1
|
Sun L, Sun B, Chen L, Ge Q, Chen K. Identification of genes associated with the silk gland size using multi-omics in silkworm (Bombyx mori). INSECT MOLECULAR BIOLOGY 2024; 33:1-16. [PMID: 37676698 DOI: 10.1111/imb.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Silk gland size in silkworms (Bombyx mori) affects silk output. However, the molecular mechanisms by which genes regulate silk gland size remain unclear. In this study, silk glands from three pure silkworm strains (A798, A306 and XH) with different silk gland weight phenotypes were compared using transcriptomics and proteomics to identify differentially expressed genes (DEGs) and proteins (DEPs). When comparing A798 to A306 and A798 to XH, 830 and 469 DEGs were up-regulated, respectively. These genes were related to the gene ontology terms, metabolic process, transport activity and biosynthesis process. In addition, 372 and 302 up-regulated differentially expressed proteins were detected in A798 to A306 and A798 to XH, respectively, related to the gene ontology terms, ribosome and protein export, ribosome and polypeptide biosynthesis processes. Moreover, combined transcriptomics, proteomics and weighted correlation network analyses showed that five genes (BGIBMGA002524, BGIBMGA002629, BGIBMGA005659, BGIBMGA005711 and BGIBMGA010889) were significantly associated with the silk gland weight. Reverse Transcription-quantitative real-time Polymerase Chain Reaction (RT-qPCR) and Enzyme linked immunosorbent assay (ELISA) were used to verify the mRNA and protein expression of five genes in the silk glands and tissues of 18 silkworm strains. The results showed that four genes have higher expression levels in heavier silk glands. These genes are associated with glycogen metabolism, fatty acid synthesis and branched chain amino acid metabolism, thus potentially promoting growth and silk protein synthesis. These findings provide valuable insights into the molecular mechanisms underlying the relationship between silk gland weight and silk yield in silkworms.
Collapse
Affiliation(s)
- Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Zhu K, Chen Y, Chen L, Xiang H. Comparative Silk Transcriptomics Illuminates Distinctive Impact of Artificial Selection in Silkworm Modern Breeding. INSECTS 2022; 13:1163. [PMID: 36555072 PMCID: PMC9784016 DOI: 10.3390/insects13121163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Early domestication and the following improvement are two important processes in the cocoon silk evolution of silkworms. In contrast to early domestication, understanding of the improvement process is still fuzzy. By systematically comparing the larval silk gland transcriptomes of the wild, early domestic, and improved silkworms, we highlighted a novel landscape of transcriptome in the silk glands of improved ones. We first clarified that silk cocoon protein genes were up-regulated in modern breeding but not in early domestication. Furthermore, we found that differentially expressed genes (DEGs) between improved and early domestic silkworms (2711), as well as between improved and wild silkworms (2264), were obviously more than those between the early domestic and wild silkworms (158), with 1671 DEGs specific in the improved silkworm (IS-DEGs). Hierarchical clustering of all the DEGs consistently indicated that improved silkworms were significantly diverged from the early domestic and wild silkworms, suggesting that modern breeding might cause prompt and drastic dynamic changes of gene expression in the silk gland. We further paid attention to these 1671 IS-DEGs and were surprised to find that down-regulated genes were enriched in basic organonitrogen compound biosynthesis, RNA biosynthesis, and ribosome biogenesis processes, which are generally universally expressed, whereas those up-regulated genes were enriched in organonitrogen compound catabolic processes and functions involving in the dynamic regulation of protein post-translation of modification. We finally highlighted one candidate improvement gene among these up-regulated IS-DEGs, i.e., GDAP2, which may play roles in silk behavior and the overall robustness of the improved silkworm. The findings strongly suggest that modern breeding may facilitate effective control of the basic consumption of nitrogen and a stronger switch of nitrogen resources from other tissues to the silk glands, for an efficient supply for silk production, and implies the importance of brain behavior and robustness in silk yield improvement of modern breeding.
Collapse
Affiliation(s)
- Kesen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University , Guangzhou 510631, China
- Laboratory for Lingnan Modern Agriculture, Institute of Insect Science and Technology, Guangzhou 510642, China
| | - Yanfei Chen
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512000, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University , Guangzhou 510631, China
- Laboratory for Lingnan Modern Agriculture, Institute of Insect Science and Technology, Guangzhou 510642, China
| |
Collapse
|
3
|
Ye X, Tang X, Zhao S, Ruan J, Wu M, Wang X, Li H, Zhong B. Mechanism of the growth and development of the posterior silk gland and silk secretion revealed by mutation of the fibroin light chain in silkworm. Int J Biol Macromol 2021; 188:375-384. [PMID: 34371049 DOI: 10.1016/j.ijbiomac.2021.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Silkworm, as a model organism, has very high economic value due to its silk secretion ability. Although a large number of studies have attempted to elucidate the mechanism of silk secretion, it remains unclear. In this study, the fibroin light chain (Fib-L) gene of silkworm was subjected to CRISPR/Cas9 editing, which yielded premature termination of translation at 135 aa. Compared with those of the wild type, the posterior silk glands (PSGs) of the homozygous mutants on the third day of the fifth instar showed obvious premature degeneration. Comparative transcriptome and proteomic analyses of the PSGs of wild-type individuals, heterozygous mutants and homozygous mutants were performed on the fourth day of the fifth instar. A GO enrichment analysis showed that the differentially expressed genes (DEGs) between homozygous mutants and wild-type individuals were enriched in cytoskeleton-related terms, and a KEGG enrichment analysis showed that the upregulated DEGs between homozygous mutants and wild-type individuals were enriched in the phagosome and apoptosis pathways. These results indicated that apoptosis was activated prematurely in the PSGs of homozygous mutants. Furthermore, autophagy and heat shock response were activated in the PSGs of homozygous mutants, as demonstrated by an analysis of the DEGs related to autophagy and heat shock. A comparative proteomic analysis further confirmed that autophagy, apoptosis and the heat shock response were activated in the PSGs of homozygous mutants, which led to premature degradation of the PSGs. These results provide insights for obtaining a more in-depth understanding of the mechanism of silk secretion in silkworms.
