1
|
Salomons TT, Simon D, Oleschuk R. Storing liquid chromatographic separations on surface energy traps: decoupling the LC and the mass spectrometer. Analyst 2024; 149:5336-5343. [PMID: 39327951 DOI: 10.1039/d4an00828f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
We report a micro-fractionation device for high performance liquid chromatography-mass spectrometry to archive chromatographic separations on an array of optimized surface energy traps (SETs). The method has the potential to significantly alter nanoflow LC-MS workflow, decoupling separation and analysis. The wetting characteristics of the SETs cause the HPLC eluent stream to spontaneously split into droplet microfractions. The droplet mirofractions are then dried down to enable facile storage and transport of the archived separation. Discontinuously dewetting array parameters were explored to maximize array volume and resolution using a combination of SET design, shape, size, and spacing. Mass spectrometry analysis is performed utilizing a liquid micro-junction surface sampling probe to extract dried analytes from the surface of the SETs followed by electrospray ionisation. A reverse phase separation of pharmaceutical compounds is "recorded" using the micro-fractionation device followed by "reading" the chromatographic trace with a mass spectrometer 24 hours after the separation was performed/archived, demonstrating a true decoupling of LC, and MS. Additionally, we demonstrate the ability to collect microfractions with sub-one-second integration time, approaching the scan time of a mass spectrometer or UV-Vis detector. With further improvements to the device, sub-1-second micro-fractionation may enable seamless reconstruction of archived chromatograms indistinguishable from online LC-MS data, while also providing the benefits of easy storage and transport of archived separations.
Collapse
Affiliation(s)
- Timothy T Salomons
- Queen's University Department of Chemistry, Chernoff Hall, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6.
| | - David Simon
- Queen's University Department of Chemistry, Chernoff Hall, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6.
| | - Richard Oleschuk
- Queen's University Department of Chemistry, Chernoff Hall, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
2
|
Humphries EM, Xavier D, Ashman K, Hains PG, Robinson PJ. High-Throughput Proteomics and Phosphoproteomics of Rat Tissues Using Microflow Zeno SWATH. J Proteome Res 2024; 23:2355-2366. [PMID: 38819404 DOI: 10.1021/acs.jproteome.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
High-throughput tissue proteomics has great potential in the advancement of precision medicine. Here, we investigated the combined sensitivity of trap-elute microflow liquid chromatography with a ZenoTOF for DIA proteomics and phosphoproteomics. Method optimization was conducted on HEK293T cell lines to determine the optimal variable window size, MS2 accumulation time and gradient length. The ZenoTOF 7600 was then compared to the previous generation TripleTOF 6600 using eight rat organs, finding up to 23% more proteins using a fifth of the sample load and a third of the instrument time. Spectral reference libraries generated from Zeno SWATH data in FragPipe (MSFragger-DIA/DIA-NN) contained 4 times more fragment ions than the DIA-NN only library and quantified more proteins. Replicate single-shot phosphopeptide enrichments of 50-100 μg of rat tryptic peptide were analyzed by microflow HPLC using Zeno SWATH without fractionation. Using Spectronaut we quantified a shallow phosphoproteome containing 1000-3000 phosphoprecursors per organ. Promisingly, clear hierarchical clustering of organs was observed with high Pearson correlation coefficients >0.95 between replicate enrichments and median CV of 20%. The combined sensitivity of microflow HPLC with Zeno SWATH allows for the high-throughput quantitation of an extensive proteome and shallow phosphoproteome from small tissue samples.
Collapse
Affiliation(s)
- Erin M Humphries
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Dylan Xavier
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Keith Ashman
- Sciex, 96 Ricketts Road,Mount Waverley, Victoria 3149, Australia
| | - Peter G Hains
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Phillip J Robinson
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
3
|
Xie X, Truong T, Huang S, Johnston SM, Hovanski S, Robinson A, Webber KGI, Lin HJL, Mun DG, Pandey A, Kelly RT. Multicolumn Nanoflow Liquid Chromatography with Accelerated Offline Gradient Generation for Robust and Sensitive Single-Cell Proteome Profiling. Anal Chem 2024; 96:10534-10542. [PMID: 38915247 PMCID: PMC11482043 DOI: 10.1021/acs.analchem.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Peptide separations that combine high sensitivity, robustness, peak capacity, and throughput are essential for extending bottom-up proteomics to smaller samples including single cells. To this end, we have developed a multicolumn nanoLC system with offline gradient generation. One binary pump generates gradients in an accelerated fashion to support multiple analytical columns, and a single trap column interfaces with all analytical columns to reduce required maintenance and simplify troubleshooting. A high degree of parallelization is possible, as one sample undergoes separation while the next sample plus its corresponding mobile phase gradient are transferred into the storage loop and a third sample is loaded into a sample loop. Selective offline elution from the trap column into the sample loop prevents salts and hydrophobic species from entering the analytical column, thus greatly enhancing column lifetime and system robustness. With this design, samples can be analyzed as fast as every 20 min at a flow rate of just 40 nL/min with close to 100% MS utilization time and continuously for as long as several months without column replacement. We utilized the system to analyze the proteomes of single cells from a multiple myeloma cell line upon treatment with the immunomodulatory imide drug lenalidomide.
