1
|
Wang JY, Zhang XP, Zhou HK, Cai HX, Xu JB, Xie BG, Thiery JP, Zhou W. The selective sponging of miRNAs by OIP5-AS1 regulates metabolic reprogramming of pyruvate in adenoma-carcinoma transition of human colorectal cancer. BMC Cancer 2024; 24:611. [PMID: 38773399 PMCID: PMC11106987 DOI: 10.1186/s12885-024-12367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
RNA interactomes and their diversified functionalities have recently benefited from critical methodological advances leading to a paradigm shift from a conventional conception on the regulatory roles of RNA in pathogenesis. However, the dynamic RNA interactomes in adenoma-carcinoma sequence of human CRC remain unexplored. The coexistence of adenoma, cancer, and normal tissues in colorectal cancer (CRC) patients provides an appropriate model to address this issue. Here, we adopted an RNA in situ conformation sequencing technology for mapping RNA-RNA interactions in CRC patients. We observed large-scale paired RNA counts and identified some unique RNA complexes including multiple partners RNAs, single partner RNAs, non-overlapping single partner RNAs. We focused on the antisense RNA OIP5-AS1 and found that OIP5-AS1 could sponge different miRNA to regulate the production of metabolites including pyruvate, alanine and lactic acid. Our findings provide novel perspectives in CRC pathogenesis and suggest metabolic reprogramming of pyruvate for the early diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Jing-Yu Wang
- Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, 314001, China
| | - Xiao-Ping Zhang
- Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, 314001, China
| | - Hong-Kun Zhou
- Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, 314001, China
| | - Hong-Xin Cai
- School of Medicine, Jiaxing University, No 118, Road Jiahang Avenue, Jiaxing, Zhejiang, 314001, China
| | - Jin-Biao Xu
- School of Medicine, Jiaxing University, No 118, Road Jiahang Avenue, Jiaxing, Zhejiang, 314001, China
| | - Bao-Gang Xie
- School of Medicine, Jiaxing University, No 118, Road Jiahang Avenue, Jiaxing, Zhejiang, 314001, China
| | - Jean-Paul Thiery
- Guangzhou laboratory, Guangzhou, 510700, China
- Institute of Molecular and Cell Biology, A-STAR, Singapore, 138673, Singapore
| | - Wu Zhou
- School of Medicine, Jiaxing University, No 118, Road Jiahang Avenue, Jiaxing, Zhejiang, 314001, China.
| |
Collapse
|
2
|
Liu Y, Qi C, Zheng L, Li J, Wang L, Yang Y. 1H-NMR based metabolic study of MMTV-PyMT mice along with pathological progress to screen biomarkers for the early diagnosis of breast cancer. Mol Omics 2022; 18:167-177. [DOI: 10.1039/d1mo00387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study showed the common metabolic changes between BC patients and mice, which were related to pathological processes.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- Department of Pathology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, 510120, P. R. China
| | - Cuiling Qi
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lingyun Zheng
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yongxia Yang
- Pharmacy Information Engineering Department, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Jukes Z, Freier A, Glymenaki M, Brown R, Parry L, Want E, Vorkas PA, Li JV. Lipid profiling of mouse intestinal organoids for studying APC mutations. Biosci Rep 2021; 41:BSR20202915. [PMID: 33620068 PMCID: PMC7969701 DOI: 10.1042/bsr20202915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Inactivating mutations including both germline and somatic mutations in the adenomatous polyposis coli (APC) gene drives most familial and sporadic colorectal cancers. Understanding the metabolic implications of this mutation will aid to establish its wider impact on cellular behaviour and potentially inform clinical decisions. However, to date, alterations in lipid metabolism induced by APC mutations remain unclear. Intestinal organoids have gained widespread popularity in studying colorectal cancer and chemotherapies, because their 3D structure more accurately mimics an in vivo environment. Here, we aimed to investigate intra-cellular lipid disturbances induced by APC gene mutations in intestinal organoids using a reversed-phase ultra-high-performance liquid chromatography mass spectrometry (RP-UHPLC-MS)-based lipid profiling method. Lipids of the organoids grown from either wild-type (WT) or mice with APC mutations (Lgr5-EGFP-IRES-CreERT2Apcfl/fl) were extracted and analysed using RP-UHPLC-MS. Levels of phospholipids (e.g. PC(16:0/16:0), PC(18:1/20:0), PC(38:0), PC(18:1/22:1)), ceramides (e.g. Cer(d18:0/22:0), Cer(d42:0), Cer(d18:1/24:1)) and hexosylceramides (e.g. HexCer(d18:1/16:0), HexCer(d18:1/22:0)) were higher in Apcfl/fl organoids, whereas levels of sphingomyelins (e.g. SM(d18:1/14:0), SM(d18:1/16:0)) were lower compared with WT. These observations indicate that cellular metabolism of sphingomyelin was up-regulated, resulting in the cellular accumulation of ceramides and production of HexCer due to the absence of Apcfl/fl in the organoids. Our observations demonstrated lipid profiling of organoids and provided an enhanced insight into the effects of the APC mutations on lipid metabolism, making for a valuable addition to screening options of the organoid lipidome.
