1
|
Sambuceti G, Cossu V, Vitale F, Bianconi E, Carta S, Venturi C, Chiesa S, Lanfranchi F, Emionite L, Carlone S, Sofia L, D'Amico F, Di Raimondo T, Chiola S, Orengo AM, Morbelli S, Ameri P, Bauckneht M, Marini C. Mandatory role of endoplasmic reticulum and its pentose phosphate shunt in the myocardial defense mechanisms against the redox stress induced by anthracyclines. Mol Cell Biochem 2024; 479:2973-2987. [PMID: 38082185 PMCID: PMC11473616 DOI: 10.1007/s11010-023-04903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 10/15/2024]
Abstract
Anthracyclines' cardiotoxicity involves an accelerated generation of reactive oxygen species. This oxidative damage has been found to accelerate the expression of hexose-6P-dehydrogenase (H6PD), that channels glucose-6-phosphate (G6P) through the pentose phosphate pathway (PPP) confined within the endoplasmic/sarcoplasmic reticulum (SR). To verify the role of SR-PPP in the defense mechanisms activated by doxorubicin (DXR) in cardiomyocytes, we tested the effect of this drug in H6PD knockout mice (H6PD-/-). Twenty-eight wildtype (WT) and 32 H6PD-/- mice were divided into four groups to be treated with intraperitoneal administration of saline (untreated) or DXR (8 mg/Kg once a week for 3 weeks). One week thereafter, survivors underwent imaging of 18F-deoxyglucose (FDG) uptake and were sacrificed to evaluate the levels of H6PD, glucose-6P-dehydrogenase (G6PD), G6P transporter (G6PT), and malondialdehyde. The mRNA levels of SR Ca2+-ATPase 2 (Serca2) and ryanodine receptors 2 (RyR2) were evaluated and complemented with Hematoxylin/Eosin staining and transmission electron microscopy. During the treatment period, 1/14 DXR-WT and 12/18 DXR-H6PD-/- died. At microPET, DXR-H6PD-/- survivors displayed an increase in left ventricular size (p < 0.001) coupled with a decreased urinary output, suggesting a severe hemodynamic impairment. At ex vivo analysis, H6PD-/- condition was associated with an oxidative damage independent of treatment type. DXR increased H6PD expression only in WT mice, while G6PT abundance increased in both groups, mismatching a generalized decrease of G6PD levels. Switching-off SR-PPP impaired reticular accumulation of Ca2+ decelerating Serca2 expression and upregulating RyR2 mRNA level. It thus altered mitochondrial ultrastructure eventually resulting in a cardiomyocyte loss. The recognized vulnerability of SR to the anthracycline oxidative damage is counterbalanced by an acceleration of G6P flux through a PPP confined within the reticular lumen. The interplay of SR-PPP with the intracellular Ca2+ exchanges regulators in cardiomyocytes configure the reticular PPP as a potential new target for strategies aimed to decrease anthracycline toxicity.
Collapse
Affiliation(s)
- Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Vanessa Cossu
- Department of Experimental Medicine, Human Anatomy Section, University of Genoa, 16132, Genoa, Italy.
| | | | - Eva Bianconi
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Sonia Carta
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | | | - Sabrina Chiesa
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | | | - Laura Emionite
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | | | - Luca Sofia
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Francesca D'Amico
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Tania Di Raimondo
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Silvia Chiola
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | | | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Pietro Ameri
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Cecilia Marini
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20054, Milan, Italy
| |
Collapse
|
2
|
Prokai L, Zaman K, Prokai-Tatrai K. Mass spectrometry-based retina proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:1032-1062. [PMID: 35670041 PMCID: PMC9730434 DOI: 10.1002/mas.21786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
A subfield of neuroproteomics, retina proteomics has experienced a transformative growth since its inception due to methodological advances in enabling chemical, biochemical, and molecular biology techniques. This review focuses on mass spectrometry's contributions to facilitate mammalian and avian retina proteomics to catalog and quantify retinal protein expressions, determine their posttranslational modifications, as well as its applications to study the proteome of the retina in the context of biology, health and diseases, and therapy developments.