Collapse
Affiliation(s)
- Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaoli Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jinghua Ruan
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Meiyu Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaoxiao Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Huiping Li
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
4
|
Ye X, Zhao S, Wu M, Ruan J, Tang X, Wang X, Zhong B. Role of sericin 1 in the immune system of silkworms revealed by transcriptomic and proteomic analyses after gene knockout. FEBS Open Bio 2021. [PMID: 34185388 PMCID: PMC8329953 DOI: 10.1002/2211-5463.13239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022] Open
Abstract
The domestic silkworm is a type of lepidopteran insect that feeds on mulberry leaves and has high economic value because of its ability to spin cocoons. Sericin 1 is an important component of silkworm cocoons, accounting for approximately 25% of the material. In this study, CRISPR/Cas9‐mediated gene editing was successfully used to destroy the sericin 1 gene, and homozygous mutants were obtained after continuous screening. Homozygous mutation resulted in premature termination of the translation of sericin 1 protein at 323 amino acids. Comparative transcriptomic and proteomic analyses of middle silk gland cells from wild‐type individuals and mutants were performed on the fourth day of the fifth instar, and the results suggest that sericin 1 plays an important role in the cellular immune system. In addition, the results suggest that sericin 1 has a synergistic effect with some protease inhibitors and that the secretion of these proteins is strictly regulated. These results will provide new insights into the function and expression pattern of sericin 1 and the mechanism of silk secretion.
Collapse
Affiliation(s)
- Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Meiyu Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinghua Ruan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoli Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
He W, Li S, He K, Sun F, Mu L, Li Q, Yi J, He Z, Liu Z, Wu X. Identification of potential allergens in larva, pupa, moth, silk, slough and feces of domestic silkworm (Bombyx mori). Food Chem 2021; 362:130231. [PMID: 34237653 DOI: 10.1016/j.foodchem.2021.130231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022]
Abstract
The silkworm (Bombyx mori) is an important economic insect that can be used as food in many countries in Asia. However, silkworms and their metabolites are an important source of allergens, which can induce severe allergic reactions. So far, there are no systematic studies on the potential allergens in silkworm and its metabolites. These studies have important guiding significance for the prevention, diagnosis, and treatment of silkworm allergy. The aim of this study was to identify the potential allergens from larva, pupa, moth, silk, slough and feces of silkworm and analyze the sequence homology of silkworm allergens with other allergens identified in the Allergenonline database. We have found 45 potential allergens in silkworm. The results of the homology comparison suggested that silkworm allergens likely cross-react with those of Dermatophagoides farinae, Aedes aegypti, Tyrophagus putrescentiae, Triticum aestivum and Malassezia furfur.
Collapse
Affiliation(s)
- Weiyi He
- Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, Guangdong Province, PR China; School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Shuiming Li
- College of Life Science, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Kan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Fan Sun
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Lixia Mu
- Sericulture and Agro-Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong Province, PR China
| | - Qingrong Li
- Sericulture and Agro-Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong Province, PR China
| | - Jiang Yi
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Zhendan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Zhigang Liu
- Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, Guangdong Province, PR China; School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China.
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China.
| |
Collapse
|
6
|
Luan Y, Li C, Zuo W, Hu H, Gao R, Zhang B, Tong X, Lu C, Dai F. Gene mapping reveals the association between tyrosine protein kinase Abl1 and the silk yield of Bombyx mori. Anim Genet 2021; 52:342-350. [PMID: 33683721 DOI: 10.1111/age.13052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 11/29/2022]
Abstract
The Z chromosome of the silkworm contains a major gene that influences silk yield. This major locus on chromosome Z accounts for 35.10% of the phenotypic variance. The location and identification of the gene have been a focus of silkworm genetics research. Unfortunately, identification of this gene has been difficult. We used extreme phenotype subpopulations and selected from a backcross population, BC1 M, which was obtained using the high-yield strain 872B and the low-yield strain IS-Dazao as parents, for mapping the gene on the chromosome Z. The candidate region was narrowed down to 134 kb at the tip of the chromosome. BmAbl1 in this region correlated with silk gland development by spatiotemporal expression analysis. This gene was differentially expressed in the posterior silk glands of the high- and low-yield strains. In BmAbl1, an insertion-deletion (indel) within the 10th exonic region and an SNP within the 6th intronic region were detected and shown to be associated with cocoon shell weight in 84 Bombyx mori strains with different yields. Nucleotide diversity analysis of BmAbl1 and its 50 kb flanking regions indicated that BmAbl1 has experienced strong artificial selection during silkworm domestication. This study is the first to identify the genes controlling silk yield in the major QTL of the Z chromosome using forward genetics.
Collapse
Affiliation(s)
- Y Luan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - C Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - W Zuo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - H Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - R Gao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - B Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - X Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - C Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - F Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
7
|
Ruan J, Wu M, Ye X, Zhao S, Liang J, Ye L, You Z, Zhong B. Comparative mRNA and LncRNA Analysis of the Molecular Mechanisms Associated With Low Silk Production in Bombyx mori. Front Genet 2021; 11:592128. [PMID: 33552120 PMCID: PMC7859555 DOI: 10.3389/fgene.2020.592128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023] Open
Abstract
Naked pupa sericin and Naked pupa are two mutant strains of Bombyx mori with extremely low or no fibroin production compared to the Qiufeng and Baiyu strains, both of which exhibit very high silk fibroin production. However, the molecular mechanisms by which long non-coding RNAs regulate fibroin synthesis need further study. In this study, we performed high-throughput RNA-seq to investigate lncRNA and mRNA expression profiles in the posterior silk gland of Qiufeng, Baiyu, Nd-sD, and Nd silkworms at the third day of the 5th instar. Our efforts yielded 26,767 novel lncRNAs and 6,009 novel mRNAs, the expression levels of silk protein genes and silk gland transcription factors were decreased in Qiufeng vs. Nd-sD and Qiufeng vs. Nd, while those of many genes related to autophagy, apoptosis, RNA degradation, ubiquitin-mediated proteolysis and heat shock proteins were increased. Moreover, the expression of a large number of genes responsible for protein synthesis and secretion was significantly decreased in Nd. GO and KEGG analysis results showed that nucleotide excision repair, mRNA surveillance pathways, amino acid degradation, protein digestion and absorption, ER-associated degradation and proteasome pathways were significantly enriched for the Qiufeng vs. Nd-sD and Qiufeng vs. Nd comparisons. In conclusion, our findings contribute to the lncRNA and mRNA database of Bombyx mori, and the identified differentially expressed mRNAs and lncRNAs help to reveal the molecular mechanisms of low silk production in Nd-sD and Nd, providing new insights for improvement of silk yield and elucidation of silk mechanical properties.
