1
|
Yu Y, Dong H, Zhao Q, Zhu S, Wang H, Yao Y, Huang W, Han H. Combined transcriptome and whole genome sequencing analyses reveal candidate drug-resistance genes of Eimeria tenella. iScience 2025; 28:111592. [PMID: 39811641 PMCID: PMC11732515 DOI: 10.1016/j.isci.2024.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Avian coccidiosis is a widespread intestinal disease found in poultry that causes substantial economic losses. To extensively investigate the molecular mechanism of drug resistance in Eimeria tenella, we analyzed the sporozoites and second-generation merozoites of drug-sensitive (DS), diclazuril-resistant (DZR) strain, and salinomycin-resistant (SMR) strains of E. tenella through transcriptome sequencing. Whole genome sequencing analyses were performed on resistant strains at different concentrations-11 sensitive strains, 16 field diclazuril-resistant strains, and 15 field salinomycin-resistant strains of E. tenella. Co-analysis indicated that the ABC transporter protein showed differential expression and base mutations in the two resistant strains compared with the DS strain. KEGG pathway analysis demonstrated that the expression of pABAS and HPPK-DHPS, which are associated with the folate biosynthetic pathway, showed downregulation only in the DZR strain with respect to the DS strain. Several key enzymes in the glycolytic pathway were differentially expressed between DS and SMR strains.
Collapse
Affiliation(s)
- Yu Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Haixia Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Yawen Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Wenhao Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| |
Collapse
|
2
|
Qu Q, Peng H, Chen M, Liu X, Che R, Bello-Onaghise G, Zhang Z, Chen X, Li Y. The relationship between resistance evolution and carbon metabolism in Staphylococcus xylosus under ceftiofur sodium stress. Arch Microbiol 2024; 206:370. [PMID: 39115561 DOI: 10.1007/s00203-024-04093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Staphylococcus xylosus has emerged as a bovine mastitis pathogen with increasing drug resistance, resulting in substantial economic impacts. This study utilized iTRAQ analysis to investigate the mechanisms driving resistance evolution in S. xylosus under ceftiofur sodium stress. Findings revealed notable variations in the expression of 143 proteins, particularly glycolysis-related proteins (TpiA, Eno, GlpD, Ldh) and peptidoglycan (PG) hydrolase Atl. Following the induction of ceftiofur sodium resistance in S. xylosus, the emergence of resistant strains displaying characteristics of small colony variants (SCVs) was observed. The transcript levels of TpiA, Eno, GlpD and Ldh were up-regulated, TCA cycle proteins (ICDH, MDH) and Atl were down-regulated, lactate content was increased, and NADH concentration was decreased in SCV compared to the wild strain. That indicates a potential role of carbon metabolism, specifically PG hydrolysis, glycolysis, and the TCA cycle, in the development of resistance to ceftiofur sodium in S. xylosus.
Collapse
Affiliation(s)
- Qianwei Qu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technol, Northeast Agricultural University, Harbin, 150030, PR China
| | - Haixin Peng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mo Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xin Liu
- Guiyang University of Chinese Medicine, Huaxi university town, Guiyang, Guizhou, 550025, PR China
| | - Ruixiang Che
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, PR China
| | - God'spower Bello-Onaghise
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiyun Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xueying Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Boucherabine S, Giddey A, Nassar R, Al-Hroub HM, Mohamed L, Harb M, Soares NC, Senok A. Proteomic and metabolomic profiling of methicillin resistant versus methicillin sensitive Staphylococcus aureus using a simultaneous extraction protocol. Front Microbiol 2024; 15:1402796. [PMID: 38993491 PMCID: PMC11238212 DOI: 10.3389/fmicb.2024.1402796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 07/13/2024] Open
Abstract
Background Understanding the biology of methicillin resistant Staphylococcus aureus (MRSA) is crucial to unlocking insights for new targets in our fight against this antimicrobial resistant priority pathogen. Although proteomics and metabolomic profiling offer the potential to elucidating such biological markers, reports of methodological approaches for carrying this out in S. aureus isolates remain limited. We describe the use of a dual-functionality methanol extraction method for the concurrent extraction of protein and metabolites from S. aureus and report on the comparative analysis of the proteomic and metabolomic profiles of MRSA versus methicillin sensitive S. aureus (MSSA). Methods Bacterial reference strains MRSA ATCC43300 and MSSA ATCC25923 were used. The conventional urea methodology was used for protein extraction and a methanol based method was used for concurrent proteins and metabolites extraction. Proteomic and metabolomic profiling was carried out using TimsTOF mass spectrometry. Data processing was carried out using the MaxQuant version 2.1.4.0. Results This study represents the first report on the utilization of the methanol extraction method for concurrent protein and metabolite extraction in Gram positive bacteria. Our findings demonstrate good performance of the method for the dual extraction of proteins and metabolites from S. aureus with demonstration of reproducibility. Comparison of MRSA and MSSA strains revealed 407 proteins with significantly different expression levels. Enrichment analysis of those proteins revealed distinct pathways involved in fatty acid degradation, metabolism and beta-lactam resistance. Penicillin-binding protein PBP2a, the key determinant of MRSA resistance, exhibited distinct expression patterns in MRSA isolates. Metabolomic analysis identified 146 metabolites with only one exclusive to the MRSA. The enriched pathways identified were related to arginine metabolism and biosynthesis. Conclusion Our findings demonstrate the effectiveness of the methanol-based dual-extraction method, providing simultaneous insights into the proteomic and metabolomic landscapes of S. aureus strains. These findings demonstrate the utility of proteomic and metabolomic profiling for elucidating the biological basis of antimicrobial resistance.
Collapse
Affiliation(s)
- Syrine Boucherabine
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Alexander Giddey
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Hamza M. Al-Hroub
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Lobna Mohamed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohammad Harb
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson Cruz Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA School/Faculdade de Lisboa, Lisbon, Portugal
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- School of Dentistry, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Zhan Y, Xu H, Tan HT, Ho YS, Yang D, Chen S, Ow DSW, Lv X, Wei F, Bi X, Chen S. Systematic Adaptation of Bacillus licheniformis to 2-Phenylethanol Stress. Appl Environ Microbiol 2023; 89:e0156822. [PMID: 36752618 PMCID: PMC9972911 DOI: 10.1128/aem.01568-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
The compound 2-phenylethanol (2-PE) is a bulk flavor and fragrance with a rose-like aroma that can be produced by microbial cell factories, but its cellular toxicity inhibits cellular growth and limits strain performance. Specifically, the microbe Bacillus licheniformis has shown a strong tolerance to 2-PE. Understanding these tolerance mechanisms is crucial for achieving the hyperproduction of 2-PE. In this report, the mechanisms of B. licheniformis DW2 resistance to 2-PE were studied by multi-omics technology coupled with physiological and molecular biological approaches. 2-PE induced reactive oxygen species formation and affected nucleic acid, ribosome, and cell wall synthesis. To manage 2-PE stress, the antioxidant and global stress response systems were activated; the repair system of proteins and homeostasis of the ion and osmotic were initiated. Furthermore, the tricarboxylic acid cycle and NADPH synthesis pathways were upregulated; correspondingly, scanning electron microscopy revealed that cell morphology was changed. These results provide deeper insights into the adaptive mechanisms of B. licheniformis to 2-PE and highlight the potential targets for genetic manipulation to enhance 2-PE resistance. IMPORTANCE The ability to tolerate organic solvents is essential for bacteria producing these chemicals with high titer, yield, and productivity. As exemplified by 2-PE, bioproduction of 2-PE represents a promising alternative to chemical synthesis and plant extraction approaches, but its toxicity hinders successful large-scale microbial production. Here, a multi-omics approach is employed to systematically study the mechanisms of B. licheniformis DW2 resistance to 2-PE. As a 2-PE-tolerant strain, B. licheniformis displays multifactorial mechanisms of 2-PE tolerance, including activating global stress response and repair systems, increasing NADPH supply, changing cell morphology and membrane composition, and remodeling metabolic pathways. The current work yields novel insights into the mechanisms of B. licheniformis resistance to 2-PE. This knowledge can also be used as a clue for improving bacterial performances to achieve industrial-scale production of 2-PE and potentially applied to the production of other relevant organic solvents, such as tyrosol and hydroxytyrosol.
Collapse
Affiliation(s)
- Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei, People’s Republic of China
| | - Haixia Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei, People’s Republic of China
| | - Hween Tong Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dongxiao Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shuwen Chen
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dave Siak-Wei Ow
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, People’s Republic of China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, People’s Republic of China
| | - Xuezhi Bi
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
5
|
Jaén-Luchoro D, Karlsson R, Busquets A, Piñeiro-Iglesias B, Karami N, Marathe NP, Moore ERB. Knockout of Targeted Plasmid-Borne β-Lactamase Genes in an Extended-Spectrum-β-Lactamase-Producing Escherichia coli Strain: Impact on Resistance and Proteomic Profile. Microbiol Spectr 2023; 11:e0386722. [PMID: 36622237 PMCID: PMC9927464 DOI: 10.1128/spectrum.03867-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Resistance to β-lactams is known to be multifactorial, although the underlying mechanisms are not well established. The aim of our study was to develop a system for assessing the phenotypic and proteomic responses of bacteria to antibiotic stress as a result of the loss of selected antimicrobial resistance genes. We applied homologous recombination to knock out plasmid-borne β-lactamase genes (blaOXA-1, blaTEM-1, and blaCTX-M15) in Escherichia coli CCUG 73778, generating knockout clone variants lacking the respective deleted β-lactamases. Quantitative proteomic analyses were performed on the knockout variants and the wild-type strain, using bottom-up liquid chromatography tandem mass spectrometry (LC-MS/MS), after exposure to different concentrations of cefadroxil. Loss of the blaCTX-M-15 gene had the greatest impact on the resulting protein expression dynamics, while losses of blaOXA-1 and blaTEM-1 affected fewer proteins' expression levels. Proteins involved in antibiotic resistance, cell membrane integrity, stress, and gene expression and unknown function proteins exhibited differential expression. The present study provides a framework for studying protein expression in response to antibiotic exposure and identifying the genomic, proteomic, and phenotypic impacts of resistance gene loss. IMPORTANCE The critical situation regarding antibiotic resistance requires a more in-depth effort for understanding underlying mechanisms involved in antibiotic resistance, beyond just detecting resistance genes. The methodology presented in this work provides a framework for knocking out selected resistance factors, to study the adjustments of the bacterium in response to a particular antibiotic stress, elucidating the genetic response and proteins that are mobilized. The protocol uses MS-based determination of the proteins that are expressed in response to an antibiotic, enabling the selection of strong candidates representing putative resistance factors or mechanisms and providing a basis for future studies to understand their implications in antibiotic resistance. This allows us to better understand how the cell responds to the presence of the antibiotic when a specific gene is lost and, consequently, identify alternative targets for possible future treatment development.
