1
|
Niu D, Zhao Q, Xu L, Lin K. Physiological and Molecular Mechanisms of Lepidopteran Insects: Genomic Insights and Applications of Genome Editing for Future Research. Int J Mol Sci 2024; 25:12360. [PMID: 39596426 PMCID: PMC11594828 DOI: 10.3390/ijms252212360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Lepidopteran insects are a major threat to global agriculture, causing significant crop losses and economic damage. Traditional pest control methods are becoming less effective due to the rapid evolution of insecticide resistance. This study explores the current status and genomic characteristics of 1315 Lepidopteran records, alongside an overview of relevant research, utilizing advanced functional genomics techniques, including RNA-seq and CRISPR/Cas9 gene-editing technologies to uncover the molecular mechanisms underlying insecticide resistance. Our genomic analysis revealed significant variability in genome size, assembly quality, and chromosome number, which may influence species' biology and resistance mechanisms. We identified key resistance-associated genes and pathways, including detoxification and metabolic pathways, which help these insects evade chemical control. By employing CRISPR/Cas9 gene-editing techniques, we directly manipulated resistance-associated genes to confirm their roles in resistance, demonstrating their potential for targeted interventions in pest management. These findings emphasize the value of integrating genomic data into the development of effective and sustainable pest control strategies, reducing reliance on chemical insecticides and promoting environmentally friendly integrated pest management (IPM) approaches. Our study highlights the critical role of functional genomics in IPM and its potential to provide long-term solutions to the growing challenge of Lepidopteran resistance.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Qing Zhao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| |
Collapse
|
2
|
Xin Y, Liang J, Ren C, Song W, Huang B, Liu Y, Zhang S. Physiological and transcriptomic responses of silkworms to graphene oxide exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116434. [PMID: 38728944 DOI: 10.1016/j.ecoenv.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The growing use of nanomaterials has sparked significant interest in assessing the insect toxicities of nanoparticles. The silkworm, as an economically important insect, serves as a promising model for studying how insects respond to harmful substances. Here, we conducted a comprehensive investigation on the impact of graphene oxide (GO) on silkworms using a combination of physiological and transcriptome analyses. GO can enter the midguts and posterior silk glands of silkworms. High GO concentrations (> 25 mg/L) significantly (P < 0.01) inhibited larval growth. Additionally, GO (> 5 mg/L) significantly reduced the cocooning rate, and GO (> 15 mg/L) hindered oviduct development and egg laying in silkworms. GO increased the reactive oxygen species content and regulated catalase activity, suggesting that it may affect insect growth by regulating reactive oxygen detoxification. The transcriptome data analysis showed that 35 metabolism-related genes and 20 ribosome biogenesis-related genes were differentially expressed in response to GO, and their expression levels were highly correlated. Finally, we propose that a Ribosome biogenesis-Metabolic signaling network is involved in responses to GO. The research provides a new perspective on the molecular responses of insects to GO.
Collapse
Affiliation(s)
- Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Jiawen Liang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chunjiu Ren
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Wenhui Song
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Bokai Huang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yangyang Liu
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Shengxiang Zhang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
3
|
Summer M, Tahir HM, Ali S, Nawaz S, Abaidullah R, Mumtaz S, Ali A, Gormani AH. Nanobiopesticides as an Alternative and Sustainable Solution to Tackle Pest Outbreaks. JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 2024; 96. [DOI: 10.2317/0022-8567-96.4.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Saira Nawaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
4
|
Khan HAA. Long-term impact of rearing substrates on susceptibility to insecticides and metabolic enzyme activities in the house fly Musca domestica. Parasitol Res 2024; 123:157. [PMID: 38459281 DOI: 10.1007/s00436-024-08180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
Musca domestica Linnaeus is a devastating insect pest of medical and veterinary importance with reports of resistance development to commonly used insecticides worldwide. Rearing substrates usually play a crucial role in determining susceptibility to insecticides and control of insect pests. The aim of the present study was to investigate the effect of five rearing substrates of M. domestica on its susceptibility to different insecticides and activities of metabolic enzymes. After 30 generations of rearing, susceptibility of M. domestica to tested insecticides, viz., malathion, pirimiphos-methyl, alpha-cypermethrin, deltamethrin, methomyl, propoxur, spinetoram, and chlorfenapyr had evident differences. Musca domestica reared on hen liver exhibited reduced susceptibility to all insecticides followed by the strain reared on poultry manure. However, M. domestica reared on milk-based diet showed the highest susceptibility to tested insecticides followed by the strain reared on manures of buffalo and horse. In addition, M. domestica reared on different substrates exhibited significant differences (p < 0.01) in the activities of glutathione S-transferase (GST), cytochrome P450-dependent monooxygenase, and carboxylesterase (CarE). Overall, hen liver and poultry manure strains exhibited higher activities of metabolic enzymes than those of the milk-based diet, buffalo, and horse manure strains. In conclusion, the data of the present study exhibited a significant effect of rearing substrates on the susceptibility to insecticides and activities of metabolic enzymes in M. domestica. These results could be helpful for the sustainable management of M. domestica on different hosts by selecting appropriate insecticides.
Collapse
|
5
|
Azhamuthu T, Kathiresan S, Senkuttuvan I, Abulkalam Asath NA, Ravichandran P. Usnic acid attenuates 7,12-dimethylbenz[a] anthracene (DMBA) induced oral carcinogenesis through inhibiting oxidative stress, inflammation, and cell proliferation in male golden Syrian hamster model. J Biochem Mol Toxicol 2024; 38:e23553. [PMID: 37840363 DOI: 10.1002/jbt.23553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
In this study, we investigated the chemopreventive efficacy of usnic acid (UA), an effective secondary metabolite component of lichens, against 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinoma (OSCC) in the hamster model. Initially, the buccal pouch carcinogenesis was induced by administering 0.5% DMBA to the HBP (hamster buccal pouch) region about three times a week until the 10th week. Then, UA was orally treated with different concentrations (25, 50, 100 mg/kg b.wt) on alternative days of DMBA exposure, and the experimental process ended in the 16th week. After animal experimentation, we observed 100% tumor incidence with well-differentiated OSCC, dysplasia, and hyperplasia lesions in the DMBA-induced HBP region. Furthermore, the UA treatment of DMBA-induced hamster effectively inhibited tumor growth. In addition, UA upregulated antioxidant levels, interfered with the elevated lipid peroxidation by-product of thiobarbituric acid reactive substances, and changed the activities of the liver detoxification enzyme (Phase I and II) in DMBA-induced hamsters. Furthermore, immunohistochemical staining of inflammatory markers (iNOS and COX-2) and proliferative cell markers (cyclin-D1 and PCNA) were upregulated in the buccal pouch part of hamster animals induced with DMBA. Notably, the oral administration of UA significantly suppressed these markers during DMBA-induced hamsters. Collectively, our findings revealed that UA exhibits antioxidant, anti-inflammatory, antitumor, and apoptosis-inducing characteristics, demonstrating UA's protective properties against DMBA-induced HBP carcinogenesis.
Collapse
Affiliation(s)
- Theerthu Azhamuthu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Suresh Kathiresan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Ilanchitchenni Senkuttuvan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Nihal Ahamed Abulkalam Asath
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Pugazhendhi Ravichandran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
6
|
Yang X, Hafeez M, Chen HY, Li WT, Ren RJ, Luo YS, Abdellah YAY, Wang RL. DIMBOA-induced gene expression, activity profiles of detoxification enzymes, multi-resistance mechanisms, and increased resistance to indoxacarb in tobacco cutworm, Spodoptera litura (Fabricius). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115669. [PMID: 37944464 DOI: 10.1016/j.ecoenv.2023.115669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is one of the most destructive insect pests owned strong resistance to different insecticides. Indoxacarb as a novel oxadiazine insecticide becomes the main pesticide against S. litura. DIMBOA [2,4-dihydroxy-7-methoxy-2 H-1,4-benz-oxazin-3(4 H)-one] is involved in important chemical defense processes in corn plants. However, the insects' adaptation mechanism to insecticides when exposed to defensive allelochemicals in their host plants remains unclear. Here, we assessed multi-resistance, and resistance mechanisms based on S. litura life history traits. After 18 generations of selection, indoxacarb resistance was increased by 61.95-fold (Ind-Sel) and 86.06-fold (Dim-Sel) as compared to the Lab-Sus. Also, DIMBOA-pretreated larvae developed high resistance to beta-cypermethrin, chlorpyrifos, phoxim, chlorantraniliprole, and emamectin benzoate. Meanwhile, indoxacarb (LC50) was applied to detect its impact on thirty-eight detoxification-related genes expression. The transcripts of SlituCOE073, SlituCOE009, SlituCOE074, and SlituCOE111 as well as SlGSTs5, SlGSTu1, and SlGSTe13 were considerably raised in the Ind-Sel strain. Among the twenty-three P450s, CYP6AE68, CYP321B1, CYP6B50, CYP9A39, CYP4L10, and CYP4S9v1 transcripts denoted significantly higher levels in the Ind-Sel strain, suggesting that CarEs, GSTs and P450s genes may be engaged in indoxacarb resistance. These outcomes further highlighted the importance of detoxification enzymes for S. litura gene expression and their role in responses to insecticides and pest management approaches.
Collapse
Affiliation(s)
- Xi Yang
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Hafeez
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA; USDA-ARS Horticultural Crops Research Unit, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA
| | - Hong-Yu Chen
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Wan-Ting Li
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Rong-Jie Ren
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Sen Luo
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yousif Abdelrahman Yousif Abdellah
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Rui-Long Wang
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Yang MJ, Luo SH, Liu Y, Li SH. Defensive furofuran lignans localized to the oil cells of Neocinnamomum delavayi and their metabolism by a specialist insect. PHYTOCHEMISTRY 2023; 215:113852. [PMID: 37690698 DOI: 10.1016/j.phytochem.2023.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Neocinnamomum delavayi (Lauraceae) leaves with abundant oil cells are seldom attacked by insects, but their chemical constituent and biological function remain obscure. Three furofuran lignans, including (+)-eudesmin (3), (+)-magnolin (4), and demethoxyaschantin (5), were identified to be the major specialized metabolites in the oil cells of N. delavayi leaves through laser microdissection coupled with NMR analysis. Compounds 3 and 4 exhibited obvious antifeedant activity against a generalist insect Spodoptera exigua, and their natural contents in the leaves could effectively defend against generalist insects. Intriguingly, three specific metabolites 9-11, the O-demethylation derivates of compounds 3-5, were identified from a native specialist insect Dindica polyphaenaria feeding with N. delavayi leaves, implying an adaptation mechanism of specialist insects to plant defensive compounds. The results revealed a chemical connection between plants and insects, which would contribute to our understanding of plant-insect interaction and insect management.