Collapse
Affiliation(s)
- Jinghua Ruan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Meiyu Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jianshe Liang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lupeng Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhengying You
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Wang L, Wu Y, Cai P, Huang Q. The attachment process and physiological properties of Escherichia coli O157:H7 on quartz. BMC Microbiol 2020; 20:355. [PMID: 33213384 PMCID: PMC7677791 DOI: 10.1186/s12866-020-02043-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 01/24/2023] Open
Abstract
Background Manure application and sewage irrigation release many intestinal pathogens into the soil. After being introduced into the soil matrix, pathogens are commonly found to attach to soil minerals. Although the survival of mineral-associated Escherichia coli O157:H7 has been studied, a comprehensive understanding of the attachment process and physiological properties after attachment is still lacking. Results In this study, planktonic and attached Escherichia coli O157:H7 cells on quartz were investigated using RNA sequencing (RNA-seq) and the isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic method. Based on the transcriptomic and proteomic analyses and gene knockouts, functional two-component system pathways were required for efficient attachment; chemotaxis and the Rcs system were identified to play determinant roles in E. coli O157:H7 attachment on quartz. After attachment, the pyruvate catabolic pathway shifted from the tricarboxylic acid (TCA) cycle toward the fermentative route. The survival rate of attached E. coli O157:H7 increased more than 10-fold under penicillin and vancomycin stress and doubled under alkaline pH and ferric iron stress. Conclusions These results contribute to the understanding of the roles of chemotaxis and the Rcs system in the attachment process of pathogens and indicate that the attachment of pathogens to minerals significantly elevates their resistance to antibiotics and environmental stress, which may pose a potential threat to public health. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02043-8.
Collapse
Affiliation(s)
- Liliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Wang X, Li D, Song S, Zhang Y, Li Y, Wang X, Liu D, Zhang C, Cao Y, Fu Y, Han R, Li W, Liu X, Sun G, Li G, Tian Y, Li Z, Kang X. Combined transcriptomics and proteomics forecast analysis for potential genes regulating the Columbian plumage color in chickens. PLoS One 2019; 14:e0210850. [PMID: 31693656 PMCID: PMC6834273 DOI: 10.1371/journal.pone.0210850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 10/18/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Coloration is one of the most recognizable characteristics in chickens, and clarifying the coloration mechanisms will help us understand feather color formation. "Yufen I" is a commercial egg-laying chicken breed in China that was developed by a three-line cross using lines H, N and D. Columbian plumage is a typical feather character of the "Yufen I" H line. To elucidate the molecular mechanism underlying the pigmentation of Columbian plumage, this study utilizes high-throughput sequencing technology to compare the transcriptome and proteome differences in the follicular tissue of different feathers, including the dorsal neck with black and white striped feather follicles (Group A) and the ventral neck with white feather follicles (Group B) in the "Yufen I" H line. RESULTS In this study, we identified a total of 21,306 genes and 5,203 proteins in chicken feather follicles. Among these, 209 genes and 382 proteins were differentially expressed in two locations, Group A and Group B, respectively. A total of 8 differentially expressed genes (DEGs) and 9 differentially expressed proteins (DEPs) were found to be involved in the melanogenesis pathway. Additionally, a specifically expressed MED23 gene and a differentially expressed GNAQ protein were involved in melanin synthesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis mapped 190 DEGs and 322 DEPs to 175 and 242 pathways, respectively, and there were 166 pathways correlated with both DEGs and DEPs. 49 DEPs/DEGs overlapped and were enriched for 12 pathways. Transcriptomic and proteomic analyses revealed that the following pathways were activated: melanogenesis, cardiomyocyte adrenergic, calcium and cGMP-PKG. The expression of DEGs was validated by real-time quantitative polymerase chain reaction (qRT-PCR) that produced results similar to those from RNA-seq. In addition, we found that the expression of the MED23, FZD10, WNT7B and WNT11 genes peaked at approximately 8 weeks in the "Yufen I" H line, which is consistent with the molting cycle. As both groups showed significant differences in terms of the expression of the studied genes, this work opens up avenues for research in the future to assess their exact function in determining plumage color. CONCLUSION Common DEGs and DEPs were enriched in the melanogenesis pathway. MED23 and GNAQ were also reported to play a crucial role in melanin synthesis. In addition, this study is the first to reveal gene and protein variations in in the "Yufen I" H line during Columbian feather color development and to discover principal genes and proteins that will aid in functional genomics studies in the future. The results of the present study provide a significant conceptual basis for the future breeding schemes with the "Yufen I" H line and provide a basis for research on the mechanisms of feather pigmentation.
Collapse
Affiliation(s)
- Xinlei Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Sufang Song
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Yanhua Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiangnan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Danli Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chenxi Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanfang Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yawei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Hu W, Chen Y, Lin Y, Xia Q. Developmental and transcriptomic features characterize defects of silk gland growth and silk production in silkworm naked pupa mutant. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103175. [PMID: 31150761 DOI: 10.1016/j.ibmb.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
The silkworm Bombyx mori is a well-characterized model organism for studying the silk gland development and silk production process. Using positional cloning and gene sequencing, we have previously reported that a truncated fibroin heavy chain was responsible for silkworm naked pupa (Nd) mutant. However, the mechanisms by which the mutant FibH causes developmental defects and secretion-deficiency of the silk gland remain to be fully elucidated. Here, silk gland's developmental features, histomorphology, and transcriptome analyses were used to characterize changes in its structure and gene expression patterns between Nd mutant and WT/Dazao. Whole larval stage investigation showed that Nd-PSG undergoes an arrested/delayed development, which eventually resulted in a gland degeneration. By using section staining and transmission electron microscope, a blockade in intracellular vesicle transport from endoplasmic reticulum to Golgi apparatus (secretion-deficiency) and an increased number of autophagosomes and lysosomes were found in Nd-PSG's cytoplasm. Next, by using RNA sequencing and comparative transcriptomic analysis, 2178 differentially expressed genes were identified between Nd-PSG and WT-PSG, among which most of the DEGs associated with cellular stress responses (autophagy, ubiquitin-proteasome system, and heat shock response) were significantly up-regulated in Nd-PSG, suggesting that mutant FibH perturbed cellular homeostasis and resulted in an activation of adaptive responses in PSG cells. These findings reveal the molecular mechanism of the Naked pupa (Nd) mutation and provide insights into silk gland development as well as silk protein production in silkworm Bombyx mori.