Collapse
Affiliation(s)
- Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg, Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Nanoxis Consulting AB, Gothenburg, Sweden
| | - Antonio Busquets
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Beatriz Piñeiro-Iglesias
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg, Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nahid Karami
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | | | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg, Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
6
|
Liu J, Qi M, Yuan Z, Wong TY, Song X, Lam H. Nontargeted metabolomics reveals differences in the metabolite profiling among methicillin-resistant and methicillin-susceptible Staphylococcus aureus in response to antibiotics. Mol Omics 2022; 18:948-956. [PMID: 36218091 DOI: 10.1039/d2mo00229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Staphylococcus aureus (S. aureus) causes infections and can be fatal. In the long-term struggle against antibiotics, S. aureus has acquired resistance toward antibiotics and become more difficult to kill. Metabolomics could directly reflect the responses of S. aureus toward antibiotics, which is effective for studying the resistance mechanism of S. aureus. In this study, based on a nontargeted metabolic figure printing technique, the metabolome of a pair of isogenic methicillin-susceptible and resistant S. aureus strains ATCC25923 (MSSA) and ATCC43300 (MRSA) treated with or without oxacillin was characterized. 7 and 29 significantly changed metabolites in MRSA and MSSA were identified by combined accurate mass and mass fragmentation analysis. Pathway enrichment analysis suggested that DNA repair and flavin biosynthesis are the universal pathways of both MSSA and MRSA under antibiotic stress. MRSA systematically and effectively fights against oxacillin through precise control of energy production, PBP2a substrate biosynthesis and antioxidant function. In contrast, MSSA lacks effective defense pathways against oxacillin. The different metabolome responses of MSSA and MRSA toward antibiotics provide us with new insights into how S. aureus develops antibiotic resistance.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China. .,Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Mingyang Qi
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zichen Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Sulaiman JE, Long L, Qian PY, Lam H. Proteome profiling of evolved methicillin-resistant Staphylococcus aureus strains with distinct daptomycin tolerance and resistance phenotypes. Front Microbiol 2022; 13:970146. [PMID: 35992709 PMCID: PMC9386379 DOI: 10.3389/fmicb.2022.970146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a highly dangerous pathogen, and daptomycin has been increasingly used to treat its infections in clinics. Recently, several groups have shown that tolerance and resistance of microbes can evolve rapidly under cyclic antibiotic exposure. We have previously shown that the same tolerance and resistance development occurs in MRSA treated with daptomycin in an adaptive laboratory evolution (ALE) experiment. In the present study, we performed proteomic analysis to compare six daptomycin-tolerant and resistant MRSA strains that were evolved from the same ancestral strain. The strain with a higher tolerance level than the others had the most different proteome and response to antibiotic treatment, resembling those observed in persister cells, which are small subpopulations of bacteria that survive lethal antibiotics treatment. By comparing the proteome changes across strains with similar phenotypes, we identified the key proteins that play important roles in daptomycin tolerance and resistance in MRSA. We selected two candidates to be confirmed by gene overexpression analysis. Overexpression of EcsA1 and FabG, which were up-regulated in all of the tolerant evolved strains, led to increased daptomycin tolerance in wild-type MRSA. The proteomics data also suggested that cell wall modulations were implicated in both resistance and tolerance, but in different ways. While the resistant strains had peptidoglycan changes and a more positive surface charge to directly repel daptomycin, the tolerant strains possessed different cell wall changes that do not involve the peptidoglycan nor alterations of the surface charge. Overall, our study showed the differential proteome profiles among multiple tolerant and resistant strains, pinpointed the key proteins for the two phenotypes and revealed the differences in cell wall modulations between the daptomycin-tolerant/resistant strains.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Lexin Long
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- *Correspondence: Henry Lam,
| |
Collapse
|
8
|
Sulaima JE, Lam H. Proteomics in antibiotic resistance and tolerance research: Mapping the resistome and the tolerome of bacterial pathogens. Proteomics 2022; 22:e2100409. [PMID: 35143120 DOI: 10.1002/pmic.202100409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/12/2022]
Abstract
Antibiotic resistance, the ability of a microbial pathogen to evade the effects of antibiotics thereby allowing them to grow under elevated drug concentrations, is an alarming health problem worldwide and has attracted the attention of scientists for decades. On the other hand, the clinical importance of persistence and tolerance as alternative mechanisms for pathogens to survive prolonged lethal antibiotic doses has recently become increasingly appreciated. Persisters and high-tolerance populations are thought to cause the relapse of infectious diseases, and provide opportunities for the pathogens to evolve resistance during the course of antibiotic therapy. Although proteomics and other omics methodology have long been employed to study resistance, its applications in studying persistence and tolerance are still limited. However, due to the growing interest in the topic and recent progress in method developments to study them, there have been some proteomic studies that yield fresh insights into the phenomenon of persistence and tolerance. Combined with the studies on resistance, these collectively guide us to novel molecular targets for the potential drugs for the control of these dangerous pathogens. In this review, we surveyed previous proteomic studies to investigate resistance, persistence, and tolerance mechanisms, and discussed emerging experimental strategies for studying these phenotypes with a combination of adaptive laboratory evolution and high-throughput proteomics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jordy Evan Sulaima
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
9
|
Gao L, Zhu H, Chen Y, Yang Y. Antibacterial pathway of cefquinome against Staphylococcus aureus based on label-free quantitative proteomics analysis. J Microbiol 2021; 59:1112-1124. [PMID: 34751907 DOI: 10.1007/s12275-021-1201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 10/19/2022]
Abstract
Cefquinome (CEQ) is a novel β-lactam antibiotic that exhibits excellent antibacterial activity against Staphylococcus aureus. However, the bacterial protein targets of CEQ are unclear. To evaluate the relationship between the pharmacokinetic/pharmacodynamic (PK/PD) parameters of CEQ and strains with varying degrees of resistance and to elucidate bacterial protein responses to CEQ treatment, label-free quantitative proteomics analysis was conducted. The sensitive S. aureus ATCC6538 and the resistant 2MIC and 8MIC were tested for differentially expressed proteins. An in vitro model was treated with different concentrations of CEQ (3, 5, or 10 µg/ml) with different terminal half-lives (2.5 or 5 h) at different intervals (12 or 24 h). Differentially expressed proteins were evaluated using Gene Ontology analysis followed by KEGG pathway enrichment analysis and STRING network analysis. RT-qPCR was performed to validate the differentially expressed proteins at the molecular level. The results showed that the degree of resistance increased in a cumulative manner and increased gradually with the extension of administration time. The resistant strain would not have appeared in the model only if %T > mutant prevention concentration ≥ 50%. The expression of 45 proteins significantly changed following CEQ treatment, among which 42 proteins were obviously upregulated and 3 were downregulated. GO analysis revealed that the differentially expressed proteins were mainly present on cells and the cell membrane, participated in metabolic and intracellular processes, and had catalytic and binding activities. The RPSO, SDHB, CITZ, ADK, and SAOUHSC 00113 genes in S. aureus may play important roles in the development of resistance to CEQ. These results provided important reference candidate proteins as targets for overcoming S. aureus resistance to CEQ.
Collapse
Affiliation(s)
- Linglin Gao
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Hainan, P. R. China
| | - Hao Zhu
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Hainan, P. R. China
| | - Yun Chen
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Hainan, P. R. China
| | - Yuhui Yang
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Hainan, P. R. China.
| |
Collapse
|
10
|
Ribeiro M, Ceballos S, Poeta P, Torres C, Igrejas G. Methicillin-Resistant Staphylococcus aureus Proteome Response to Antibiotic Stress Provides Insights for New Therapeutic Strategies. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:711-724. [PMID: 34705556 DOI: 10.1089/omi.2021.0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance is a global threat, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the most representative drug-resistant pathogens. MRSA spread is increasing due to its ability to establish new reservoirs. To this end, the clonal complex (CC)-130 is an emerging genetic lineage, generally regarded as animal adapted and carrying the mecC gene, and sporadically found in humans. Although the MRSA antibiotic resistance mechanisms have been described, there are limited data on systems-wide omics responses to antibiotic stress, particularly at the proteome level. In this study, a gel-based quantitative proteomics approach was performed to assess the cellular responses of a mecC-harboring CC130 MRSA strain of human origin to subinhibitory doses of cefoxitin. We focused on the global response of MRSA to antibiotic stress and upon this treatment, 53 proteins were significantly differentially expressed. Most of the latter proteins were mapped to having functions in cellular metabolism while some glycolysis-related proteins showed a decreased expression after cefoxitin stress. On the contrary, pyruvate kinase, a potential antimicrobial drug target, was found upregulated. Also, quorum sensing, genetic information processing, and stress response proteins were found upregulated. Low-affinity penicillin-binding protein (mecC-encoded) was found in cefoxitin-treated samples. In conclusion, these new findings on cefoxitin-induced proteome changes provide important insights and molecular leads for innovation in treatment of MRSA specifically, and omics approaches to address antibiotic resistance generally.
