Liu W, Miao W. Antibacterial activity and rice-induced resistance, mediated by C 15surfactin A, in controlling rice disease caused by Xanthomonas oryzae pv. oryzae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104669. [PMID: 32828375 DOI: 10.1016/j.pestbp.2020.104669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is an important pathogen in rice. C15surfactin A, produced by Bacillus velezensis HN-2, displayed antibacterial activity against Xoo and effectively inhibited its infection of rice. The median inhibitory concentration of C15surfactin A was 9.27 μg/mL. Scanning electron and transmission electron microscopy examination showed that C15surfactin A caused significant damage to the cell wall structure of Xoo cells. On the other hand, dramatic increases in the activity of phenylalanine ammonia-lyase (Pal) and H2O2 content were observed in rice leaves inoculated with Xoo from 0 h to 72 h. Quantitative PCR assays indicated that C15surfactin A exposure upregulated the expression of the genes Pr1a, CatA, and Pal. The results showed that C15surfactin A could inhibit the growth of Xoo and effectively induce rice resistance to Xoo by triggering a hypersensitive reaction (HR) via mediation of the activities of antioxidant-related enzymes. Taken together, C15surfactin A has strong antibiotic activity against Xoo and effectively induces rice resistance to Xoo. These results highlight the potential of C15surfactin A as a biocontrol agent against Xoo in rice.
Collapse
Affiliation(s)
- Pengfei Jin
- College of Plant Protection, Hainan University, Haikou 570228, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou 570228, China
| | - Yu Wang
- College of Plant Protection, Hainan University, Haikou 570228, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou 570228, China
| | - Zheng Tan
- College of Plant Protection, Hainan University, Haikou 570228, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou 570228, China
| | - Wenbo Liu
- College of Plant Protection, Hainan University, Haikou 570228, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou 570228, China
| | - Weiguo Miao
- College of Plant Protection, Hainan University, Haikou 570228, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou 570228, China.
| |
Collapse
|
14
|
Luo HZ, Guan Y, Yang R, Qian GL, Yang XH, Wang JS, Jia AQ. Growth inhibition and metabolomic analysis of Xanthomonas oryzae pv. oryzae treated with resveratrol. BMC Microbiol 2020; 20:117. [PMID: 32410647 PMCID: PMC7227335 DOI: 10.1186/s12866-020-01803-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background Xanthomonas oryzae pv. oryzae (Xoo) can cause destructive bacterial blight in rice. As an antibacterial, resveratrol may inhibit Xoo growth. This study focused on the potential structural-activity relationship of resveratrol and its derivatives against Xoo growth, and 1H-NMR-based metabolomic analysis was applied to investigate the global metabolite changes in Xoo after resveratrol treatment. Results Resveratrol showed the strongest inhibitory effects on Xoo growth compared with its derivatives, which lacked double bonds (compounds 4–6) or hydroxyls were substituted with methoxyls (compounds 7–9). The IC50 of resveratrol against Xoo growth was 11.67 ± 0.58 μg/mL. Results indicated that the double bond of resveratrol contributed to its inhibitory effects on Xoo growth, and hydroxyls were vital for this inhibition. Interestingly, resveratrol also significantly inhibited Xoo flagellum growth. Based on 1H-NMR global metabolic analysis, a total of 30 Xoo metabolites were identified, the changes in the metabolic profile indicated that resveratrol could cause oxidative stress as well as disturb energy, purine, amino acid, and NAD+ metabolism in Xoo, resulting in the observed inhibitory effects on growth. Conclusions This study showed that the double bond of resveratrol contributed to its inhibitory effects on Xoo growth, and hydroxyls were also the important active groups. Resveratrol could cause oxidative stress of Xoo cells, and disturb the metabolism of energy, purine, amino acid and NAD +, thus inhibit Xoo growth.
Collapse
Affiliation(s)
- Huai-Zhi Luo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.,Engineering Research Center for Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, 570228, China
| | - Ying Guan
- Inspection and Pattern Evaluation Department, Suzhou Institute of Metrology, Suzhou, 215000, China
| | - Rui Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guo-Liang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian-Hui Yang
- School of Science, Hainan University, Haikou, 570228, China.
| | - Jun-Song Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Ai-Qun Jia
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China. .,Engineering Research Center for Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, 570228, China.
| |
Collapse
|
15
|
Zhu PC, Li YM, Yang X, Zou HF, Zhu XL, Niu XN, Xu LH, Jiang W, Huang S, Tang JL, He YQ. Type VI secretion system is not required for virulence on rice but for inter-bacterial competition in Xanthomonas oryzae pv. oryzicola. Res Microbiol 2019; 171:64-73. [PMID: 31676435 DOI: 10.1016/j.resmic.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022]
Abstract
The type VI secretion system (T6SS), a multifunctional protein secretion device, plays very important roles in bacterial killing and/or virulence to eukaryotic cells. Although T6SS genes have been found in many Xanthomonas species, the biological function of T6SSs has not been elucidated in most xanthomonads. In this study, we identified two phylogenetically distinct T6SS clusters, T6SS1 and T6SS2, in a newly sequenced Chinese strain GX01 of Xanthomonas oryzea pv. oryzicola (Xoc) which causes bacterial leaf streak (BLS) of rice (Oryza sativa L.). Mutational assays demonstrated that T6SS1 and T6SS2 are not required for the virulence of Xoc GX01 on rice. Nevertheless, we found that T6SS2, but not T6SS1, played an important role in bacterial killing. Transcription and secretion analysis revealed that hcp2 gene is actively expressed and that Hcp2 protein is secreted via T6SS. Moreover, several candidate T6SS effectors were predicted by bioinformatics analysis that might play a role in the antibacterial activity of Xoc. This is the first report to investigate the type VI secretion system in Xanthomonas oryzae. We speculate that Xoc T6SS2 might play an important role in inter-bacterial competition, allowing this plant pathogen to gain niche advantage by killing other bacteria.
Collapse
Affiliation(s)
- Ping-Chuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Yi-Ming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Xia Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Hai-Fan Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Xiao-Lin Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Xiang-Na Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Ling-Hui Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Sheng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China.
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China.
| |
Collapse
|
16
|
He F, Shi J, Wang Y, Wang S, Chen J, Gan X, Song B, Hu D. Synthesis, Antiviral Activity, and Mechanisms of Purine Nucleoside Derivatives Containing a Sulfonamide Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8459-8467. [PMID: 31339701 DOI: 10.1021/acs.jafc.9b02681] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Novel purine nucleoside derivatives containing a sulfonamide moiety were prepared, as well as their antiviral activities against potato virus Y (PVY), cucumber mosaic virus (CMV), and tobacco mosaic virus (TMV) were evaluated. The antiviral mechanisms of the compounds were investigated. Results showed that most of the compounds had good antiviral activities. Compound 5 at 500 μg/mL exhibited excellent curative and protective activities of 52.5% and 60.0% and of 52.0% and 60.2% for PVY and CMV, respectively, which are higher than those of ningnanmycin (48.1%, 49.6%; 45.3%, 47.7%), ribavirin (38.3%, 48.2%; 40.8%, 45.5%), and chitosan oligosaccharide (32.5%, 33.8%; 35.1%, 34.6%). Moreover, compound 5 displayed good inactivating activity against TMV, with an EC50 value of 48.8 μg/mL, which is better than that of ningnanmycin (84.7 μg/mL), ribavirin (150.4 μg/mL), and chitosan oligosaccharide (521.3 μg/mL). The excellent antiviral activity of compound 5 is related to its immune induction effect which can regulate the physiological and biochemical processes in plants, including defense-related enzyme activities, defense-related genes, and photosynthesis-related proteins. These results indicate that purine nucleoside derivatives containing a sulfonamide moiety are worthy of further research and development as new antiviral agents.