Collapse
Affiliation(s)
- Wenbo Hu
- Biological Science Research Center, Southwest University, Chongqing, 400716, PR China; Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China
| | - Yulin Chen
- Biological Science Research Center, Southwest University, Chongqing, 400716, PR China; Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China
| | - Ying Lin
- Biological Science Research Center, Southwest University, Chongqing, 400716, PR China; Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, 400716, PR China; Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing, 400716, PR China.
| |
Collapse
|
11
|
Ye X, Tang X, Wang X, Che J, Wu M, Liang J, Ye L, Qian Q, Li J, You Z, Zhang Y, Wang S, Zhong B. Improving Silkworm Genome Annotation Using a Proteogenomics Approach. J Proteome Res 2019; 18:3009-3019. [PMID: 31250652 DOI: 10.1021/acs.jproteome.8b00965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The silkworm genome has been deeply sequenced and assembled, but accurate genome annotation, which is important for modern biological research, remains far from complete. To improve silkworm genome annotation, we carried out a proteogenomics analysis using 9.8 million mass spectra collected from different tissues and developmental stages of the silkworm. The results confirmed the translational products of 4307 existing gene models and identified 1701 novel genome search-specific peptides (GSSPs). Using these GSSPs, 74 novel gene-coding sequences were identified, and 121 existing gene models were corrected. We also identified 1182 novel junction peptides based on an exon-skipping database that resulted in the identification of 973 alternative splicing sites. Furthermore, we performed RNA-seq analysis to improve silkworm genome annotation at the transcriptional level. A total of 1704 new transcripts and 1136 new exons were identified, 2581 untranslated regions (UTRs) were revised, and 1301 alternative splicing (AS) genes were identified. The transcriptomics results were integrated with the proteomics data to further complement and verify the new annotations. In addition, 14 incorrect genes and 10 skipped exons were verified using the two analysis methods. Altogether, we identified 1838 new transcripts and 1593 AS genes and revised 5074 existing genes using proteogenomics and transcriptome analyses. Data are available via ProteomeXchange with identifier PXD009672. The large-scale proteogenomics and transcriptome analyses in this study will greatly improve silkworm genome annotation and contribute to future studies.
Collapse
Affiliation(s)
- Xiaogang Ye
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Xiaoli Tang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Xiaoxiao Wang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Jiaqian Che
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Meiyu Wu
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Jianshe Liang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Lupeng Ye
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Qiujie Qian
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Jianying Li
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Zhengying You
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Yuyu Zhang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Shaohua Wang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Boxiong Zhong
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| |
Collapse
|
12
|
Zhang Q, Cheng T, Sun Y, Wang Y, Feng T, Li X, Liu L, Li Z, Liu C, Xia Q, He H. Synergism of open chromatin regions involved in regulating genes in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:10-18. [PMID: 31004794 DOI: 10.1016/j.ibmb.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
The dynamic variability of transcription factors (TFs) and their binding sites makes it challenging to conduct genome-wide transcription regulation research. The silkworm Bombyx mori, which produces silk, is one of the most valuable model insects in the order Lepidoptera. The "opening" and "closing" of chromatin in different silk yield strains is associated with changes in silk production, making this insect a good model for studying the transcriptional regulation of genes. However, few studies have examined the open chromatin regions (OCRs) of silkworms, and studying OCR synergism and their function in silk production remains challenging. Here, we performed formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate OCRs from the silk glands of fifth-instar larvae of the DaZao and D872 strains. In total, 128,908 high confidence OCRs were identified and approximately 80% of OCRs were located in non-coding regions. OCRs upregulated adjacent genes and showed signal-dependent vulnerability to single-nucleotide polymorphisms. Mid- and low-signal OCRs were more likely to have single-nucleotide polymorphisms (SNP). Further, OCRs interacted with each other within a distance of 5 kb. We named the OCR interaction complex as the "cluster of related regions" (COREs). The functions of the CORE and its harbored OCRs showed some differences. Additionally, COREs enriched many silk protein synthesis-associated genes, some of which were upregulated. This study identified numerous high confidence regulation sites and synergistic regulatory modes of OCRs that affect adjacent genes. These results provide insight into silkworm transcriptional regulation and improve our understanding of cis-element cooperation.
Collapse
Affiliation(s)
- Quan Zhang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| | - Yueting Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yi Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Tieshan Feng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiaohong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Lihaoyu Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| | - Huawei He
- Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Ling XD, Dong WT, Zhang Y, Hu JJ, Zhang WD, Wu JT, Liu JX, Zhao XX. Baculoviral infection reduces the expression of four allergen proteins of silkworm pupa. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21539. [PMID: 30790339 DOI: 10.1002/arch.21539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Silkworm (Bombyx mori) larvae are widely used to express exogenous proteins. Moreover, some silkworm pupal proteins can be used as drug-loading materials for selfexpressed oral tolerance drugs. However, several proteins expressed in silkworm pupae cause severe allergic reactions in humans and animals. Interestingly, some baculovirus vectors have been shown to alter the host gene and its expression in insect cells, but this has not been confirmed in silkworm. Here, we analyzed the effects of infection with an empty B. mori baculovirus (BmNPV) vector on silkworm pupal protein expression. Using a proteomics approach, the allergens thiol peroxiredoxin (Jafrac1), 27-kDa glycoprotein (p27k), arginine kinase, and paramyosin as well as 32 additional differentially expressed proteins were identified. Downregulation of the messenger RNA expression of the four known allergens was observed after BmNPV infection; subsequent changes in protein expression were confirmed by the western blot analysis using polyclonal antibodies prepared with recombinant proteins of the four allergens. Collectively, these data indicate that the four known allergens of silkworm pupae can be reduced by infection ith an empty BmNPV vector to increase the safety of silkworm pupa-based exogenous protein expression and drug delivery of oral pharmaceuticals. In addition, the four recombinant allergen proteins may contribute to the diagnosis of allergic diseases of silkworm pupa.