Collapse
Affiliation(s)
- Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Sara Ceballos
- Area Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| |
Collapse
|
11
|
Sulaiman JE, Long L, Wu L, Qian PY, Lam H. Comparative proteomic investigation of multiple methicillin-resistant Staphylococcus aureus strains generated through adaptive laboratory evolution. iScience 2021; 24:102950. [PMID: 34458699 PMCID: PMC8377494 DOI: 10.1016/j.isci.2021.102950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/14/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
Recent discoveries indicate that tolerance and resistance could rapidly evolve in bacterial populations under intermittent antibiotic treatment. In the present study, we applied antibiotic combinations in laboratory experiments to generate novel methicillin-resistant Staphylococcus aureus strains with distinct phenotypes (tolerance, resistance, and suppressed tolerance), and compared their proteome profiles to uncover the adaptation mechanisms. While the tolerant strains have very different proteomes than the susceptible ancestral strain, the resistant strain largely resembles the ancestral in terms of their proteomes. Our proteomics data and other assays support the connection between the detected mutations to the observed phenotypes, confirming the general understanding of tolerance and resistance mechanisms. While resistance directly counteracts the action mechanism of the antibiotic, tolerance involves complex substantial changes in the cells' biological process to achieve survival advantages. Overall, this study provides insights into the existence of diverse evolutionary pathways for tolerance and resistance development under different treatment scenarios.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Lexin Long
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Long Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
12
|
Sharma D, Sharma A, Singh B, Verma SK. Pan-proteome profiling of emerging and re-emerging zoonotic pathogen Orientia tsutsugamushi for getting insight into microbial pathogenesis. Microb Pathog 2021; 158:105103. [PMID: 34298125 DOI: 10.1016/j.micpath.2021.105103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/21/2023]
Abstract
With the occurrence and evolution of antibiotic and multidrug resistance in bacteria most of the existing remedies are becoming ineffective. The pan-proteome exploration of the bacterial pathogens helps to identify the wide spectrum therapeutic targets which will be effective against all strains in a species. The current study is focused on the pan-proteome profiling of zoonotic pathogen Orientia tsutsugamushi (Ott) for the identification of potential therapeutic targets. The pan-proteome of Ott is estimated to be extensive in nature that has 1429 protein clusters, out of which 694 were core, 391 were accessory, and 344 were unique. It was revealed that 622 proteins were essential, 222 proteins were virulent factors, and 42 proteins were involved in antibiotic resistance. The potential therapeutic targets were further classified into eleven broad classes among which gene expression and regulation, transport, and metabolism were dominant. The biological interactome analysis of therapeutic targets revealed that an ample amount of interactions were present among the proteins involved in DNA replication, ribosome assembly, cellwall metabolism, cell division, and antimicrobial resistance. The predicted therapeutic targets from the pan-proteome of Ott are involved in various biological processes, virulence, and antibiotic resistance; hence envisioned as potential candidates for drug discovery to combat scrub typhus.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India.
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, 176061, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| |
Collapse
|
13
|
Du GF, Yin XF, Yang DH, He QY, Sun X. Proteomic Investigation of the Antibacterial Mechanism of trans-Cinnamaldehyde against Escherichia coli. J Proteome Res 2021; 20:2319-2328. [PMID: 33749271 DOI: 10.1021/acs.jproteome.0c00847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trans-Cinnamaldehyde (TC) is a widely used food additive, known for its sterilization, disinfection, and antiseptic properties. However, its antibacterial mechanism is not completely understood. In this study, quantitative proteomics was performed to investigate differentially expressed proteins (DEPs) in Escherichia coli in response to TC treatment. Bioinformatics analysis suggested aldehyde toxicity, acid stress, oxidative stress, interference of carbohydrate metabolism, energy metabolism, and protein translation as the bactericidal mechanism. E. coli BW25113ΔyqhD, ΔgldA, ΔbetB, ΔtktB, ΔgadA, ΔgadB, ΔgadC, and Δrmf were used to investigate the functions of DEPs through biochemical methods. The present study revealed that TC exerts its antibacterial effects by inducing the toxicity of its aldehyde group producing acid stress. These findings will contribute to the application of TC in the antibacterial field.
Collapse
Affiliation(s)
- Gao-Fei Du
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China.,Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xing-Feng Yin
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Dong-Hong Yang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Sodhi KK, Kumar M, Balan B, Dhaulaniya AS, Shree P, Sharma N, Singh DK. Perspectives on the antibiotic contamination, resistance, metabolomics, and systemic remediation. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04003-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractAntibiotics have been regarded as the emerging contaminants because of their massive use in humans and veterinary medicines and their persistence in the environment. The global concern of antibiotic contamination to different environmental matrices and the emergence of antibiotic resistance has posed a severe impact on the environment. Different mass-spectrometry-based techniques confirm their presence in the environment. Antibiotics are released into the environment through the wastewater steams and runoff from land application of manure. The microorganisms get exposed to the antibiotics resulting in the development of antimicrobial resistance. Consistent release of the antibiotics, even in trace amount into the soil and water ecosystem, is the major concern because the antibiotics can lead to multi-resistance in bacteria which can cause hazardous effects on agriculture, aquaculture, human, and livestock. A better understanding of the correlation between the antibiotic use and occurrence of antibiotic resistance can help in the development of policies to promote the judicious use of antibiotics. The present review puts a light on the remediation, transportation, uptake, and antibiotic resistance in the environment along with a novel approach of creating a database for systemic remediation, and metabolomics for the cleaner and safer environment.
Collapse
|
15
|
Lu Y, Pang J, Wang G, Hu X, Li X, Li G, Wang X, Yang X, Li C, You X. Quantitative proteomics approach to investigate the antibacterial response of Helicobacter pylori to daphnetin, a traditional Chinese medicine monomer. RSC Adv 2021; 11:2185-2193. [PMID: 35424199 PMCID: PMC8693750 DOI: 10.1039/d0ra06677j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium related to the development of peptic ulcers and stomach cancer. An increasing number of infected individuals are found to harbor antibiotic-resistant H. pylori, which results in treatment failure. Daphnetin, a traditional Chinese medicine, has a broad spectrum of antibacterial activity without the development of bacterial resistance. However, the antibacterial mechanisms of daphnetin have not been elucidated entirely. To better understand the mechanisms of daphnetin's effect on H. pylori, a label-free quantitative proteomics approach based on an EASY-nLC 1200 system coupled with an Orbitrap Fusion Lumos mass spectrometer was established to investigate the key protein differences between daphnetin- and non-daphnetin-treated H. pylori. Using the criteria of greater than 1.5-fold changes and adjusted p value <0.05, proteins related to metabolism, membrane structure, nucleic acid and protein synthesis, ion binding, H. pylori colonization and infection, stress reaction, flagellar assembly and so on were found to be changed under daphnetin pressure. And the changes of selected proteins in expression level were confirmed by targeted proteomics. These new data provide us a more comprehensive horizon of the proteome changes in H. pylori that occur in response to daphnetin.
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Genzhu Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| |
Collapse
|
16
|
The Role of Subinhibitory Concentrations of Daptomycin and Tigecycline in Modulating Virulence in Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10010039. [PMID: 33401579 PMCID: PMC7823975 DOI: 10.3390/antibiotics10010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are notoriously complicated by the ability of the organism to grow in biofilms and are difficult to eradicate with antimicrobial therapy. The purpose of the current study was to clarify the influence of sub-inhibitory concentrations (sub-MICs) of daptomycin and tigecycline antibiotics on biofilm adhesion factors and exoproteins expressions by S. aureus clinical isolates. Six clinical isolates representing positive biofilm S. aureus clones (3 methicillin-sensitive S. aureus (MSSA) and 3 methicillin-resistant S. aureus (MRSA)) were grown with sub-MICs (0.5 MIC) of two antibiotics (daptomycin and tigecycline) for 12 h of incubation. RNA extracted from culture pellets was used via relative quantitative real-time-PCR (qRT-PCR) to determine expression of specific adhesion (fnbA, fnbB, clfA, clfB, fib, ebps, cna, eno) and biofilm (icaADBC) genes. To examine the effect of sub-MIC of these antibiotics on the expression of extracellular proteins, samples from the culture supernatants of six isolates were collected after 12 h of treatment with or without tigecycline in order to profile protein production via 2D gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2D gel-SDS-PAGE). Sub-MIC treatment of all clinical MRSA and MSSA strains with daptomycin or tigecycline dramatically induced or suppressed fnbA, fnbB, clfA, clfB, fib, ebps, cna, eno, and icaADBC gene expression. Furthermore, sub-MIC use of tigecycline significantly reduced the total number of separated protein spots across all the isolates, as well as decreasing production of certain individual proteins. Collectively, this study showed very different responses in terms of both gene expression and protein secretion across the various isolates. In addition, our results suggest that sub-MIC usage of daptomycin and tigecycline could signal virulence induction by S. aureus via the regulation of biofilm adhesion factor genes and exoproteins. If translating findings to the clinical treatment of S. aureus, the therapeutic regimen should be adapted depending on antibiotic, the virulence factor and strain type.
Collapse
|
17
|
Tsakou F, Jersie-Christensen R, Jenssen H, Mojsoska B. The Role of Proteomics in Bacterial Response to Antibiotics. Pharmaceuticals (Basel) 2020; 13:E214. [PMID: 32867221 PMCID: PMC7559545 DOI: 10.3390/ph13090214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
For many years, we have tried to use antibiotics to eliminate the persistence of pathogenic bacteria. However, these infectious agents can recover from antibiotic challenges through various mechanisms, including drug resistance and antibiotic tolerance, and continue to pose a global threat to human health. To design more efficient treatments against bacterial infections, detailed knowledge about the bacterial response to the commonly used antibiotics is required. Proteomics is a well-suited and powerful tool to study molecular response to antimicrobial compounds. Bacterial response profiling from system-level investigations could increase our understanding of bacterial adaptation, the mechanisms behind antibiotic resistance and tolerance development. In this review, we aim to provide an overview of bacterial response to the most common antibiotics with a focus on the identification of dynamic proteome responses, and through published studies, to elucidate the formation mechanism of resistant and tolerant bacterial phenotypes.
Collapse
Affiliation(s)
| | | | | | - Biljana Mojsoska
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (F.T.); (R.J.-C.); (H.J.)
| |
Collapse
|
18
|
Regulation of virulence and antibiotic resistance in Gram-positive microbes in response to cell wall-active antibiotics. Curr Opin Infect Dis 2020; 32:217-222. [PMID: 31021953 DOI: 10.1097/qco.0000000000000542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Antibiotic stress can evoke considerable genotypic and phenotypic changes in Gram-positive bacteria. Here, we review recent studies describing altered virulence expression in response to cell wall-acting antibiotics and discuss mechanisms that coordinate regulation of the antibiotic response. RECENT FINDINGS Pleiotropic effects induced by antibiotic exposure include alterations to bacterial metabolism, cell wall structure and antibiotic resistance. In addition, subinhibitory concentrations of cell wall-active (CWA) antibiotics have increasingly been shown to induce the production of exotoxins and biofilm formation that may influence virulence. Remarkably, phenotypes associated with comparable antibiotic stresses can vary considerably, emphasizing the need to better understand the response to CWA antibiotics. Recent studies support both direct antibiotic recognition and recognition of antibiotic-induced stress to the bacterial cell wall. Specifically, bacterial two-component systems, penicillin-binding protein and serine/threonine kinase-associated kinases and conserved oxidative-stress sensors each contribute to modulating the antibiotic stress response. SUMMARY Bacterial sensory systems and global regulators coordinate signaling in response to CWA antibiotics. Regulation of the antibiotic response is complex and involves integration of signals from multiple response pathways. A better definition of the antibiotic stress response among Gram-positive pathogens may yield novel therapeutic targets to counter antibiotic resistance and virulence factor expression.