Collapse
Affiliation(s)
- Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
3
|
Aboufares El Alaoui A, Buhl E, Galizia S, Hodge JJL, de Vivo L, Bellesi M. Increased interaction between endoplasmic reticulum and mitochondria following sleep deprivation. BMC Biol 2023; 21:1. [PMID: 36600217 PMCID: PMC9814192 DOI: 10.1186/s12915-022-01498-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Prolonged cellular activity may overload cell function, leading to high rates of protein synthesis and accumulation of misfolded or unassembled proteins, which cause endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR) to re-establish normal protein homeostasis. Previous molecular work has demonstrated that sleep deprivation (SD) leads to ER stress in neurons, with a number of ER-specific proteins being upregulated to maintain optimal cellular proteostasis. It is still not clear which cellular processes activated by sleep deprivation lead to ER- stress, but increased cellular metabolism, higher request for protein synthesis, and over production of oxygen radicals have been proposed as potential contributing factors. Here, we investigate the transcriptional and ultrastructural ER and mitochondrial modifications induced by sleep loss. RESULTS We used gene expression analysis in mouse forebrains to show that SD was associated with significant transcriptional modifications of genes involved in ER stress but also in ER-mitochondria interaction, calcium homeostasis, and mitochondrial respiratory activity. Using electron microscopy, we also showed that SD was associated with a general increase in the density of ER cisternae in pyramidal neurons of the motor cortex. Moreover, ER cisternae established new contact sites with mitochondria, the so-called mitochondria associated membranes (MAMs), important hubs for molecule shuttling, such as calcium and lipids, and for the modulation of ATP production and redox state. Finally, we demonstrated that Drosophila male mutant flies (elav > linker), in which the number of MAMs had been genetically increased, showed a reduction in the amount and consolidation of sleep without alterations in the homeostatic sleep response to SD. CONCLUSIONS We provide evidence that sleep loss induces ER stress characterized by increased crosstalk between ER and mitochondria. MAMs formation associated with SD could represent a key phenomenon for the modulation of multiple cellular processes that ensure appropriate responses to increased cell metabolism. In addition, MAMs establishment may play a role in the regulation of sleep under baseline conditions.
Collapse
Affiliation(s)
- Amina Aboufares El Alaoui
- grid.7010.60000 0001 1017 3210Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy ,grid.5602.10000 0000 9745 6549School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Edgar Buhl
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Sabrina Galizia
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - James J. L. Hodge
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Luisa de Vivo
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK ,grid.5602.10000 0000 9745 6549School of Pharmacy, University of Camerino, Camerino, Italy
| | - Michele Bellesi
- grid.5602.10000 0000 9745 6549School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy ,grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Morelli AM, Ravera S, Panfoli I. The aerobic mitochondrial ATP synthesis from a comprehensive point of view. Open Biol 2020; 10:200224. [PMID: 33081639 PMCID: PMC7653358 DOI: 10.1098/rsob.200224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most of the ATP to satisfy the energetic demands of the cell is produced by the F1Fo-ATP synthase (ATP synthase) which can also function outside the mitochondria. Active oxidative phosphorylation (OxPhos) was shown to operate in the photoreceptor outer segment, myelin sheath, exosomes, microvesicles, cell plasma membranes and platelets. The mitochondria would possess the exclusive ability to assemble the OxPhos molecular machinery so to share it with the endoplasmic reticulum (ER) and eventually export the ability to aerobically synthesize ATP in true extra-mitochondrial districts. The ER lipid rafts expressing OxPhos components is indicative of the close contact of the two organelles, bearing different evolutionary origins, to maximize the OxPhos efficiency, exiting in molecular transfer from the mitochondria to the ER. This implies that its malfunctioning could trigger a generalized oxidative stress. This is consistent with the most recent interpretations of the evolutionary symbiotic process whose necessary prerequisite appears to be the presence of the internal membrane system inside the eukaryote precursor, of probable archaeal origin allowing the engulfing of the α-proteobacterial precursor of mitochondria. The process of OxPhos in myelin is here studied in depth. A model is provided contemplating the biface arrangement of the nanomotor ATP synthase in the myelin sheath.