Collapse
Affiliation(s)
- Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| | - Siqi Huang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Simon Hovanski
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Abigail Robinson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hsien-Jung L Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| |
Collapse
|
4
|
Chen L, Zhang Z, Matsumoto C, Gao Y. High-Throughput Proteomics Enabled by a Fully Automated Dual-Trap and Dual-Column LC-MS. Anal Chem 2024; 96:9761-9766. [PMID: 38887087 DOI: 10.1021/acs.analchem.3c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This Technical Note describes a dual-column liquid chromatography system coupled to mass spectrometry (LC-MS) for high-throughput bottom-up proteomic analysis. This system made full use of two 2-position 10-port valves and a binary pump with an integrated loading pump of a commercial LC instrument to provide successive operation of two parallel subsystems. Each subsystem consisted of a set of trap columns and an analytical column. A T-junction union was used to split the mobile phase from the loading pump into two parts. This allowed one set of columns to be washed and equilibrated, followed by the injection of the next sample, while the previous sample was eluting and being analyzed on the other set of columns, thereby greatly increasing the analysis throughput. This approach showed high reproducibility for the analysis of HeLa tryptic digests with average relative standard deviation (RSD) values of 1.75%, 6.90%, and 5.19% for the identification number of proteins, peptides, and peptide-spectrum matches (PSMs), respectively, across 10 consecutive runs. The capacity for peptide and protein identification, as well as proteome depth, of the dual-column LC system was comparable to a conventional single-column system. Due to its simple equipment requirements and set up process, this method should be highly accessible for other laboratories.
Collapse
Affiliation(s)
- Liang Chen
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Ziwei Zhang
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cory Matsumoto
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Yu Gao
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
5
|
Jiang Y, DeBord D, Vitrac H, Stewart J, Haghani A, Van Eyk JE, Fert-Bober J, Meyer JG. The Future of Proteomics is Up in the Air: Can Ion Mobility Replace Liquid Chromatography for High Throughput Proteomics? J Proteome Res 2024; 23:1871-1882. [PMID: 38713528 PMCID: PMC11161313 DOI: 10.1021/acs.jproteome.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
The coevolution of liquid chromatography (LC) with mass spectrometry (MS) has shaped contemporary proteomics. LC hyphenated to MS now enables quantification of more than 10,000 proteins in a single injection, a number that likely represents most proteins in specific human cells or tissues. Separations by ion mobility spectrometry (IMS) have recently emerged to complement LC and further improve the depth of proteomics. Given the theoretical advantages in speed and robustness of IMS in comparison to LC, we envision that ongoing improvements to IMS paired with MS may eventually make LC obsolete, especially when combined with targeted or simplified analyses, such as rapid clinical proteomics analysis of defined biomarker panels. In this perspective, we describe the need for faster analysis that might drive this transition, the current state of direct infusion proteomics, and discuss some technical challenges that must be overcome to fully complete the transition to entirely gas phase proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Daniel DeBord
- MOBILion Systems Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Heidi Vitrac
- MOBILion Systems Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Jordan Stewart
- MOBILion Systems Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Ali Haghani
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Justyna Fert-Bober
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jesse G Meyer
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
6
|
Staes A, Boucher K, Dufour S, Maia TM, Timmerman E, Haver DV, Pauwels J, Demol H, Vandenbussche J, Gevaert K, Impens F, Devos S. High-Throughput Nanoflow Proteomics Using a Dual-Column Electrospray Source. Anal Chem 2024; 96:6534-6539. [PMID: 38647218 DOI: 10.1021/acs.analchem.4c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
With current trends in proteomics, especially regarding clinical and low input (to single cell) samples, it is increasingly important to both maximize the throughput of the analysis and maintain as much sensitivity as possible. The new generation of mass spectrometers (MS) are taking a huge leap in sensitivity, allowing analysis of samples with shorter liquid chromatography (LC) methods while digging as deep in the proteome. However, the throughput can be doubled by implementing a dual column nano-LC-MS configuration. For this purpose, we used a dual-column setup with a two-outlet electrospray source and compared it to a classic dual-column setup with a single-outlet source.