Collapse
|
19
|
Khodadadi E, Zeinalzadeh E, Taghizadeh S, Mehramouz B, Kamounah FS, Khodadadi E, Ganbarov K, Yousefi B, Bastami M, Kafil HS. Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies. Infect Drug Resist 2020; 13:1785-1806. [PMID: 32606829 PMCID: PMC7305820 DOI: 10.2147/idr.s238446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sequences of the genomes of all-important bacterial pathogens of man, plants, and animals have been completed. Still, it is not enough to achieve complete information of all the mechanisms controlling the biological processes of an organism. Along with all advances in different proteomics technologies, proteomics has completed our knowledge of biological processes all around the world. Proteomics is a valuable technique to explain the complement of proteins in any organism. One of the fields that has been notably benefited from other systems approaches is bacterial pathogenesis. An emerging field is to use proteomics to examine the infectious agents in terms of, among many, the response the host and pathogen to the infection process, which leads to a deeper knowledge of the mechanisms of bacterial virulence. This trend also enables us to identify quantitative measurements for proteins extracted from microorganisms. The present review study is an attempt to summarize a variety of different proteomic techniques and advances. The significant applications in bacterial pathogenesis studies are also covered. Moreover, the areas where proteomics may lead the future studies are introduced.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Taghizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, DK 2100, Denmark
| | - Ehsan Khodadadi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Yang N, Cao Q, Hu S, Xu C, Fan K, Chen F, Yang C, Liang H, Wu M, Bae T, Lan L. Alteration of protein homeostasis mediates the interaction of
Pseudomonas aeruginosa
with
Staphylococcus aureus. Mol Microbiol 2020; 114:423-442. [DOI: 10.1111/mmi.14519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Nana Yang
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Qiao Cao
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- College of Life Science Northwest University Xi'an China
| | - Shuyang Hu
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Chenchen Xu
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Ke Fan
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Feifei Chen
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- College of Life Science Northwest University Xi'an China
| | - Cai‐Guang Yang
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Haihua Liang
- College of Life Science Northwest University Xi'an China
| | - Min Wu
- Department of Biomedical Sciences University of North Dakota Grand Forks ND USA
| | - Taeok Bae
- Department of Microbiology and Immunology Indiana University School of Medicine‐Northwest Gary IN USA
| | - Lefu Lan
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- College of Life Science Northwest University Xi'an China
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology Shanghai Institute for Food and Drug Control Shanghai China
| |
Collapse
|
21
|
Antimicrobial Activity of the Quinoline Derivative HT61 against Staphylococcus aureus Biofilms. Antimicrob Agents Chemother 2020; 64:AAC.02073-19. [PMID: 32122902 PMCID: PMC7179629 DOI: 10.1128/aac.02073-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/25/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus biofilms are a significant problem in health care settings, partly due to the presence of a nondividing, antibiotic-tolerant subpopulation. Here we evaluated treatment of S. aureus UAMS-1 biofilms with HT61, a quinoline derivative shown to be effective against nondividing Staphylococcus spp. HT61 was effective at reducing biofilm viability and was associated with increased expression of cell wall stress and division proteins, confirming its potential as a treatment for S. aureus biofilm infections. Staphylococcus aureus biofilms are a significant problem in health care settings, partly due to the presence of a nondividing, antibiotic-tolerant subpopulation. Here we evaluated treatment of S. aureus UAMS-1 biofilms with HT61, a quinoline derivative shown to be effective against nondividing Staphylococcus spp. HT61 was effective at reducing biofilm viability and was associated with increased expression of cell wall stress and division proteins, confirming its potential as a treatment for S. aureus biofilm infections.
Collapse
|
22
|
Du GF, Le YJ, Sun X, Yang XY, He QY. Proteomic investigation into the action mechanism of berberine against Streptococcus pyogenes. J Proteomics 2020; 215:103666. [DOI: 10.1016/j.jprot.2020.103666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/16/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
|
23
|
Jo SH, Song WS, Park HG, Lee JS, Jeon HJ, Lee YH, Kim W, Joo HS, Yang YH, Kim JS, Kim YG. Multi-omics based characterization of antibiotic response in clinical isogenic isolates of methicillin-susceptible/-resistant Staphylococcus aureus. RSC Adv 2020; 10:27864-27873. [PMID: 35516943 PMCID: PMC9055585 DOI: 10.1039/d0ra05407k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/17/2020] [Indexed: 12/30/2022] Open
Abstract
As demands for new antibiotics and strategies to control methicillin-resistant Staphylococcus aureus (MRSA) increase, there have been efforts to obtain more accurate and abundant information about the mechanism of the bacterial responses to antibiotics. However, most of the previous studies have investigated responses to antibiotics without considering the genetic differences between MRSA and methicillin-susceptible S. aureus (MSSA). Here, we initially applied a multi-omics approach into the clinical isolates (i.e., S. aureus WKZ-1 (MSSA) and S. aureus WKZ-2 (MRSA)) that are isogenic except for the mobile genetic element called staphylococcal cassette chromosome mec (SCCmec) type IV to explore the response to β-lactam antibiotics (oxacillin). First, the isogenic pair showed a similar metabolism without oxacillin treatment. The quantitative proteomics demonstrated that proteins involved in peptidoglycan biosynthesis (MurZ, PBP2, SgtB, PrsA), two-component systems (VrsSR, WalR, SaeSR, AgrA), oxidative stress (MsrA1, MsrB), and stringent response (RelQ) were differentially regulated after the oxacillin treatment of the isogenic isolates. In addition, targeted metabolic profiling showed that metabolites belonging to the building blocks (lysine, glutamine, acetyl-CoA, UTP) of peptidoglycan biosynthesis machinery were specifically decreased in the oxacillin-treated MRSA. These results indicate that the difference in metabolism of this isogenic pair with oxacillin treatment could be caused only by SCCmec type IV. Understanding and investigating the antibiotic response at the molecular level can, therefore, provide insight into drug resistance mechanisms and new opportunities for antibiotics development. We introduce clinical isogenic strain isolates and a multi-OMICS approach to observe a response to oxacillin of methicillin- susceptible/-resistant Staphylococcus aureus.![]()
Collapse
|
24
|
Chen L, Lam JCW, Hu C, Tsui MMP, Lam PKS, Zhou B. Perfluorobutanesulfonate Exposure Skews Sex Ratio in Fish and Transgenerationally Impairs Reproduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8389-8397. [PMID: 31269390 DOI: 10.1021/acs.est.9b01711] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is increasingly polluting aquatic environments due to worldwide manufacturing and application. However, toxicological knowledge regarding PFBS exposure remains scarce. Here, we showed that PFBS life-cycle exposure at environmentally realistic concentrations (0, 1.0, 2.9, and 9.5 μg/L) skewed the sex ratio in fish toward male dominance, while reproductive functions of female fish were greatly impaired, as characterized by extremely small ovaries, blocked oocyte development, and decreased egg production. Endocrine disruption through the hypothalamus-pituitary-gonad axis was induced by PFBS exposure, showing antiestrogenic activity in females but estrogenic activity in males. PFBS was found to gradually accumulate in F0 adults during continuous exposure but can be rapidly eliminated when depurated in clean water. Parental exposure also transferred PFBS pollutant to F1 offspring eggs. Although no trace of PFBS was detected in F1 adults and F2 eggs, adverse effects from parental exposure persisted in F1 and F2 offspring. These transgenerational effects implicate PFBS as an ongoing threat to the fitness and sustainability of fish populations. The dramatic impairment of fish reproduction highlights the urgency of re-evaluations of the ecological and evolutionary consequences of PFBS exposure.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan 430072 , China
| | - James C W Lam
- State Key Laboratory in Marine Pollution , City University of Hong Kong , Kowloon , Hong Kong SAR , China
- Department of Science and Environmental Studies , The Education University of Hong Kong , Hong Kong SAR , China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Wuhan 430072 , China
| | - Mirabelle M P Tsui
- State Key Laboratory in Marine Pollution , City University of Hong Kong , Kowloon , Hong Kong SAR , China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution , City University of Hong Kong , Kowloon , Hong Kong SAR , China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan 430072 , China
| |
Collapse
|
25
|
Chernov VM, Chernova OA, Mouzykantov AA, Lopukhov LL, Aminov RI. Omics of antimicrobials and antimicrobial resistance. Expert Opin Drug Discov 2019; 14:455-468. [DOI: 10.1080/17460441.2019.1588880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vladislav M. Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Olga A. Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Alexey A. Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Leonid L. Lopukhov
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Rustam I. Aminov
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
- Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
26
|
Wang G, Pang J, Hu X, Nie T, Lu X, Li X, Wang X, Lu Y, Yang X, Jiang J, Li C, Xiong YQ, You X. Daphnetin: A Novel Anti- Helicobacter pylori Agent. Int J Mol Sci 2019; 20:ijms20040850. [PMID: 30781382 PMCID: PMC6412720 DOI: 10.3390/ijms20040850] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Antibiotic-resistant H. pylori was increasingly found in infected individuals, which resulted in treatment failure and required alternative therapeutic strategies. Daphnetin, a coumarin-derivative compound, has multiple pharmacological activities. Methods: The mechanism of daphnetin on H. pylori was investigated focusing on its effect on cell morphologies, transcription of genes related to virulence, adhesion, and cytotoxicity to human gastric epithelial (GES-1) cell line. Results: Daphnetin showed good activities against multidrug resistant (MDR) H. pylori clinical isolates, with minimal inhibitory concentration (MIC) values ranging from 25 to 100 μg/mL. In addition, daphnetin exposure resulted in H. pylori morphological changes. Moreover, daphnetin caused increased translocation of phosphatidylserine (PS), DNA damage, and recA expression, and RecA protein production vs. control group. Of great importance, daphnetin significantly decreased H. pylori adhesion to GES-1 cell line vs. control group, which may be related to the reduced expression of colonization related genes (e.g., babA and ureI). Conclusions: These results suggested that daphnetin has good activity against MDR H. pylori. The mechanism(s) of daphnetin against H. pylori were related to change of membrane structure, increase of DNA damage and PS translocation, and decrease of H. pylori attachment to GES-1 cells.