Collapse
Affiliation(s)
- Alessandro Maria Morelli
- Pharmacy Department (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Silvia Ravera
- Experimental Medicine Department (DIMES), University of Genova, Via De Toni, 14, 16132 Genova, Italy
| | - Isabella Panfoli
- Pharmacy Department (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| |
Collapse
|
5
|
Parks EE, Logan S, Yeganeh A, Farley JA, Owen DB, Sonntag WE. Interleukin 6 reduces allopregnanolone synthesis in the brain and contributes to age-related cognitive decline in mice. J Lipid Res 2020; 61:1308-1319. [PMID: 32669383 PMCID: PMC7529050 DOI: 10.1194/jlr.ra119000479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cognitive decline with age is a harmful process that can reduce quality of life. Multiple factors have been established to contribute to cognitive decline, but the overall etiology remains unknown. Here, we hypothesized that cognitive dysfunction is mediated, in part, by increased levels of inflammatory cytokines that alter allopregnanolone (AlloP) levels, an important neurosteroid in the brain. We assessed the levels and regulation of AlloP and the effects of AlloP supplementation on cognitive function in 4-month-old and 24-month-old male C57BL/6 mice. With age, the expression of enzymes involved in the AlloP synthetic pathway was decreased and corticosterone (CORT) synthesis increased. Supplementation of AlloP improved cognitive function. Interestingly, interleukin 6 (IL-6) infusion in young animals significantly reduced the production of AlloP compared with controls. It is notable that inhibition of IL-6 with its natural inhibitor, soluble membrane glycoprotein 130, significantly improved spatial memory in aged mice. These findings were supported by in vitro experiments in primary murine astrocyte cultures, indicating that IL-6 decreases production of AlloP and increases CORT levels. Our results indicate that age-related increases in IL-6 levels reduce progesterone substrate availability, resulting in a decline in AlloP levels and an increase in CORT. Furthermore, our results indicate that AlloP is a critical link between inflammatory cytokines and the age-related decline in cognitive function.
Collapse
Affiliation(s)
- Eileen E Parks
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sreemathi Logan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alexander Yeganeh
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Julie A Farley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel B Owen
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Pandya NJ, Klaassen RV, van der Schors RC, Slotman JA, Houtsmuller A, Smit AB, Li KW. Group 1 metabotropic glutamate receptors 1 and 5 form a protein complex in mouse hippocampus and cortex. Proteomics 2016; 16:2698-2705. [PMID: 27392515 PMCID: PMC5129514 DOI: 10.1002/pmic.201500400] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 06/03/2016] [Accepted: 07/05/2016] [Indexed: 12/31/2022]
Abstract
The group 1 metabotropic glutamate receptors 1 and 5 (mGluR1/5) have been implicated in mechanisms of synaptic plasticity and may serve as potential therapeutic targets in autism spectrum disorders. The interactome of group 1 mGluRs has remained largely unresolved. Using a knockout‐controlled interaction proteomics strategy we examined the mGluR5 protein complex in two brain regions, hippocampus and cortex, and identified mGluR1 as its major interactor in addition to the well described Homer proteins. We confirmed the presence of mGluR1/5 complex by (i) reverse immunoprecipitation using an mGluR1 antibody to pulldown mGluR5 from hippocampal tissue, (ii) coexpression in HEK293 cells followed by coimmunoprecipitation to reveal the direct interaction of mGluR1 and 5, and (iii) superresolution microscopy imaging of hippocampal primary neurons to show colocalization of the mGluR1/5 in the synapse.