Collapse
Affiliation(s)
- Fangcheng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Yanju Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Shaobo Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| |
Collapse
|
17
|
Pena RT, Blasco L, Ambroa A, González-Pedrajo B, Fernández-García L, López M, Bleriot I, Bou G, García-Contreras R, Wood TK, Tomás M. Relationship Between Quorum Sensing and Secretion Systems. Front Microbiol 2019; 10:1100. [PMID: 31231316 PMCID: PMC6567927 DOI: 10.3389/fmicb.2019.01100] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 01/15/2023] Open
Abstract
Quorum sensing (QS) is a communication mechanism between bacteria that allows specific processes to be controlled, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms such as bacterial competition systems including secretion systems (SS). These SS have an important role in bacterial communication. SS are ubiquitous; they are present in both Gram-negative and Gram-positive bacteria and in Mycobacterium sp. To date, 8 types of SS have been described (T1SS, T2SS, T3SS, T4SS, T5SS, T6SS, T7SS, and T9SS). They have global functions such as the transport of proteases, lipases, adhesins, heme-binding proteins, and amidases, and specific functions such as the synthesis of proteins in host cells, adaptation to the environment, the secretion of effectors to establish an infectious niche, transfer, absorption and release of DNA, translocation of effector proteins or DNA and autotransporter secretion. All of these functions can contribute to virulence and pathogenesis. In this review, we describe the known types of SS and discuss the ones that have been shown to be regulated by QS. Due to the large amount of information about this topic in some pathogens, we focus mainly on Pseudomonas aeruginosa and Vibrio spp.
Collapse
Affiliation(s)
- Rocio Trastoy Pena
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Lucia Blasco
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Antón Ambroa
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Fernández-García
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Maria López
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Ines Bleriot
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - German Bou
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thomas Keith Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Maria Tomás
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| |
Collapse
|
18
|
Wu L, Ma L, Li X, Huang Z, Gao X. Contribution of the cold shock protein CspA to virulence in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2019; 20:382-391. [PMID: 30372574 PMCID: PMC6637868 DOI: 10.1111/mpp.12763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes a damaging bacterial leaf blight disease in rice. Cold shock proteins (Csps) are highly conserved nucleic acid-binding proteins present in various bacterial genera, but relatively little is known about their functions in Xanthomonas. Herein, we identified four Csps (CspA-CspD) in the Xoo PXO99A strain. Deletion of cspA decreased cold adaptation and a few known pathogenic factors, including bacterial pathogenicity, biofilm formation and polysaccharide production. Furthermore, we performed transcriptomic and chromosome immunoprecipitation (ChIP) experiments to identify direct targets of CspA and to determine its DNA-binding sequence. Integrative data analysis revealed that CspA directly regulates two genes, PXO_RS11830 and PXO_RS01060, by binding to a conserved CCAAT sequence in the promoter region. We generated single-deletion mutants of each gene and the results indicate that both are responsible for Xanthomonas pathogenicity. In addition, quantitative real-time polymerase chain reaction and western blotting showed that CspA suppressed the expression of its direct targets. In summary, our study clarifies the characteristics of Csps in Xanthomonas and greatly advances our understanding of the mechanisms underlying the contribution of CspA to bacterial virulence.
Collapse
Affiliation(s)
- Liming Wu
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of EducationNanjing210095China
| | - Liumin Ma
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of EducationNanjing210095China
| | - Xi Li
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of EducationNanjing210095China
| | - Ziyang Huang
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of EducationNanjing210095China
| | - Xuewen Gao
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of EducationNanjing210095China
| |
Collapse
|
19
|
Xie D, Shi J, Zhang A, Lei Z, Zu G, Fu Y, Gan X, Yin L, Song B, Hu D. Syntheses, antiviral activities and induced resistance mechanisms of novel quinazoline derivatives containing a dithioacetal moiety. Bioorg Chem 2018; 80:433-443. [PMID: 29986188 DOI: 10.1016/j.bioorg.2018.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/09/2018] [Accepted: 06/20/2018] [Indexed: 11/26/2022]
Abstract
A series of novel quinazoline derivatives containing a dithioacetal moiety were designed and synthesized, and their structures were characterized by 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, and high-resolution mass spectrometry. Bioassay results indicated that compound 4b exhibited remarkable protective activity against cucumber mosaic virus (CMV, EC50 = 248.6 μg/mL) and curative activity against potato virus Y (EC50 = 350.5 μg/mL), which were better than those of ningnanmycin (357.7 μg/mL and 493.7 μg/mL, respectively). Moreover, compound 4b could increase the chlorophyll content in plants, improve photosynthesis, and effectively induce tobacco anti-CMV activity.
Collapse
Affiliation(s)
- Dandan Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Awei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhiwei Lei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guangcheng Zu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yun Fu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Limin Yin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
20
|
Shi J, Yu L, Song B. Proteomics analysis of Xiangcaoliusuobingmi-treated Capsicum annuum L. infected with Cucumber mosaic virus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 149:113-122. [PMID: 30033007 DOI: 10.1016/j.pestbp.2018.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/22/2018] [Accepted: 06/13/2018] [Indexed: 05/24/2023]
Abstract
Among different viruses, Cucumber mosaic virus (CMV) has the most extensive host range, being capable of infecting over 1200 species, and causes severe damage worldwide. Xiangcaoliusuobingmi (B1), a candidate plant immune activator drug, exhibited significant protective effects against CMV. However, its potential mechanism is still unknown. In this study, we found the defensive enzyme activities of peroxidase (POD), phenylalanine ammonia lyase (PAL), superoxide dismutase (SOD) and catalase (CAT) can be enhanced by B1. Meanwhile, we found RT-qPCR assay results of the defensive gene expression can be improved by B1 in capsicum. Moreover, we analyze the result of label-free proteomics, B1 could trigger abscisic acid (ABA) pathway. All data provide a more understanding about the response to infect CMV capsicum activeted by B1 in the level of the plant physiology and biochemistry, gene and protein.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Lu Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
21
|
Chen J, Shi J, Yu L, Liu D, Gan X, Song B, Hu D. Design, Synthesis, Antiviral Bioactivity, and Defense Mechanisms of Novel Dithioacetal Derivatives Bearing a Strobilurin Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5335-5345. [PMID: 29741370 DOI: 10.1021/acs.jafc.8b01297] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A series of dithioacetal derivatives bearing a strobilurin moiety were designed and synthesized on the basis of our previous work. The antiviral activities of these compounds against Potato virus Y (PVY), Cucumber mosaic virus (CMV), and Tobacco mosaic virus (TMV) were systematically evaluated. Bioassay results indicated that C14 elicited excellent curative and protective activities against PVY, CMV, and TMV. The former had 50% effective concentrations (EC50) of 125.3, 108.9, and 181.7 μg/mL, respectively, and the latter had 148.4, 113.2, and 214.6 μg/mL, respectively, which were significantly superior to those of lead compound 6f (297.6, 259.6, and 582.4 μg/mL and 281.5, 244.3, and 546.3 μg/mL, respectively), Ningnanmycin (440.5, 549.1, and 373.8 μg/mL and 425.3, 513.3, and 242.7 μg/mL, respectively), Chitosan oligosaccharide (553.4, 582.8, and 513.8 μg/mL and 547.3, 570.6, and 507.9 μg/mL, respectively), and Ribavirin (677.4, 690.3, and 686.5 μg/mL and 652.7, 665.4, and 653.4 μg/mL, respectively). Moreover, defensive enzyme activities and RT-qPCR analysis demonstrated that the antiviral activity was associated with the changes of SOD, CAT, and POD activities in tobacco, which was proved by the related proteins of abscisic acid signaling pathway. This work provided a basis for further design, structural modification, and development of dithioacetal derivatives as new antiviral agents.