Collapse
Affiliation(s)
- Xiao-Dong Ling
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wei-Tao Dong
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun-Jie Hu
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wang-Dong Zhang
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jin-Tang Wu
- Product R&D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou, China
| | - Ji-Xing Liu
- Product R&D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou, China
| | - Xing-Xu Zhao
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Luan Y, Zuo W, Li C, Gao R, Zhang H, Tong X, Han M, Hu H, Lu C, Dai F. Identification of Genes that Control Silk Yield by RNA Sequencing Analysis of Silkworm (Bombyx mori) Strains of Variable Silk Yield. Int J Mol Sci 2018; 19:E3718. [PMID: 30467288 PMCID: PMC6321331 DOI: 10.3390/ijms19123718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022] Open
Abstract
Silk is an important natural fiber of high economic value, and thus genetic study of the silkworm is a major area of research. Transcriptome analysis can provide guidance for genetic studies of silk yield traits. In this study, we performed a transcriptome comparison using multiple silkworms with different silk yields. A total of 22 common differentially expressed genes (DEGs) were identified in multiple strains and were mainly involved in metabolic pathways. Among these, seven significant common DEGs were verified by quantitative reverse transcription polymerase chain reaction, and the results coincided with the findings generated by RNA sequencing. Association analysis showed that BGIBMGA003330 and BGIBMGA005780 are significantly associated with cocoon shell weight and encode uridine nucleosidase and small heat shock protein, respectively. Functional annotation of these genes suggest that these play a role in silkworm silk gland development or silk protein synthesis. In addition, we performed principal component analysis (PCA) in combination with wild silkworm analysis, which indicates that modern breeding has a stronger selection effect on silk yield traits than domestication, and imply that silkworm breeding induces aggregation of genes related to silk yield.
Collapse
Affiliation(s)
- Yue Luan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Weidong Zuo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Chunlin Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Rui Gao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Hao Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Dong C, Wang R, Zheng X, Zheng X, Jin L, Wang H, Chen S, Shi Y, Wang M, Liu D, Yang Y, Hu Z. Integration of transcriptome and proteome analyses reveal molecular mechanisms for formation of replant disease in Nelumbo nucifera. RSC Adv 2018; 8:32574-32587. [PMID: 35547670 PMCID: PMC9086348 DOI: 10.1039/c8ra06503a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022] Open
Abstract
The normal growth of Nelumbo nucifera, a widely planted aquatic crop in Asia, was severely ruined by replant disease. The mechanism of replant disease was still unknown in aquatic crops. Complementary transcriptomic and proteomic analyses were performed by comparing seedings of first-year planting (FP) and consecutive planting (CP). 9810 differentially expressed genes (DEGs) were identified between FP and CP. Additionally, 975 differentially expressed proteins (DEPs) were obtained. The correlation of proteome and transcriptome illustrated phenylpropanoid biosynthesis, flavonoid biosynthesis, metabolic pathways, and MAPK signaling pathways were significantly activated. Peroxidase, determined as one of the key proteins in replant disease of N. nucifera, was phylogenetically analyzed. A new depiction of the molecular mechanism causing replant disease in N. nucifera was illustrated. A consecutive monoculture stimulated the generation of reactive oxygen species (ROS) and ethylene, altered the metabolic balance of lignin and flavonoid, and attenuated the activity of antioxidant enzymes through DNA methylation. Therefore, the accumulation of autotoxic allelochemicals and the deficiency of antioxidant enzymes unavoidably suppressed the normal growth and development of replanted N. nucifera. Complementary transcriptomic and proteomic analyses unveiled the mechanism of replant disease in Nelumbo nucifera, a widely planted aquatic crop in Asia.![]()
Collapse
Affiliation(s)
- Chen Dong
- College of Biological Engineering, Henan University of Technology Zhengzhou 450001 China +86 371 67756513 +86 371 67756513
| | - Ran Wang
- Zhengzhou TobaccoResearch Institute of CNTC No. 2 Fengyang Street Zhengzhou Henan 450001 China +86 371 67672079 +86 371 67672072
| | - Xingfei Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Science, Wuhan University Wuhan 430072 China +86 27 68753611 +86 27 68753606
| | - Xingwen Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Science, Wuhan University Wuhan 430072 China +86 27 68753611 +86 27 68753606
| | - Lifeng Jin
- Zhengzhou TobaccoResearch Institute of CNTC No. 2 Fengyang Street Zhengzhou Henan 450001 China +86 371 67672079 +86 371 67672072
| | - Hongjiao Wang
- Zhengzhou TobaccoResearch Institute of CNTC No. 2 Fengyang Street Zhengzhou Henan 450001 China +86 371 67672079 +86 371 67672072
| | - Shuang Chen
- College of Biological Engineering, Henan University of Technology Zhengzhou 450001 China +86 371 67756513 +86 371 67756513
| | - Yannan Shi
- College of Biological Engineering, Henan University of Technology Zhengzhou 450001 China +86 371 67756513 +86 371 67756513
| | - Mengqi Wang
- College of Biological Engineering, Henan University of Technology Zhengzhou 450001 China +86 371 67756513 +86 371 67756513
| | - Die Liu
- College of Biological Engineering, Henan University of Technology Zhengzhou 450001 China +86 371 67756513 +86 371 67756513
| | - Yanhui Yang
- College of Biological Engineering, Henan University of Technology Zhengzhou 450001 China +86 371 67756513 +86 371 67756513
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Science, Wuhan University Wuhan 430072 China +86 27 68753611 +86 27 68753606
| |
Collapse
|
16
|
Zhang X, Chang H, Dong Z, Zhang Y, Zhao D, Ye L, Xia Q, Zhao P. Comparative Proteome Analysis Reveals that Cuticular Proteins Analogous to Peritrophin-Motif Proteins are Involved in the Regeneration of Chitin Layer in the Silk Gland of Bombyx mori at the Molting Stage. Proteomics 2018; 18:e1700389. [PMID: 29687606 DOI: 10.1002/pmic.201700389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/20/2018] [Indexed: 11/07/2022]
Abstract
The silk gland of silkworm produces silk proteins during larval development. Many studies have long focused on the silk gland of the fifth instar larvae, but few have investigated this gland at other larval stages. In the present study, the silk gland proteomes of the fourth instar and fourth molt are analyzed using liquid chromatography-tandem mass spectrometry. In total, 2654 proteins are identified from the silk gland. A high abundance of ribosomal proteins and RR-motif chitin-binding proteins is identified during day 2 of the fourth instar (IV-2) larval developmental stage, and the expression of cuticular proteins analogous to peritrophin (CPAP)-motif chitin-binding proteins is higher during the fourth molt (IV-M). In all, nine enzymes are found to be involved in the chitin regeneration pathway in the silk gland. Among them, two chitinase and two chitin deacetylases are identified as CPAP-motif proteins. Furthermore, the expression of CPAP3-G, the most abundant CPAP-motif cuticular protein in the silk gland during the IV-M stage, is investigated using western blot and immunofluorescence analyses; CPAP3-G shows a reverse changing trend with chitin in the silk gland. The findings of this study suggest that CPAP-motif chitin-binding proteins are involved in the degradation of the chitin layer in the silk gland. The data have been deposited to the ProteomeXchange with identifier PXD008677.