Collapse
Affiliation(s)
- An Staes
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Katie Boucher
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Sara Dufour
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Teresa Mendes Maia
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Delphi Van Haver
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Jarne Pauwels
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Hans Demol
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | | | - Kris Gevaert
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Francis Impens
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Simon Devos
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| |
Collapse
|
7
|
Xiang P, Liyu A, Kwon Y, Hu D, Williams SM, Veličković D, Markillie LM, Chrisler WB, Paša-Tolić L, Zhu Y. Spatial Proteomics toward Subcellular Resolution by Coupling Deep Ultraviolet Laser Ablation with Nanodroplet Sample Preparation. ACS MEASUREMENT SCIENCE AU 2023; 3:459-468. [PMID: 38145026 PMCID: PMC10740121 DOI: 10.1021/acsmeasuresciau.3c00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023]
Abstract
Multiplexed molecular profiling of tissue microenvironments, or spatial omics, can provide critical insights into cellular functions and disease pathology. The coupling of laser microdissection with mass spectrometry-based proteomics has enabled deep and unbiased mapping of >1000 proteins. However, the throughput of laser microdissection is often limited due to tedious two-step procedures, sequential laser cutting, and sample collection. The two-step procedure also hinders the further improvement of spatial resolution to <10 μm as needed for subcellular proteomics. Herein, we developed a high-throughput and high-resolution spatial proteomics platform by seamlessly coupling deep ultraviolet (DUV) laser ablation (LA) with nanoPOTS (Nanodroplet Processing in One pot for Trace Samples)-based sample preparation. We demonstrated the DUV-LA system can quickly isolate and collect tissue samples at a throughput of ∼30 spots/min and a spatial resolution down to 2 μm from a 10 μm thick human pancreas tissue section. To improve sample recovery, we developed a proximity aerosol collection approach by placing DMSO droplets close to LA spots. We demonstrated the DUV-LA-nanoPOTS platform can detect an average of 1312, 1533, and 1966 proteins from ablation spots with diameters of 7, 13, and 19 μm, respectively. In a proof-of-concept study, we isolated and profiled two distinct subcellular regions of the pancreas tissue revealed by hematoxylin and eosin (H&E) staining. Quantitative proteomics revealed proteins specifically enriched to subcellular compartments.
Collapse
Affiliation(s)
- Piliang Xiang
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Andrey Liyu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Yumi Kwon
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Dehong Hu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Sarah M. Williams
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Dušan Veličković
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Lye Meng Markillie
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - William B. Chrisler
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Ljiljana Paša-Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Department
of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Guo Y, Cupp‐Sutton KA, Zhao Z, Anjum S, Wu S. Multidimensional Separations in Top-Down Proteomics. ANALYTICAL SCIENCE ADVANCES 2023; 4:181-203. [PMID: 38188188 PMCID: PMC10769458 DOI: 10.1002/ansa.202300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 01/09/2024]
Abstract
Top-down proteomics (TDP) identifies, quantifies, and characterizes proteins at the intact proteoform level in complex biological samples to understand proteoform function and cellular mechanisms. However, analyzing complex biological samples using TDP is still challenging due to high sample complexity and wide dynamic range. High-resolution separation methods are often applied prior to mass spectrometry (MS) analysis to decrease sample complexity and increase proteomics throughput. These separation methods, however, may not be efficient enough to characterize low abundance intact proteins in complex samples. As such, multidimensional separation techniques (combination of two or more separation methods with high orthogonality) have been developed and applied that demonstrate improved separation resolution and more comprehensive identification in TDP. A suite of multidimensional separation methods that couple various types of liquid chromatography (LC), capillary electrophoresis (CE), and/or gel electrophoresis-based separation approaches have been developed and applied in TDP to analyze complex biological samples. Here, we reviewed multidimensional separation strategies employed for TDP, summarized current applications, and discussed the gaps that may be addressed in the future.