Collapse
Affiliation(s)
- Min-Jie Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
8
|
Ettinger CL, Wu-Woods J, Kurbessoian T, Brown DJ, de Souza Pacheco I, Vindiola BG, Walling LL, Atkinson PW, Byrne FJ, Redak R, Stajich JE. Geographical survey of the mycobiome and microbiome of Southern California glassy-winged sharpshooters. mSphere 2023; 8:e0026723. [PMID: 37800904 PMCID: PMC10597469 DOI: 10.1128/msphere.00267-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
The glassy-winged sharpshooter, Homalodisca vitripennis Germar, is an invasive xylem-feeding leafhopper with a devastating economic impact on California agriculture through transmission of the plant pathogen, Xylella fastidiosa. While studies have focused on X. fastidiosa or known symbionts of H. vitripennis, little work has been done at the scale of the microbiome (the bacterial community) or mycobiome (the fungal community). Here, we characterize the mycobiome and the microbiome of H. vitripennis across Southern California and explore correlations with captivity and host insecticide resistance status. Using high-throughput sequencing of the ribosomal internal transcribed spacer 1 region and the 16S rRNA gene to profile the mycobiome and microbiome, respectively, we found that while the H. vitripennis mycobiome significantly varied across Southern California, the microbiome did not. We also observed a significant difference in both the mycobiome and microbiome between captive and wild H. vitripennis. Finally, we found that the mycobiome, but not the microbiome, was correlated with insecticide resistance status in wild H. vitripennis. This study serves as a foundational look at the H. vitripennis mycobiome and microbiome across Southern California. Future work should explore the putative link between microbes and insecticide resistance status and investigate whether microbial communities should be considered in H. vitripennis management practices. IMPORTANCE The glassy-winged sharpshooter is an invasive leafhopper that feeds on the xylem of plants and transmits the devastating pathogen, Xylella fastidiosa, resulting in significant economic damage to California's agricultural system. While studies have focused on this pathogen or obligate symbionts of the glassy-winged sharpshooter, there is limited knowledge of the bacterial and fungal communities that make up its microbiome and mycobiome. To address this knowledge gap, we explored the composition of the mycobiome and the microbiome of the glassy-winged sharpshooter across Southern California and identified differences associated with geography, captivity, and host insecticide resistance status. Understanding sources of variation in the microbial communities associated with the glassy-winged sharpshooter is an important consideration for developing management strategies to control this invasive insect. This study is a first step toward understanding the role microbes may play in the glassy-winged sharpshooter's resistance to insecticides.
Collapse
Affiliation(s)
- Cassandra L. Ettinger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Jessica Wu-Woods
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Tania Kurbessoian
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Dylan J. Brown
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | | | - Beatriz G. Vindiola
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| | - Peter W. Atkinson
- Department of Entomology, University of California, Riverside, Riverside, California, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| | - Frank J. Byrne
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Richard Redak
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
9
|
Wang CY, Qin JC, Yang YW. Multifunctional Metal-Organic Framework (MOF)-Based Nanoplatforms for Crop Protection and Growth Promotion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37037783 DOI: 10.1021/acs.jafc.3c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Phytopathogen, pest, weed, and nutrient deficiency cause severe losses to global crop yields every year. As the core engine, agrochemicals drive the continuous development of modern agriculture to meet the demand for agricultural productivity and increase the environmental burden due to inefficient use. With new advances in nanotechnology, introducing nanomaterials into agriculture to realize agrochemical accurate and targeted delivery has brought new opportunities to support the sustainable development of green agriculture. Metal-Organic frameworks (MOFs), which weave metal ions/clusters and organic ligands into porous frameworks, have exhibited significant advantages in constructing biotic/abiotic stimuli-responsive nanoplatforms for controlled agrochemical delivery. This review emphasizes the recent developments of MOF-based nanoplatforms for crop protection, including phytopathogen, pest, and weed control, and crop growth promotion, including fertilizer/plant hormone delivery. Finally, forward-looking perspectives and challenges on MOF-based nanoplatforms for future applications in crop protection and growth promotion are also discussed.
Collapse
Affiliation(s)
- Chao-Yi Wang
- College of Plant Science and College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jian-Chun Qin
- College of Plant Science and College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ying-Wei Yang
- College of Plant Science and College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Antifeedant and larvicidal activity of bioactive compounds isolated from entomopathogenic fungi Penicillium sp. for the control of agricultural and medically important insect pest (Spodoptera litura and Culex quinquefasciatus). Parasitol Int 2023; 92:102688. [DOI: 10.1016/j.parint.2022.102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
|
11
|
Adamo S. The Integrated Defense System: Optimizing Defense against Predators, Pathogens, and Poisons. Integr Comp Biol 2022; 62:1536-1546. [PMID: 35511215 DOI: 10.1093/icb/icac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Insects, like other animals, have evolved defense responses to protect against predators, pathogens, and poisons (i.e., toxins). This paper provides evidence that these three defense responses (i.e., fight-or-flight, immune, and detoxification responses) function together as part of an Integrated Defense System (IDS) in insects. The defense responses against predators, pathogens, and poisons are deeply intertwined. They share organs, resources, and signaling molecules. By connecting defense responses into an IDS, animals gain flexibility, and resilience. Resources can be redirected across fight-or-flight, immune, and detoxification defenses to optimize an individual's response to the current challenges facing it. At the same time, the IDS reconfigures defense responses that are losing access to resources, allowing them to maintain as much function as possible despite decreased resource availability. An IDS perspective provides an adaptive explanation for paradoxical phenomena such as stress-induced immunosuppression, and the observation that exposure to a single challenge typically leads to an increase in the expression of genes for all three defense responses. Further exploration of the IDS will require more studies examining how defense responses to a range of stressors are interconnected in a variety of species. Such studies should target pollinators and agricultural pests. These studies will be critical for predicting how insects will respond to multiple stressors, such as simultaneous anthropogenic threats, for example, climate change and pesticides.
Collapse
Affiliation(s)
- Shelley Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
12
|
Shyam-Sundar N, Ramasubramanian R, Karthi S, Senthil-Nathan S, Chanthini KMP, Sivanesh H, Stanley-Raja V, Ramkumar G, Narayanan KR, Mahboob S, Al-Ghanim KA, Abdel-Megeed A, Krutmuang P. Effects of phytocompound Precocene 1 on the expression and functionality of the P450 gene in λ-cyhalothrin-resistant Spodoptera litura (Fab.). Front Physiol 2022; 13:900570. [PMID: 36439259 PMCID: PMC9684723 DOI: 10.3389/fphys.2022.900570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 09/13/2022] [Indexed: 10/25/2023] Open
Abstract
Spodoptera litura (Fabricius) is an agriculturally significant polyphagous insect pest that has evolved a high level of resistance to conventional insecticides. A dietary assay was used in this work to assess the resilience of field populations of S. litura to λ-cyhalothrin. Analysis of the function and expression of the cytochrome P450 gene was used to test the sensitivity of S. litura larvae to sub-lethal concentrations of the insecticidal plant chemical Precocene 1, both by itself and in combination with λ-cyhalothrin. The activity of esterase enzymes (α and β) was found to decrease 48 h post treatment with Precocene 1. The activity of GST enzyme and cytochrome P450 increased with Precocene 1 treatment post 48 h, however. Expression studies revealed the modulation by Precocene 1 of cytochrome P450 genes, CYP4M16, CYP4M15, CYP4S8V4, CYP4G31, and CYP4L10. While CYP4M16 expression was stimulated the most by the synergistic Precocene 1 + λ-cyhalothrin treatment, expression of CYP4G31 was the most down-regulated by Precocene 1 exposure. Hence, it is evident that λ-cyhalothrin-resistant pest populations are still sensitive to Precocene 1 at a sublethal concentration that is nevertheless capable of hindering their development. Precocene 1 can therefore be considered a potent candidate for the effective management of insecticide-resilient S. litura.
Collapse
Affiliation(s)
- Narayanan Shyam-Sundar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Ramakrishnan Ramasubramanian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Haridoss Sivanesh
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Vethamonickam Stanley-Raja
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Govindaraju Ramkumar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | | | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Zhao P, Xue H, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Gao X, Luo J, Cui J. Knockdown of cytochrome P450 gene CYP6AB12 based on nanomaterial technology reduces the detoxification ability of Spodoptera litura to gossypol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105284. [PMID: 36464384 DOI: 10.1016/j.pestbp.2022.105284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
In insects, cytochrome P450 monooxygenases (P450s or CYPs) play an important role in the detoxification and metabolism of exogenous plant allelochemicals. In this study, a P450 gene CYP6AB12 was identified and characterized from Spodoptera litura. The cDNA contains an open reading frame (ORF) encoding 511 amino acid residues. CYP6AB12 was expressed at different ages of S. litura, with the highest levels found in the third and fourth instar larvae. Its highest expression was found in the midgut and fat body of fourth instar larvae fed with gossypol. Moreover, these expression levels were substantially increased compared with those from larvae fed with control diet. Gene silencing was then conducted by smearing dsRNA mixed with nanomaterials onto the cuticle. CYP6AB12 expression was significantly decreased in the midgut and fat body, and the net weight increase was substantially lower than that of the control group, indicating that the treatment group had more sensitivity to gossypol than the control. These results reveal that CYP6AB12 plays an important role in the detoxification and metabolism of gossypol, thus further confirming that P450s have a broad ability to detoxify and metabolize plant allelochemicals. It provides an important molecular basis for the exploration of detoxification metabolism and pest control of S. litura.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Xue
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| |
Collapse
|
14
|
Ettinger CL, Byrne FJ, de Souza Pacheco I, Brown DJ, Walling LL, Atkinson PW, Redak RA, Stajich JE. Transcriptome and population structure of glassy-winged sharpshooters (Homalodisca vitripennis) with varying insecticide resistance in southern California. BMC Genomics 2022; 23:721. [PMID: 36273137 PMCID: PMC9587601 DOI: 10.1186/s12864-022-08939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background Homalodisca vitripennis Germar, the glassy-winged sharpshooter, is an invasive insect in California and a critical threat to agriculture through its transmission of the plant pathogen, Xylella fastidiosa. Quarantine, broad-spectrum insecticides, and biological control have been used for population management of H. vitripennis since its invasion and subsequent proliferation throughout California. Recently wide-spread neonicotinoid resistance has been detected in populations of H. vitripennis in the southern portions of California’s Central Valley. In order to better understand potential mechanisms of H. vitripennis neonicotinoid resistance, we performed RNA sequencing on wild-caught insecticide-resistant and relatively susceptible sharpshooters to profile their transcriptome and population structure. Results We identified 81 differentially expressed genes with higher expression in resistant individuals. The significant largest differentially expressed candidate gene linked to resistance status was a cytochrome P450 gene with similarity to CYP6A9. Furthermore, we observed an over-enrichment of GO terms representing functions supportive of roles in resistance mechanisms (cytochrome P450s, M13 peptidases, and cuticle structural proteins). Finally, we saw no evidence of broad-scale population structure, perhaps due to H. vitripennis' relatively recent introduction to California or due to the relatively small geographic scale investigated here. Conclusions In this work, we characterized the transcriptome of insecticide-resistant and susceptible H. vitripennis and identified candidate genes that may be involved in resistance mechanisms for this species. Future work should seek to build on the transcriptome profiling performed here to confirm the role of the identified genes, particularly the cytochrome P450, in resistance in H. vitripennis. We hope this work helps aid future population management strategies for this and other species with growing insecticide resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08939-1.