Collapse
Affiliation(s)
- Genzhu Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xi Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yan Q Xiong
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
27
|
Sulaiman JE, Lam H. Application of proteomics in studying bacterial persistence. Expert Rev Proteomics 2019; 16:227-239. [DOI: 10.1080/14789450.2019.1575207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Kowloon, Hong Kong
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Kowloon, Hong Kong
| |
Collapse
|
28
|
Chen L, Hu C, Guo Y, Shi Q, Zhou B. TiO 2 nanoparticles and BPA are combined to impair the development of offspring zebrafish after parental coexposure. CHEMOSPHERE 2019; 217:732-741. [PMID: 30448753 DOI: 10.1016/j.chemosphere.2018.11.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles and bisphenol A (BPA) in aquatic environments interact reciprocally to enhance the maternal transfer of pollutants to offspring, thus varying the innate toxicities during early embryonic development. However, it remains unexplored regarding the molecular mechanisms of developmental toxicity in offspring after parental coexposure. In the present study, adult zebrafish were exposed to TiO2 nanoparticles (100 μg/L), BPA (20 μg/L) or their binary mixture for four months. Then, eggs of F1 generation were collected and reared in clean water until 5 days post-fertilization. In characteristic of larval survival and growth, parental coexposure to TiO2 particles and BPA caused a severer inhibition of F1 offspring larvae compared with single exposure. Mechanistic investigation by shotgun proteomics found that development of larval offspring from coexposed parents was impaired through a distinct mode of toxicity, that is, specifically altering the activity of phagosome and lysosome. Single exposure of adult zebrafish to TiO2 mainly affected insulin-responsive compartment; and BPA parental exposure mainly affected carbohydrate metabolism and calcium signaling of larval offspring. Furthermore, considering the tight regulation of sex hormones in the expression of vitellogenin (VTG), addition of nanoparticles during parental exposure led to inconsistencies between VTG induction and endogenous levels of sex hormones (estradiol and testosterone) in F1 offspring fish. This implied that transfer of nanoparticles to offspring larvae may change the availability of hormonal molecules and BPA at target tissues. Overall, current results provided mechanistic clues into the multigenerational developmental toxicity by parental coexposure to TiO2 particles and BPA.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qipeng Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
29
|
Prechtl RM, Janßen D, Behr J, Ludwig C, Küster B, Vogel RF, Jakob F. Sucrose-Induced Proteomic Response and Carbohydrate Utilization of Lactobacillus sakei TMW 1.411 During Dextran Formation. Front Microbiol 2018; 9:2796. [PMID: 30532743 PMCID: PMC6265474 DOI: 10.3389/fmicb.2018.02796] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023] Open
Abstract
Lactobacillus (L.) sakei belongs to the dominating lactic acid bacteria in indigenous meat fermentations, while diverse strains of this species have also been isolated from plant fermentations. We could recently show, that L. sakei TMW 1.411 produces a high molecular weight dextran from sucrose, indicating its potential use as a dextran forming starter culture. However, the general physiological response of L. sakei to sucrose as carbohydrate source has not been investigated yet, especially upon simultaneous dextran formation. To address this lack of knowledge, we sequenced the genome of L. sakei TMW 1.411 and performed a label-free, quantitative proteomics approach to investigate the sucrose-induced changes in the proteomic profile of this strain in comparison to its proteomic response to glucose. In total, 21 proteins were found to be differentially expressed at the applied significance criteria (FDR ≤ 0.01). Among these, 14 were associated with the carbohydrate metabolism including several enzymes, which enable sucrose and fructose uptake, as well as, their subsequent intracellular metabolization, respectively. The plasmid-encoded, extracellular dextransucrase of L. sakei TMW 1.411 was expressed at high levels irrespective of the present carbohydrate and was predominantly responsible for sucrose consumption in growth experiments using sucrose as sole carbohydrate source, while the released fructose from the dextransucrase reaction was more preferably taken up and intracellularly metabolized than sucrose. Genomic comparisons revealed, that operons coding for uptake and intracellular metabolism of sucrose and fructose are chromosomally conserved among L. sakei, while plasmid-located dextransucrase genes are present only in few strains. In accordance with these findings, all 59 different L. sakei strains of our strain collection were able to grow on sucrose as sole carbohydrate source, while eight of them exhibited a mucous phenotype on agar plates indicating dextran formation from sucrose. Our study therefore highlights the intrinsic adaption of L. sakei to plant environments, where sucrose is abundant, and provides fundamental knowledge regarding the use of L. sakei as starter culture for sucrose-based food fermentation processes with in-situ dextran formation.
Collapse
Affiliation(s)
- Roman M Prechtl
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Dorothee Janßen
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Jürgen Behr
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Bernhard Küster
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Frank Jakob
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
30
|
Zhou P, Chen Y, Lu Q, Qin H, Ou H, He B, Ye J. Cellular metabolism network of Bacillus thuringiensis related to erythromycin stress and degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:328-341. [PMID: 29857237 DOI: 10.1016/j.ecoenv.2018.05.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Erythromycin is one of the most widely used macrolide antibiotics. To present a system-level understanding of erythromycin stress and degradation, proteome, phospholipids and membrane potentials were investigated after the erythromycin degradation. Bacillus thuringiensis could effectively remove 77% and degrade 53% of 1 µM erythromycin within 24 h. The 36 up-regulated and 22 down-regulated proteins were mainly involved in spore germination, chaperone and nucleic acid binding. Up-regulated ribose-phosphate pyrophosphokinase and ribosomal proteins confirmed that the synthesis of protein, DNA and RNA were enhanced after the erythromycin degradation. The reaction network of glycolysis/gluconeogenesis was activated, whereas, the activity of spore germination was decreased. The increased synthesis of phospholipids, especially, palmitoleic acid and oleic acid, altered the membrane permeability for erythromycin transport. Ribose-phosphate pyrophosphokinase and palmitoleic acid could be biomarkers to reflect erythromycin exposure. Lipids, disease, pyruvate metabolism and citrate cycle in human cells could be the target pathways influenced by erythromycin. The findings presented novel insights to the interaction among erythromycin stress, protein interaction and metabolism network, and provided a useful protocol for investigating cellular metabolism responses under pollutant stress.
Collapse
Affiliation(s)
- Pulin Zhou
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ya Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qiying Lu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, Guangdong, China
| | - Huaming Qin
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Huase Ou
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Baoyan He
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jinshao Ye
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
31
|
Commensal Staphylococcus aureus Provokes Immunity to Protect against Skin Infection of Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2018; 19:ijms19051290. [PMID: 29693635 PMCID: PMC5983722 DOI: 10.3390/ijms19051290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022] Open
Abstract
Unlike USA300, a strain of community-acquired methicillin-resistant Staphylococcus aureus (MRSA), commensal Staphylococcus aureus (S. aureus) bacteria isolated from human skin demonstrated the ability to mediate the glycerol fermentation to produce short-chain fatty acids (SCFAs). Quantitative proteomic analysis of enzymes involved in glycerol fermentation demonstrated that the expression levels of six enzymes, including glycerol-3-phosphate dehydrogenase (GPDH) and phosphoglycerate mutase (PGM), in commensal S. aureus are more than three-fold higher than those in USA300. Western blotting validated the low expression levels of GPDH in USA300, MRSA252 (a strain of hospital-acquired MRSA), and invasive methicillin-susceptible S. aureus (MSSA). In the presence of glycerol, commensal S. aureus effectively suppressed the growth of USA300 in vitro and in vivo. Active immunization of mice with lysates or recombinant α-hemolysin of commensal S. aureus or passive immunization with neutralizing sera provided immune protection against the skin infection of USA300. Our data illustrate for the first time that commensal S. aureus elicits both innate and adaptive immunity via glycerol fermentation and systemic antibody production, respectively, to fight off the skin infection of pathogenic MRSA.
Collapse
|
32
|
Mack SG, Turner RL, Dwyer DJ. Achieving a Predictive Understanding of Antimicrobial Stress Physiology through Systems Biology. Trends Microbiol 2018. [PMID: 29530606 DOI: 10.1016/j.tim.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dramatic spread and diversity of antibiotic-resistant pathogens has significantly reduced the efficacy of essentially all antibiotic classes, bringing us ever closer to a postantibiotic era. Exacerbating this issue, our understanding of the multiscale physiological impact of antimicrobial challenge on bacterial pathogens remains incomplete. Concerns over resistance and the need for new antibiotics have motivated the collection of omics measurements to provide systems-level insights into antimicrobial stress responses for nearly 20 years. Although technological advances have markedly improved the types and resolution of such measurements, continued development of mathematical frameworks aimed at providing a predictive understanding of complex antimicrobial-associated phenotypes is critical to maximize the utility of multiscale data. Here we highlight recent efforts utilizing systems biology to enhance our knowledge of antimicrobial stress physiology. We provide a brief historical perspective of antibiotic-focused omics measurements, highlight new measurement discoveries and trends, discuss examples and opportunities for integrating measurements with mathematical models, and describe future challenges for the field.