Collapse
Affiliation(s)
- Yanting Guo
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | | | - Zhitao Zhao
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | - Samin Anjum
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | - Si Wu
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| |
Collapse
|
9
|
Matzinger M, Mayer RL, Mechtler K. Label-free single cell proteomics utilizing ultrafast LC and MS instrumentation: A valuable complementary technique to multiplexing. Proteomics 2023; 23:e2200162. [PMID: 36806919 PMCID: PMC10909491 DOI: 10.1002/pmic.202200162] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023]
Abstract
The ability to map a proteomic fingerprint to transcriptomic data would master the understanding of how gene expression translates into actual phenotype. In contrast to nucleic acid sequencing, in vitro protein amplification is impossible and no single cell proteomic workflow has been established as gold standard yet. Advances in microfluidic sample preparation, multi-dimensional sample separation, sophisticated data acquisition strategies, and intelligent data analysis algorithms have resulted in major improvements to successfully analyze such tiny sample amounts with steadily boosted performance. However, among the broad variation of published approaches, it is commonly accepted that highest possible sensitivity, robustness, and throughput are still the most urgent needs for the field. While many labs have focused on multiplexing to achieve these goals, label-free SCP is a highly promising strategy as well whenever high dynamic range and unbiased accurate quantification are needed. We here focus on recent advances in label-free single-cell mass spectrometry workflows and try to guide our readers to choose the best method or combinations of methods for their specific applications. We further highlight which techniques are most propitious in the future and which applications but also limitations we foresee for the field.
Collapse
Affiliation(s)
- Manuel Matzinger
- Research Institute of Molecular Pathology (IMP)Vienna BioCenterViennaAustria
| | - Rupert L. Mayer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenterViennaAustria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP)Vienna BioCenterViennaAustria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of SciencesVienna BioCenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of SciencesVienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
10
|
Liang Y, Zhang L, Zhang Y. Chromatographic separation of peptides and proteins for characterization of proteomes. Chem Commun (Camb) 2023; 59:270-281. [PMID: 36504223 DOI: 10.1039/d2cc05568f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Characterization of proteomes aims to comprehensively characterize proteins in cells or tissues via two main strategies: (1) bottom-up strategy based on the separation and identification of enzymatic peptides; (2) top-down strategy based on the separation and identification of intact proteins. However, it is challenged by the high complexity of proteomes. Consequently, the improvements in peptide and protein separation technologies for simplifying the sample should be critical. In this feature article, separation columns for peptide and protein separation were introduced, and peptide separation technologies for bottom-up proteomic analysis as well as protein separation technologies for top-down proteomic analysis were summarized. The achievement, recent development, limitation and future trends are discussed. Besides, the outlook on challenges and future directions of chromatographic separation in the field of proteomics was also presented.
Collapse
Affiliation(s)
- Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
11
|
Kreimer S, Haghani A, Binek A, Hauspurg A, Seyedmohammad S, Rivas A, Momenzadeh A, Meyer JG, Raedschelders K, Van Eyk JE. Parallelization with Dual-Trap Single-Column Configuration Maximizes Throughput of Proteomic Analysis. Anal Chem 2022; 94:12452-12460. [PMID: 36044770 PMCID: PMC9900495 DOI: 10.1021/acs.analchem.2c02609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteomic analysis on the scale that captures population and biological heterogeneity over hundreds to thousands of samples requires rapid mass spectrometry methods, which maximize instrument utilization (IU) and proteome coverage while maintaining precise and reproducible quantification. To achieve this, a short liquid chromatography gradient paired to rapid mass spectrometry data acquisition can be used to reproducibly quantify a moderate set of analytes. High-throughput profiling at a limited depth is becoming an increasingly utilized strategy for tackling large sample sets but the time spent on loading the sample, flushing the column(s), and re-equilibrating the system reduces the ratio of meaningful data acquired to total operation time and IU. The dual-trap single-column configuration (DTSC) presented here maximizes IU in rapid analysis (15 min per sample) of blood and cell lysates by parallelizing trap column cleaning and sample loading and desalting with the analysis of the previous sample. We achieved 90% IU in low microflow (9.5 μL/min) analysis of blood while reproducibly quantifying 300-400 proteins and over 6000 precursor ions. The same IU was achieved for cell lysates and over 4000 proteins (3000 at CV below 20%) and 40,000 precursor ions were quantified at a rate of 15 min/sample. Thus, DTSC enables high-throughput epidemiological blood-based biomarker cohort studies and cell-based perturbation screening.