Collapse
Affiliation(s)
- Cassandra L Ettinger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA.
| | - Frank J Byrne
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | | | - Dylan J Brown
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Peter W Atkinson
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Richard A Redak
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA. .,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
15
|
Functional Diversity of the Lepidopteran ATP-Binding Cassette Transporters. J Mol Evol 2022; 90:258-270. [PMID: 35513601 DOI: 10.1007/s00239-022-10056-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
The ATP-binding cassette (ABC) transporter gene family is ubiquitous in the living world. ABC proteins bind and hydrolyze ATP to transport a myriad of molecules across various lipid-containing membrane systems. They have been studied well in plants for transport of a variety of compounds and particularly, in vertebrates due to their direct involvement in resistance mechanisms against several toxic molecules/metabolites. ABC transporters in insects are found within large multigene families involved in the efflux of chemical insecticides and toxic/undesired metabolites originating from food and endogenous metabolism. This review deals with ABC transporter subfamilies of few agronomically important Lepidopteran pests. The transcriptional dynamics and regulation of ABC transporters during insect development emphasizes their functional diversity against insecticides, Cry toxins, and plant specialized metabolites. To generate insights about molecular function and physiological roles of ABCs, functional and structural characterization is necessary. Also, expansion and divergence of ABC transporter gene subfamilies in Lepidopteran insects needs more systematic investigation. We anticipate that newer methods of insect control in agriculture can benefit from an understanding of ABC transporter interactions with a vast range of natural specialized molecules and synthetic compounds.
Collapse
|
16
|
Hafeez M, Ullah F, Khan MM, Li X, Zhang Z, Shah S, Imran M, Assiri MA, Fernández-Grandon GM, Desneux N, Rehman M, Fahad S, Lu Y. Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1746-1762. [PMID: 34709552 DOI: 10.1007/s11356-021-16974-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The beet army worm, Spodoptera exigua, is a widely distributed polyphagous pest of economically important crops worldwide. The management of this pest insect continues to face many challenges. Despite synthetic chemicals posing a serious threat to the environment, these remain the conventional approach for controlling S. exigua in the field. An over-reliance on chemical control has not only led to selection for resistance to insecticides and to a reduction of natural enemies, but has also polluted various components of ecosystem. Given these increasing pressures on the ecosystem, there is a need to implement integrated pest management (IPM) approaches exploiting a wider range of tools (biotechnological approaches, microbial control, biological control, cultural control, and use of host plant resistance) for an alternative to chemical control. The IPM approach can not only reduce the hazard of chemical residues in the environment and associated health problems, but may also provide best strategies to control insect pests. This review synthesizes published information on insecticide resistance of S. exigua and explores alternative IPM approaches to control S. exigua.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Sakhawat Shah
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Hubei, People's Republic of China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Nicolas Desneux
- UMR ISA, Université Côte d'Azur, INRAE, CNRS, 06000, Nice, France
| | - Muzammal Rehman
- School of Agriculture, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
- Department of Agronomy, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|
17
|
Gregarines modulate insect responses to sublethal insecticide residues. Oecologia 2021; 198:255-265. [PMID: 34851452 PMCID: PMC8803800 DOI: 10.1007/s00442-021-05086-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/18/2021] [Indexed: 10/25/2022]
Abstract
Throughout their lifetime, insects face multiple environmental challenges that influence their performance. Gregarines are prevalent endoparasites in most invertebrates that affect the fitness of their hosts, but are often overlooked in ecological studies. Next to such biotic factors, a current common challenge is anthropogenic pollution with pesticides, which causes a major threat to non-target organisms that are readily exposed to lethal or sublethal concentrations. In a laboratory study, we investigated whether the presence of gregarines modulates the food consumption and life history traits of a (non-target) leaf beetle species, Phaedon cochleariae, in response to sublethal insecticide exposure. We show that the larval food consumption of the herbivore was neither affected by gregarine infection nor sublethal insecticide exposure. Nevertheless, infection with gregarines led to a delayed development, while insecticide exposure resulted in a lower body mass of adult males and a reduced reproduction of females. Individuals exposed to both challenges suffered most, as they had the lowest survival probability. This indicates detrimental effects on the population dynamics of non-target insects infected with naturally occurring gregarines that face additional stress from agrochemical pollution. Moreover, we found that the infection load with gregarines was higher in individuals exposed to sublethal insecticide concentrations compared to unexposed individuals. To counteract the global decline of insects, the potential of natural parasite infections in modulating insect responses to anthropogenic and non-anthropogenic environmental factors should be considered in ecological risk assessment.
Collapse
|
18
|
Grčić A, Ilijin L, Matić D, Filipović A, Mrdaković M, Todorović D, Perić-Mataruga V. Sensitivity of midgut physiological parameters of Lymantria dispar L. larvae to benzo[a]pyrene in populations with different multigeneration contact to environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117706. [PMID: 34237651 DOI: 10.1016/j.envpol.2021.117706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Accumulation of organic pollutants in the environment calls for sensing physiological parameters adequate to indicate the presence of contaminants and their effects on ecosystems. Evidence points to the importance of insect adaptations in their habitats for the assessment of sensitive biomarkers so we examined the influence of origin and multigenerational adaptations of the Lymantria dispar larvae to chronic benzo[a]pyrene (B[a]P) treatment under laboratory conditions. The main aim was to compare reactions of larvae from unpolluted and polluted forests using alkaline phosphatase (ALP), acid phosphatase (ACP), and carboxylesterase (CE) specific activities in the midgut, including electrophoretic isoform patterns; midgut expression levels of Hsp70, larval development time (DT), and midgut mass (MM), after chronic exposure to 5 and 50 ng of B[a]P/g dry food weight. The biomarker potential of these parameters regarding larval pre-exposure history to pollution was estimated by principal component analysis (PCA). B[a]P treatment resulted in inhibition of ALP activity, a rise of CE activity, and reduction of MM in larvae from the unpolluted forest, while the population from the polluted forest showed significant elevation of Hsp70 expression in the midgut, prolonged DT, and reduction of MM. PCA confirmed variations in responses of the selected parameters regarding population origin. The obtained results provide insight into insect population variability concerning physiological responses to pollutants. It is indicative that all investigated physiological parameters of L. dispar larvae showed origin-dependent responses to long-term presence of B[a]P, which may be of great importance in ecotoxicological research.
Collapse
Affiliation(s)
- Anja Grčić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković(") National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia.
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković(") National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Dragana Matić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković(") National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Aleksandra Filipović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković(") National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković(") National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković(") National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković(") National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| |
Collapse
|
19
|
Influence of formic acid treatment on the proteome of the ectoparasite Varroa destructor. PLoS One 2021; 16:e0258845. [PMID: 34699527 PMCID: PMC8547630 DOI: 10.1371/journal.pone.0258845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
The ectoparasite Varroa destructor Anderson and Trueman is the most important parasites of the western honey bee, Apis mellifera L. The most widely currently used treatment uses formic acid (FA), but the understanding of its effects on V. destructor is limited. In order to understand the mechanism of action of FA, its effect on Varroa mites was investigated using proteomic analysis by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). V. destructor was collected from honey bee colonies with natural mite infestation before and 24 h after the initiation of FA treatment and subjected to proteome analysis. A total of 2637 proteins were identified. Quantitative analysis of differentially expressed candidate proteins (fold change ≥ 1.5; p ≤ 0.05) revealed 205 differentially expressed proteins: 91 were induced and 114 repressed in the FA-treated group compared to the untreated control group. Impaired protein synthesis accompanied by increased protein and amino acid degradation suggest an imbalance in proteostasis. Signs of oxidative stress included significant dysregulation of candidate proteins of mitochondrial cellular respiration, increased endocytosis, and induction of heat shock proteins. Furthermore, an increased concentration of several candidate proteins associated with detoxification was observed. These results suggest dysregulated cellular respiration triggered by FA treatment as well as an increase in cellular defense mechanisms, including induced heat shock proteins and detoxification enzymes.
Collapse
|
20
|
Kapoor D, Khan A, O'Donnell MJ, Kolosov D. Novel mechanisms of epithelial ion transport: insights from the cryptonephridial system of lepidopteran larvae. CURRENT OPINION IN INSECT SCIENCE 2021; 47:53-61. [PMID: 33866042 DOI: 10.1016/j.cois.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Lepidopterans are among the most widespread and easily recognized insects. Whereas adult lepidopterans are known for their beauty and ecological importance as pollinators and sources of food for other animals, larvae are economically important pests of forests and agricultural crops. In the larval body, rapid growth while feeding on plant-based diet is associated with extreme alkalinity (up to pH = 11) of the midgut lumen that helps digest plant proteins. Additionally, the presence of plant secondary metabolites which serve as anti-herbivory agents requires uninterrupted excretory function, accomplished primarily by the Malpighian tubules (MTs). The so-called cryptonephridial condition, along with extreme regional heterogeneity of the MTs, and the ability to rapidly and reversibly alter the direction of epithelial ion transport are features that allow uninterrupted MT functioning and recycling of base equivalents. Studies of MTs in lepidopteran larvae have revealed that rapid adjustments in epithelial ion transport include unexpected roles for voltage-gated, ligand-gated and mechanosensitive ion channels, as well as gap junctions. These molecular components are present in epithelia of a variety of vertebrates and invertebrates and thus are likely to constitute a universal epithelial toolkit for rapid autonomous regulation of epithelial function.
Collapse
Affiliation(s)
| | - Aliyyah Khan
- Department of Biology, McMaster University, Hamilton, Canada
| | | | - Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, San Marcos, USA.
| |
Collapse
|
21
|
Monteiro RA, Camara MC, de Oliveira JL, Campos EVR, Carvalho LB, Proença PLDF, Guilger-Casagrande M, Lima R, do Nascimento J, Gonçalves KC, Polanczyk RA, Fraceto LF. Zein based-nanoparticles loaded botanical pesticides in pest control: An enzyme stimuli-responsive approach aiming sustainable agriculture. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126004. [PMID: 33992010 DOI: 10.1016/j.jhazmat.2021.126004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/15/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Nanoencapsulation of biopesticides is an important strategy to increase the efficiency of these compounds, reducing losses and adverse effects on non-target organisms. This study describes the preparation and characterisation of zein nanoparticles containing the botanical compounds limonene and carvacrol, responsive to proteolytic enzymes present in the insects guts. The spherical nanoparticles, prepared by the anti-solvent precipitation method, presented in the nanoparticle tracking analysis (NTA) a concentration of 4.7 × 1012 ± 1.3 × 1011 particles.mL-1 and an average size of 125 ± 2 nm. The formulations showed stability over time, in addition to not being phytotoxic to Phaseolus vulgaris plants. In vivo tests demonstrated that formulations of zein nanoparticles containing botanical compounds showed higher mortality to Spodoptera frugiperda larvae. In addition, the FTIC probe (fluorescein isothiocyanate) showed wide distribution in the larvae midgut, as well as being identified in the feces. The trypsin enzyme, as well as the enzymatic extract from insects midgut, was effective in the degradation of nanoparticles containing the mixture of botanical compounds, significantly reducing the concentration of nanoparticles and the changes in size distribution. The zein degradation was confirmed by the disappearance of the protein band in the electrophoresis gel, by the formation of the lower molecular weight fragments and also by the greater release of FTIC after enzymes incubation. In this context, the synthesis of responsive nanoparticles has great potential for application in pest management, increasing the selectivity and specificity of the system and contributing to a more sustainable agriculture.