Collapse
Affiliation(s)
- Nikhil J Pandya
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands
| | - Remco V Klaassen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands
| | - Roel C van der Schors
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands
| | - Johan A Slotman
- Optical Imaging Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Marini C, Ravera S, Buschiazzo A, Bianchi G, Orengo AM, Bruno S, Bottoni G, Emionite L, Pastorino F, Monteverde E, Garaboldi L, Martella R, Salani B, Maggi D, Ponzoni M, Fais F, Raffaghello L, Sambuceti G. Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt. Sci Rep 2016; 6:25092. [PMID: 27121192 PMCID: PMC4848551 DOI: 10.1038/srep25092] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/07/2016] [Indexed: 12/25/2022] Open
Abstract
Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This “Warburg effect” represents a standard to diagnose and monitor tumor aggressiveness with 18F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that 18F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milan, Section of Genoa, Genoa, Italy.,Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Ambra Buschiazzo
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Anna Maria Orengo
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Gianluca Bottoni
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Laura Emionite
- Animal facility, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Elena Monteverde
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Lucia Garaboldi
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Barbara Salani
- Department of Internal Medicine, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Mirco Ponzoni
- Laboratorio di Oncologia, IRCCS G. Gaslini, Genoa, Italy
| | - Franco Fais
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Molecular Pathology, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Gianmario Sambuceti
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
8
|
Rahlouni F, Szarka S, Shulaev V, Prokai L. A Survey of the Impact of Deyolking on Biological Processes Covered by Shotgun Proteomic Analyses of Zebrafish Embryos. Zebrafish 2015; 12:398-407. [PMID: 26439676 DOI: 10.1089/zeb.2015.1121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deyolking, the removal of the most abundant protein from the zebrafish (Danio rerio) embryo, is a common technique for in-depth exploration of proteome-level changes in vivo due to various environmental stressors or pharmacological impacts during embryonic stage of development. However, the effect of this procedure on the remaining proteome has not been fully studied. Here, we report a label-free shotgun proteomics survey on proteome coverage and biological processes that are enriched and depleted as a result of deyolking. Enriched proteins are involved in cellular energetics and development pathways, specifically implicating enrichment related to mitochondrial function. Although few proteins were removed completely by deyolking, depleted molecular pathways were associated with calcium signaling and signaling events implicating immune system response.
Collapse
Affiliation(s)
- Fatima Rahlouni
- 1 Department of Pharmacology and Neuroscience, University of North Texas Health Science Center , Fort Worth, Texas
| | - Szabolcs Szarka
- 1 Department of Pharmacology and Neuroscience, University of North Texas Health Science Center , Fort Worth, Texas
| | - Vladimir Shulaev
- 2 Department of Biological Sciences, University of North Texas , Denton, Texas
| | - Laszlo Prokai
- 1 Department of Pharmacology and Neuroscience, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
9
|
Talamantes T, Ughy B, Domonkos I, Kis M, Gombos Z, Prokai L. Label-free LC-MS/MS identification of phosphatidylglycerol-regulated proteins in Synechocystis
sp. PCC6803. Proteomics 2014; 14:1053-7. [DOI: 10.1002/pmic.201300372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/04/2014] [Accepted: 02/20/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Tatjana Talamantes
- Department of Molecular Biology and Immunology; University of North Texas Health Science Center; Fort Worth TX USA
| | - Bettina Ughy
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Plant Biology; Szeged Hungary
| | - Ildikó Domonkos
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Plant Biology; Szeged Hungary
| | - Mihály Kis
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Plant Biology; Szeged Hungary
| | - Zoltán Gombos
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Plant Biology; Szeged Hungary
| | - Laszlo Prokai
- Department of Molecular Biology and Immunology; University of North Texas Health Science Center; Fort Worth TX USA
| |
Collapse
|
10
|
Panfoli I, Ravera S, Bruschi M, Candiano G, Morelli A. Proteomics unravels the exportability of mitochondrial respiratory chains. Expert Rev Proteomics 2014; 8:231-9. [DOI: 10.1586/epr.11.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Song W, Peng Z, Gooyit M, Suckow MA, Schroeder VA, Wolter WR, Lee M, Ikejiri M, Cui J, Gu Z, Chang M. Water-soluble mmp-9 inhibitor prodrug generates active metabolites that cross the blood-brain barrier. ACS Chem Neurosci 2013; 4:1168-73. [PMID: 23687970 DOI: 10.1021/cn400077d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MMP-9 plays a detrimental role in the pathology of several neurological diseases and, thus, represents an important target for intervention. The water-soluble prodrug ND-478 is hydrolyzed to the active MMP-9 inhibitor ND-322, which in turn is N-acetylated to the even more potent metabolite ND-364. We used a sensitive bioanalytical method based on ultraperformance liquid chromatography with multiple-reaction monitoring detection to measure levels of ND-478, ND-322, and ND-364 in plasma and brain after administration of ND-478 and the metabolites. ND-478 did not cross the blood-brain barrier, as was expected; however the active metabolites ND-322 and ND-364 distributed to the brain. The active compound after administration of either ND-478 or ND-322 is likely ND-364. ND-322 is N-acetylated in both brain and liver, but it is so metabolized preferentially in liver. Since N-acetyltransferases involved in the metabolism of ND-322 to ND-364 are polymorphic, direct administration of the N-acetylated ND-364 would achieve the requisite therapeutic levels in the brain.