Collapse
Affiliation(s)
- Jin Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Lu Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Dengyue Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang 550025 , China
| |
Collapse
|
22
|
Su P, Song Z, Wu G, Zhao Y, Zhang Y, Wang B, Qian G, Fu ZQ, Liu F. Insights Into the Roles of Two Genes of the Histidine Biosynthesis Operon in Pathogenicity of Xanthomonas oryzae pv. oryzicola. PHYTOPATHOLOGY 2018; 108:542-551. [PMID: 29256829 DOI: 10.1094/phyto-09-17-0332-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Xanthomonas oryzae pv. oryzicola is an X. oryzae pathovar that causes bacterial leaf streak in rice. In this study, we performed functional characterization of a nine-gene his operon in X. oryzae pv. oryzicola. Sequence analysis indicates that this operon is highly conserved in Xanthomonas spp. Auxotrophic assays confirmed that the his operon was involved in histidine biosynthesis. We found that two genes within this operon, trpR and hisB, were required for virulence and bacterial growth in planta. Further research revealed that trpR and hisB play different roles in X. oryzae pv. oryzicola. The trpR acts as a transcriptional repressor and could negatively regulate the expression of hisG, -D, -C, -B, -H, -A, and -F. hisB, which encodes a bifunctional enzyme implicated in histidine biosynthesis, was shown to be required for xanthomonadin production in X. oryzae pv. oryzicola. The disruption of hisB reduced the transcriptional expression of five known shikimate pathway-related genes xanB2, aroE, aroA, aroC, and aroK. We found that the his operon in X. oryzae pv. oryzicola is not involved in hypersensitive response in nonhost tobacco plants. Collectively, our results revealed that two genes in histidine biosynthesis operon play an important role in the pathogenicity of X. oryzae pv. oryzicola Rs105.
Collapse
Affiliation(s)
- Panpan Su
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Zhiwei Song
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Guichun Wu
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Yancun Zhao
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Yuqiang Zhang
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Bo Wang
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Guoliang Qian
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Zheng Qing Fu
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Fengquan Liu
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| |
Collapse
|
23
|
Huang D, Shao ZZ, Yu Y, Cai MM, Zheng LY, Li GY, Yu ZN, Yi XF, Zhang JB, Hao FH. Identification, Characteristics and Mechanism of 1-Deoxy-N-acetylglucosamine from Deep-Sea Virgibacillus dokdonensis MCCC 1A00493. Mar Drugs 2018; 16:md16020052. [PMID: 29414856 PMCID: PMC5852480 DOI: 10.3390/md16020052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/25/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae, which causes rice bacterial blight, is one of the most destructive pathogenic bacteria. Biological control against plant pathogens has recently received increasing interest. 1-Deoxy-N-acetylglucosamine (1-DGlcNAc) was extracted from the supernatant of Virgibacillus dokdonensis MCCC 1A00493 fermentation through antibacterial bioassay-guided isolation. Its structure was elucidated by LC/MS, NMR, chemical synthesis and time-dependent density functional theory (TD-DFT) calculations. 1-DGlcNAc specifically suppressed X. oryzae pv. oryzae PXO99A (MIC was 23.90 μg/mL), but not other common pathogens including Xanthomonas campestris pv. campestris str.8004 and Xanthomonas oryzae pv. oryzicola RS105. However, its diastereomer (2-acetamido-1,5-anhydro-2-deoxy-d-mannitol) also has no activity to X. oryzae pv. oryzae. This result suggested that activity of 1-DGlcNAc was related to the difference in the spatial conformation of the 2-acetamido moiety, which might be attributed to their different interactions with a receptor. Eighty-four unique proteins were found in X. oryzae pv. oryzae PXO99A compared with the genome of strains8004 and RS105 by blastp. There may be unique interactions between 1-DGlcNAc and one or more of these unique proteins in X. oryzae pv. oryzae. Quantitative real-time PCR and the pharmMapper server indicated that proteins involved in cell division could be the targets in PXO99A. This research suggested that specificity of active substance was based on the active group and spatial conformation selection, and these unique proteins could help to reveal the specific mechanism of action of 1-DGlcNAc against PXO99A.
Collapse
Affiliation(s)
- Dian Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zong-Ze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Yi Yu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430070, China.
| | - Min-Min Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long-Yu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guang-Yu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Zi-Niu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xian-Feng Yi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Ji-Bin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fu-Hua Hao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
24
|
Liang X, Yu X, Pan X, Wu J, Duan Y, Wang J, Zhou M. A thiadiazole reduces the virulence of Xanthomonas oryzae pv. oryzae by inhibiting the histidine utilization pathway and quorum sensing. MOLECULAR PLANT PATHOLOGY 2018; 19:116-128. [PMID: 27756112 PMCID: PMC6638098 DOI: 10.1111/mpp.12503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 05/08/2023]
Abstract
Thiazole, isothiazole, thiadiazole and their derivatives are widely thought to induce host defences against plant pathogens. In this article, we report that bismerthiazol, a thiadiazole molecule, reduces disease by inhibiting the histidine utilization (Hut) pathway and quorum sensing (QS). Bismerthiazol provides excellent control of bacterial rice leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo), but does not greatly inhibit Xoo growth in vitro. According to RNA-sequencing analysis, the transcription of the Hut pathway genes of Xoo ZJ173 was inhibited after 4.5 and 9.0 h of bismerthiazol treatment. Functional studies of hutG and hutU indicated that the Hut pathway had little effect on the growth and bismerthiazol sensitivity of Xoo in vitro, but significantly reduced the aggregation of Xoo cells. Deletion mutants of hutG or hutU were more motile, produced less biofilm and were less virulent than the wild-type, indicating that the Hut pathway is involved in QS and contributes to virulence. The overexpression of the hutG-U operons in ZJ173 reduced Xoo control by bismerthiazol. Bismerthiazol did not inhibit the transcription of Hut pathway genes, QS or virulence of the bismerthiazol-resistant strain 2-1-1. The results indicate that bismerthiazol reduces Xoo virulence by inhibiting the Hut pathway and QS.