Collapse
Affiliation(s)
- Renata Aparecida Monteiro
- Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Marcela Candido Camara
- Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Jhones Luiz de Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | | | - Lucas Bragança Carvalho
- Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | | | - Mariana Guilger-Casagrande
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials (LABiToN), University of Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil
| | - Renata Lima
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials (LABiToN), University of Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil
| | - Joacir do Nascimento
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Kelly Cristina Gonçalves
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Ricardo Antônio Polanczyk
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Leonardo Fernandes Fraceto
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials (LABiToN), University of Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil.
| |
Collapse
|
22
|
Bravo-Ramos JL, Flores-Primo A, Paniagua-Vega D, Sánchez-Otero MG, Cruz-Romero A, Romero-Salas D. Acaricidal activity of the hexanic and hydroethanolic extracts of three medicinal plants against southern cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2021; 85:113-129. [PMID: 34431045 DOI: 10.1007/s10493-021-00654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The southern cattle tick Rhipicephalus microplus is a major problem for the cattle industry in tropical and subtropical areas worldwide. Chemical products are commonly applied to control it; however, their indiscriminate use has resulted in the appearance of resistant lineages. In the last decades, plants have been used as an alternative to conventional acaricidal drugs, as several plant compounds repel activity, decrease the reproductive potential and reduce the survival rate of ticks. For this reason, the in vitro efficacy of hexanic and hydroalcoholic extracts of Randia aculeata, Moringa oleifera and Carica papaya were evaluated against the larvae and engorged females of R. microplus. Larval packet tests and adult immersion tests were performed with seven concentrations of each of the extracts. The extracts obtained with hydroethanolic solution (polar solvent) exhibited a higher acaricidal activity than extracts prepared with n-hexane (non-polar solvent). Hydroethanolic extracts of R. aculeata seed and shell showed the highest larvicidal activity against R. microplus (100 and 91% mortality, respectively) at a concentration of 100 mg/mL. Randia aculeata (seed and shell), M. oleifera and C. papaya treatments at the same concentration (100 mg/mL) also resulted in adult mortality of 85, 75, 66 and 55%, respectively. The adult immersion test showed that hydroethanolic extracts derived from R. aculeata seed significantly reduced the index of egg laying and increased the percentage inhibition of oviposition of female ticks at a concentration of 100 mg/mL. These results indicate that the tested extracts exhibit acaricidal activity and could be considered as potential agents for the development of alternative natural acaricides against R. microplus.
Collapse
Affiliation(s)
- J L Bravo-Ramos
- Unidad de Diagnóstico, Laboratorio de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Rancho 'Torreón del Molino', Universidad Veracruzana, CP 91710, Veracruz, Veracruz, Mexico
| | - A Flores-Primo
- Facultad de Medicina Veterinaria y Zootecnia, Laboratorio de Bioquímica, Universidad Veracruzana, CP 91710, Veracruz, Veracruz, Mexico
| | - D Paniagua-Vega
- Facultad de Medicina, Departamento de Química Analítica, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño s/n, CP 64460, Monterrey, Nuevo León, Mexico
- Catedras CONACYT-UANL, San nicolás de los garza, Mexico
| | - M G Sánchez-Otero
- Facultad de Bioanálisis, Universidad Veracruzana, CP 91700, Veracruz, Veracruz, Mexico
| | - A Cruz-Romero
- Unidad de Diagnóstico, Laboratorio de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Rancho 'Torreón del Molino', Universidad Veracruzana, CP 91710, Veracruz, Veracruz, Mexico
| | - D Romero-Salas
- Unidad de Diagnóstico, Laboratorio de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Rancho 'Torreón del Molino', Universidad Veracruzana, CP 91710, Veracruz, Veracruz, Mexico.
| |
Collapse
|
23
|
Wang C, Yang J, Qin J, Yang Y. Eco-Friendly Nanoplatforms for Crop Quality Control, Protection, and Nutrition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004525. [PMID: 33977068 PMCID: PMC8097385 DOI: 10.1002/advs.202004525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Indexed: 05/27/2023]
Abstract
Agricultural chemicals have been widely utilized to manage pests, weeds, and plant pathogens for maximizing crop yields. However, the excessive use of these organic substances to compensate their instability in the environment has caused severe environmental consequences, threatened human health, and consumed enormous economic costs. In order to improve the utilization efficiency of these agricultural chemicals, one strategy that attracted researchers is to design novel eco-friendly nanoplatforms. To date, numerous advanced nanoplatforms with functional components have been applied in the agricultural field, such as silica-based materials for pesticides delivery, metal/metal oxide nanoparticles for pesticides/mycotoxins detection, and carbon nanoparticles for fertilizers delivery. In this review, the synthesis, applications, and mechanisms of recent eco-friendly nanoplatforms in the agricultural field, including pesticides and mycotoxins on-site detection, phytopathogen inactivation, pest control, and crops growth regulation for guaranteeing food security, enhancing the utilization efficiency of agricultural chemicals and increasing crop yields are highlighted. The review also stimulates new thinking for improving the existing agricultural technologies, protecting crops from biotic and abiotic stress, alleviating the global food crisis, and ensuring food security. In addition, the challenges to overcome the constrained applications of functional nanoplatforms in the agricultural field are also discussed.
Collapse
Affiliation(s)
- Chao‐Yi Wang
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| | - Jie Yang
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| | - Jian‐Chun Qin
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| | - Ying‐Wei Yang
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| |
Collapse
|
24
|
Ma K, Tang Q, Liang P, Li J, Gao X. UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover. INSECTS 2021; 12:insects12040356. [PMID: 33923504 PMCID: PMC8072560 DOI: 10.3390/insects12040356] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The cotton aphid, Aphis gossypii Glover, is a notorious pest in cotton and cucurbit fields. The control of A. gossypii has typically relied on the application of chemical insecticides. Sulfoxaflor is the first commercially available sulfoximine insecticide, which exhibits great efficacy against sap-feeding insect pests and has been applied as an alternative insecticide for controlling of A. gossypii in China. Consequently, A. gossypii quickly developed resistance to this insecticide. Hence, in this study, to clarify the potential detoxifying roles of UGTs (one of the phase II detoxification enzymes) in resistance of A. gossypii against sulfoxaflor, the synergistic effects of two synergists (sulfinpyrazone and 5-nitrouracil) against sulfoxaflor were investigated using the susceptible and laboratory-established sulfoxaflor resistant strain (SulR), and the expression levels of 15 UGT genes were determined by qRT-PCR. Furthermore, the involvement of highly upregulated UGTs in sulfoxaflor-resistant strain was functionally tested by RNA interference (RNAi). Our results suggest that overexpression of UGTs contributes to sulfoxaflor resistance in A. gossypii, which should be useful for understanding sulfoxaflor resistance mechanisms. Abstract UDP-glycosyltransferases (UGTs) are major phase II detoxification enzymes that catalyze the transfer of glycosyl residues from activated nucleotide sugars to acceptor hydrophobic molecules and play very important roles in the biotransformation of various endogenous and exogenous compounds. Our previous studies demonstrated that UGTs participated in the detoxification of insecticides in Aphis gossypii. However, the potential roles of UGTs in A. gossypii resistance to sulfoxaflor are still unclear. In this study, two inhibitors of UGT enzymes, sulfinpyrazone and 5-nitrouracil, significantly increased the toxicity of sulfoxaflor to a resistant strain of A. gossypii, whereas there were no synergistic effects in the susceptible strain. Based on the transcriptome sequencing results, the expression levels of 15 UGTs were analyzed by quantitative real-time PCR, and we found that seven UGT genes were highly over-expressed in a sulfoxaflor-resistant strain compared to the susceptible strain, including UGT344B4, UGT344C5, UGT344A11, UGT344A14, and UGT344L2. Further suppressing the expression of UGT344B4, UGT344C5, and UGT344A11 by RNA interference significantly increased the sensitivity of resistant aphids to sulfoxaflor, indicating that the overexpression of UGT genes is potentially associated with sulfoxaflor resistance. These results could provide valuable information for further understanding the mechanisms of insecticide resistance.
Collapse
Affiliation(s)
- Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing 100193, China; (K.M.); (Q.T.); (P.L.)
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Qiuling Tang
- Department of Entomology, China Agricultural University, Beijing 100193, China; (K.M.); (Q.T.); (P.L.)
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China; (K.M.); (Q.T.); (P.L.)
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China; (K.M.); (Q.T.); (P.L.)
- Correspondence: ; Tel.: +86-010-6273-2974
| |
Collapse
|
25
|
Genath A, Sharbati S, Buer B, Nauen R, Einspanier R. Comparative transcriptomics indicates endogenous differences in detoxification capacity after formic acid treatment between honey bees and varroa mites. Sci Rep 2020; 10:21943. [PMID: 33318550 PMCID: PMC7736338 DOI: 10.1038/s41598-020-79057-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
Formic acid (FA) has been used for decades to control Varroa destructor, one of the most important parasites of the western honey bee, Apis mellifera. The rather unselective molecular mode of action of FA and its possible effects on honeybees have long been a concern of beekeepers, as it has undesirable side effects that affect the health of bee colonies. This study focuses on short-term transcriptomic changes as analysed by RNAseq in both larval and adult honey bees and in mites after FA treatment under applied conditions. Our study aims to identify those genes in honey bees and varroa mites differentially expressed upon a typical FA hive exposure scenario. Five detoxification-related genes were identified with significantly enhanced and one gene with significantly decreased expression under FA exposure. Regulated genes in our test setting included members of various cytochrome P450 subfamilies, a flavin-dependent monooxygenase and a cytosolic 10-formyltetrahydrofolate dehydrogenase (FDH), known to be involved in formate metabolism in mammals. We were able to detect differences in the regulation of detoxification-associated genes between mites and honey bees as well as between the two different developmental stages of the honey bee. Additionally, we detected repressed regulation of Varroa genes involved in cellular respiration, suggesting mitochondrial dysfunction and supporting the current view on the mode of action of FA-inhibition of oxidative phosphorylation. This study shows distinct cellular effects induced by FA on the global transcriptome of both host and parasite in comparison. Our expression data might help to identify possible differences in the affected metabolic pathways and thus make a first contribution to elucidate the mode of detoxification of FA.
Collapse
Affiliation(s)
- Antonia Genath
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Benjamin Buer
- Bayer AG, Crop Science Division, Pest Control, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Pest Control, Monheim, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
26
|
Cen Y, Zou X, Li L, Chen S, Lin Y, Liu L, Zheng S. Inhibition of the glutathione biosynthetic pathway increases phytochemical toxicity to Spodoptera litura and Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104632. [PMID: 32711766 DOI: 10.1016/j.pestbp.2020.104632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Phytochemicals are toxic to insects, but their insecticidal efficiencies are usually low compared to synthetic insecticides. Understanding the mechanism of insect adaptation to phytochemicals will provide guidance for increasing their efficacy. Reduced glutathione (GSH) is a scavenger of reactive oxygen species (ROS) induced by phytochemicals. However, in insects, the pathway of GSH biosynthesis in response to phytochemicals is unclear. We found that exposure to 0.5% indole-3-methanol (I3C), xanthotoxin, and rotenone (ROT) significantly retarded the growth of Spodoptera litura larvae. The oxidative stress in S. litura larvae exposed to phytochemicals was increased. The up-regulation of glutamate cysteine ligase but not glutathione reductase revealed that the de novo synthesis pathway is responsible for GSH synthesis in phytochemical-treated larvae. Treatment with the inhibitor (BSO) of γ-glutamylcysteine synthetase (gclc), a subunit of glutamate cysteine ligase, resulted in decreases of GSH levels and GST activities, increases of ROS levels in I3C-treated larvae, which finally caused midgut necrosis and larval death. Treatment with BSO or I3C alone did not cause larval death. The addition of GSH could partly reduce the influence of I3C and BSO on S. litura growth. Nilaparvata lugens gclc RNAi confirmed the result of BSO treatment in S. litura. N. lugens gclc RNAi significantly increased the mortality of ROT-sprayed N. lugens, in which ROS levels were significantly increased. All data indicate that gclc is involved in insect response to phytochemical treatment. Treatment with dsgclc will increase the insecticidal efficacy of plant-derived compounds.