Collapse
Affiliation(s)
- Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Huaipu Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China.,College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Lin Ye
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China
| |
Collapse
|
17
|
Cui Y, Zhu Y, Lin Y, Chen L, Feng Q, Wang W, Xiang H. New insight into the mechanism underlying the silk gland biological process by knocking out fibroin heavy chain in the silkworm. BMC Genomics 2018; 19:215. [PMID: 29580211 PMCID: PMC5870212 DOI: 10.1186/s12864-018-4602-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/13/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Exploring whether and how mutation of silk protein contributes to subsequent re-allocation of nitrogen, and impacts on the timing of silk gland degradation, is important to understand silk gland biology. Rapid development and wide application of genome editing approach in the silkworm provide us an opportunity to address these issues. RESULTS Using CRISPR/Cas9 system, we successfully performed genome editing of Bmfib-H. The loss-of-function mutations caused naked pupa and thin cocoon mutant phenotypes. Compared with the wild type, the posterior silk gland of mutant showed obviously degraded into fragments in advance of programmed cell death of silk gland cells. Comparative transcriptomic analyses of silk gland at the fourth day of the fifth instar larval stage(L5D4)identified 1456 differential expressed genes (DEGs) between posterior silk gland (PSG) and mid silk gland (MSG) and 1388 DEGs between the mutant and the wild type. Hierarchical clustering of all the DEGs indicated a remarkable down-regulated and an up-regulated gene clade in the mutant silk glands, respectively. Down-regulated genes were overrepresented in the pathways involved in cancer, DNA replication and cell proliferation. Intriguingly, up-regulated DEGs are significantly enriched in the proteasome. By further comparison on the transcriptome of MSG and PSG between the wild type and the mutant, we consistently observed that up-regulated DEGs in the mutant PSG were enriched in protein degrading activity and proteasome. Meantime, we observed a series of up-regulated genes involved in autophagy. Since these protein degradation processes would be normally occur after the spinning time, the results suggesting that these progresses were activated remarkably ahead of schedule in the mutant. CONCLUSIONS Accumulation of abnormal fib-H protein might arouse the activation of proteasomes as well as autophagy process, to promote the rapid degradation of such abnormal proteins and the silk gland cells. Our study therefore proposes a subsequent process of protein and partial cellular degradation caused by mutation of silk protein, which might be helpful for understanding its impact of the silk gland biological process, and further exploration the re-allocation of nitrogen in the silkworm.
Collapse
Affiliation(s)
- Yong Cui
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yanan Zhu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yongjian Lin
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lei Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wen Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Hui Xiang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
18
|
Label-free based quantitative proteomic analysis identifies proteins involved in the testis maturation of Bactrocera dorsalis (Hendel). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 25:9-18. [DOI: 10.1016/j.cbd.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022]
|
19
|
QTL analysis of cocoon shell weight identifies BmRPL18 associated with silk protein synthesis in silkworm by pooling sequencing. Sci Rep 2017; 7:17985. [PMID: 29269837 PMCID: PMC5740181 DOI: 10.1038/s41598-017-18277-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/07/2017] [Indexed: 01/17/2023] Open
Abstract
Mechanisms that regulate silk protein synthesis provide the basis for silkworm variety breeding and silk gland bioreactor optimization. Here, using the pooling sequencing-based methodology, we deciphered the genetic basis for the varied silk production in different silkworm strains. We identified 8 SNPs, with 6 on chromosome 11 and 1 each on chromosomes 22 and 23, that were linked with silk production. After conducting an association analysis between gene expression pattern, silk gland development and cocoon shell weight (CSW), BMGN011620 was found to be regulating silk production. BMGN011620 encodes the 60S ribosomal protein, L18, which is an indispensable component of the 60S ribosomal subunit; therefore we named it BmRPL18. Moreover, the clustering of linked SNPs on chromosome 11 and the analysis of differentially expressed genes reported in previous Omics studies indicated that the genes regulating silk protein synthesis may exhibit a clustering distribution in the silkworm genome. These results collectively advance our understanding of the regulation of silk production, including the role of ribosomal proteins and the clustered distribution of genes involved in silk protein synthesis.
Collapse
|
20
|
Li JY, Cai F, Ye XG, Liang JS, Li JK, Wu MY, Zhao D, Jiang ZD, You ZY, Zhong BX. Comparative Proteomic Analysis of Posterior Silk Glands of Wild and Domesticated Silkworms Reveals Functional Evolution during Domestication. J Proteome Res 2017; 16:2495-2507. [DOI: 10.1021/acs.jproteome.7b00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian-ying Li
- Institute
of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | | | | | | | - Jian-ke Li
- Institute
of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
21
|
Bioengineered silkworms with butterfly cytotoxin-modified silk glands produce sericin cocoons with a utility for a new biomaterial. Proc Natl Acad Sci U S A 2017; 114:6740-6745. [PMID: 28607081 DOI: 10.1073/pnas.1703449114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically manipulated organisms with dysfunction of specific tissues are crucial for the study of various biological applications and mechanisms. However, the bioengineering of model organisms with tissue-specific dysfunction has not progressed because the challenges of expression of proteins, such as cytotoxins, in living cells of individual organisms need to be overcome first. Here, we report the establishment of a transgenic silkworm (Bombyx mori) with posterior silk glands (PSGs) that was designed to express the cabbage butterfly (Pieris rapae) cytotoxin pierisin-1A (P1A). P1A, a homolog of the apoptosis inducer pierisin-1, had relatively lower DNA ADP ribosyltransferase activity than pierisin-1; it also induced the repression of certain protein synthesis when expressed in B. mori-derived cultured cells. The transgene-derived P1A domain harboring enzymatic activity was successfully expressed in the transgenic silkworm PSGs. The glands showed no apoptosis-related morphological changes; however, an abnormal appearance was evident. The introduced truncated P1A resulted in the dysfunction of PSGs in that they failed to produce the silk protein fibroin. Cocoons generated by the silkworms solely consisted of the glue-like glycoprotein sericin, from which soluble sericin could be prepared to form hydrogels. Embryonic stem cells could be maintained on the hydrogels in an undifferentiated state and proliferated through stimulation by the cytokines introduced into the hydrogels. Thus, bioengineering with targeted P1A expression successfully produced silkworms with a biologically useful trait that has significant application potential.