Collapse
Affiliation(s)
- Xiaoyu Liang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Xiaoyue Yu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Xiayan Pan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Jian Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| |
Collapse
|
25
|
The Ax21 protein influences virulence and biofilm formation in Stenotrophomonas maltophilia. Arch Microbiol 2017; 200:183-187. [PMID: 28965241 PMCID: PMC5758655 DOI: 10.1007/s00203-017-1433-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
Abstract
Stenotrophomonas maltophilia is an antibiotic-resistant Gram-negative pathogen, which is associated with hospital-acquired infection. The genome encodes a protein highly related to the Ax21 protein of Xanthomonas oryzae that is implicated in interactions of this plant pathogen with rice. Here, we report on the pleiotropic nature of ax21 mutation in S. maltophilia and the effects of addition of the Ax21 protein on the restoration of the wild-type phenotype. We show that loss by mutation of Ax21 leads to reduced motility, reduced biofilm formation, reduced tolerance to the antibiotic tobramycin and reduced virulence to larvae of Galleria mellonella, as well as alteration in the expression of specific genes associated with virulence or antibiotic resistance. Addition of the Ax21protein restored motility and the level of gene expression towards wild type. These findings are consistent with the notion that the Ax21 protein is involved in intraspecies communication, although other interpretations cannot be discounted.
Collapse
|
26
|
Wu G, Su P, Wang B, Zhang Y, Qian G, Liu F. Novel Insights into Tat Pathway in Xanthomonas oryzae pv. oryzae Stress Adaption and Virulence: Identification and Characterization of Tat-Dependent Translocation Proteins. PHYTOPATHOLOGY 2017; 107:1011-1021. [PMID: 28699375 DOI: 10.1094/phyto-02-17-0053-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Xanthomonas oryzae pv. oryzae, an economically important bacterium, causes a serious disease in rice production worldwide called bacterial leaf blight. How X. oryzae pv. oryzae infects rice and causes symptoms remains incompletely understood. Our earlier works demonstrated that the twin-arginine translocation (Tat) pathway plays an vital role in X. oryzae pv. oryzae fitness and virulence but the underlying mechanism is unknown. In this study, we used strain PXO99A as a working model, and identified 15 potential Tat-dependent translocation proteins (TDTP) by using comparative proteomics and bioinformatics analyses. Combining systematic mutagenesis, phenotypic characterization, and gene expression, we found that multiple TDTP play key roles in X. oryzae pv. oryzae adaption or virulence. In particular, four TDTP (PXO_02203, PXO_03477, PXO_02523, and PXO_02951) were involved in virulence, three TDTP (PXO_02203, PXO_03477, and PXO_02523) contributed to colonization in planta, one TDTP (PXO_02671) had a key role in attachment to leaf surface, four TDTP (PXO_02523, PXO_02951, PXO_03132, and PXO_03841) were involved in tolerance to multiple stresses, and two TDTP (PXO_02523 and PXO_02671) were required for full swarming motility. These findings suggest that multiple TDTP may have differential contributions to involvement of the Tat pathway in X. oryzae pv. oryzae adaption, physiology, and pathogenicity.
Collapse
Affiliation(s)
- Guichun Wu
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Panpan Su
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Bo Wang
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Yuqiang Zhang
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Guoliang Qian
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Fengquan Liu
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| |
Collapse
|
27
|
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ. Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris. Microbiology (Reading) 2017; 163:1117-1144. [DOI: 10.1099/mic.0.000473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jessica Schneider
- Bioinformatics Resource Facility, Centrum für Biotechnologie, Universität Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Karsten Niehaus
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Frank-Jörg Vorhölter
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| |
Collapse
|
28
|
Gan X, Hu D, Wang Y, Yu L, Song B. Novel trans-Ferulic Acid Derivatives Containing a Chalcone Moiety as Potential Activator for Plant Resistance Induction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4367-4377. [PMID: 28368612 DOI: 10.1021/acs.jafc.7b00958] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A series of novel trans-ferulic acid derivatives containing a chalcone moiety were designed and synthesized to induce plant resistance. Antiviral activities of the compounds were evaluated. Bioassay results demonstrated that compounds F3, F6, F17, and F27 showed remarkable curative, protective, and inactivating activities against tobacco mosaic virus (TMV). With a 50% effective concentration (EC50) value of 98.78 μg mL-1, compound F27 exhibited the best protective activity compared with trans-ferulic acid (328.6 μg mL-1), dufulin (385.6 μg mL-1), and ningnanmycin (241.3 μg mL-1). This protective ability was associated with potentiation of defense-related enzyme activity and activation of photosynthesis of tobacco at an early stage. This notion was confirmed by up-regulated expression of stress responses and photosynthesis regulating proteins. This work revealed that F27 can induce resistance and enhance plant tolerance to TMV infection. Hence, F27 can be considered as a novel activator for inducing plant resistance.
Collapse
Affiliation(s)
- Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University , Guiyang 550025, P.R. China
- College of Chemistry and Life Science, Guizhou Education University , Guiyang 550018, P.R. China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University , Guiyang 550025, P.R. China
| | - Yanjiao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University , Guiyang 550025, P.R. China
| | - Lu Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University , Guiyang 550025, P.R. China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University , Guiyang 550025, P.R. China
| |
Collapse
|
29
|
Wang J, Guo J, Wang S, Zeng Z, Zheng D, Yao X, Yu H, Ruan L. The global strategy employed by Xanthomonas oryzae pv. oryzae to conquer low-oxygen tension. J Proteomics 2017; 161:68-77. [PMID: 28412528 DOI: 10.1016/j.jprot.2017.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/21/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a notorious rice pathogen that causes bacterial leaf blight (BLB), a destructive rice disease. Low-oxygen tension in the xylem vessels of rice stresses Xoo during infection. In this study, differentially expressed proteins under normoxic and hypoxic conditions were identified using high-performance liquid chromatography (HPLC) coupled with LC-MS/MS to investigate the global effects of low oxygen environment on Xoo PXO99A. A statistically validated list of 187 (normoxia) and 140 (hypoxia) proteins with functional assignments was generated, allowing the reconstruction of central metabolic pathways. Ten proteins involved in aromatic amino acid biosynthesis, glycolysis, butanoate metabolism, propanoate metabolism and biological adhesion were significantly modulated under low-oxygen tension. The genes encoded by these proteins were in-frame deleted, and three of them were determined to be required for full virulence in Xoo. The contributions of these three genes to important virulence-associated functions, including extracellular polysaccharide, cell motility and antioxidative ability, are presented. BIOLOGICAL SIGNIFICANCE To study how Xanthomonas oryzae pv. oryzae (Xoo) conquers low-oxygen tension in the xylem of rice, we identified differentially expressed proteins under normoxic and hypoxia. We found 140 proteins that uniquely expressed under the hypoxia were involved in 33 metabolism pathways. We identified 3 proteins were required for full virulence in Xoo and related to the ability of extracellular polysaccharide, cell motility, and antioxidative. This study is helpful for broadening our knowledge of the metabolism processed of Xoo in the xylem of rice.