Collapse
Affiliation(s)
- Yongjie Cen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaopeng Zou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lanbin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuna Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yiguang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
27
|
Kolosov D, O'Donnell MJ. Mechanisms and regulation of chloride transport in the Malpighian tubules of the larval cabbage looper Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103263. [PMID: 31682921 DOI: 10.1016/j.ibmb.2019.103263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Malpighian tubules (MTs) and the hindgut together constitute the excretory system of insects. Larvae of lepidopterans (butterflies and moths) demonstrate the so-called cryptonephric arrangement, where the distal blind end of each MT is embedded into the rectal complex. The rest of the free tubule is modified into several distinct regions that differ greatly in the transport of cations and water. However, relatively little is known about the transport of counter-anions (e.g., Cl- and HCO3-) by the MTs of lepidopteran larvae. In the current study we used ion-selective microelectrodes to characterize Cl- transport in the distinct regions of the free MT of the larval Trichoplusia ni. Firstly, we note that Cl- transport in the MTs is sensitive to the Cl- concentration of the bathing saline, and several regions of the MTs are capable of either secreting or reabsorbing Cl-. In the distal ileac plexus (DIP), a region previously characterized by cellular heterogeneity and its ability to switch between cation secretion and reabsorption, principal cells (PCs) toggled between Cl- reabsorption (in high-Cl- saline) and Cl- secretion (in low-Cl- saline). In contrast, secondary cells (SCs) in the DIP secreted Cl- regardless of saline Cl- concentration. Mechanistically, we have detected a number of 'leak' and ligand-gated Cl- channels (ClC) and demonstrated that Cl- channels are involved in Cl- secretion. Additionally, we demonstrated that the lumen-positive transepithelial potential increased in response to glycine. Using the scanning ion-selective electrode technique we demonstrated that glycine stimulated Cl- secretion by SCs, but not by PCs. In contrast, when MTs were deprived of glycine, a decrease in Cl- secretion, coupled with a decrease in the TEP, was observed. In contrast to the effects of glycine, an active dose of helicokinin reduced Cl- secretion by PCs, but not by SCs. Lastly, we detected expression of chloride-bicarbonate exchangers (CBE) in all regions of the free tubule. Scans of H+ transport across the tubule indicated that base equivalents are likely reabsorbed across the ileac plexus. Blocking ClC or CBE led to secretion of a more basic fluid, indicating lack of base reabsorption. We suggest that the transport of Cl- in the MTs of larval lepidopterans (i) may be correlated with the reabsorption of base, (ii) may be sensitive to Cl- concentration in the haemolymph, and (iii) could be regulated by helicokinin and glycine.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON, L8S4K1, Canada.
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON, L8S4K1, Canada
| |
Collapse
|
28
|
Vidhate RP, Bhide AJ, Gaikwad SM, Giri AP. A potent chitin-hydrolyzing enzyme from Myrothecium verrucaria affects growth and development of Helicoverpa armigera and plant fungal pathogens. Int J Biol Macromol 2019; 141:517-528. [PMID: 31494159 DOI: 10.1016/j.ijbiomac.2019.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
Chitin, a crucial structural and functional component of insects and fungi, serves as a target for pest management by utilizing novel chitinases. Here, we report the biocontrol potential of recombinant Myrothecium verrucaria endochitinase (rMvEChi) against insect pest and fungal pathogens. A complete ORF of MvEChi (1185 bp) was cloned and heterologously expressed in Escherichia coli. Structure based sequence alignment of MvEChi revealed the presence of conserved domains SXGG and DXXDXDXE specific for GH-18 family, involved in substrate binding and catalysis, respectively. rMvEChi (46.6 kDa) showed optimum pH and temperature as 7.0 and 30 °C, respectively. Furthermore, rMvEChi remained stable within the pH range of 6.0 to 8.0 and up to 40 °C. rMvEChi exhibited kcat/Km values of 129.83 × 103 [(g/L)-1 s-1] towards 4MU chitotrioside. Hydrolysis of chitooligosaccharides with various degrees of polymerization (DP) using rMvEChi indicated the release of DP2 as main end product with order of reaction as DP6 > DP5 > DP4 > DP3. Bioassay of rMvEChi against Helicoverpa armigera displayed potent anti-feedant activity and induced mortality. In vitro antifungal activity against plant pathogenic fungi (Ustilago maydis and Bipolaris sorokiniana) exhibited significant inhibition of mycelium growth. These results suggest that MvEChi has significant potential in enzyme-based pest and pathogen management.
Collapse
Affiliation(s)
- Ravindra P Vidhate
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amey J Bhide
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sushama M Gaikwad
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ashok P Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
29
|
Chen X, Xia J, Shang Q, Song D, Gao X. UDP-glucosyltransferases potentially contribute to imidacloprid resistance in Aphis gossypii glover based on transcriptomic and proteomic analyses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:98-106. [PMID: 31400791 DOI: 10.1016/j.pestbp.2019.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/25/2019] [Accepted: 06/02/2019] [Indexed: 06/10/2023]
Abstract
The cotton aphid, Aphis gossypii Glover, is a destructive global crop pest. Control of A. gossypii has relied heavily on the application of chemical insecticides. The cotton aphid has developed resistance to numerous insecticides, including imidacloprid, which has been widely used to control cotton pests in China since the 1990s. Our objective was to investigate the potential role of UDP-glycosyltransferases (UGTs) in imidacloprid resistance based on transcriptomic and proteomic analyses of field-originated imidacloprid-resistant (IMI_R) and -susceptible (IMI_S) A. gossypii clones. The transcriptomic and proteomic analyses revealed that 12 out of 512 differentially expressed genes and three out of 510 differentially expressed proteins were predicted as UDP-glycosyltransferase (UGT). Based on quantitative real-time PCR analysis, nine UGT genes, UGT343A4, UGT344A15, UGT344A16, UGT344B4, UGT344C7, UGT344C9, UGT344N4, UGT 24541, and UGT7630, were up-regulated in the IMI_R clone compared to the IMI_S clone. Meanwhile, UGT344A16, UGT344B4, UGT344C7, and UGT344N4 were overexpressed at the protein level based on western blot analysis. Furthermore, knockdown of UGT344B4 or UGT344C7 using RNA interference (RNAi) significantly increased sensitivity to imidacloprid in the IMI_R clone. In conclusion, UGTs potentially contributed to imidacloprid resistance in A. gossypii originating from cotton-growing regions of China. These results provide insights into the way we study insecticide resistance in cotton aphids.
Collapse
Affiliation(s)
- Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jin Xia
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Rosado-Solano DN, Barón-Rodríguez MA, Sanabria Florez PL, Luna-Parada LK, Puerto-Galvis CE, Zorro-González AF, Kouznetsov VV, Vargas-Méndez LY. Synthesis, Biological Evaluation and In Silico Computational Studies of 7-Chloro-4-(1 H-1,2,3-triazol-1-yl)quinoline Derivatives: Search for New Controlling Agents against Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9210-9219. [PMID: 31390203 DOI: 10.1021/acs.jafc.9b01067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The insecticidal and antifeedant activities of five 7-chloro-4-(1H-1,2,3-triazol-1-yl)quinoline derivatives were evaluated against the maize armyworm, Spodoptera frugiperda (J.E. Smith). These hybrids were prepared through a copper-catalyzed azide alkyne cycloaddition (CuAAC, known as a click reaction) and displayed larvicidal properties with LD50 values below 3 mg/g insect, and triazolyl-quinoline hybrid 6 showed an LD50 of 0.65 mg/g insect, making it 2-fold less potent than methomyl, which was used as a reference insecticide (LD50 = 0.34 mg/g insect). Compound 4 was the most active antifeedant derivative (CE50 = 162.1 μg/mL) with a good antifeedant index (56-79%) at concentrations of 250-1000 μg/mL. Additionally, triazolyl-quinoline hybrids 4-8 exhibited weak inhibitory activity against commercial acetylcholinesterase from Electrophorus electricus (electric-eel AChE) (IC50 = 27.7 μg/mL) as well as low anti-ChE activity on S. frugiperda larvae homogenate (IC50 = 68.4 μg/mL). Finally, molecular docking simulations suggested that hybrid 7 binds to the catalytic active site (CAS) of this enzyme and around the rim of the enzyme cavity, acting as a mixed (competitive and noncompetitive) inhibitor like methomyl. Triazolyl-quinolines 4-6 and 8 inhibit AChE by binding over the perimeter of the enzyme cavity, functioning as noncompetitive inhibitors. The results described in this work can help to identify lead triazole structures from click chemistry for the development of insecticide and deterrent products against S. frugiperda and related insect pests.
Collapse
Affiliation(s)
- Doris Natalia Rosado-Solano
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental , Universidad Santo Tomás , Bucaramanga A.A. 1076 , Colombia
| | - Mario Alberto Barón-Rodríguez
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental , Universidad Santo Tomás , Bucaramanga A.A. 1076 , Colombia
| | - Pedro Luis Sanabria Florez
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental , Universidad Santo Tomás , Bucaramanga A.A. 1076 , Colombia
| | - Luz Karime Luna-Parada
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguará , Universidad Industrial de Santander , Km 2 vía Refugio , Piedecuesta , A.A. 681011 , Colombia
| | - Carlos Eduardo Puerto-Galvis
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguará , Universidad Industrial de Santander , Km 2 vía Refugio , Piedecuesta , A.A. 681011 , Colombia
- Laboratorio de Química Orgánica Aplicada , Universidad Manuela Beltrán , Cl. 33 # 26-34 , Bucaramanga , A.A. 680002 , Colombia
| | - Andrés Felipe Zorro-González
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental , Universidad Santo Tomás , Bucaramanga A.A. 1076 , Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguará , Universidad Industrial de Santander , Km 2 vía Refugio , Piedecuesta , A.A. 681011 , Colombia
| | - Leonor Yamile Vargas-Méndez
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental , Universidad Santo Tomás , Bucaramanga A.A. 1076 , Colombia
| |
Collapse
|
31
|
Saikhedkar NS, Joshi RS, Yadav AK, Seal S, Fernandes M, Giri AP. Phyto-inspired cyclic peptides derived from plant Pin-II type protease inhibitor reactive center loops for crop protection from insect pests. Biochim Biophys Acta Gen Subj 2019; 1863:1254-1262. [DOI: 10.1016/j.bbagen.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023]
|
32
|
Al-Massarani S, El-Shaibany A, Tabanca N, Ali A, Estep AS, Becnel JJ, Goger F, Demirci B, El-Gamal A, Baser KHC. Assessment of selected Saudi and Yemeni plants for mosquitocidal activities against the yellow fever mosquito Aedes aegypti. Saudi Pharm J 2019; 27:930-938. [PMID: 31997899 PMCID: PMC6978618 DOI: 10.1016/j.jsps.2019.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
As part of our continuing investigation for interesting biological activities of native medicinal plants, thirty-nine plants, obtained from diverse areas in Saudi Arabia and Yemen, were screened for insecticidal activity against yellow fever mosquito Aedes aegypti (L.). Out of the 57 organic extracts, Saussurea lappa, Ocimum tenuiflorum, Taraxacum officinale, Nigella sativa, and Hyssopus officinalis exhibited over 80% mortality against adult female Ae. aegypti at 5 μg/mosquito. In the larvicidal bioassay, the petroleum ether extract of Aloe perryi flowers showed 100% mortality at 31.25 ppm against 1st instar Ae. aegypti larvae. The ethanol extract of Saussurea lappa roots was the second most active displaying 100% mortality at 125 and 62.5 ppm. Polar active extracts were processed using LC-MS/MS to identify bioactive compounds. The apolar A. perryi flower extract was analyzed by headspace SPME-GC/MS analysis. Careful examination of the mass spectra and detailed interpretation of the fragmentation pattern allowed the identification of various biologically active secondary metabolites. Some compounds such as caffeic and quinic acid and their glycosides were detected in most of the analyzed fractions. Additionally, luteolin, luteolin glucoside, luteolin glucuronide and diglucuronide were also identified as bioactive compounds in several HPLC fractions. The volatile ketone, 6-methyl-5-hepten-2-one was identified from A. perryi petroleum ether fraction as a major compound.