Collapse
Affiliation(s)
- Zoë Jukes
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, U.K
| | - Anne Freier
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, U.K
| | - Maria Glymenaki
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, U.K
| | - Richard Brown
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Hadyn Ellis Building, Maindy Rd, Cardiff, CF24 4HQ, U.K
| | - Lee Parry
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Hadyn Ellis Building, Maindy Rd, Cardiff, CF24 4HQ, U.K
| | - Elizabeth Want
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, U.K
| | - Panagiotis A. Vorkas
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, U.K
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Jia V. Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
4
|
Madhu B, Uribe-Lewis S, Bachman M, Murrell A, Griffiths JR. Apc Min/+ tumours and normal mouse small intestines show linear metabolite concentration and DNA cytosine hydroxymethylation gradients from pylorus to colon. Sci Rep 2020; 10:13616. [PMID: 32788746 PMCID: PMC7423954 DOI: 10.1038/s41598-020-70579-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Topographical variations of metabolite concentrations have been reported in the duodenum, jejunum and ileum of the small intestine, and in human intestinal tumours from those regions, but there are no published metabolite concentrations measurements correlated with linear position in the mouse small intestine or intestinal tumours. Since DNA methylation dynamics are influenced by metabolite concentrations, they too could show linear anatomical variation. We measured metabolites by HR-MAS 1H NMR spectroscopy and DNA cytosine modifications by LC/MS, in normal small intestines of C57BL/6J wild-type mice, and in normal and tumour samples from ApcMin/+ mice. Wild-type mouse intestines showed approximately linear, negative concentration gradations from the pylorus (i.e. the junction with the stomach) of alanine, choline compounds, creatine, leucine and valine. ApcMin/+ mouse tumours showed negative choline and valine gradients, but a positive glycine gradient. 5-Hydroxymethylcytosine showed a positive gradient in the tumours. The linear gradients we found along the length of the mouse small intestine and in tumours contrast with previous reports of discrete concentration changes in the duodenum, jejunum and ileum. To our knowledge, this is also the first report of a systematic measurement of global levels of DNA cytosine modification in wild-type and ApcMin/+ mouse small intestine.
Collapse
Affiliation(s)
- Basetti Madhu
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Santiago Uribe-Lewis
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Martin Bachman
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.,Discovery Science and Technology, Medicines Discovery Catapult, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Adele Murrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.,Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
5
|
Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science 2020; 368:368/6487/eaaw5473. [PMID: 32273439 DOI: 10.1126/science.aaw5473] [Citation(s) in RCA: 1110] [Impact Index Per Article: 277.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
Metabolic reprogramming is a hallmark of malignancy. As our understanding of the complexity of tumor biology increases, so does our appreciation of the complexity of tumor metabolism. Metabolic heterogeneity among human tumors poses a challenge to developing therapies that exploit metabolic vulnerabilities. Recent work also demonstrates that the metabolic properties and preferences of a tumor change during cancer progression. This produces distinct sets of vulnerabilities between primary tumors and metastatic cancer, even in the same patient or experimental model. We review emerging concepts about metabolic reprogramming in cancer, with particular attention on why metabolic properties evolve during cancer progression and how this information might be used to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Brandon Faubert
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Dinges SS, Vandergrift LA, Wu S, Berker Y, Habbel P, Taupitz M, Wu CL, Cheng LL. Metabolomic prostate cancer fields in HRMAS MRS-profiled histologically benign tissue vary with cancer status and distance from cancer. NMR IN BIOMEDICINE 2019; 32:e4038. [PMID: 30609175 PMCID: PMC7366614 DOI: 10.1002/nbm.4038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/05/2018] [Accepted: 10/13/2018] [Indexed: 05/05/2023]
Abstract