Collapse
Affiliation(s)
- Sean G Mack
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Randi L Turner
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Daniel J Dwyer
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA; Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Institute for Physical Sciences & Technology, University of Maryland, College Park, MD 20742, USA; Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
33
|
Zhang R, Qin Q, Liu B, Qiao L. TiO2-Assisted Laser Desorption/Ionization Mass Spectrometry for Rapid Profiling of Candidate Metabolite Biomarkers from Antimicrobial-Resistant Bacteria. Anal Chem 2018; 90:3863-3870. [PMID: 29461808 DOI: 10.1021/acs.analchem.7b04565] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rutan Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Qin Qin
- The Second Military Medical University, Changhai Hospital, Shanghai 200433, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
34
|
Liu C, Shan B, Qi J, Ma Y. Systemic Responses of Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Following Exposure to the Antimicrobial Peptide Cathelicidin-BF Imply Multiple Intracellular Targets. Front Cell Infect Microbiol 2017; 7:466. [PMID: 29164074 PMCID: PMC5681922 DOI: 10.3389/fcimb.2017.00466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/20/2017] [Indexed: 12/04/2022] Open
Abstract
Cathelicidin-BF, derived from the banded krait (Bungarus fasciatus), is a typically cationic, amphiphilic and α-helical antimicrobial peptide (AMP) with 30 amino acids that exerts powerful effects on multidrug-resistant (MDR) clinical isolates, including Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, but whether it targets plasma membranes or intracellular targets to kill bacteria is still controversial. In the present study, we demonstrated that the disruption of bacterial membranes with high concentrations of cathelicidin-BF was the cause of bacterial death, as with conventional antibiotics at high concentrations. At lower concentrations, cathelicidin-BF did not cause bacterial plasma membrane disruption, but it was able to cross the membrane and aggregate at the nucleoid regions. Functional proteins of the transcription processes of P. aeruginosa and A. baumannii were affected by sublethal doses of cathelicidin-BF, as demonstrated by comparative proteomics using isobaric tags for relative and absolute quantification and subsequent gene ontology (GO) analysis. Analysis using the Kyoto Encyclopedia of Genes and Genomes showed that cathelicidin-BF mainly interferes with metabolic pathways related to amino acid synthesis, metabolism of cofactors and vitamins, metabolism of purine and energy supply, and other processes. Although specific targets of cathelicidin-BF must still be validated, our study offers strong evidence that cathelicidin-BF may act upon intracellular targets to kill superbugs, which may be helpful for further efforts to discover novel antibiotics to fight against them.
Collapse
Affiliation(s)
- Cunbao Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Bin Shan
- Department of Clinical Lab, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jialong Qi
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
35
|
Abstract
Staphylococcus aureus is often involved in severe infections, in which the effects of bacterial virulence factors have great importance. Antistaphylococcal regimens should take into account the different effects of antibacterial agents on the expression of virulence factors and on the host's immune response. A PubMed literature search was performed to select relevant articles on the effects of antibiotics on staphylococcal toxin production and on the host immune response. Information was sorted according to the methods used for data acquisition (bacterial strains, growth models, and antibiotic concentrations) and the assays used for readout generation. The reported mechanisms underlying S. aureus virulence modulation by antibiotics were reviewed. The relevance of in vitro observations is discussed in relation to animal model data and to clinical evidence extracted from case reports and recommendations on the management of toxin-related staphylococcal diseases. Most in vitro data point to a decreased level of virulence expression upon treatment with ribosomally active antibiotics (linezolid and clindamycin), while cell wall-active antibiotics (beta-lactams) mainly increase exotoxin production. In vivo studies confirmed the suppressive effect of clindamycin and linezolid on virulence expression, supporting their utilization as a valuable management strategy to improve patient outcomes in cases of toxin-associated staphylococcal disease.
Collapse
|
36
|
Dávila Costa JS, Silva RA, Leichert L, Alvarez HM. Proteome analysis reveals differential expression of proteins involved in triacylglycerol accumulation by Rhodococcus jostii RHA1 after addition of methyl viologen. MICROBIOLOGY-SGM 2017; 163:343-354. [PMID: 28073401 DOI: 10.1099/mic.0.000424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rhodococcus jostii RHA1 is able to degrade toxic compounds and accumulate high amounts of triacylglycerols (TAG) upon nitrogen starvation. These NADPH-dependent processes are essential for the adaptation of rhodococci to fluctuating environmental conditions. In this study, we used an MS-based, label-free and quantitative proteomic approach to better understand the integral response of R. jostii RHA1 to the presence of methyl viologen (MV) in relation to the synthesis and accumulation of TAG. The addition of MV promoted a decrease of TAG accumulation in comparison to cells cultivated under nitrogen-limiting conditions in the absence of this pro-oxidant. Proteomic analyses revealed that the abundance of key proteins of fatty acid biosynthesis, the Kennedy pathway, glyceroneogenesis and methylmalonyl-CoA pathway, among others, decreased in the presence of MV. In contrast, some proteins involved in lipolysis and β-oxidation of fatty acids were upregulated. Some metabolic pathways linked to the synthesis of NADPH remained activated during oxidative stress as well as under nitrogen starvation conditions. Additionally, exposure to MV resulted in the activation of complete antioxidant machinery comprising superoxide dismutases, catalases, mycothiol biosynthesis, mycothione reductase and alkyl hydroperoxide reductases, among others. Our study suggests that oxidative stress response affects TAG accumulation under nitrogen-limiting conditions through programmed molecular mechanisms when both stresses occur simultaneously.
Collapse
Affiliation(s)
- José Sebastián Dávila Costa
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia (Chubut), Argentina.,Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina
| | - Roxana A Silva
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia (Chubut), Argentina
| | - Lars Leichert
- Ruhr-Universität Bochum, Medizinisches Proteom-Center, Redox Proteomics Group, Bochum, Germany
| | - Héctor M Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia (Chubut), Argentina
| |
Collapse
|
37
|
Greco TM, Cristea IM. Proteomics Tracing the Footsteps of Infectious Disease. Mol Cell Proteomics 2017; 16:S5-S14. [PMID: 28163258 DOI: 10.1074/mcp.o116.066001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/25/2017] [Indexed: 01/20/2023] Open
Abstract
Every year, a major cause of human disease and death worldwide is infection with the various pathogens-viruses, bacteria, fungi, and protozoa-that are intrinsic to our ecosystem. In efforts to control the prevalence of infectious disease and develop improved therapies, the scientific community has focused on building a molecular picture of pathogen infection and spread. These studies have been aimed at defining the cellular mechanisms that allow pathogen entry into hosts cells, their replication and transmission, as well as the core mechanisms of host defense against pathogens. The past two decades have demonstrated the valuable implementation of proteomic methods in all these areas of infectious disease research. Here, we provide a perspective on the contributions of mass spectrometry and other proteomics approaches to understanding the molecular details of pathogen infection. Specifically, we highlight methods used for defining the composition of viral and bacterial pathogens and the dynamic interaction with their hosts in space and time. We discuss the promise of MS-based proteomics in supporting the development of diagnostics and therapies, and the growing need for multiomics strategies for gaining a systems view of pathogen infection.
Collapse
Affiliation(s)
- Todd M Greco
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Ileana M Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| |
Collapse
|
38
|
Biological and Chemical Adaptation to Endogenous Hydrogen Peroxide Production in Streptococcus pneumoniae D39. mSphere 2017; 2:mSphere00291-16. [PMID: 28070562 PMCID: PMC5214746 DOI: 10.1128/msphere.00291-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/04/2016] [Indexed: 12/29/2022] Open
Abstract
Adaptation to endogenous oxidative stress is an integral aspect of Streptococcus pneumoniae colonization and virulence. In this work, we identify key transcriptomic and proteomic features of the pneumococcal endogenous oxidative stress response. The thiol peroxidase TpxD plays a critical role in adaptation to endogenous H2O2 and serves to limit protein sulfenylation of glycolytic, capsule, and nucleotide biosynthesis enzymes in S. pneumoniae. The catalase-negative, facultative anaerobe Streptococcus pneumoniae D39 is naturally resistant to hydrogen peroxide (H2O2) produced endogenously by pyruvate oxidase (SpxB). Here, we investigate the adaptive response to endogenously produced H2O2. We show that lactate oxidase, which converts lactate to pyruvate, positively impacts pyruvate flux through SpxB and that ΔlctO mutants produce significantly lower H2O2. In addition, both the SpxB pathway and a candidate pyruvate dehydrogenase complex (PDHC) pathway contribute to acetyl coenzyme A (acetyl-CoA) production during aerobic growth, and the pyruvate format lyase (PFL) pathway is the major acetyl-CoA pathway during anaerobic growth. Microarray analysis of the D39 strain cultured under aerobic versus strict anaerobic conditions shows upregulation of spxB, a gene encoding a rhodanese-like protein (locus tag spd0091), tpxD, sodA, piuB, piuD, and an Fe-S protein biogenesis operon under H2O2-producing conditions. Proteome profiling of H2O2-induced sulfenylation reveals that sulfenylation levels correlate with cellular H2O2 production, with endogenous sulfenylation of ≈50 proteins. Deletion of tpxD increases cellular sulfenylation 5-fold and has an inhibitory effect on ATP generation. Two major targets of protein sulfenylation are glyceraldehyde-3-phosphate dehydrogenase (GapA) and SpxB itself, but targets also include pyruvate kinase, LctO, AdhE, and acetate kinase (AckA). Sulfenylation of GapA is inhibitory, while the effect on SpxB activity is negligible. Strikingly, four enzymes of capsular polysaccharide biosynthesis are sulfenylated, as are enzymes associated with nucleotide biosynthesis via ribulose-5-phosphate. We propose that LctO/SpxB-generated H2O2 functions as a signaling molecule to downregulate capsule production and drive altered flux through sugar utilization pathways. IMPORTANCE Adaptation to endogenous oxidative stress is an integral aspect of Streptococcus pneumoniae colonization and virulence. In this work, we identify key transcriptomic and proteomic features of the pneumococcal endogenous oxidative stress response. The thiol peroxidase TpxD plays a critical role in adaptation to endogenous H2O2 and serves to limit protein sulfenylation of glycolytic, capsule, and nucleotide biosynthesis enzymes in S. pneumoniae.