Collapse
Affiliation(s)
- Shaza Al-Massarani
- Department of Pharmacognosy, Pharmacy College, King Saud University, Saudi Arabia
- Corresponding author.
| | - Amina El-Shaibany
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sana’a, Yemen
| | - Nurhayat Tabanca
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL 33158, USA
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA
| | - Abbas Ali
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA
| | - Alden S. Estep
- Navy Entomology Center of Excellence, Research & Development Department, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - James J. Becnel
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Fatih Goger
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Betul Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ali El-Gamal
- Department of Pharmacognosy, Pharmacy College, King Saud University, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - K. Husnu Can Baser
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Lefkosa (Nicosia), N. Cyprus, Mersin 10, Turkey
| |
Collapse
|
33
|
Dawkar VV, Barage SH, Barbole RS, Fatangare A, Grimalt S, Haldar S, Heckel DG, Gupta VS, Thulasiram HV, Svatoš A, Giri AP. Azadirachtin-A from Azadirachta indica Impacts Multiple Biological Targets in Cotton Bollworm Helicoverpa armigera. ACS OMEGA 2019; 4:9531-9541. [PMID: 31460043 PMCID: PMC6648242 DOI: 10.1021/acsomega.8b03479] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/11/2019] [Indexed: 05/11/2023]
Abstract
Azadirachtin-A (AzaA) from the Indian neem tree (Azadirachta indica) has insecticidal properties; however, its molecular mechanism remains elusive. The "targeted and nontargeted proteomic profiling", metabolomics, matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) imaging, gene expression, and in silico analysis provided clues about its action on Helicoverpa armigera. Fourth instar H. armigera larvae fed on AzaA-based diet (AzaD) suffered from significant mortality, growth retardation, reduced larval mass, complications in molting, and prolonged development. Furthermore, death of AzaD-fed larvae was observed with various phenotypes like bursting, blackening, and half-molting. Liquid chromatography-mass spectrometry (LC-MS) data showed limited catabolic processing of ingested AzaA and dramatic alternations of primary metabolism in H. armigera. MALDI-TOF imaging indicated the presence of AzaA in midgut of H. armigera. In the gut, out of 79 proteins identified, 34 were upregulated, which were related to digestion, immunity, energy production, and apoptosis mechanism. On the other hand, 45 proteins were downregulated, including those from carbohydrate metabolism, lipid metabolism, and energy transfer. In the hemolymph, 21 upregulated proteins were reported to be involved in immunity, RNA processing, and mRNA-directed protein synthesis, while 7 downregulated proteins were implicated in energy transfer, hydrolysis, lipid metabolism, defense mechanisms, and amino acid storage-related functions. Subsequently, six target proteins were identified using labeled AzaA that interacted with whole insect proteins. In silico analysis suggests that AzaA could be efficiently accommodated in the hydrophobic pocket of juvenile hormone esterase and showed strong interaction with active site residues, indicating plausible targets of AzaA in H. armigera. Quantitative polymerase chain reaction analysis suggested differential gene expression patterns and partly corroborated the proteomic results. Overall, data suggest that AzaA generally targets more than one protein in H. armigera and hence could be a potent biopesticide.
Collapse
Affiliation(s)
- Vishal V. Dawkar
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- E-mail: . Tel: +91 (0)20 25902710. Fax: +91 (0)20 25902648
| | - Sagar H. Barage
- Bioinformatics
Centre, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India
- Amity
Institute of Biotechnology (AIB), Amity
University, Mumbai−Pune
Expressway, Bhatan, Post-Somathne, Panvel, Mumbai 410206, Maharashtra, India
| | - Ranjit S. Barbole
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Amol Fatangare
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Susana Grimalt
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Saikat Haldar
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - David G. Heckel
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Vidya S. Gupta
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Hirekodathakallu V. Thulasiram
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Aleš Svatoš
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
34
|
Martins CHZ, de Sousa M, Fonseca LC, Martinez DST, Alves OL. Biological effects of oxidized carbon nanomaterials (1D versus 2D) on Spodoptera frugiperda: Material dimensionality influences on the insect development, performance and nutritional physiology. CHEMOSPHERE 2019; 215:766-774. [PMID: 30352373 DOI: 10.1016/j.chemosphere.2018.09.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/20/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
In this work, we developed an integrative experimental design to investigate the long-term effects of two important classes of carbon nanomaterials with different dimensionalities (i.e., 1D oxidized multiwalled carbon nanotube, ox-MWCNT, and 2D graphene oxide, GO) on the development of the generalist insect Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects are exciting in vivo biological models for investigating the impact of nanomaterials on nanobio-ecological interactions. S. frugiperda larvae were reared from egg hatching to pupation on diets containing ox-MWCNT and GO at different concentrations (0, 10, 100 and 1000 μg g-1 of dry mass of diet). Several aspects of larval and adult performance were measured under controlled conditions. The effects of the carbon nanomaterial (CNM)-containing diets on the nutritional physiology and digestive enzymatic activities of S. frugiperda larvae were also evaluated. The results showed that the type and concentration of CNMs in the diet negatively affected the reproductive parameters and the digestive and metabolic efficiency of S. frugiperda. The diet containing the highest concentration of GO significantly reduced the fecundity and fertility of S. frugiperda compared to the effects of other treatments. S. frugiperda larvae showed decreased efficiency of food conversion into biomass and maximal approximate digestibility when fed diets containing GO at higher concentrations. However, quantitative differences in digestive enzyme activities were not observed between all treatments. These findings highlighted the critical influence of CNM dimensionality on the general performance and nutritional physiology of the moth. This work contributes to the safety evaluation and future applications of CNMs in agri-environmental nanotechnology.
Collapse
Affiliation(s)
- Carlos H Z Martins
- Laboratory of Solid State Chemistry (LQES) and Laboratory of Synthesis of Nanostructures and Interaction with Biosystems (NanoBioss), Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas 13083-970, SP, Brazil.
| | - Marcelo de Sousa
- Laboratory of Solid State Chemistry (LQES) and Laboratory of Synthesis of Nanostructures and Interaction with Biosystems (NanoBioss), Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas 13083-970, SP, Brazil
| | - Leandro C Fonseca
- Laboratory of Solid State Chemistry (LQES) and Laboratory of Synthesis of Nanostructures and Interaction with Biosystems (NanoBioss), Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas 13083-970, SP, Brazil
| | - Diego Stéfani T Martinez
- Laboratory of Solid State Chemistry (LQES) and Laboratory of Synthesis of Nanostructures and Interaction with Biosystems (NanoBioss), Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas 13083-970, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| | - Oswaldo L Alves
- Laboratory of Solid State Chemistry (LQES) and Laboratory of Synthesis of Nanostructures and Interaction with Biosystems (NanoBioss), Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas 13083-970, SP, Brazil.
| |
Collapse
|
35
|
Kolosov D, O'Donnell MJ. Malpighian tubules of caterpillars: blending RNAseq and physiology to reveal regional functional diversity and novel epithelial ion transport control mechanisms. J Exp Biol 2019; 222:jeb.211623. [PMID: 31636157 DOI: 10.1242/jeb.211623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022]
Abstract
Malpighian tubules (MTs) and hindgut constitute the functional kidney of insects. MTs are outpouches of the gut and in most insects demonstrate proximodistal heterogeneity in function. In most insects, such heterogeneity is confined to ion/fluid secretion in the distal portion and ion/fluid reabsorption in the proximal portion. In contrast, MTs of larval Lepidoptera (caterpillars of butterflies and moths), are comprised of five regions that differ in their association with the gut, their structure, and ion/fluid transport function. Recent studies have shown that several regions can rapidly and reversibly switch between ion secretion and reabsorption. The current study employed RNAseq, pharmacology and electrophysiology to characterize four distinct regions of the MT in larval Trichoplusia ni. Luminal microelectrode measurements indicate changes in [K+], [Na+] and pH as fluid passes through different regions of the tubule. In addition, the regions examined differ in gene ontology enrichment, and demonstrate robust gradients in expression of ion transporters and endocrine ligand receptors. Lastly, the study provides evidence for direct involvement of voltage-gated and ligand-gated ion channels in epithelial ion transport of insect MTs.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, McMaster University, 524 Life Sciences Building, 1280 Main St West, Hamilton, Ontario, L8S4K1, Canada
| | - Michael J. O'Donnell
- Department of Biology, McMaster University, 524 Life Sciences Building, 1280 Main St West, Hamilton, Ontario, L8S4K1, Canada
| |
Collapse
|
36
|
Lomate PR, Dewangan V, Mahajan NS, Kumar Y, Kulkarni A, Wang L, Saxena S, Gupta VS, Giri AP. Integrated Transcriptomic and Proteomic Analyses Suggest the Participation of Endogenous Protease Inhibitors in the Regulation of Protease Gene Expression in Helicoverpa armigera. Mol Cell Proteomics 2018; 17:1324-1336. [PMID: 29661852 DOI: 10.1074/mcp.ra117.000533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/16/2018] [Indexed: 11/06/2022] Open
Abstract
Insects adapt to plant protease inhibitors (PIs) present in their diet by differentially regulating multiple digestive proteases. However, mechanisms regulating protease gene expression in insects are largely enigmatic. Ingestion of multi-domain recombinant Capsicum annuum protease inhibitor-7 (CanPI-7) arrests growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae). Using de novo RNA sequencing and proteomic analysis, we examined the response of H. armigera larvae fed on recombinant CanPI-7 at different time intervals. Here, we present evidence supporting a dynamic transition in H. armigera protease expression on CanPI-7 feeding with general down-regulation of protease genes at early time points (0.5 to 6 h) and significant up-regulation of specific trypsin, chymotrypsin and aminopeptidase genes at later time points (12 to 48 h). Further, coexpression of H. armigera endogenous PIs with several digestive protease genes were apparent. In addition to the differential expression of endogenous H. armigera PIs, we also observed a distinct novel isoform of endogenous PI in CanPI-7 fed H. armigera larvae. Based on present and earlier studies, we propose potential mechanism of protease regulation in H. armigera and subsequent adaptation strategy to cope with anti-nutritional components of plants.