Collapse
Affiliation(s)
- Wei Song
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zhihong Peng
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Major Gooyit
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mark A. Suckow
- Freimann Life Sciences Center and Department of Biological
Sciences, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Valerie A. Schroeder
- Freimann Life Sciences Center and Department of Biological
Sciences, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - William R. Wolter
- Freimann Life Sciences Center and Department of Biological
Sciences, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Mijoon Lee
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Masajiro Ikejiri
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jiankun Cui
- Department of Pathology, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Zezong Gu
- Department of Pathology, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Mayland Chang
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
12
|
Nagaprashantha LD, Talamantes T, Singhal J, Guo J, Vatsyayan R, Rauniyar N, Awasthi S, Singhal SS, Prokai L. Proteomic analysis of signaling network regulation in renal cell carcinomas with differential hypoxia-inducible factor-2α expression. PLoS One 2013; 8:e71654. [PMID: 23940778 PMCID: PMC3733962 DOI: 10.1371/journal.pone.0071654] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/03/2013] [Indexed: 02/01/2023] Open
Abstract
Background The loss of von Hippel–Lindau (VHL) protein function leads to highly vascular renal tumors characterized by an aggressive course of disease and refractoriness to chemotherapy and radiotherapy. Loss of VHL in renal tumors also differs from tumors of other organs in that the oncogenic cascade is mediated by an increase in the levels of hypoxia-inducible factor-2α (HIF2α) instead of hypoxia-inducible factor-1α (HIF1α). Methods and Principal Findings We used renal carcinoma cell lines that recapitulate the differences between mutant VHL and wild-type VHL genotypes. Utilizing a method relying on extracted peptide intensities as a label-free approach for quantitation by liquid chromatography–mass spectrometry, our proteomics study revealed regulation of key proteins important for cancer cell survival, proliferation and stress-resistance, and implicated differential regulation of signaling networks in VHL-mutant renal cell carcinoma. We also observed upregulation of cellular energy pathway enzymes and the stress-responsive mitochondrial 60-kDa heat shock protein. Finding reliance on glutaminolysis in VHL-mutant renal cell carcinoma was of particular significance, given the generally predominant dependence of tumors on glycolysis. The data have been deposited to the ProteomeXchange with identifier PXD000335. Conclusions and Significance Pathway analyses provided corroborative evidence for differential regulation of molecular and cellular functions influencing cancer energetics, metabolism and cell proliferation in renal cell carcinoma with distinct VHL genotype. Collectively, the differentially regulated proteome characterized by this study can potentially guide translational research specifically aimed at effective clinical interventions for advanced VHL-mutant, HIF2α-over-expressing tumors.
Collapse
Affiliation(s)
- Lokesh Dalasanur Nagaprashantha
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schuldiner M, Weissman JS. The contribution of systematic approaches to characterizing the proteins and functions of the endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:a013284. [PMID: 23359093 DOI: 10.1101/cshperspect.a013284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is a complex organelle responsible for a range of functions including protein folding and secretion, lipid biosynthesis, and ion homeostasis. Despite its central and essential roles in eukaryotic cells during development, growth, and disease, many ER proteins are poorly characterized. Moreover, the range of biochemical reactions that occur within the ER membranes, let alone how these different activities are coordinated, is not yet defined. In recent years, focused studies on specific ER functions have been complemented by systematic approaches and innovative technologies for high-throughput analysis of the location, levels, and biological impact of given components. This article focuses on the recent progress of these efforts, largely pioneered in the budding yeast Saccharomyces cerevisiae, and also addresses how future systematic studies can be geared to uncover the "dark matter" of uncharted ER functions.