Collapse
Affiliation(s)
- Simion Kreimer
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Ali Haghani
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Aleksandra Binek
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Alisse Hauspurg
- University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, Pennsylvania 15213, United States
| | - Saeed Seyedmohammad
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Alejandro Rivas
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Amanda Momenzadeh
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Jesse G Meyer
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Koen Raedschelders
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Jennifer E Van Eyk
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| |
Collapse
|
12
|
Webber KGI, Truong T, Johnston SM, Zapata SE, Liang Y, Davis JM, Buttars AD, Smith FB, Jones HE, Mahoney AC, Carson RH, Nwosu AJ, Heninger JL, Liyu AV, Nordin GP, Zhu Y, Kelly RT. Label-Free Profiling of up to 200 Single-Cell Proteomes per Day Using a Dual-Column Nanoflow Liquid Chromatography Platform. Anal Chem 2022; 94:6017-6025. [PMID: 35385261 PMCID: PMC9356711 DOI: 10.1021/acs.analchem.2c00646] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Single-cell proteomics (SCP) has great potential to advance biomedical research and personalized medicine. The sensitivity of such measurements increases with low-flow separations (<100 nL/min) due to improved ionization efficiency, but the time required for sample loading, column washing, and regeneration in these systems can lead to low measurement throughput and inefficient utilization of the mass spectrometer. Herein, we developed a two-column liquid chromatography (LC) system that dramatically increases the throughput of label-free SCP using two parallel subsystems to multiplex sample loading, online desalting, analysis, and column regeneration. The integration of MS1-based feature matching increased proteome coverage when short LC gradients were used. The high-throughput LC system was reproducible between the columns, with a 4% difference in median peptide abundance and a median CV of 18% across 100 replicate analyses of a single-cell-sized peptide standard. An average of 621, 774, 952, and 1622 protein groups were identified with total analysis times of 7, 10, 15, and 30 min, corresponding to a measurement throughput of 206, 144, 96, and 48 samples per day, respectively. When applied to single HeLa cells, we identified nearly 1000 protein groups per cell using 30 min cycles and 660 protein groups per cell for 15 min cycles. We explored the possibility of measuring cancer therapeutic targets with a pilot study comparing the K562 and Jurkat leukemia cell lines. This work demonstrates the feasibility of high-throughput label-free single-cell proteomics.
Collapse
Affiliation(s)
- Kei G. I. Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - S. Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Sebastian E. Zapata
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Yiran Liang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jacob M. Davis
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Alexander D. Buttars
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Fletcher B. Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hailey E. Jones
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Arianna C. Mahoney
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Richard H. Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Andikan J. Nwosu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jacob L. Heninger
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Andrey V. Liyu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gregory P. Nordin
- Department of Electrical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan T. Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
13
|
Baghalabadi V, Doucette AA. Mass spectrometry profiling of low molecular weight proteins and peptides isolated by acetone precipitation. Anal Chim Acta 2020; 1138:38-48. [PMID: 33161983 DOI: 10.1016/j.aca.2020.08.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/01/2022]
Abstract
Solvent-based protein precipitation provides exceptional recovery, particularly when the ionic strength of the solution is controlled. While precipitation is ideally suited for intact protein purification ahead of mass-spectrometry, low molecular weight (LMW) proteins and peptides are considered less susceptible to aggregation in organic solvent. As the combination of salt and organic solvent (i.e. acetone) has yet to be exploited to precipitate LMW proteins, we herein determine the low mass limit for solvent-based protein precipitation. We establish optimized conditions for high recovery precipitation of LMW proteins and peptides. Our results demonstrate a strong dependence on the type of salt to recover LMW components from complex mixtures. Inclusion of 100 mM ZnSO4 with 97% acetone provides near quantitative recovery of all peptides down to 2 kDa, and continues to exceed 90% yield for peptides at a molecular weight of 1 kDa. A detailed characterization of the precipitated peptides resulting from trypsin and pepsin digestion of complex systems is provided by bottom-up mass spectrometry.
Collapse
Affiliation(s)
- Venus Baghalabadi
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, P.O. Box 53714-161, Tabriz, Iran
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
14
|
Doucette AA, Nickerson JL. Developing front-end devices for improved sample preparation in MS-based proteome analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4494. [PMID: 31957906 DOI: 10.1002/jms.4494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Chemical analysis has long relied on instrumentation, from the simplest (eg, burets) to the more sophisticated (eg, mass spectrometers) to facilitate precision measurements. Regardless of their complexity, the development of a new instrumental device can be a valued approach to address problems in science. In this perspective, we outline the process of novel device design, from early phase conception to the manufacturing and testing of the tool or gadget. Focus is placed on the development of improved front-end devices to facilitate protein sample manipulations ahead of mass spectrometry, which therefore augment the proteomics workflow. Highlighted are some of the many training secrets, choices, and challenges that are inherent to the often iterative process of device design. In hopes of inspiring others to pursue instrument design to address relevant research questions, we present a summary list of points to consider prior to innovating their own devices.