Collapse
Affiliation(s)
- Purushottam R Lomate
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Veena Dewangan
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Neha S Mahajan
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Yashwant Kumar
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Abhijeet Kulkarni
- §Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, MS, India
| | - Li Wang
- ¶Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames 50011, IA
| | - Smita Saxena
- §Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, MS, India
| | - Vidya S Gupta
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Ashok P Giri
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India;
| |
Collapse
|
37
|
Saikhedkar NS, Joshi RS, Bhoite AS, Mohandasan R, Yadav AK, Fernandes M, Kulkarni KA, Giri AP. Tripeptides derived from reactive centre loop of potato type II protease inhibitors preferentially inhibit midgut proteases of Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 95:17-25. [PMID: 29486250 DOI: 10.1016/j.ibmb.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Potato type II protease inhibitors (Pin-II PIs) impede the growth of lepidopteran insects by inhibiting serine protease-like enzymes in the larval gut. The three amino acid reactive centre loop (RCL) of these proteinaceous inhibitors is crucial for protease binding and is conserved across the Pin-II family. However, the molecular mechanism and inhibitory potential of the RCL tripeptides in isolation of the native protein has remained elusive. In this study, six peptides corresponding to the RCLs of the predominant Pin-II PIs were identified, synthesized and evaluated for in vitro and in vivo inhibitory activity against serine proteases of the polyphagous insect, Helicoverpa armigera. RCL peptides with sequences PRN, PRY and TRE were found to be potent inhibitors that adversely affected the growth and development of H. armigera. The binding mechanism and differential affinity of the RCL peptides with serine proteases was delineated by crystal structures of complexes of the RCL peptides with trypsin. Residues P1 and P2 of the inhibitors play a crucial role in the interaction and specificity of these inhibitors. Important features of RCL peptides like higher inhibition of insect proteases, enhanced efficacy at alkaline gut pH, longer retention and high stability in insect gut make them suitable molecules for the development of sustainable pest management strategies for crop protection.
Collapse
Affiliation(s)
- Nidhi S Saikhedkar
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Rakesh S Joshi
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Ashiwini S Bhoite
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Radhika Mohandasan
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Amit Kumar Yadav
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Moneesha Fernandes
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Kiran A Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.
| | - Ashok P Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.
| |
Collapse
|
38
|
Li H, Smigocki AC. Transcriptome analysis of sugar beet root maggot (Tetanops myopaeformis) genes modulated by the Beta vulgaris host. INSECT SCIENCE 2018; 25:222-234. [PMID: 27696738 DOI: 10.1111/1744-7917.12409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Sugar beet root maggot (SBRM, Tetanops myopaeformis von Röder) is a major but poorly understood insect pest of sugar beet (Beta vulgaris L.). The molecular mechanisms underlying plant defense responses are well documented, however, little information is available about complementary mechanisms for insect adaptive responses to overcome host resistance. To date, no studies have been published on SBRM gene expression profiling. Suppressive subtractive hybridization (SSH) generated more than 300 SBRM ESTs differentially expressed in the interaction of the pest with a moderately resistant (F1016) and a susceptible (F1010) sugar beet line. Blast2GO v. 3.2 search indicated that over 40% of the differentially expressed genes had known functions, primarily driven by fruit fly D. melanogaster genes. Expression patterns of 18 selected EST clones were confirmed by RT-PCR analysis. Gene Ontology (GO) analysis predicted a dominance of metabolic and catalytic genes involved in the interaction of SBRM with its host. SBRM genes functioning during development, regulation, cellular process, signaling and under stress conditions were annotated. SBRM genes that were common or unique in response to resistant or susceptible interactions with the host were identified and their possible roles in insect responses to the host are discussed.
Collapse
Affiliation(s)
- Haiyan Li
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, Maryland, USA
| | - Ann C Smigocki
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, Maryland, USA
| |
Collapse
|
39
|
He M, Jiang J, Cheng D. The plant pathogen Gluconobacter cerinus strain CDF1 is beneficial to the fruit fly Bactrocera dorsalis. AMB Express 2017; 7:207. [PMID: 29150728 PMCID: PMC5691827 DOI: 10.1186/s13568-017-0514-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
Plant pathogens can build relationships with insect hosts to complete their life cycles, and they often modify the behavior and development of hosts to improve their own fitness. In order to unravel whether some bacteria that can make fruit rot could have developed symbiotic interactions with Bactrocera dorsalis, we studied the symbiont bacteria profiles of the fly. We identified the bacterium Gluconobacter cerinus strain CDF1 from the ovaries and eggs of the oriental fruit fly B. dorsalis and the amount of Gluconobacter cerinus strain CDF1 increased significantly as the ovaries developed and in fruits on which non-sterile eggs were laid. Gluconobacter cerinus strain CDF1 addition to bananas fastens the rotting process and its addition to the eggs fastens their development/hatching rate. All in all, our data suggest that Gluconobacter cerinus strain CDF1 is beneficial to the fruit fly.
Collapse
|
40
|
Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, Giri AP. Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 184:157-169. [PMID: 27697374 DOI: 10.1016/j.jenvman.2016.09.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated. Hence, traditional pest management strategies are now forestalling the potential of micro and nanotechnology as an effective and viable approach to alleviate problems pertaining to pest control. These technological innovations hold promise to contribute enhanced productivity by providing novel agrochemical agents and delivery systems. Application of these systems engages to achieve: i) control release of agrochemicals, ii) site-targeted delivery of active ingredients to manage specific pests, iii) reduced pesticide use, iv) detection of chemical residues, v) pesticide degradation, vi) nucleic acid delivery and vii) to mitigate post-harvest damage. Applications of micro and nano-technology are still marginal owing to the perception of low economic returns, stringent regulatory issues involving safety assessment and public awareness over their uses. In this review, we highlight the potential application of micro and nano-materials with a major focus on effective pest management strategies including safe handling of pesticides.
Collapse
Affiliation(s)
- Neha Khandelwal
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Ranjit S Barbole
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Shashwat S Banerjee
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India
| | - Govind P Chate
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India
| | - Ankush V Biradar
- Inorganic Material and Catalysis Division, CSIR-Central Salt and Marine Chemical Research Institute, Bhavnagar 364002, Gujarat, India
| | - Jayant J Khandare
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India; Maharashtra Institute of Pharmacy, MIT Campus, Pune 411038, Maharashtra, India.
| | - Ashok P Giri
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.
| |
Collapse
|
41
|
A New Class of Glucosyl Thioureas: Synthesis and Larvicidal Activities. Molecules 2016; 21:molecules21070925. [PMID: 27438819 PMCID: PMC6274248 DOI: 10.3390/molecules21070925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/04/2016] [Accepted: 07/12/2016] [Indexed: 11/17/2022] Open
Abstract
A novel series of glucosyl thioureas were synthesized in good overall yields (up to 37% over four steps) from d-glucose and primary amines, and their larvicidal activities toward Mythimna separata Walker were also investigated. This new class of glucosyl thioureas demonstrated low to moderate growth inhibition activity of Mythiman separata Walker, with a growth inhibitory rate of up to 47.5% at a concentration of 100.0 mg/L in acetone.
Collapse
|
42
|
Schmidt JM, Szendrei Z, Grieshop M. Elucidating the Common Generalist Predators of Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae) in an Organic Apple Orchard Using Molecular Gut-Content Analysis. INSECTS 2016; 7:insects7030029. [PMID: 27348005 PMCID: PMC5039542 DOI: 10.3390/insects7030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022]
Abstract
Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), plum curculio, is a serious direct pest of North American tree fruit including, apples, cherries, peaches and plums. Historically, organophosphate insecticides were used for control, but this tool is no longer registered for use in tree fruit. In addition, few organically approved insecticides are available for organic pest control and none have proven efficacy as this time. Therefore, promoting biological control in these systems is the next step, however, little is known about the biological control pathways in this system and how these are influenced by current mechanical and cultural practices required in organic systems. We used molecular gut-content analysis for testing field caught predators for feeding on plum curculio. During the study we monitored populations of plum curculio and the predator community in a production organic apple orchard. Predator populations varied over the season and contained a diverse assemblage of spiders and beetles. A total of 8% of all predators (eight Araneae, two Hemiptera, and six Coleoptera species) assayed for plum curculio predation were observed positive for the presence of plum curculio DNA in their guts, indicating that these species fed on plum curculio prior to collection Results indicate a number of biological control agents exist for this pest and this requires further study in relation to cultural practices.
Collapse
Affiliation(s)
- Jason M Schmidt
- Department of Entomology, Michigan State University, 578 Wilson Rd., East Lansing, MI 48824, USA.
- Department of Entomology, University of Georgia, 2360 Rainwater Rd., Tifton, GA 31793, USA.
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, 578 Wilson Rd., East Lansing, MI 48824, USA.
| | - Matthew Grieshop
- Department of Entomology, Michigan State University, 578 Wilson Rd., East Lansing, MI 48824, USA.
| |
Collapse
|
43
|
Dawkar VV, Chikate YR, More TH, Gupta VS, Giri AP. The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope up with chlorpyrifos insecticide. INSECT SCIENCE 2016; 23:68-77. [PMID: 25284010 DOI: 10.1111/1744-7917.12177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
Helicoverpa armigera is a key pest in many vital crops, which is mainly controlled by chemical strategies. To manage this pest is becoming challenging due to its ability and evolution of resistance against insecticides. Further, its subsequent spread on nonhost plant is remarkable in recent times. Hence, decoding resistance mechanism against phytochemicals and synthetic insecticides is a major challenge. The present work describes that the digestion, defense and immunity related enzymes are associated with chlorpyrifos resistance in H. armigera. Proteomic analysis of H. armigera gut tissue upon feeding on chlorpyrifos containing diet (CH) and artificial diet (AD) using nano-liquid chromatography-mass spectrometry identified upregulated 23-proteins in CH fed larvae. Database searches combined with gene ontology analysis revealed that the identified gut proteins engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification. Biochemical and quantitative real-time polymerase chain reaction analysis of candidate proteins indicated that insects were struggling to get nutrients and energy in presence of CH, while at the same time endeavoring to metabolize chlorpyrifos. Moreover, we proposed a potential processing pathway of chlorpyrifos in H. armigera gut by examining the metabolites using gas chromatography-mass spectrometry. H. armigera exhibit a range of intriguing behavioral, morphological adaptations and resistance to insecticides by regulating expression of proteins involved in digestion and detoxification mechanisms to cope up with chlorpyrifos. In these contexts, as gut is a rich repository of biological information; profound analysis of gut tissues can give clues of detoxification and resistance mechanism in insects.