Collapse
Affiliation(s)
- Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 76100.
| | | |
Collapse
|
14
|
Ning M, Lopez M, Cao J, Buonanno FS, Lo EH. Application of proteomics to cerebrovascular disease. Electrophoresis 2012; 33:3582-97. [PMID: 23161401 PMCID: PMC3712851 DOI: 10.1002/elps.201200481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/12/2022]
Abstract
While neurovascular diseases such as ischemic and hemorrhagic stroke are the leading causes of disability in the world, the repertoire of therapeutic interventions has remained remarkably limited. There is a dire need to develop new diagnostic, prognostic, and therapeutic options. The study of proteomics is particularly enticing for cerebrovascular diseases such as stroke, which most likely involve multiple gene interactions resulting in a wide range of clinical phenotypes. Currently, rapidly progressing neuroproteomic techniques have been employed in clinical and translational research to help identify biologically relevant pathways, to understand cerebrovascular pathophysiology, and to develop novel therapeutics and diagnostics. Future integration of proteomic with genomic, transcriptomic, and metabolomic studies will add new perspectives to better understand the complexities of neurovascular injury. Here, we review cerebrovascular proteomics research in both preclinical (animal, cell culture) and clinical (blood, urine, cerebrospinal fluid, microdialyates, tissue) studies. We will also discuss the rewards, challenges, and future directions for the application of proteomics technology to the study of various disease phenotypes. To capture the dynamic range of cerebrovascular injury and repair with a translational targeted and discovery approach, we emphasize the importance of complementing innovative proteomic technology with existing molecular biology models in preclinical studies, and the need to advance pharmacoproteomics to directly probe clinical physiology and gauge therapeutic efficacy at the bedside.
Collapse
Affiliation(s)
- Mingming Ning
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
15
|
Dutta G, Barber DS, Zhang P, Doperalski NJ, Liu B. Involvement of dopaminergic neuronal cystatin C in neuronal injury-induced microglial activation and neurotoxicity. J Neurochem 2012; 122:752-63. [PMID: 22679891 DOI: 10.1111/j.1471-4159.2012.07826.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Factors released from injured dopaminergic (DA) neurons may trigger microglial activation and set in motion a vicious cycle of neuronal injury and inflammation that fuels progressive DA neurodegeneration in Parkinson's disease. In this study, using proteomic and immunoblotting analysis, we detected elevated levels of cystatin C in conditioned media (CM) from 1-methyl-4-phenylpyridinium and dieldrin-injured rat DA neuronal cells. Immunodepletion of cystatin C significantly reduced the ability of DA neuronal CM to induce activation of rat microglial cells as determined by up-regulation of inducible nitric oxide synthase, production of free radicals and release of proinflammatory cytokines as well as activated microglia-mediated DA neurotoxicity. Treatment of the cystatin C-containing CM with enzymes that remove O- and sialic acid-, but not N-linked carbohydrate moieties markedly reduced the ability of the DA neuronal CM to activate microglia. Taken together, these results suggest that DA neuronal cystatin C plays a role in the neuronal injury-induced microglial activation and neurotoxicity. These findings from the rat DA neuron-microglia in vitro model may help guide continued investigation to define the precise role of cystatin C in the complex interplay among neurons and glia in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Garima Dutta
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
16
|
Mathias RA, Chen YS, Kapp EA, Greening DW, Mathivanan S, Simpson RJ. Triton X-114 phase separation in the isolation and purification of mouse liver microsomal membrane proteins. Methods 2011; 54:396-406. [DOI: 10.1016/j.ymeth.2011.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 11/29/2022] Open
|
17
|
Chen X, Karnovsky A, Sans MD, Andrews PC, Williams JA. Molecular characterization of the endoplasmic reticulum: insights from proteomic studies. Proteomics 2010; 10:4040-52. [PMID: 21080494 DOI: 10.1002/pmic.201000234] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) is a multifunctional intracellular organelle responsible for the synthesis, processing and trafficking of a wide variety of proteins essential for cell growth and survival. Therefore, comprehensive characterization of the ER proteome is of great importance to the understanding of its functions and has been actively pursued in the past decade by scientists in the proteomics field. This review summarizes major proteomic studies published in the past decade that focused on the ER proteome. We evaluate the data sets obtained from two different organs, liver and pancreas each of which contains a primary cell type (hepatocyte and acinar cell) with specialized functions. We also discuss how the nature of the proteins uncovered is related to the methods of organelle purification, organelle purity and the techniques used for protein separation prior to MS. In addition, this review also puts emphasis on the biological insights gained from these studies regarding the molecular functions of the ER including protein synthesis and translocation, protein folding and quality control, ER-associated degradation and ER stress, ER export and membrane trafficking, calcium homeostasis and detoxification and drug metabolism.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|