Collapse
Affiliation(s)
- Jianliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Guo
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shasha Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Zeng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dehong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Yao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoquan Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
Abstract
Type II secretion (T2S) is one means by which Gram-negative pathogens secrete proteins into the extracellular milieu and/or host organisms. Based upon recent genome sequencing, it is clear that T2S is largely restricted to the Proteobacteria, occurring in many, but not all, genera in the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria classes. Prominent human and/or animal pathogens that express a T2S system(s) include Acinetobacter baumannii, Burkholderia pseudomallei, Chlamydia trachomatis, Escherichia coli, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Vibrio cholerae, and Yersinia enterocolitica T2S-expressing plant pathogens include Dickeya dadantii, Erwinia amylovora, Pectobacterium carotovorum, Ralstonia solanacearum, Xanthomonas campestris, Xanthomonas oryzae, and Xylella fastidiosa T2S also occurs in nonpathogenic bacteria, facilitating symbioses, among other things. The output of a T2S system can range from only one to dozens of secreted proteins, encompassing a diverse array of toxins, degradative enzymes, and other effectors, including novel proteins. Pathogenic processes mediated by T2S include the death of host cells, degradation of tissue, suppression of innate immunity, adherence to host surfaces, biofilm formation, invasion into and growth within host cells, nutrient assimilation, and alterations in host ion flux. The reach of T2S is perhaps best illustrated by those bacteria that clearly use it for both environmental survival and virulence; e.g., L. pneumophila employs T2S for infection of amoebae, growth within lung cells, dampening of cytokines, and tissue destruction. This minireview provides an update on the types of bacteria that have T2S, the kinds of proteins that are secreted via T2S, and how T2S substrates promote infection.
Collapse
|
31
|
Song Z, Zhao Y, Qian G, Odhiambo BO, Liu F. Novel insights into the regulatory roles of gene hshB in Xanthomonas oryzae pv. oryzicola. Res Microbiol 2016; 168:165-173. [PMID: 27810475 DOI: 10.1016/j.resmic.2016.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/15/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Abstract
Xanthomonas oryzae pv. oryzicola causes leaf streak disease of rice. The gene hshB is a newly identified virulence-associated gene that is co-regulated by diffusible signal factor signaling and global regulator Clp in X. oryzae pv. oryzicola. Our previous study showed that mutation of hshB remarkably impaired the virulence, extracellular protease activity, extracellular polysaccharide production and resistance to oxidative stress of X. oryzae pv. oryzicola. In this study, the regulatory role of hshB in X. oryzae pv .oryzicola was expanded. Results showed that hshB was also required for cell swimming motility. Transcriptome analysis showed that 305 genes were significantly differentially expressed after deletion of hshB in X. oryzae pv. oryzicola. Further analysis of transcriptome data indicated that the differentially expressed genes focused on two aspects: namely, cell motility and cell signal transduction. This finding strongly identified the closely related function of hshB to cell motility and signal transduction. In addition, the mutation of hshB of X. oryzae pv. oryzicola enhanced biofilm formation. Collectively, the study showed novel functions of gene hshB in cell motility and biofilm formation by transcriptome analysis, thus expanding our understanding of the roles of gene hshB in the pathogenic X. oryzae pv. oryzicola.
Collapse
Affiliation(s)
- Zhiwei Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Benard Omondi Odhiambo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| |
Collapse
|
32
|
Pfeilmeier S, Caly DL, Malone JG. Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2016; 17:1298-313. [PMID: 27170435 PMCID: PMC6638335 DOI: 10.1111/mpp.12427] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 05/03/2023]
Abstract
Plant infection is a complicated process. On encountering a plant, pathogenic microorganisms must first adapt to life on the epiphytic surface, and survive long enough to initiate an infection. Responsiveness to the environment is critical throughout infection, with intracellular and community-level signal transduction pathways integrating environmental signals and triggering appropriate responses in the bacterial population. Ultimately, phytopathogens must migrate from the epiphytic surface into the plant tissue using motility and chemotaxis pathways. This migration is coupled with overcoming the physical and chemical barriers to entry into the plant apoplast. Once inside the plant, bacteria use an array of secretion systems to release phytotoxins and protein effectors that fulfil diverse pathogenic functions (Fig. ) (Melotto and Kunkel, ; Phan Tran et al., ). As our understanding of the pathways and mechanisms underpinning plant pathogenicity increases, a number of central research challenges are emerging that will profoundly shape the direction of research in the future. We need to understand the bacterial phenotypes that promote epiphytic survival and surface adaptation in pathogenic bacteria. How do these pathways function in the context of the plant-associated microbiome, and what impact does this complex microbial community have on the onset and severity of plant infections? The huge importance of bacterial signal transduction to every stage of plant infection is becoming increasingly clear. However, there is a great deal to learn about how these signalling pathways function in phytopathogenic bacteria, and the contribution they make to various aspects of plant pathogenicity. We are increasingly able to explore the structural and functional diversity of small-molecule natural products from plant pathogens. We need to acquire a much better understanding of the production, deployment, functional redundancy and physiological roles of these molecules. Type III secretion systems (T3SSs) are important and well-studied contributors to bacterial disease. Several key unanswered questions will shape future investigations of these systems. We need to define the mechanism of hierarchical and temporal control of effector secretion. For successful infection, effectors need to interact with host components to exert their function. Advanced biochemical, proteomic and cell biological techniques will enable us to study the function of effectors inside the host cell in more detail and on a broader scale. Population genomics analyses provide insight into evolutionary adaptation processes of phytopathogens. The determination of the diversity and distribution of type III effectors (T3Es) and other virulence genes within and across pathogenic species, pathovars and strains will allow us to understand how pathogens adapt to specific hosts, the evolutionary pathways available to them, and the possible future directions of the evolutionary arms race between effectors and molecular plant targets. Although pathogenic bacteria employ a host of different virulence and proliferation strategies, as a result of the space constraints, this review focuses mainly on the hemibiotrophic pathogens. We discuss the process of plant infection from the perspective of these important phytopathogens, and highlight new approaches to address the outstanding challenges in this important and fast-moving field.