Collapse
Affiliation(s)
- Vishal V Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| | - Yojana R Chikate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| | - Tushar H More
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| |
Collapse
|
44
|
Pentzold S, Zagrobelny M, Bjarnholt N, Kroymann J, Vogel H, Olsen CE, Møller BL, Bak S. Metabolism, excretion and avoidance of cyanogenic glucosides in insects with different feeding specialisations. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:119-28. [PMID: 26483288 DOI: 10.1016/j.ibmb.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 05/08/2023]
Abstract
Cyanogenic glucosides (CNglcs) are widespread plant defence compounds releasing toxic hydrogen cyanide when hydrolysed by specific β-glucosidases after plant tissue damage. In contrast to specialist herbivores that have mechanisms to avoid toxicity from CNglcs, it is generally assumed that non-adapted herbivores are negatively affected by CNglcs. Recent evidence, however, implies that the defence potential of CNglcs towards herbivores may not be as effective as previously anticipated. Here, performance, metabolism and excretion products of insects not adapted to CNglcs were analysed, including species with different degrees of dietary specialisation (generalists, specialists) and different feeding modes (leaf-snipping lepidopterans, piercing-sucking aphids). Insects were reared either on cyanogenic or acyanogenic plants or on an artificial cyanogenic diet. Lepidopteran generalists (Spodoptera littoralis, Spodoptera exigua, Mamestra brassicae) were compared to lepidopteran glucosinolate-specialists (Pieris rapae, Pieris brassicae, Plutella xylostella), and a generalist aphid (Myzus persicae) was compared to an aphid glucosinolate-specialist (Lipaphis erysimi). All insects were tolerant to cyanogenic plants; in lepidopterans tolerance was mainly due to excretion of intact CNglcs. The two Pieris species furthermore metabolized aromatic CNglcs to amino acid conjugates (Cys, Gly, Ser) and derivatives of these, which is similar to the metabolism of benzylglucosinolates in these species. Aphid species avoided uptake of CNglcs during feeding. Our results imply that non-adapted insects tolerate plant CNglcs either by keeping them intact for excretion, metabolizing them, or avoiding uptake.
Collapse
Affiliation(s)
- Stefan Pentzold
- Plant Biochemistry Laboratory, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.
| | - Mika Zagrobelny
- Plant Biochemistry Laboratory, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.
| | - Nanna Bjarnholt
- Plant Biochemistry Laboratory, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.
| | - Juergen Kroymann
- Ecologie Systématique Evolution, CNRS/Université Paris-Sud/AgroParisTech, Université Paris-Saclay, 91400, Orsay, France.
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Carl Erik Olsen
- Plant Biochemistry Laboratory, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", University of Copenhagen, Frederiksberg C, Copenhagen, Denmark; Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark.
| | - Søren Bak
- Plant Biochemistry Laboratory, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
45
|
Mishra M, Lomate PR, Joshi RS, Punekar SA, Gupta VS, Giri AP. Ecological turmoil in evolutionary dynamics of plant-insect interactions: defense to offence. PLANTA 2015; 242:761-771. [PMID: 26159435 DOI: 10.1007/s00425-015-2364-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
Available history manifests contemporary diversity that exists in plant-insect interactions. A radical thinking is necessary for developing strategies that can co-opt natural insect-plant mutualism, ecology and environmental safety for crop protection since current agricultural practices can reduce species richness and evenness. The global environmental changes, such as increased temperature, CO₂ and ozone levels, biological invasions, land-use change and habitat fragmentation together play a significant role in re-shaping the plant-insect multi-trophic interactions. Diverse natural products need to be studied and explored for their biological functions as insect pest control agents. In order to assure the success of an integrated pest management strategy, human activities need to be harmonized to minimize the global climate changes. Plant-insect interaction is one of the most primitive and co-evolved associations, often influenced by surrounding changes. In this review, we account the persistence and evolution of plant-insect interactions, with particular focus on the effect of climate change and human interference on these interactions. Plants and insects have been maintaining their existence through a mutual service-resource relationship while defending themselves. We provide a comprehensive catalog of various defense strategies employed by the plants and/or insects. Furthermore, several important factors such as accelerated diversification, imbalance in the mutualism, and chemical arms race between plants and insects as indirect consequences of human practices are highlighted. Inappropriate implementation of several modern agricultural practices has resulted in (i) endangered mutualisms, (ii) pest status and resistance in insects and (iii) ecological instability. Moreover, altered environmental conditions eventually triggered the resetting of plant-insect interactions. Hence, multitrophic approaches that can harmonize human activities and minimize their interference in native plant-insect interactions are needed to maintain natural balance between the existence of plants and insects.
Collapse
Affiliation(s)
- Manasi Mishra
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, MS, India
| | | | | | | | | | | |
Collapse
|
46
|
The unfulfilled promises of scorpion insectotoxins. J Venom Anim Toxins Incl Trop Dis 2015; 21:16. [PMID: 26085828 PMCID: PMC4470000 DOI: 10.1186/s40409-015-0019-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023] Open
Abstract
Since the description and biochemical characterization of the first insect-specific neurotoxins from scorpion venoms, almost all contributions have highlighted their potential application as leads for the development of potent bioinsecticides. Their practical use, however, has been hindered by different factors, some of which are intrinsically related to the toxins and other external determinants. Recent developments in the understanding of the action mechanisms of the scorpion insectotoxins and their bioactive surfaces, coupled with the exploration of novel bioinsecticide delivery systems have renewed the expectations that the scorpion insectotoxins could find their way into commercial applications in agriculture, as part of integrated pest control strategies. Herein, we review the current arsenal of available scorpion neurotoxins with a degree of specificity for insects, the progress made with alternative delivery methods, and the drawbacks that still preclude their practical use.
Collapse
|
47
|
Pandey PK, Singh D, Jamal F. The influence of a 21 kDa Kunitz-type trypsin inhibitor from nonhost madras thorn, Pithecellobium dulce, seeds on H. armigera (Hübner) (Lepidoptera: Noctuidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 89:18-34. [PMID: 25580830 DOI: 10.1002/arch.21221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A trypsin inhibitor purified from the seeds of the Manila tamarind, Pithecellobium dulce (PDTI), was studied for its effects on growth parameters and developmental stages of Helicoverpa armigera. PDTI exhibited inhibitory activity against bovine trypsin (∼86%; ∼1.33 ug/ml IC50). The inhibitory activity of PDTI was unaltered over a wide range of temperature, pH, and in the presence of dithiothreitol. Larval midgut proteases were unable to digest PDTI for up to 12 h of incubation. Dixon and Lineweaver-Burk double reciprocal plots analysis revealed a competitive inhibition mechanism and a Ki of ∼3.9 × 10(-8) M. Lethal dose (0.50% w/w) and dosage for weight reduction by 50% (0.25% w/w) were determined. PDTI showed a dose-dependent effect on mean larval weight and a series of nutritional disturbances. In artificial diet at 0.25% w/w PDTI, the efficiency of conversion of ingested food, of digested food, relative growth rate, and growth index declined, whereas approximate digestibility, relative consumption rate, metabolic cost, consumption index, and total developmental period were increased in larvae. This is the first report of antifeedant and antimetabolic activities of PDTI on midgut proteases of H. armigera.
Collapse
Affiliation(s)
- Prabhash K Pandey
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | | | | |
Collapse
|
48
|
Wang RL, Xia QQ, Baerson SR, Ren Y, Wang J, Su YJ, Zheng SC, Zeng RS. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification. JOURNAL OF INSECT PHYSIOLOGY 2015; 75:54-62. [PMID: 25783953 DOI: 10.1016/j.jinsphys.2015.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 05/26/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) play a prominent role in the adaptation of insects to host plant chemical defenses. To investigate the potential role of P450s in adaptation of the lepidopteran pest Spodoptera litura to host plant allelochemicals, an expressed sequence data set derived from 6th instar midgut tissues was first mined. One sequence identified from the S. litura 6th instar midgut EST database was determined by phylogenetic analysis to belong to the CYP6AB P450 subfamily, and named CYP6AB14. Dietary supplementation of S. litura larvae with either xanthotoxin (XAN), coumarin (COU) and flavone (FLA) led to elevated CYP6AB14 transcript levels in both midgut and fat body tissues. Injection of CYP6AB14-derived double-stranded RNA (dsRNA) into S. litura individuals significantly reduced CYP6AB14 transcript levels, and resulted in increased developmental abnormalities and higher mortality rates among XAN, COU and FLA-fed larvae. Our results strongly suggest a key role for CYP6AB14 in plant allelochemical detoxification in S. litura.
Collapse
Affiliation(s)
- Rui-Long Wang
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture of China, South China Agricultural University, Guangzhou 510642, China
| | - Qing-Qing Xia
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture of China, South China Agricultural University, Guangzhou 510642, China
| | - Scott R Baerson
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, MS 38677, USA
| | - Yong Ren
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture of China, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wang
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture of China, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Juan Su
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture of China, South China Agricultural University, Guangzhou 510642, China
| | - Si-Chun Zheng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ren-Sen Zeng
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture of China, South China Agricultural University, Guangzhou 510642, China; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
49
|
Joshi RS, Wagh TP, Sharma N, Mulani FA, Sonavane U, Thulasiram HV, Joshi R, Gupta VS, Giri AP. Way toward "dietary pesticides": molecular investigation of insecticidal action of caffeic acid against Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10847-10854. [PMID: 25329913 DOI: 10.1021/jf503437r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bioprospecting of natural molecules is essential to overcome serious environmental issues and pesticide resistance in insects. Here we are reporting insights into insecticidal activity of a plant natural phenol. In silico and in vitro screening of multiple molecules supported by in vivo validations suggested that caffeic acid (CA) is a potent inhibitor of Helicoverpa armigera gut proteases. Protease activity and gene expression were altered in CA-fed larvae. The structure-activity relationship of CA highlighted that all the functional groups are crucial for inhibition of protease activity. Biophysical studies and molecular dynamic simulations revealed that sequential binding of multiple CA molecules induces conformational changes in the protease(s) and thus lead to a significant decline in their activity. CA treatment significantly inhibits the insect's detoxification enzymes, thus intensifying the insecticidal effect. Our findings suggest that CA can be implicated as a potent insecticidal molecule and explored for the development of effective dietary pesticides.
Collapse
Affiliation(s)
- R S Joshi
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411 008, India
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lomate PR, Mahajan NS, Kale SM, Gupta VS, Giri AP. Identification and expression profiling of Helicoverpa armigera microRNAs and their possible role in the regulation of digestive protease genes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:129-137. [PMID: 25263090 DOI: 10.1016/j.ibmb.2014.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 06/03/2023]
Abstract
The present investigation is an effort to determine the possible roles of microRNAs (miRNAs) in the regulation of protease gene expression in Helicoverpa armigera upon exposure to plant protease inhibitors (PIs). Using Illumina platform, deep sequencing of 12 small RNA libraries was performed from H. armigera larvae fed on artificial diet (AD) or recombinant Capsicum annuum PI-7 (rCanPI-7) incorporated diet, at various time intervals (0.5, 2, 6, 12, 24, and 48 h). Sequencing data were analyzed with miRDeep2 software; a total of 186 unique miRNAs were identified from all the 12 libraries, out of which 96 were conserved while 90 were novel. These miRNAs showed all the conserved characteristics of insect miRNAs. Homology analysis revealed that most of the identified miRNAs were insect-specific, and more than 50 miRNAs were Lepidoptera-specific. Several candidate miRNAs (conserved and novel) were differentially expressed in rCanPI-7 fed larvae as compared to the larvae fed on AD. H. armigera miRNAs were found to have target sites in several protease genes as well as in protease regulation related genes such as serine PI and immune reactive PI. As expected, negative correlation in the relative abundance of miRNAs and their target mRNAs was evident from qualitative real time polymerase chain reaction analysis. The investigation revealed potential roles of miRNAs in H. armigera protease gene regulation.
Collapse
Affiliation(s)
- Purushottam R Lomate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India
| | - Neha S Mahajan
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India
| | - Sandip M Kale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India.
| |
Collapse
|