Collapse
|
39
|
Jones-Dias D, Carvalho AS, Moura IB, Manageiro V, Igrejas G, Caniça M, Matthiesen R. Quantitative proteome analysis of an antibiotic resistant Escherichia coli exposed to tetracycline reveals multiple affected metabolic and peptidoglycan processes. J Proteomics 2016; 156:20-28. [PMID: 28043878 DOI: 10.1016/j.jprot.2016.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 12/21/2022]
Abstract
Tetracyclines are among the most commonly used antibiotics administrated to farm animals for disease treatment and prevention, contributing to the worldwide increase in antibiotic resistance in animal and human pathogens. Although tetracycline mechanisms of resistance are well known, the role of metabolism in bacterial reaction to antibiotic stress is still an important assignment and could contribute to the understanding of tetracycline related stress response. In this study, spectral counts-based label free quantitative proteomics has been applied to study the response to tetracycline of the environmental-borne Escherichia coli EcAmb278 isolate soluble proteome. A total of 1484 proteins were identified by high resolution mass spectrometry at a false discovery rate threshold of 1%, of which 108 were uniquely identified under absence of tetracycline whereas 126 were uniquely identified in presence of tetracycline. These proteins revealed interesting difference in e.g. proteins involved in peptidoglycan-based cell wall proteins and energy metabolism. Upon treatment, 12 proteins were differentially regulated showing more than 2-fold change and p<0.05 (p value corrected for multiple testing). This integrated study using high resolution mass spectrometry based label-free quantitative proteomics to study tetracycline antibiotic response in the soluble proteome of resistant E. coli provides novel insight into tetracycline related stress. SIGNIFICANCE The lack of new antibiotics to fight infections caused by multidrug resistant microorganisms has motivated the use of old antibiotics, and the search for new drug targets. The evolution of antibiotic resistance is complex, but it is known that agroecosystems play an important part in the selection of antibiotic resistance bacteria. Tetracyclines are still used as phytopharmaceutical agents in crops, selecting resistant bacteria and changing the ecology of farm soil. Little is known about the metabolic response of genetically resistant populations to antibiotic exposure. Indeed, to date there are no quantitative tetracycline resistance studies performed with the latest generation of high resolution mass spectrometers allowing high mass accuracy in both MS and MS/MS scans. Here, we report the proteome profiling of a soil-borne Escherichia coli upon tetracycline stress, so that this new perspective could provide a broaden understanding of the metabolic responses of E. coli to a widely used antibiotic.
Collapse
Affiliation(s)
- Daniela Jones-Dias
- National Reference Laboratory of Antibiotic Resistances and Heathcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Inês Barata Moura
- National Reference Laboratory of Antibiotic Resistances and Heathcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Heathcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal
| | - Gilberto Igrejas
- Functional Genomics and Proteomics Unit, Department of Genetic and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; UCIBIO-REQUIMTE, Faculty of Science and Technology, New University of Lisbon, Monte da Caparica, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Heathcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| | - Rune Matthiesen
- Computational and Experimental Biology Group, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
40
|
Shen J, Peng H, Zhang Y, Trinidad JC, Giedroc DP. Staphylococcus aureus sqr Encodes a Type II Sulfide:Quinone Oxidoreductase and Impacts Reactive Sulfur Speciation in Cells. Biochemistry 2016; 55:6524-6534. [PMID: 27806570 DOI: 10.1021/acs.biochem.6b00714] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies implicate hydrogen sulfide (H2S) oxidation as an important aspect of bacterial antibiotic resistance and sulfide homeostasis. The cst operon of the major human pathogen Staphylococcus aureus is induced by exogenous H2S stress and encodes enzymes involved in sulfide oxidation, including a group I flavoprotein disulfide oxidoreductase sulfide:quinone oxidoreductase (SQR). In this work, we show that S. aureus SQR catalyzes the two-electron oxidation of sodium sulfide (Na2S) into sulfane sulfur (S0) when provided flavin adenine dinucleotide and a water-soluble quinone acceptor. Cyanide, sulfite, and coenzyme A (CoA) are all capable of functioning as the S0 acceptor in vitro. This activity requires a C167-C344 disulfide bond in the resting enzyme, with the intermediacy of a C344 persulfide in the catalytic cycle, verified by mass spectrometry of sulfide-reacted SQR. Incubation of purified SQR and S. aureus CstB, a known FeII persulfide dioxygenase-sulfurtransferase also encoded by the cst operon, yields thiosulfate from sulfide, in a CoA-dependent manner, thus confirming the intermediacy of CoASSH as a product and substrate of SQR and CstB, respectively. Sulfur metabolite profiling of wild-type, Δsqr, and Δsqr::pSQR strains reveals a marked and specific elevation in endogenous levels of CoASSH and inorganic tetrasulfide in the Δsqr strain. We conclude that SQR impacts the cellular speciation of these reactive sulfur species but implicates other mechanisms not dependent on SQR in the formation of low-molecular weight thiol persulfides and inorganic polysulfides during misregulation of sulfide homeostasis.
Collapse
Affiliation(s)
- Jiangchuan Shen
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Biochemistry Graduate Program, Indiana University , Bloomington, Indiana 47405, United States
| | - Hui Peng
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Biochemistry Graduate Program, Indiana University , Bloomington, Indiana 47405, United States
| | - Yixiang Zhang
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Laboratory for Biological Mass Spectrometry, Indiana University , Bloomington, Indiana 47405, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Laboratory for Biological Mass Spectrometry, Indiana University , Bloomington, Indiana 47405, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Department of Molecular and Cellular Biochemistry, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
41
|
Charretier Y, Schrenzel J. Mass spectrometry methods for predicting antibiotic resistance. Proteomics Clin Appl 2016; 10:964-981. [PMID: 27312049 DOI: 10.1002/prca.201600041] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/09/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022]
Abstract
Developing elaborate techniques for clinical applications can be a complicated process. Whole-cell MALDI-TOF MS revolutionized reliable microorganism identification in clinical microbiology laboratories and is now replacing phenotypic microbial identification. This technique is a generic, accurate, rapid, and cost-effective growth-based method. Antibiotic resistance keeps emerging in environmental and clinical microorganisms, leading to clinical therapeutic challenges, especially for Gram-negative bacteria. Antimicrobial susceptibility testing is used to reliably predict antimicrobial success in treating infection, but it is inherently limited by the need to isolate and grow cultures, delaying the application of appropriate therapies. Antibiotic resistance prediction by growth-independent methods is expected to reduce the turnaround time. Recently, the potential of next-generation sequencing and microarrays in predicting microbial resistance has been demonstrated, and this review evaluates the potential of MS in this field. First, technological advances are described, and the possibility of predicting antibiotic resistance by MS is then illustrated for three prototypical human pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Clearly, MS methods can identify antimicrobial resistance mediated by horizontal gene transfers or by mutations that affect the quantity of a gene product, whereas antimicrobial resistance mediated by target mutations remains difficult to detect.
Collapse
Affiliation(s)
- Yannick Charretier
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals
| |
Collapse
|
42
|
Sun J, Tang S, Peng H, Saunders DMV, Doering JA, Hecker M, Jones PD, Giesy JP, Wiseman S. Combined Transcriptomic and Proteomic Approach to Identify Toxicity Pathways in Early Life Stages of Japanese Medaka (Oryzias latipes) Exposed to 1,2,5,6-Tetrabromocyclooctane (TBCO). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7781-90. [PMID: 27322799 DOI: 10.1021/acs.est.6b01249] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Currently, the novel brominated flame retardant 1,2,5,6-tetrabromocyclooctane (TBCO) is considered a potential replacement for hexabromocyclododecane (HBCD). Therefore, use of TBCO could increase in the near future. To assess potential toxicological risks to aquatic organisms, embryos of Japanese medaka (Oryzias latipes) were exposed to 10, 100, or 1000 μg/L TBCO from 2 h postfertilization until 1 day post-hatch. TBCO accumulated in embryos in the order of 0.43-1.3 × 10(4)-fold, and the rate constant of accumulation was 1.7-1.8 per day. The number of days to hatch and the hatching success of embryos exposed to the medium and the greatest concentrations of TBCO were impaired. Responses of the transcriptome (RNA-seq) and proteome were characterized in embryos exposed to 100 μg/L TBCO because this was the least concentration of TBCO that caused an effect on hatching. Consistent with effects on hatching, proteins whose abundances were reduced by exposure to TBCO were enriched in embryo development and hatching pathways. Also, on the basis of the responses of transcriptome and proteome, it was predicted that TBCO might impair vision and contraction of cardiac muscle, respectively, and these effects were confirmed by targeted bioassays. This study provided a comprehensive understanding of effects of TBCO on medaka at early life stages and illustrated the power of "omics" to explain and predict phenotypic responses to chemicals.
Collapse
Affiliation(s)
- Jianxian Sun
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Hui Peng
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - David M V Saunders
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Jon A Doering
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C8, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B4, Canada
- Zoology Department, Center for Integrative Toxicology, Michigan State University , East Lansing, Michigan 48824, United States
- School of Biological Sciences, University of Hong Kong , Hong Kong Special Administrative Region 999077, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, People's Republic of China
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| |
Collapse
|
43
|
Xu Y, Maltesen RG, Larsen LH, Schønheyder HC, Le VQ, Nielsen JL, Nielsen PH, Thomsen TR, Nielsen KL. In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiol 2016; 16:80. [PMID: 27150914 PMCID: PMC4858865 DOI: 10.1186/s12866-016-0695-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/26/2016] [Indexed: 02/01/2023] Open
Abstract
Background Staphylococcus aureus gene expression has been sparsely studied in deep-sited infections in humans. Here, we characterized the staphylococcal transcriptome in vivo and the joint fluid metabolome in a prosthetic joint infection with an acute presentation using deep RNA sequencing and nuclear magnetic resonance spectroscopy, respectively. We compared our findings with the genome, transcriptome and metabolome of the S. aureus joint fluid isolate grown in vitro. Result From the transcriptome analysis we found increased expression of siderophore synthesis genes and multiple known virulence genes. The regulatory pattern of catabolic pathway genes indicated that the bacterial infection was sustained on amino acids, glycans and nucleosides. Upregulation of fermentation genes and the presence of ethanol in joint fluid indicated severe oxygen limitation in vivo. Conclusion This single case study highlights the capacity of combined transcriptome and metabolome analyses for elucidating the pathogenesis of prosthetic infections of major clinical importance. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0695-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yijuan Xu
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark.,The Danish Technological Institute, Life Science Division, Aarhus, Denmark
| | - Raluca Georgiana Maltesen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark
| | - Lone Heimann Larsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark.,Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Carl Schønheyder
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Vang Quy Le
- Section for Molecular Diagnostics, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Jeppe Lund Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark
| | - Trine Rolighed Thomsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark.,The Danish Technological Institute, Life Science Division, Aarhus, Denmark
| | - Kåre Lehmann Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
44
|
Chen L, Ye R, Zhang W, Hu C, Zhou B, Peterson DR, Au DWT, Lam PKS, Qian PY. Endocrine Disruption throughout the Hypothalamus–Pituitary–Gonadal–Liver (HPGL) Axis in Marine Medaka (Oryzias melastigma) Chronically Exposed to the Antifouling and Chemopreventive Agent, 3,3′-Diindolylmethane (DIM). Chem Res Toxicol 2016; 29:1020-8. [DOI: 10.1021/acs.chemrestox.6b00074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lianguo Chen
- HKUST
Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | - Weipeng Zhang
- HKUST
Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | - Bingsheng Zhou
- State
Key Laboratory of Freshwater Ecology and Biotechnology, Institute
of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | - Pei-Yuan Qian
- HKUST
Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
45
|
Chen L, Zhang W, Ye R, Hu C, Wang Q, Seemann F, Au DWT, Zhou B, Giesy JP, Qian PY. Chronic Exposure of Marine Medaka (Oryzias melastigma) to 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) Reveals Its Mechanism of Action in Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4492-4501. [PMID: 27035644 DOI: 10.1021/acs.est.6b01137] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, marine medaka (Oryzias melastigma) were chronically exposed for 28 days to environmentally realistic concentrations of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) (0, 0.76, 2.45, and 9.86 μg/L), the active ingredient in commercial antifouling agent SeaNine 211. Alterations of the hypothalamus-pituitary-gonadal-liver (HPGL) axis were investigated across diverse levels of biological organization to reveal the underlying mechanisms of its endocrine disruptive effects. Gene transcription analysis showed that DCOIT had positive regulatory effects mainly in male HPGL axis with lesser extent in females. The stimulated steroidogenic activities resulted in increased concentrations of steroid hormones, including estradiol (E2), testosterone (T), and 11-KT-testosterone (11-KT), in the plasma of both sexes, leading to an imbalance in hormone homeostasis and increased E2/T ratio. The relatively estrogenic intracellular environment in both sexes induced the hepatic synthesis and increased the liver and plasma content of vitellogenin (VTG) or choriogenin. Furthermore, parental exposure to DCOIT transgenerationally impaired the viability of offspring, as supported by a decrease in hatching and swimming activity. Overall, the present results elucidated the estrogenic mechanisms along HPGL axis for the endocrine disruptive effects of DCOIT. The reproductive impairments of DCOIT at environmentally realistic concentrations highlights the need for more comprehensive investigations of its potential ecological risks.