18
|
Song Y, Jiang Y, Ying W, Gong Y, Yan Y, Yang D, Ma J, Xue X, Zhong F, Wu S, Hao Y, Sun A, Li T, Sun W, Wei H, Zhu Y, Qian X, He F. Quantitative Proteomic Survey of Endoplasmic Reticulum in Mouse Liver. J Proteome Res 2010; 9:1195-202. [DOI: 10.1021/pr900146t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanping Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Ying Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Yan Gong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Yujuan Yan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Xiaofang Xue
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Fan Zhong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Songfeng Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Yunwei Hao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Aihua Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Tao Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Wei Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Handong Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China, Beijing Medical Library of Chinese PLA, Beijing 100039, P.R. China, and Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
19
|
Lull ME, Freeman WM, VanGuilder HD, Vrana KE. The use of neuroproteomics in drug abuse research. Drug Alcohol Depend 2010; 107:11-22. [PMID: 19926406 PMCID: PMC3947580 DOI: 10.1016/j.drugalcdep.2009.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 09/21/2009] [Accepted: 10/15/2009] [Indexed: 01/08/2023]
Abstract
The number of discovery proteomic studies of drug abuse has begun to increase in recent years, facilitated by the adoption of new techniques such as 2D-DIGE and iTRAQ. For these new tools to provide the greatest insight into the neurobiology of addiction, however, it is important that the addiction field has a clear understanding of the strengths, limitations, and drug abuse-specific research factors of neuroproteomic studies. This review outlines approaches for improving animal models, protein sample quality and stability, proteome fractionation, data analysis, and data sharing to maximize the insights gained from neuroproteomic studies of drug abuse. For both the behavioral researcher interested in what proteomic study results mean, and for biochemists joining the drug abuse research field, a careful consideration of these factors is needed. Similar to genomic, transcriptomic, and epigenetic methods, appropriate use of new proteomic technologies offers the potential to provide a novel and global view of the neurobiological changes underlying drug addiction. Proteomic tools may be an enabling technology to identify key proteins involved in drug abuse behaviors, with the ultimate goal of understanding the etiology of drug abuse and identifying targets for the development of therapeutic agents.
Collapse
Affiliation(s)
- Melinda E. Lull
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Willard M. Freeman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA, Functional Genomics Facility, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA,Corresponding author at: Department of Pharmacology, R130, Penn State College of Medicine, 500 University Drive, P.O. Box 850, Hershey, PA 17033, USA. Tel.: +1 717 531 8285; fax: +1 717 531 0419. (K.E. Vrana)
| |
Collapse
|
20
|
Wörner M, Melchior K, Delmotte N, Hwang KH, Monostory K, Huber CG, Bernhardt R. Shotgun proteomic analysis of the microsomal fraction of eukaryotic cells using a two-dimensional reversed-phase×ion-pair reversed-phase HPLC setup. J Sep Sci 2009; 32:1165-74. [DOI: 10.1002/jssc.200800619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Abstract
The human central nervous system (CNS) is the most complex organ in nature, composed of ten trillion cells forming complex neural networks using a quadrillion synaptic connections. Proteins, their modifications, and their interactions are integral to CNS function. The emerging field of neuroproteomics provides us with a wide-scope view of posttranslation protein dynamics within the CNS to better our understanding of its function, and more often, its dysfunction consequent to neurodegenerative disorders. This chapter reviews methodology employed in the neurosciences to study the neuroproteome in health and disease. The chapter layout parallels this volume's four parts. Part I focuses on modeling human neuropathology in animals as surrogate, accessible, and controllable platforms in our research. Part II discusses methodology used to focus analysis onto a subneuroproteome. Part III reviews analytical and bioinformatic technologies applied in neuroproteomics. Part IV discusses clinical neuroproteomics, from processing of human biofluids to translation in biomarkers research. Neuroproteomics continues to mature as a discipline, confronting the extreme complexity of the CNS proteome and its dynamics, and providing insight into the molecular mechanisms underlying how our nervous system works and how it is compromised by injury and disease.