Collapse
Affiliation(s)
- Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
15
|
Orton DJ, Doucette AA, Huang WY, MacLellan DL. Exosomal proteomic analysis reveals changes in the urinary proteome of rats with unilateral ureteral obstruction. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Congenital urinary tract obstruction (UTO) is a commonly noted disorder with the potential to cause permanent loss of renal function. Due to the possibility of spontaneous resolution, postnatal management strategies require lengthy and invasive surveillance methods to monitor the status of renal function and severity of obstruction. Here, a quantitative proteome analysis of urinary exosomes from weanling rats with surgically introduced UTO identifies a number of candidate biomarkers with the potential to improve diagnostic and prognostic methods for this disease. Using gel-assisted digestion coupled to liquid chromatography/tandem mass spectrometry (LC–MS/MS), 318 proteins were identified. Relative protein quantitation by spectral counting showed 190 proteins with significant changes in abundance due to either partial or complete obstruction. Numerous proteins identified here have been shown to be similarly altered in abundance in other renal diseases that cause tubule apoptosis and interstitial fibrosis. Extrapolating the role of the proteins showing quantifiable changes in abundance here from other forms of renal disease suggests they have potential for clinical applicability as biomarkers of congenital UTO. Included in the list of identified proteins are markers of apoptosis, oxidative stress, fibrosis, inflammation, and tubular cell damage, which are commonly associated with UTO. This study therefore provides a number of candidate biomarkers that, following validation in children experiencing UTO, have the potential to improve postnatal management of this disease.
Collapse
Affiliation(s)
- Dennis J. Orton
- Department of Pathology, Dalhousie University, 11th Floor Tupper Medical Building, Room 11B, Halifax, NS B3H 4R2, Canada
| | - Alan A. Doucette
- Department of Chemistry, Dalhousie University, Room 212, Chemistry Building, Halifax, NS B3H 4R2, Canada
| | - Weei-Yuarn Huang
- Department of Pathology, 5788 University Avenue, MacKenzie Building Room 717, Halifax, NS B3H 1V8, Canada
| | - Dawn L. MacLellan
- Department of Urology, 1st Floor IWK Health Centre, 5850 University Avenue, Halifax, NS B3J 3G9, Canada
| |
Collapse
|
16
|
Güray MZ, Zheng S, Doucette AA. Mass Spectrometry of Intact Proteins Reveals +98 u Chemical Artifacts Following Precipitation in Acetone. J Proteome Res 2017; 16:889-897. [PMID: 28088865 DOI: 10.1021/acs.jproteome.6b00841] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein precipitation in acetone is frequently employed ahead of mass spectrometry for sample preconcentration and purification. Unfortunately, acetone is not chemically inert; mass artifacts have previously been observed on glycine-containing peptides when exposed to acetone under acidic conditions. We herein report a distinct chemical modification occurring at the level of intact proteins when incubated in acetone. This artifact manifests as one or more satellite peaks in the MS spectrum of intact protein, spaced 98 u above the mass of the unmodified protein. Other artifacts (+84, +112 u) also appear upon incubation of proteins or peptides in acetone. The reaction is pH-sensitive, being suppressed when proteins are exposed to acetone under acidic conditions. The +98 u artifact is speculated to originate through an intermediate product of aldol condensation of acetone to form diacetone alcohol and mesityl oxide. A +98 u product could originate from nucleophilic attack on mesityl oxide or through condensation with diacetone alcohol. Given the extent of modification possible upon exposure of proteins to acetone, particularly following overnight solvent exposure or incubation at room temperature, an awareness of the variables influencing this novel modification is valued by proteomics researchers who employ acetone precipitation for protein purification.
Collapse
Affiliation(s)
- Melda Z Güray
- Department of Chemistry, Dalhousie University , PO Box 15000, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Shi Zheng
- Department of Chemistry, Dalhousie University , PO Box 15000, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University , PO Box 15000, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
17
|
Jinno D, Kanemitsu Y, Saitoh K, Nankumo S, Tsukamoto H, Matsumoto Y, Abe T, Tomioka Y. Rapid and selective simultaneous quantitative analysis of modified nucleosides using multi-column liquid chromatography-tandem mass spectrometry. J Anal Sci Technol 2017. [DOI: 10.1186/s40543-017-0110-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Kachuk C, Faulkner M, Liu F, Doucette AA. Automated SDS Depletion for Mass Spectrometry of Intact Membrane Proteins though Transmembrane Electrophoresis. J Proteome Res 2016; 15:2634-42. [DOI: 10.1021/acs.jproteome.6b00199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Carolyn Kachuk
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Melissa Faulkner
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Fang Liu
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alan A. Doucette
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
19
|
Lee H, Mun DG, Bae J, Kim H, Oh SY, Park YS, Lee JH, Lee SW. A simple dual online ultra-high pressure liquid chromatography system (sDO-UHPLC) for high throughput proteome analysis. Analyst 2016; 140:5700-6. [PMID: 26153568 DOI: 10.1039/c5an00639b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report a new and simple design of a fully automated dual-online ultra-high pressure liquid chromatography system. The system employs only two nano-volume switching valves (a two-position four port valve and a two-position ten port valve) that direct solvent flows from two binary nano-pumps for parallel operation of two analytical columns and two solid phase extraction (SPE) columns. Despite the simple design, the sDO-UHPLC offers many advantageous features that include high duty cycle, back flushing sample injection for fast and narrow zone sample injection, online desalting, high separation resolution and high intra/inter-column reproducibility. This system was applied to analyze proteome samples not only in high throughput deep proteome profiling experiments but also in high throughput MRM experiments.