Collapse
Affiliation(s)
- Sebastian Pfeilmeier
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Delphine L Caly
- Université de Lille, EA 7394, ICV - Institut Charles Viollette, Lille, F-59000, France
| | - Jacob G Malone
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
33
|
Wang R, Xu H, Du L, Chou SH, Liu H, Liu Y, Liu F, Qian G. A TonB-dependent receptor regulates antifungal HSAF biosynthesis in Lysobacter. Sci Rep 2016; 6:26881. [PMID: 27241275 PMCID: PMC4886534 DOI: 10.1038/srep26881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2016] [Indexed: 11/25/2022] Open
Abstract
Lysobacter species are Gram-negative bacteria that are emerging as new sources of antibiotics, including HSAF (Heat Stable Antifungal Factor), which was identified from L. enzymogenes with a new mode of action. LesR, a LuxR solo, was recently shown to regulate the HSAF biosynthesis via an unidentified mechanism in L. enzymogenes OH11. Here, we used a comparative proteomic approach to identify the LesR targets and found that LesR influenced the expression of 33 proteins belonging to 10 functional groups, with 9 proteins belonging to the TBDR (TonB-Dependent Receptor) family. The fundamental role of bacterial TBDR in nutrient uptake motivates us to explore their potential regulation on HSAF biosynthesis which is also modulated by nutrient condition. Six out of 9 TBDR coding genes were individually in-frame deleted. Phenotypic and gene-expression assays showed that TBDR7, whose level was lower in a strain overexpressing lesR, was involved in regulating HSAF yield. TBDR7 was not involved in the growth, but played a vital role in transcribing the key HSAF biosynthetic gene. Taken together, the current lesR-based proteomic study provides the first report that TBDR7 plays a key role in regulating antibiotic (HSAF) biosynthesis, a function which has never been found for TBDRs in bacteria.
Collapse
Affiliation(s)
- Ruping Wang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Huiyong Xu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Hongxia Liu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Youzhou Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
34
|
Ferreira RM, Moreira LM, Ferro JA, Soares MR, Laia ML, Varani AM, de Oliveira JC, Ferro MIT. Unravelling potential virulence factor candidates in Xanthomonas citri. subsp. citri by secretome analysis. PeerJ 2016; 4:e1734. [PMID: 26925342 PMCID: PMC4768671 DOI: 10.7717/peerj.1734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Citrus canker is a major disease affecting citrus production in Brazil. It's mainly caused by Xanthomonas citri subsp. citri strain 306 pathotype A (Xac). We analysed the differential expression of proteins secreted by wild type Xac and an asymptomatic mutant for hrpB4 (ΔhrpB4) grown in Nutrient Broth (NB) and a medium mimicking growth conditions in the plant (XAM1). This allowed the identification of 55 secreted proteins, of which 37 were secreted by both strains when cultured in XAM1. In this secreted protein repertoire, the following stand out: Virk, Polyphosphate-selective porin, Cellulase, Endoglucanase, Histone-like protein, Ribosomal proteins, five hypothetical proteins expressed only in the wild type strain, Lytic murein transglycosylase, Lipoprotein, Leucyl-tRNA synthetase, Co-chaperonin, Toluene tolerance, C-type cytochrome biogenesis membrane protein, Aminopeptidase and two hypothetical proteins expressed only in the ΔhrpB4 mutant. Furthermore, Peptidoglycan-associated outer membrane protein, Regulator of pathogenicity factor, Outer membrane proteins, Endopolygalacturonase, Chorismate mutase, Peptidyl-prolyl cis-trans isomerase and seven hypothetical proteins were detected in both strains, suggesting that there was no relationship with the secretion mediated by the type III secretory system, which is not functional in the mutant strain. Also worth mentioning is the Elongation factor Tu (EF-Tu), expressed only the wild type strain, and Type IV pilus assembly protein, Flagellin (FliC) and Flagellar hook-associated protein, identified in the wild-type strain secretome when grown only in NB. Noteworthy, that FliC, EF-Tu are classically characterized as PAMPs (Pathogen-associated molecular patterns), responsible for a PAMP-triggered immunity response. Therefore, our results highlight proteins potentially involved with the virulence. Overall, we conclude that the use of secretome data is a valuable approach that may bring more knowledge of the biology of this important plant pathogen, which ultimately can lead to the establishment of new strategies to combat citrus canker.
Collapse
Affiliation(s)
- Rafael M. Ferreira
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Leandro M. Moreira
- Departamento de Ciências Biológicas—Núcleo de Pesquisas em Ciências Biológicas-NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Jesus A. Ferro
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Marcia R.R. Soares
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo L. Laia
- Departamento de Engenharia Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Alessandro M. Varani
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Julio C.F. de Oliveira
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Maria Ines T. Ferro
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
35
|
Wu L, Wu H, Chen L, Yu X, Borriss R, Gao X. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep 2015; 5:12975. [PMID: 26268540 PMCID: PMC4534799 DOI: 10.1038/srep12975] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/15/2015] [Indexed: 12/28/2022] Open
Abstract
Bacterial blight and bacterial leaf streak are serious, economically damaging, diseases of rice caused by the bacteria Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. Bacillus amyloliquefaciens FZB42 was shown to possess biocontrol activity against these Xanthomonas strains by producing the antibiotic compounds difficidin and bacilysin. Analyses using fluorescence, scanning electron and transmission electron microscopy revealed difficidin and bacilysin caused changes in the cell wall and structure of Xanthomonas. Biological control experiments on rice plants demonstrated the ability of difficidin and bacilysin to suppress disease. Difficidin and bacilysin caused downregulated expression of genes involved in Xanthomonas virulence, cell division, and protein and cell wall synthesis. Taken together, our results highlight the potential of B. amyloliquefaciens FZB42 as a biocontrol agent against bacterial diseases of rice, and the utility of difficidin and bacilysin as antimicrobial compounds.
Collapse
Affiliation(s)
- Liming Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Lina Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Xinfang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | | | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| |
Collapse
|
36
|
Ryan RP, An SQ, Allan JH, McCarthy Y, Dow JM. The DSF Family of Cell-Cell Signals: An Expanding Class of Bacterial Virulence Regulators. PLoS Pathog 2015; 11:e1004986. [PMID: 26181439 PMCID: PMC4504480 DOI: 10.1371/journal.ppat.1004986] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many pathogenic bacteria use cell–cell signaling systems involving the synthesis and perception of diffusible signal molecules to control virulence as a response to cell density or confinement to niches. Bacteria produce signals of diverse structural classes. Signal molecules of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids. The paradigm is cis-11-methyl-2-dodecenoic acid from Xanthomonas campestris pv. campestris (Xcc), which controls virulence in this plant pathogen. Although DSF synthesis was thought to be restricted to the xanthomonads, it is now known that structurally related molecules are produced by the unrelated bacteria Burkholderia cenocepacia and Pseudomonas aeruginosa. Furthermore, signaling involving these DSF family members contributes to bacterial virulence, formation of biofilms and antibiotic tolerance in these important human pathogens. Here we review the recent advances in understanding DSF signaling and its regulatory role in different bacteria. These advances include the description of the pathway/mechanism of DSF biosynthesis, identification of novel DSF synthases and new members of the DSF family, the demonstration of a diversity of DSF sensors to include proteins with a Per-Arnt-Sim (PAS) domain and the description of some of the signal transduction mechanisms that impinge on virulence factor expression. In addition, we address the role of DSF family signals in interspecies signaling that modulates the behavior of other microorganisms. Finally, we consider a number of recently reported approaches for the control of bacterial virulence through the modulation of DSF signaling.