Collapse
|
22
|
Zhao JY, Zhao XT, Sun JT, Zou LF, Yang SX, Han X, Zhu WC, Yin Q, Hong XY. Transcriptome and proteome analyses reveal complex mechanisms of reproductive diapause in the two-spotted spider mite, Tetranychus urticae. INSECT MOLECULAR BIOLOGY 2017; 26:215-232. [PMID: 28001328 DOI: 10.1111/imb.12286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although a variety of factors underlying diapause have been identified in arthropods and other organisms, the molecular mechanisms regulating diapause are still largely unknown. Here, to better understand this process, we examined diapause-associated genes in the two-spotted spider mite, Tetranychus urticae, by comparing the transcriptomes and proteomes of early diapausing and reproductive adult females. Amongst genes underlying diapause revealed by the transcriptomic and proteomic data sets, we described the noticeable change in Ca2+ -associated genes, including 65 Ca2+ -binding protein genes and 23 Ca2+ transporter genes, indicating that Ca2+ signalling has a substantial role in diapause regulation. Other interesting changes in diapause included up-regulation of (1) glutamate receptors that may be involved in synaptic plasticity changes, (2) genes involved in cytoskeletal reorganization including genes encoding each of the components of thick and thin filaments, tubulin and members of integrin signalling and (3) genes involved in anaerobic energy metabolism, which reflects a shift to anaerobic energy metabolism in early diapausing mites.
Collapse
Affiliation(s)
- J-Y Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - X-T Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - J-T Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - L-F Zou
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - S-X Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - X Han
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - W-C Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Q Yin
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Song J, Che J, You Z, Ye L, Li J, Zhang Y, Qian Q, Zhong B. Phosphoproteomic analysis of the posterior silk gland of Bombyx mori provides novel insight into phosphorylation regulating the silk production. J Proteomics 2016; 148:194-201. [DOI: 10.1016/j.jprot.2016.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 11/28/2022]
|
24
|
Zuo J, Lei M, Yang R, Liu Z. Bom m 9 from Bombyx mori is a novel protein related to asthma. Microbiol Immunol 2016; 59:410-8. [PMID: 26094648 DOI: 10.1111/1348-0421.12271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/28/2015] [Accepted: 06/03/2015] [Indexed: 12/24/2022]
Abstract
The silkworm (Bombyx mori) can cause severe IgE-mediated allergic disease, however, the mechanism remains unclear. The aim of this study was to investigate the immunologic mechanism by which silkworms induce allergy. Whole silkworm pupa proteins were separated by SDS-PAGE and 2-D PAGE. Then, IgE-binding proteins were detected by immunoblotting with sera of patients having an allergy to Bombyx mori. After tryptic digestion, the peptides of IgE-binding proteins were analyzed by matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry or tandem mass spectrometry. Database searches were used to identify allergens in silkworm pupa, after which Bom m 9 was to construct an asthma model. Thus, in the current study, a mouse asthma model was constructed with Bom m 9.
Collapse
Affiliation(s)
- Jianhong Zuo
- State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen University, Guangdong, 518060.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060.,Medical School, University of South China, Hunan, 421001
| | - Mingsheng Lei
- Department of Respiratory and Critical Care Medicine, Zhangjiajie City Hospital, Zhangjiajie, Hunan 427000, China.,Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Rui Yang
- State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen University, Guangdong, 518060
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen University, Guangdong, 518060
| |
Collapse
|
25
|
Feng X, An Y, Zheng J, Sun M, Wang L. Proteomics and SSH Analyses of ALA-Promoted Fruit Coloration and Evidence for the Involvement of a MADS-Box Gene, MdMADS1. FRONTIERS IN PLANT SCIENCE 2016; 7:1615. [PMID: 27872628 PMCID: PMC5098116 DOI: 10.3389/fpls.2016.01615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 05/20/2023]
Abstract
Skin color is a key quality attribute of fruits and how to improve fruit coloration has long been a major concern. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, can significantly increase anthocyanin accumulation in fruit skin and therefore effectively improve coloration of many fruits, including apple. However, the molecular mechanism how ALA stimulates anthocyanin accumulation in fruit skin remains unknown. Here, we investigated the impact of ALA on apple skin at the protein and mRNA levels. A total of 85 differentially expressed proteins in apple skins between ALA and water treatment (control) were identified by complementary gel-based and gel-free separation techniques. Most of these differentially expressed proteins were up-regulated by ALA. Function analysis suggested that 87.06% of the ALA-responsive proteins were associated with fruit ripening. To further screen ALA-responsive regulators, we constructed a subtracted cDNA library (tester: ALA treatment; driver: control) and obtained 104 differentially expressed unigenes, of which 38 unigenes were indicators for the fruit ripening-related genes. The differentially changed proteins and transcripts did not correspond well at an individual level, but showed similar regulated direction in function at the pathway level. Among the identified fruit ripening-related genes, the expression of MdMADS1, a developmental transcription regulator of fruit ripening, was positively correlated with expression of anthocyanin biosynthetic genes (MdCHS, MdDFR, MdLDOX, and MdUFGT) in apple skin under ALA treatment. Moreover, overexpression of MdMADS1 enhanced anthocyanin content in transformed apple calli, which was further enhanced by ALA. The anthocyanin content in MdMADS1-silenced calli was less than that in the control with ALA treatment, but higher than that without ALA treatment. These results indicated that MdMADS1 is involved in ALA-induced anthocyanin accumulation. In addition, anthocyanin-related verification in apple calli suggested that the regulation of MdMADS1 on anthocyanin biosynthesis was partially independent of fruit ripening process. Taken together, our findings provide insight into the mechanism how ALA regulates anthocyanin accumulation and add new information on transcriptase regulators of fruit coloration.