Collapse
Affiliation(s)
- Hangyeore Lee
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zheng S, Doucette AA. Preventing N- and O-formylation of proteins when incubated in concentrated formic acid. Proteomics 2016; 16:1059-68. [PMID: 26840995 DOI: 10.1002/pmic.201500366] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/11/2015] [Accepted: 01/26/2016] [Indexed: 12/28/2022]
Abstract
Concentrated formic acid is among the most effective solvents for protein solubilization. Unfortunately, this acid also presents a risk of inducing chemical modifications thereby limiting its use in proteomics. Previous reports have supported the esterification of serine and threonine residues (O-formylation) for peptides incubated in formic acid. However as shown here, exposure of histone H4 to 80% formic (1 h, 20(o) C) induces N-formylation of two independent lysine residues. Furthermore, incubating a mixture of Escherichia coli proteins in formic acid demonstrates a clear preference toward lysine modification over reactions at serine/threonine. N-formylation accounts for 84% of the 225 uniquely identified formylation sites. To prevent formylation, we provide a detailed investigation of reaction conditions (temperature, time, acid concentration) that define the parameters permitting the use of concentrated formic acid in a proteomics workflow for MS characterization. Proteins can be maintained in 80% formic acid for extended periods (24 h) without inducing modification, so long as the temperature is maintained at or below -20(o) C.
Collapse
Affiliation(s)
- Shi Zheng
- Department of Chemistry, Dalhousie University, Halifax, NS, Canada.,Key Laboratory of Pesticides and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan, Hubei, P. R. China
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
21
|
Mayne J, Ning Z, Zhang X, Starr AE, Chen R, Deeke S, Chiang CK, Xu B, Wen M, Cheng K, Seebun D, Star A, Moore JI, Figeys D. Bottom-Up Proteomics (2013-2015): Keeping up in the Era of Systems Biology. Anal Chem 2015; 88:95-121. [PMID: 26558748 DOI: 10.1021/acs.analchem.5b04230] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Janice Mayne
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Zhibin Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Xu Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Amanda E Starr
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Rui Chen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Shelley Deeke
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Cheng-Kang Chiang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Bo Xu
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Ming Wen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Kai Cheng
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Deeptee Seebun
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Alexandra Star
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Jasmine I Moore
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| |
Collapse
|
22
|
Hosp F, Scheltema RA, Eberl HC, Kulak NA, Keilhauer EC, Mayr K, Mann M. A Double-Barrel Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) System to Quantify 96 Interactomes per Day. Mol Cell Proteomics 2015; 14:2030-41. [PMID: 25887394 PMCID: PMC4587330 DOI: 10.1074/mcp.o115.049460] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 12/12/2022] Open
Abstract
The field of proteomics has evolved hand-in-hand with technological advances in LC-MS/MS systems, now enabling the analysis of very deep proteomes in a reasonable time. However, most applications do not deal with full cell or tissue proteomes but rather with restricted subproteomes relevant for the research context at hand or resulting from extensive fractionation. At the same time, investigation of many conditions or perturbations puts a strain on measurement capacity. Here, we develop a high-throughput workflow capable of dealing with large numbers of low or medium complexity samples and specifically aim at the analysis of 96-well plates in a single day (15 min per sample). We combine parallel sample processing with a modified liquid chromatography platform driving two analytical columns in tandem, which are coupled to a quadrupole Orbitrap mass spectrometer (Q Exactive HF). The modified LC platform eliminates idle time between measurements, and the high sequencing speed of the Q Exactive HF reduces required measurement time. We apply the pipeline to the yeast chromatin remodeling landscape and demonstrate quantification of 96 pull-downs of chromatin complexes in about 1 day. This is achieved with only 500 μg input material, enabling yeast cultivation in a 96-well format. Our system retrieved known complex-members and the high throughput allowed probing with many bait proteins. Even alternative complex compositions were detectable in these very short gradients. Thus, sample throughput, sensitivity and LC/MS-MS duty cycle are improved severalfold compared with established workflows. The pipeline can be extended to different types of interaction studies and to other medium complexity proteomes.