In this article, we review the state of the field of high resolution magic angle spinning MRS (HRMAS MRS)-based cancer metabolomics since its beginning in 2004; discuss the concept of cancer metabolomic fields, where metabolomic profiles measured from histologically benign tissues reflect patient cancer status; and report our HRMAS MRS metabolomic results, which characterize metabolomic fields in prostatectomy-removed cancerous prostates. Three-dimensional mapping of cancer lesions throughout each prostate enabled multiple benign tissue samples per organ to be classified based on distance from and extent of the closest cancer lesion as well as the Gleason score (GS) of the entire prostate. Cross-validated partial least squares-discriminant analysis separations were achieved between cancer and benign tissue, and between cancer tissue from prostates with high (≥4 + 3) and low (≤3 + 4) GS. Metabolomic field effects enabled histologically benign tissue adjacent to cancer to distinguish the GS and extent of the cancer lesion itself. Benign samples close to either low GS cancer or extensive cancer lesions could be distinguished from those far from cancer. Furthermore, a successfully cross-validated multivariate model for three benign tissue groups with varying distances from cancer lesions within one prostate indicates the scale of prostate cancer metabolomic fields. While these findings could, at present, be potentially useful in the prostate cancer clinic for analysis of biopsy or surgical specimens to complement current diagnostics, the confirmation of metabolomic fields should encourage further examination of cancer fields and can also enhance understanding of the metabolomic characteristics of cancer in myriad organ systems. Our results together with the success of HRMAS MRS-based cancer metabolomics presented in our literature review demonstrate the potential of cancer metabolomics to provide supplementary information for cancer diagnosis, staging, and patient prognostication.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Haematology and Oncology, CCM, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Radiology, Charité Medical University of Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lindsey A. Vandergrift
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Shulin Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Yannick Berker
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Piet Habbel
- Department of Haematology and Oncology, CCM, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Taupitz
- Department of Radiology, Charité Medical University of Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Leo L. Cheng
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Corresponding author: Leo L. Cheng, PhD, 149 13 St, CNY 6, Charlestown, MA 02129, Ph. 617-724-6593,
| |
Collapse
|
7
|
Jaén RI, Prieto P, Casado M, Martín-Sanz P, Boscá L. Post-translational modifications of prostaglandin-endoperoxide synthase 2 in colorectal cancer: An update. World J Gastroenterol 2018; 24:5454-5461. [PMID: 30622375 PMCID: PMC6319129 DOI: 10.3748/wjg.v24.i48.5454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
The biosynthesis of prostanoids is involved in both physiological and pathological processes. The expression of prostaglandin-endoperoxide synthase 2 (PTGS2; also known as COX-2) has been traditionally associated to the onset of several pathologies, from inflammation to cardiovascular, gastrointestinal and oncologic events. For this reason, the search of selective PTGS2 inhibitors has been a focus for therapeutic interventions. In addition to the classic non-steroidal anti-inflammatory drugs, selective and specific PTGS2 inhibitors, termed coxibs, have been generated and widely used. PTGS2 activity is less restrictive in terms of substrate specificity than the homeostatic counterpart PTGS1, and it accounts for the elevated prostanoid synthesis that accompanies several pathologies. The main regulation of PTGS2 occurs at the transcription level. In addition to this, the stability of the mRNA is finely regulated through the interaction with several cytoplasmic elements, ranging from specific microRNAs to proteins that control mRNA degradation. Moreover, the protein has been recognized to be the substrate for several post-translational modifications that affect both the enzyme activity and the targeting for degradation via proteasomal and non-proteasomal mechanisms. Among these modifications, phosphorylation, glycosylation and covalent modifications by reactive lipidic intermediates and by free radicals associated to the pro-inflammatory condition appear to be the main changes. Identification of these post-translational modifications is relevant to better understand the role of PTGS2 in several pathologies and to establish a correct analysis of the potential function of this protein in diseases progress. Finally, these modifications can be used as biomarkers to establish correlations with other parameters, including the immunomodulation dependent on molecular pathological epidemiology determinants, which may provide a better frame for potential therapeutic interventions.