Collapse
Affiliation(s)
- Xinxin Feng
- College of Horticulture, Nanjing Agricultural University Nanjing, China
| | - Yuyan An
- College of Horticulture, Nanjing Agricultural University Nanjing, China
| | - Jie Zheng
- College of Horticulture, Nanjing Agricultural University Nanjing, China
| | - Miao Sun
- College of Horticulture, Nanjing Agricultural University Nanjing, China
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
26
|
Wang S, You Z, Feng M, Che J, Zhang Y, Qian Q, Komatsu S, Zhong B. Analyses of the Molecular Mechanisms Associated with Silk Production in Silkworm by iTRAQ-Based Proteomics and RNA-Sequencing-Based Transcriptomics. J Proteome Res 2015; 15:15-28. [DOI: 10.1021/acs.jproteome.5b00821] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shaohua Wang
- College
of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zhengying You
- College
of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Mao Feng
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Jiaqian Che
- College
of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuyu Zhang
- College
of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiujie Qian
- College
of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Setsuko Komatsu
- National Institute of Crop Science, NARO, Tsukuba 305-8518, Japan
| | - Boxiong Zhong
- College
of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
27
|
Chang H, Cheng T, Wu Y, Hu W, Long R, Liu C, Zhao P, Xia Q. Transcriptomic Analysis of the Anterior Silk Gland in the Domestic Silkworm (Bombyx mori) - Insight into the Mechanism of Silk Formation and Spinning. PLoS One 2015; 10:e0139424. [PMID: 26418001 PMCID: PMC4587926 DOI: 10.1371/journal.pone.0139424] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
Silk proteins are synthesized in the middle and posterior silk glands of silkworms, then transit into the anterior of the silk gland, where the silk fibers are produced, stored and processed. The mechanism of formation and spinning of the silk fibers has not been fully elucidated, and transcriptome analyses specific to the anterior silk gland have not been reported. In the present study, we explored gene expression profiles in five regions of silk gland samples using the RNA-Seq method. As a result, there were 959,979,570 raw reads obtained, of which 583,068,172 reads were mapped to the silkworm genome. A total of 7419 genes were found to be expressed in terms of reads per kilobase of exon model per million mapped reads ≥ 5 in at least one sample. The gene numbers and expression levels of the expressed genes differed between these regions. The differentially expressed genes were analyzed, and 282 genes were detected as up-regulated in the anterior silk gland, compared with the other parts. Functions of these genes were addressed using the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases, and seven key pathways were enriched. It suggested that the ion transportation, energy metabolism, protease inhibitors and cuticle proteins played essential roles in the process of silk formation and spinning in the anterior silk gland. In addition, 210 genes were found differently expressed between males and females, which should help to elucidate the mechanism of the quality difference in silk fibers from male and female silkworms.
Collapse
Affiliation(s)
- Huaipu Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
- College of Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Renwen Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
- * E-mail:
| |
Collapse
|
28
|
Comparative proteomic analysis of silkworm fat body after knocking out fibroin heavy chain gene: a novel insight into cross-talk between tissues. Funct Integr Genomics 2015; 15:611-37. [DOI: 10.1007/s10142-015-0461-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 11/25/2022]
|
29
|
Li JY, Ye LP, Che JQ, Song J, You ZY, Yun KC, Wang SH, Zhong BX. Comparative proteomic analysis of the silkworm middle silk gland reveals the importance of ribosome biogenesis in silk protein production. J Proteomics 2015; 126:109-20. [DOI: 10.1016/j.jprot.2015.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 01/20/2023]
|
30
|
Zhou L, Li H, Hao F, Li N, Liu X, Wang G, Wang Y, Tang H. Developmental Changes for the Hemolymph Metabolome of Silkworm (Bombyx mori L.). J Proteome Res 2015; 14:2331-47. [PMID: 25825269 DOI: 10.1021/acs.jproteome.5b00159] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silkworm (Bombyx mori) is a lepidopteran-holometabolic model organism. To understand its developmental biochemistry, we characterized the larval hemolymph metabonome from the third instar to prepupa stage using (1)H NMR spectroscopy whilst hemolymph fatty acid composition using GC-FID/MS. We unambiguously assigned more than 60 metabolites, among which tyrosine-o-β-glucuronide, mesaconate, homocarnosine, and picolinate were reported for the first time from the silkworm hemolymph. Phosphorylcholine was the most abundant metabolite in all developmental stages with exception for the periods before the third and fourth molting. We also found obvious developmental dependence for the hemolymph metabonome involving multiple pathways including protein biosyntheses, glycolysis, TCA cycle, the metabolisms of choline amino acids, fatty acids, purines, and pyrimidines. Most hemolymph amino acids had two elevations during the feeding period of the fourth instar and prepupa stage. Trehalose was the major blood sugar before day 8 of the fifth instar, whereas glucose became the major blood sugar after spinning. C16:0, C18:0 and its unsaturated forms were dominant fatty acids in hemolymph. The developmental changes of hemolymph metabonome were associated with dietary nutrient intakes, biosyntheses of cell membrane, pigments, proteins, and energy metabolism. These findings offered essential biochemistry information in terms of the dynamic metabolic changes during silkworm development.
Collapse
Affiliation(s)
- Lihong Zhou
- †College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,¶College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Huihui Li
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuhua Hao
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ning Li
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Liu
- †College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoliang Wang
- ¶College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Yulan Wang
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,⊥Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Huiru Tang
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,§State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
31
|
Ye L, Qian Q, Zhang Y, You Z, Che J, Song J, Zhong B. Analysis of the sericin1 promoter and assisted detection of exogenous gene expression efficiency in the silkworm Bombyx mori L. Sci Rep 2015; 5:8301. [PMID: 25655044 PMCID: PMC4319154 DOI: 10.1038/srep08301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/15/2015] [Indexed: 12/02/2022] Open
Abstract
In genetics, the promoter is one of the most important regulatory elements controlling the spatiotemporal expression of a target gene. However, most studies have focused on core or proximal promoter regions, and information on regions that are more distant from the 5′-flanking region of the proximal promoter is often lacking. Here, approximately 4-kb of the sericin1 (Ser1) promoter was predicted to contain many potential transcriptional factor binding sites (TFBSs). Transgenic experiments have revealed that more TFBSs included in the promoter improved gene transcription. However, multi-copy proximal Ser1 promoter combinations did not improve gene expression at the transcriptional level. Instead, increasing the promoter copy number repressed transcription. Furthermore, a correlation analysis between two contiguous genes, firefly luciferase (FLuc) and EGFP, was conducted at the transcriptional level; a significant correlation was obtained regardless of the insertion site. The ELISA results also revealed a significant correlation between the transcriptional and translational EGFP levels. Therefore, the exogenous gene expression level can be predicted by simply detecting an adjacent EGFP. In conclusion, our results provide important insights for further investigations into the molecular mechanisms underlying promoter function. Additionally, a new approach was developed to quickly screen transgenic strains that highly express exogenous genes.
Collapse
Affiliation(s)
- Lupeng Ye
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qiujie Qian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhengying You
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiaqian Che
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jia Song
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|