Collapse
Affiliation(s)
- Fabian Hosp
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Richard A Scheltema
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - H Christian Eberl
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Nils A Kulak
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Eva C Keilhauer
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Korbinian Mayr
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Matthias Mann
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
23
|
Doucette AA, Vieira DB, Orton DJ, Wall MJ. Resolubilization of precipitated intact membrane proteins with cold formic acid for analysis by mass spectrometry. J Proteome Res 2014; 13:6001-12. [PMID: 25384094 DOI: 10.1021/pr500864a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein precipitation in organic solvent is an effective strategy to deplete sodium dodecyl sulfate (SDS) ahead of MS analysis. Here we evaluate the recovery of membrane and water-soluble proteins through precipitation with chloroform/methanol/water or with acetone (80%). With each solvent system, membrane protein recovery was greater than 90%, which was generally higher than that of cytosolic proteins. With few exceptions, residual supernatant proteins detected by MS were also detected in the precipitation pellet, having higher MS signal intensity in the pellet fraction. Following precipitation, we present a novel strategy for the quantitative resolubilization of proteins in an MS-compatible solvent system. The pellet is incubated at -20 °C in 80% formic acid/water and then diluted 10-fold with water. Membrane protein recovery matches that of sonication of the pellet in 1% SDS. The resolubilized proteins are stable at room temperature, with no observed formylation as is typical of proteins suspended in formic acid at room temperature. The protocol is applied to the molecular weight determination of membrane proteins from a GELFrEE-fractionated sample of Escherichia coli proteins.
Collapse
Affiliation(s)
- Alan A Doucette
- Department of Chemistry and ‡Department of Pathology, Dalhousie University , Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
24
|
Crowell AMJ, MacLellan DL, Doucette AA. A two-stage spin cartridge for integrated protein precipitation, digestion and SDS removal in a comparative bottom-up proteomics workflow. J Proteomics 2014; 118:140-50. [PMID: 25316050 DOI: 10.1016/j.jprot.2014.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED Protein precipitation with organic solvent is an effective means of depleting contaminants such as sodium dodecyl sulfate (SDS), while maintaining high analyte recovery. Here, we report the use of a disposable two-stage spin cartridge to facilitate isolation of the precipitated protein, with subsequent enzyme digestion and peptide cleanup in the cartridge. An upper filtration cartridge retains over 95% of the protein (10 μg BSA), with 99.75% detergent depleted from a sample initially containing 2% SDS. Following precipitation, a plug attached to the base of the filtration cartridge retains the solution to enable tryptic digestion in the vial, while a solid phase extraction cartridge attached to the base of the filter facilitates peptide cleanup post-digestion. A GELFrEE fractionated Escherichia coli proteome extract processed with the spin cartridge yields similar protein identifications compared to controls (226 vs 216 for control), and with an increased number of unique peptides (1753 vs 1554 for control). The device is applied to proteome characterization of rat kidneys experiencing a surgically induced ureteral tract obstruction, revealing several statistically altered proteins, consistent with the morphology and expected pathophysiology of the disease. BIOLOGICAL SIGNIFICANCE Conventionally, protein precipitation involves extended centrifugation to pellet the sample, with careful pipetting to remove the supernatant without disturbing the pellet. The method is not only time consuming but is highly subject to the skill of the individual, particularly at lower protein concentrations where the pellet may not be visible. As such, protein precipitation is often overlooked in proteomics, favoring column-based approaches to concentrate or purify samples. Here, all aspects of sample manipulation are integrated into a simple disposable cartridge. The device enables SDS depletion, sample preconcentration, resolubilization, derivatization, digestion, and peptide cleanup in a highly repeatable and easily multiplexed format. The device is ideally suited for comparative proteome studies. Antenatal hydronephrosis is a congenital disorder affecting 1-5% of all pregnancies, and can require surgical intervention to avoid loss of renal function. Using our device, we investigated the impact of hydronephrosis on the kidneys in a surgically induced animal model of the disease. Proteome analysis points to decreased metabolic activity in the obstructed kidney, with upregulation of proteins involved in cytoskeletal organization. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.
Collapse
Affiliation(s)
| | - Dawn L MacLellan
- Department of Urology and Pathology, Dalhousie University, Canada
| | | |
Collapse
|