Collapse
Affiliation(s)
- Rafael I Jaén
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
| | - Patricia Prieto
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
| | - Marta Casado
- Department of Biomedicine, Instituto de Biomedicina de Valencia (CSIC), Valencia 46010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, y Hepáticas y Digestivas, ISCIII, Madrid 28029, Spain
| | - Paloma Martín-Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, y Hepáticas y Digestivas, ISCIII, Madrid 28029, Spain
- Unidad Asociada IIBM-ULPGC, Universidad de las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria 35001, Spain
| | - Lisardo Boscá
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, y Hepáticas y Digestivas, ISCIII, Madrid 28029, Spain
- Unidad Asociada IIBM-ULPGC, Universidad de las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria 35001, Spain
| |
Collapse
|
8
|
Abstract
Purpose of Review Metabolic reprogramming is essential for the rapid proliferation of cancer cells and is thus recognized as a hallmark of cancer. In this review, we will discuss the etiologies and effects of metabolic reprogramming in colorectal cancer. Recent Findings Changes in cellular metabolism may precede the acquisition of driver mutations ultimately leading to colonocyte transformation. Oncogenic mutations and loss of tumor suppressor genes further reprogram CRC cells to upregulate glycolysis, glutaminolysis, one-carbon metabolism, and fatty acid synthesis. These metabolic changes are not uniform throughout tumors, as subpopulations of tumor cells may rely on different pathways to adapt to nutrient availability in the local tumor microenvironment. Finally, metabolic cross-communication between stromal cells, immune cells, and the gut microbiota enable CRC growth, invasion, and metastasis. Summary Altered cellular metabolism occurs in CRC at multiple levels, including in the cells that make up the bulk of CRC tumors, cancer stem cells, the tumor microenvironment, and host-microbiome interactions. This knowledge may inform the development of improved screening and therapeutics for CRC.
Collapse
Affiliation(s)
- Rachel E Brown
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Sarah P Short
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, B2215 Garland Ave., 1065D MRB-IV, Nashville, TN 37232-0252, USA
| | - Christopher S Williams
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, B2215 Garland Ave., 1065D MRB-IV, Nashville, TN 37232-0252, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Veterans Affairs Tennessee Valley HealthCare System, Nashville, TN, USA
| |
Collapse
|
9
|
Metabolic reprogramming of the premalignant colonic mucosa is an early event in carcinogenesis. Oncotarget 2017; 8:20543-20557. [PMID: 28423551 PMCID: PMC5400525 DOI: 10.18632/oncotarget.16129] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 12/31/2022] Open
Abstract
Background Colorectal cancer (CRC) is the second leading cause of cancer-related mortality in the United States. There is an increasing need for the identification of biomarkers of pre-malignant and early stage CRC to improve risk-stratification and screening recommendations. In this study, we investigated the possibility of metabolic and mitochondrial reprogramming early in the pre-malignant colorectal field. Methods Rectal biopsies were taken from 81 patients undergoing screening colonoscopy, and gene expression of metabolic and mitochondrial markers were assessed using real time quantitative PCR. Validation studies were performed in two different animal models of colon carcinogenesis: Pirc rats and AOM-treated rats. Results We found evidence of a Warburg effect in the normal-appearing rectal mucosa of patients harboring precancerous lesions elsewhere in the colon compared to control patients, with a significant increase in HIF1a, SLC2A1 (referred to as GLUT1), PKM2, and LDHA. We also found evidence of early mitochondrial changes in the colorectal field of patients harboring pre-cancerous lesions, with significantly increased mitochondrial gene expression of DRP1 (fission), OPA1 (fusion), PGC1-a (biogenesis), UCP2 (uncoupling) and mtND1 (copy number). Similar results were observed in the two different animal models. Conclusions These results demonstrate for the first time evidence of early Warburg-like metabolic changes as well as changes in mitochondrial function, dynamics and mtDNA copy number in endoscopically normal premalignant colorectal mucosal field. These findings provide an opportunity for the development of metabolic biomarkers that could be used for improving screening recommendations and risk-stratification. This also provides a potential target for novel chemopreventive strategies in the pre-malignant colorectal field.