Collapse
Affiliation(s)
- Robert P. Ryan
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (RPR); (JMD)
| | - Shi-qi An
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John H. Allan
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Yvonne McCarthy
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - J. Maxwell Dow
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
- * E-mail: (RPR); (JMD)
| |
Collapse
|
37
|
Song Z, Zhao Y, Zhou X, Wu G, Zhang Y, Qian G, Liu F. Identification and Characterization of Two Novel DSF-Controlled Virulence-Associated Genes Within the nodB-rhgB Locus of Xanthomonas oryzae pv. oryzicola Rs105. PHYTOPATHOLOGY 2015; 105:588-596. [PMID: 26020828 DOI: 10.1094/phyto-07-14-0190-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae are two pathovars of X. oryzae that cause leaf streak and blight in rice, respectively. These two bacterial pathogens cause different disease symptoms by utilizing different infection sites on rice. Compared with X. oryzae pv. oryzae, the molecular virulence mechanism of X. oryzae pv. oryzicola remains largely unknown. Previously, we identified a unique diffusible signal factor (DSF)-controlled virulence-related gene (hshB) in X. oryzae pv. oryzicola Rs105 located in the nodB-rghB locus, which is absent in X. oryzae pv. oryzae PXO99(A). In the present study, we identified two additional genes within this locus (hshA and hshC) that were unique to X. oryzae pv. oryzicola Rs105 compared with X. oryzae pv. oryzae PXO99(A), and we found that the transcription of these genes was regulated by DSF signaling in X. oryzae pv. oryzicola. The mutation of these genes impaired the virulence of the wild-type Rs105 when using a low inoculation density of X. oryzae pv. oryzicola. In contrast to hshB, the mutation of these genes did not have any visible effect on characterized virulence-related functions, including in vitro growth, extracellular polysaccharide production, extracellular protease activity, and antioxidative ability. However, we found that mutation of hshA or hshC significantly reduced the in planta growth ability and epiphytic survival level of X. oryzae pv. oryzicola cells, which was the probable mechanisms of involvement of these two genes in virulence. Collectively, our studies of X. oryzae pv. oryzicola have identified two novel DSF-controlled virulence-associated genes (hshA and hshC), which will add to our understanding of the regulatory mechanisms of conserved DSF virulence signaling in Xanthomonas species.
Collapse
Affiliation(s)
- Zhiwei Song
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Yancun Zhao
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Xingyang Zhou
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guichun Wu
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Yuqiang Zhang
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guoliang Qian
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Fengquan Liu
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| |
Collapse
|
38
|
Xu H, Zhao Y, Qian G, Liu F. XocR, a LuxR solo required for virulence in Xanthomonas oryzae pv. oryzicola. Front Cell Infect Microbiol 2015; 5:37. [PMID: 25932456 PMCID: PMC4399327 DOI: 10.3389/fcimb.2015.00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/31/2015] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak (BLS) in rice, a serious bacterial disease of rice in Asia and parts of Africa. The virulence mechanisms of Xoc are not entirely clear and control measures for BLS are poorly developed. The solo LuxR proteins are widespread and shown to be involved in virulence in some plant associated bacteria (PAB). Here, we have cloned and characterized a PAB LuxR solo from Xoc, named as XocR. Mutation of xocR almost completely impaired the virulence ability of Xoc on host rice, but did not alter the ability to trigger HR (hypersensitive response, a programmed cell death) on non-host (plant) tobacco, suggesting the diversity of function of xocR in host and non-host plants. We also provide evidence to show that xocR is involved in the regulation of growth-independent cell motility in response to a yet-to-be-identified rice signal, as mutation of xocR impaired cell swimming motility of wild-type Rs105 in the presence but not absence of rice macerate. We further found that xocR regulated the transcription of two characterized virulence-associated genes (recN and trpE) in the presence of rice macerate. The promoter regions of recN and trpE possessed a potential binding motif (an imperfect pip box-like element) of XocR, raising the possibility that XocR might directly bind the promoter regions of these two genes to regulate their transcriptional activity. Our studies add a new member of PAB LuxR solos and also provide new insights into the role of PAB LuxR solo in the virulence of Xanthomonas species.
Collapse
Affiliation(s)
- Huiyong Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural ScienceNanjing, China
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural ScienceNanjing, China
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural ScienceNanjing, China
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing, China
| |
Collapse
|
39
|
Devos S, Van Oudenhove L, Stremersch S, Van Putte W, De Rycke R, Van Driessche G, Vitse J, Raemdonck K, Devreese B. The effect of imipenem and diffusible signaling factors on the secretion of outer membrane vesicles and associated Ax21 proteins in Stenotrophomonas maltophilia. Front Microbiol 2015; 6:298. [PMID: 25926824 PMCID: PMC4396451 DOI: 10.3389/fmicb.2015.00298] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/26/2015] [Indexed: 02/05/2023] Open
Abstract
Outer membrane vesicles (OMVs) are small nanoscale structures that are secreted by bacteria and that can carry nucleic acids, proteins, and small metabolites. They can mediate intracellular communication and play a role in virulence. In this study, we show that treatment with the β-lactam antibiotic imipenem leads to a dramatic increase in the secretion of outer membrane vesicles in the nosocomial pathogen Stenotrophomonas maltophilia. Proteomic analysis of their protein content demonstrated that the OMVs contain the chromosomal encoded L1 metallo-β-lactamase and L2 serine-β-lactamase. Moreover, the secreted OMVs contain large amounts of two Ax21 homologs, i.e., outer membrane proteins known to be involved in virulence and biofilm formation. We show that OMV secretion and the levels of Ax21 in the OMVs are dependent on the quorum sensing diffusible signal system (DSF). More specific, we demonstrate that the S. maltophilia DSF cis-Δ2-11-methyl-dodecenoic acid and, to a lesser extent, the Burkholderia cenocepacia DSF cis-Δ2-dodecenoic acid, stimulate OMV secretion. By a targeted proteomic analysis, we confirmed that DSF-induced OMVs contain large amounts of the Ax21 homologs, but not the β-lactamases. This work illustrates that both quorum sensing and disturbance of the peptidoglycan biosynthesis provoke the release of OMVs and that OMV content is context dependent.
Collapse
Affiliation(s)
- Simon Devos
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Laurence Van Oudenhove
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Stephan Stremersch
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University Ghent, Belgium
| | - Wouter Van Putte
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Inflammation Research Center, Ghent University Ghent, Belgium ; Inflammation Research Center, Flemish Institute for Biotechnology (VIB) Ghent, Belgium
| | - Gonzalez Van Driessche
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Jolien Vitse
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Koen Raemdonck
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University Ghent, Belgium
| | - Bart Devreese
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| |
Collapse
|
40
|
Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses. PLoS Pathog 2015; 11:e1004809. [PMID: 25821973 PMCID: PMC4379099 DOI: 10.1371/journal.ppat.1004809] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/12/2015] [Indexed: 12/21/2022] Open
Abstract
Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components. Plants possess multi-layered immune recognition systems. Early in the infection process, plants use receptor proteins to recognize pathogen molecules. Some of these receptors are present in only in a subset of plant species. Transfer of these taxonomically restricted immune receptors between plant species by genetic engineering is a promising approach for boosting the plant immune system. Here we show the successful transfer of an immune receptor from a species in the mustard family, called EFR, to rice. Rice plants expressing EFR are able to sense the bacterial ligand of EFR and elicit an immune response. We show that the EFR receptor is able to use components of the rice immune signaling pathway for its function. Under laboratory conditions, this leads to an enhanced resistance response to two weakly virulent isolates of an economically important bacterial disease of rice.