Collapse
Affiliation(s)
- Lianguo Chen
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong SAR, China
| | - Weipeng Zhang
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong SAR, China
| | | | | | - Qiangwei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | | | | | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Pei-Yuan Qian
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
46
|
Pérez-Llarena FJ, Bou G. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance. Front Microbiol 2016; 7:410. [PMID: 27065974 PMCID: PMC4814472 DOI: 10.3389/fmicb.2016.00410] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans.
Collapse
Affiliation(s)
| | - Germán Bou
- Servicio de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña A Coruña, Spain
| |
Collapse
|
47
|
Broadbent JA, Broszczak DA, Tennakoon IUK, Huygens F. Pan-proteomics, a concept for unifying quantitative proteome measurements when comparing closely-related bacterial strains. Expert Rev Proteomics 2016; 13:355-65. [PMID: 26889693 DOI: 10.1586/14789450.2016.1155986] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The comparison of proteomes between genetically heterogeneous bacterial strains may offer valuable insights into physiological diversity and function, particularly where such variation aids in the survival and virulence of clinically-relevant strains. However, reports of such comparisons frequently fail to account for underlying genetic variance. As a consequence, the current knowledge regarding bacterial physiological diversity at the protein level may be incomplete or inaccurate. To address this, greater consideration must be given to the impact of genetic heterogeneity on proteome comparisons. This may be possible through the use of pan-proteomics, an analytical concept that permits the ability to qualitatively and quantitatively compare the proteomes of genetically heterogeneous organisms. Limited examples of this emerging technology highlight currently unmet analytical challenges. In this article we define pan-proteomics, where its value lies in microbiology, and discuss the technical considerations critical to its successful execution and potential future application.
Collapse
Affiliation(s)
- James A Broadbent
- a Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia.,b Molecular Microbiological Pathogenesis Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Daniel A Broszczak
- a Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Imalka U K Tennakoon
- b Molecular Microbiological Pathogenesis Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Flavia Huygens
- b Molecular Microbiological Pathogenesis Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| |
Collapse
|
48
|
Park AJ, Krieger JR, Khursigara CM. Survival proteomes: the emerging proteotype of antimicrobial resistance. FEMS Microbiol Rev 2016; 40:323-42. [PMID: 26790948 DOI: 10.1093/femsre/fuv051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance is one of the greatest challenges in modern medicine. Infectious diseases that have historically been eliminated with routine antibiotic therapy are now re-emerging as life threatening illnesses. A better understanding of the specific mechanisms that contribute to resistance are required to optimize the treatment of infectious microorganisms and limit the survival of recalcitrant populations. This challenging area of research is made more problematic by the observation that multiple, overlapping, and/or compensatory resistance mechanism are often present within a single bacterial species. High-resolution proteomics has emerged as an effective tool to study antimicrobial resistance as it allows for the quantitative investigation of multiple systems concurrently. Furthermore, the ability to examine extracellular mechanisms of resistance and important post-translational modifications make this research tool well suited for the challenge. This review discusses how proteomics has contributed to the understanding of antimicrobial resistance and focuses on advances afforded by the more recent development of technologies that produce quantitative high-resolution proteomic information. We discuss current strategies for studying resistance, including comparative analysis of resistant and susceptible strains and protein-based responses to antimicrobial challenge. Lastly, we suggest specific experimental approaches aimed at advancing our understanding of protein-based resistance mechanisms and maximizing therapeutic outcomes in the future.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan R Krieger
- SPARC BioCentre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
49
|
Gallo G, Renzone G, Palazzotto E, Monciardini P, Arena S, Faddetta T, Giardina A, Alduina R, Weber T, Sangiorgi F, Russo A, Spinelli G, Sosio M, Scaloni A, Puglia AM. Elucidating the molecular physiology of lantibiotic NAI-107 production in Microbispora ATCC-PTA-5024. BMC Genomics 2016; 17:42. [PMID: 26754974 PMCID: PMC4709908 DOI: 10.1186/s12864-016-2369-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 01/06/2016] [Indexed: 11/24/2022] Open
Abstract
Background The filamentous actinomycete Microbispora ATCC-PTA-5024 produces the lantibiotic NAI-107, which is an antibiotic peptide effective against multidrug-resistant Gram-positive bacteria. In actinomycetes, antibiotic production is often associated with a physiological differentiation program controlled by a complex regulatory and metabolic network that may be elucidated by the integration of genomic, proteomic and bioinformatic tools. Accordingly, an extensive evaluation of the proteomic changes associated with NAI-107 production was performed on Microbispora ATCC-PTA-5024 by combining two-dimensional difference in gel electrophoresis, mass spectrometry and gene ontology approaches. Results Microbispora ATCC-PTA-5024 cultivations in a complex medium were characterized by stages of biomass accumulation (A) followed by biomass yield decline (D). NAI-107 production started at 90 h (A stage), reached a maximum at 140 h (D stage) and decreased thereafter. To reveal patterns of differentially represented proteins associated with NAI-107 production onset and maintenance, differential proteomic analyses were carried-out on biomass samples collected: i) before (66 h) and during (90 h) NAI-107 production at A stage; ii) during three time-points (117, 140, and 162 h) at D stage characterized by different profiles of NAI-107 yield accumulation (117 and 140 h) and decrement (162 h). Regulatory, metabolic and unknown-function proteins, were identified and functionally clustered, revealing that nutritional signals, regulatory cascades and primary metabolism shift-down trigger the accumulation of protein components involved in nitrogen and phosphate metabolism, cell wall biosynthesis/maturation, lipid metabolism, osmotic stress response, multi-drug resistance, and NAI-107 transport. The stimulating role on physiological differentiation of a TetR-like regulator, originally identified in this study, was confirmed by the construction of an over-expressing strain. Finally, the possible role of cellular response to membrane stability alterations and of multi-drug resistance ABC transporters as additional self-resistance mechanisms toward the lantibiotic was confirmed by proteomic and confocal microscopy experiments on a Microbispora ATCC-PTA-5024 lantibiotic-null producer strain which was exposed to an externally-added amount of NAI-107 during growth. Conclusion This study provides a net contribution to the elucidation of the regulatory, metabolic and molecular patterns controlling physiological differentiation in Microbispora ATCC-PTA-5024, supporting the relevance of proteomics in revealing protein players of antibiotic biosynthesis in actinomycetes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2369-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy.
| | - Giovanni Renzone
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Emilia Palazzotto
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | | | - Simona Arena
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Teresa Faddetta
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | - Anna Giardina
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | - Rosa Alduina
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark.,German Center for Infection Research (DZIF) partner site Tübingen, 72074, Tübingen, Germany
| | - Fabio Sangiorgi
- Sistema Informativo di Ateneo (SIA), Area Servizi di Rete, University of Palermo, 90128, Palermo, Italy
| | - Alessandro Russo
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | - Giovanni Spinelli
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | | | - Andrea Scaloni
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Anna Maria Puglia
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| |
Collapse
|
50
|
Semanjski M, Macek B. Shotgun proteomics of bacterial pathogens: advances, challenges and clinical implications. Expert Rev Proteomics 2016; 13:139-56. [PMID: 26653908 DOI: 10.1586/14789450.2016.1132168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry-based proteomics is increasingly used in analysis of bacterial pathogens. Simple experimental set-ups based on high accuracy mass spectrometry and powerful biochemical and bioinformatics tools are capable of reliably quantifying levels of several thousand bacterial proteins in a single experiment, reaching the analytical capacity to completely map whole proteomes. Here the authors present the state-of-the-art in bacterial pathogen proteomics and discuss challenges that the field is facing, especially in analysis of low abundant, modified proteins from organisms that are difficult to culture. Constant improvements in speed and sensitivity of mass spectrometers, as well as in bioinformatic and biochemical workflows will soon allow for comprehensive analysis of regulatory mechanisms of pathogenicity and enable routine application of proteomics in the clinical setting.
Collapse
Affiliation(s)
- Maja Semanjski
- a Quantitative Proteomics and Proteome Center Tuebingen, Interfaculty Institute for Cell Biology , University of Tuebingen , Tuebingen , Germany
| | - Boris Macek
- a Quantitative Proteomics and Proteome Center Tuebingen, Interfaculty Institute for Cell Biology , University of Tuebingen , Tuebingen , Germany
| |
Collapse
|