Collapse
|
22
|
Strande V, Canelle L, Tastet C, Burlet-Schiltz O, Monsarrat B, Hondermarck H. The proteome of the human breast cancer cell line MDA-MB-231: Analysis by LTQ-Orbitrap mass spectrometry. Proteomics Clin Appl 2009; 3:41-50. [DOI: 10.1002/prca.200800083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Indexed: 01/04/2023]
|
23
|
Abstract
The Gene Ontology (GO) is widely recognized as the premier tool for the organization and functional annotation of molecular aspects of cellular systems. However, for many immunologists the use of GO is a very foreign concept. Indeed, as a controlled vocabulary, GO can almost be considered a new language, and it can be difficult to appreciate the use and value of this approach for understanding the immune system. This review reflects on the application of GO to the field of immunology and explains the process of GO annotation. Finally, this review hopes to inspire immunologists to invest time and energy in improving both the content of the GO and the quality of GO annotations associated with genes of immunological interest.
Collapse
Affiliation(s)
- Ruth C Lovering
- Department of Medicine, University College London, Rayne Institute, London, UK
| | | | | | | |
Collapse
|
24
|
Abstract
Gene Ontology (GO) provides a controlled vocabulary to describe the attributes of genes and gene products in any organism. Although one might initially wonder what relevance a ‘controlled vocabulary’ might have for cardiovascular science, such a resource is proving highly useful for researchers investigating complex cardiovascular disease phenotypes as well as those interpreting results from high-throughput methodologies. GO enables the current functional knowledge of individual genes to be used to annotate genomic or proteomic datasets. In this way, the GO data provides a very effective way of linking biological knowledge with the analysis of the large datasets of post-genomics research. Consequently, users of high-throughput methodologies such as expression arrays or proteomics will be the main beneficiaries of such annotation sets. However, as GO annotations increase in quality and quantity, groups using small-scale approaches will gradually begin to benefit too. For example, genome wide association scans for coronary heart disease are identifying novel genes, with previously unknown connections to cardiovascular processes, and the comprehensive annotation of these novel genes might provide clues to their cardiovascular link. At least 4000 genes, to date, have been implicated in cardiovascular processes and an initiative is underway to focus on annotating these genes for the benefit of the cardiovascular community. In this article we review the current uses of Gene Ontology annotation to highlight why Gene Ontology should be of interest to all those involved in cardiovascular research.
Collapse
|
25
|
Stevens SM, Prokai-Tatrai K, Prokai L. Factors that contribute to the misidentification of tyrosine nitration by shotgun proteomics. Mol Cell Proteomics 2008; 7:2442-51. [PMID: 18708664 DOI: 10.1074/mcp.m800065-mcp200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The high selectivity and throughput of tandem mass spectrometry allow for rapid identification and localization of various posttranslational protein modifications from complex mixtures by shotgun approaches. Although sequence database search algorithms provide necessary support to process the potentially enormous quantity of MS/MS spectra generated from large scale tandem mass spectrometry experiments, false positive identifications of peptide modifications may exist even after implementation of stringent identification criteria. In this report, we describe factors that lead to misinterpretation of MS/MS spectra as well as common chemical and experimental artifacts that generate false positives using the proteomics-based identification of tyrosine nitration as an example. In addition to the proposed manual validation criteria, the importance of peptide synthesis and subsequent MS/MS characterization for validation of peptide nitration demonstrated by several examples from earlier publications is also presented.
Collapse
Affiliation(s)
- Stanley M Stevens
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | | | |
Collapse
|