Collapse
|
41
|
Proteomic and functional analyses of a novel porin-like protein in Xanthomonas oryzae pv. oryzae. J Microbiol 2014; 52:1030-5. [DOI: 10.1007/s12275-014-4442-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 01/22/2023]
|
42
|
Pierce BK, Voegel T, Kirkpatrick BC. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles. PLoS One 2014; 9:e113504. [PMID: 25426629 PMCID: PMC4245136 DOI: 10.1371/journal.pone.0113504] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022] Open
Abstract
Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.
Collapse
Affiliation(s)
- Brittany K. Pierce
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Tanja Voegel
- Department of Biology, University of British Columbia, Okanagan, Kelowna, BC, Canada
| | - Bruce C. Kirkpatrick
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
43
|
Identification of a small molecule signaling factor that regulates the biosynthesis of the antifungal polycyclic tetramate macrolactam HSAF in Lysobacter enzymogenes. Appl Microbiol Biotechnol 2014; 99:801-11. [PMID: 25301587 DOI: 10.1007/s00253-014-6120-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023]
Abstract
Lysobacter species are emerging as new sources of antibiotics. The regulation of these antibiotics is not well understood. Here, we identified a small molecule metabolite (LeDSF3) that regulates the biosynthesis of the antifungal antibiotic heat-stable antifungal factor (HSAF), a polycyclic tetramate macrolactam with a structure and mode of action distinct from the existing antifungal drugs. LeDSF3 was isolated from the culture broth of Lysobacter enzymogenes, and its chemical structure was established by NMR and MS. The purified compound induced green fluorescence in a reporter strain of Xanthomonas campestris, which contained a gfp gene under the control of a diffusible signaling factor (DSF)-inducible promoter. Exogenous addition of LeDSF3 in L. enzymogenes cultures significantly increased the HSAF yield, the transcription of HSAF biosynthetic genes, and the antifungal activity of the organism. The LeDSF3-regulated HSAF production is dependent on the two-component regulatory system RpfC/RpfG. Moreover, LeDSF3 upregulated the expression of the global regulator cAMP receptor-like protein (Clp). The disruption of clp led to no HSAF production. Together, the results show that LeDSF3 is a fatty acid-derived, diffusible signaling factor positively regulating HSAF biosynthesis and that the signaling is mediated by the RfpC/RpfG-Clp pathway. These findings may facilitate the antibiotic production through applied genetics and molecular biotechnology in Lysobacter, a group of ubiquitous yet underexplored microorganisms.
Collapse
|
44
|
Identification of 17 HrpX-regulated proteins including two novel type III effectors, XOC_3956 and XOC_1550, in Xanthomonas oryzae pv. oryzicola. PLoS One 2014; 9:e93205. [PMID: 24675748 PMCID: PMC3968052 DOI: 10.1371/journal.pone.0093205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/02/2014] [Indexed: 12/11/2022] Open
Abstract
The function of some hypothetical proteins, possibly regulated by key hrp regulators, in the pathogenicity of phytopathogenic bacteria remains largely unknown. In the present study, in silicon microarray data demonstrated that the expression of 17 HrpX-regulated protein (Xrp) genes of X. oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak in rice, were either positively or negatively regulated by HrpX or/and HrpG. Bioinformatics analysis demonstrated that five Xrps possess a putative type III secretion (T3S) signal in the first 50 N-terminal amino acids, six xrp genes contain a PIP-box-like sequence (TTCGB-NX-TTCGB, 9≤X≤25) in the promoter regions, and two Xrps have both motifs. Twelve Xrps are widely conserved in Xanthomonas spp., whereas four are specific for X. oryzae (Xrp6) or Xoc (Xrp8, Xrp14 and Xrp17). In addition to the regulation by HrpG/HrpX, some of the 17 genes were also modulated by another hrp regulator HrpD6. Mutagenesis of these 17 genes indicated that five Xrps (Xrp1, Xrp2, Xrp5, Xrp8 and Xrp14) were required for full virulence and bacterial growth in planta. Immunoblotting assays and fusion with N-terminally truncated AvrXa10 indicated that Xrp3 and Xrp5 were secreted and translocated into rice cells through the type-III secretion system (T3S), suggesting they are novel T3S effectors. Our results suggest that Xoc exploits an orchestra of proteins that are regulated by HrpG, HrpX and HrpD6, and these proteins facilitate both infection and metabolism.
Collapse
|
45
|
Bahar O, Pruitt R, Luu DD, Schwessinger B, Daudi A, Liu F, Ruan R, Fontaine-Bodin L, Koebnik R, Ronald P. The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles. PeerJ 2014; 2:e242. [PMID: 24482761 PMCID: PMC3897388 DOI: 10.7717/peerj.242] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/19/2013] [Indexed: 01/05/2023] Open
Abstract
Pattern recognition receptors (PRRs) play an important role in detecting invading pathogens and mounting a robust defense response to restrict infection. In rice, one of the best characterized PRRs is XA21, a leucine rich repeat receptor-like kinase that confers broad-spectrum resistance to multiple strains of the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). In 2009 we reported that an Xoo protein, called Ax21, is secreted by a type I-secretion system and that it serves to activate XA21-mediated immunity. This report has recently been retracted. Here we present data that corrects our previous model. We first show that Ax21 secretion does not depend on the predicted type I secretion system and that it is processed by the general secretion (Sec) system. We further show that Ax21 is an outer membrane protein, secreted in association with outer membrane vesicles. Finally, we provide data showing that ax21 knockout strains do not overcome XA21-mediated immunity.
Collapse
Affiliation(s)
- Ofir Bahar
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| | - Rory Pruitt
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| | - Dee Dee Luu
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| | - Benjamin Schwessinger
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| | - Arsalan Daudi
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| | - Furong Liu
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| | - Randy Ruan
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| | - Lisa Fontaine-Bodin
- UMR 186 IRD-Cirad-Université Montpellier 2 "Résistance des Plantes aux Bioaggresseurs", Montpellier, France
| | - Ralf Koebnik
- UMR 186 IRD-Cirad-Université Montpellier 2 "Résistance des Plantes aux Bioaggresseurs", Montpellier, France
| | - Pamela Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA.,UMR 186 IRD-Cirad-Université Montpellier 2 "Résistance des Plantes aux Bioaggresseurs", Montpellier, France
| |
Collapse
|