Collapse
|
10
|
Norris L, Malkar A, Horner-Glister E, Hakimi A, Ng LL, Gescher AJ, Creaser C, Sale S, Jones DJL. Search for novel circulating cancer chemopreventive biomarkers of dietary rice bran intervention in ApcMin
mice model of colorectal carcinogenesis, using proteomic and metabolic profiling strategies. Mol Nutr Food Res 2015; 59:1827-36. [DOI: 10.1002/mnfr.201400818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Leonie Norris
- Department of Cancer Studies and Molecular Medicine; Leicester Royal Infirmary; University of Leicester; Leicester UK
| | - Aditya Malkar
- Centre for Analytical Science; Department of Chemistry; Loughborough University; Loughborough Leicestershire UK
| | - Emma Horner-Glister
- Department of Cancer Studies and Molecular Medicine; Leicester Royal Infirmary; University of Leicester; Leicester UK
| | - Amirmansoor Hakimi
- Department of Cancer Studies and Molecular Medicine; Leicester Royal Infirmary; University of Leicester; Leicester UK
| | - Leong L. Ng
- Department of Cardiovascular Sciences, NIHR Leicester Cardiovascular Biomedical Research Unit; Glenfield Hospital; Leicester UK
| | - Andreas J. Gescher
- Department of Cancer Studies and Molecular Medicine; Leicester Royal Infirmary; University of Leicester; Leicester UK
| | - Colin Creaser
- Department of Cancer Studies and Molecular Medicine; Leicester Royal Infirmary; University of Leicester; Leicester UK
| | - Stewart Sale
- Department of Cancer Studies and Molecular Medicine; Leicester Royal Infirmary; University of Leicester; Leicester UK
| | - Donald J. L. Jones
- Department of Cancer Studies and Molecular Medicine; Leicester Royal Infirmary; University of Leicester; Leicester UK
- Department of Cardiovascular Sciences, NIHR Leicester Cardiovascular Biomedical Research Unit; Glenfield Hospital; Leicester UK
| |
Collapse
|
11
|
Fletcher ME, Boshier PR, Wakabayashi K, Keun HC, Smolenski RT, Kirkham PA, Adcock IM, Barton PJ, Takata M, Marczin N. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1274-85. [DOI: 10.1152/ajplung.00220.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/01/2015] [Indexed: 11/22/2022] Open
Abstract
Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione- S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-μ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD+/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications.
Collapse
Affiliation(s)
- Marianne E. Fletcher
- Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, United Kingdom
| | - Piers R. Boshier
- Biosurgery and Surgical Technology, Imperial College London, London, United Kingdom
| | - Kenji Wakabayashi
- Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, United Kingdom
| | - Hector C. Keun
- Biomolecular Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Milano, Italy
| | - Paul A. Kirkham
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Biomedical Sciences, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Paul J. Barton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Masao Takata
- Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, United Kingdom
| | - Nandor Marczin
- Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, United Kingdom
- Department of Anaesthetics, Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital, Harefield, Middlesex, United Kingdom
- Department of Anaesthesia and Intensive Therapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Dazard JEJ, Sandlers Y, Doerner SK, Berger NA, Brunengraber H. Metabolomics of ApcMin/+ mice genetically susceptible to intestinal cancer. BMC SYSTEMS BIOLOGY 2014; 8:72. [PMID: 24954394 PMCID: PMC4099115 DOI: 10.1186/1752-0509-8-72] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Background To determine how diets high in saturated fat could increase polyp formation in the mouse model of intestinal neoplasia, ApcMin/+, we conducted large-scale metabolome analysis and association study of colon and small intestine polyp formation from plasma and liver samples of ApcMin/+ vs. wild-type littermates, kept on low vs. high-fat diet. Label-free mass spectrometry was used to quantify untargeted plasma and acyl-CoA liver compounds, respectively. Differences in contrasts of interest were analyzed statistically by unsupervised and supervised modeling approaches, namely Principal Component Analysis and Linear Model of analysis of variance. Correlation between plasma metabolite concentrations and polyp numbers was analyzed with a zero-inflated Generalized Linear Model. Results Plasma metabolome in parallel to promotion of tumor development comprises a clearly distinct profile in ApcMin/+ mice vs. wild type littermates, which is further altered by high-fat diet. Further, functional metabolomics pathway and network analyses in ApcMin/+ mice on high-fat diet revealed associations between polyp formation and plasma metabolic compounds including those involved in amino-acids metabolism as well as nicotinamide and hippuric acid metabolic pathways. Finally, we also show changes in liver acyl-CoA profiles, which may result from a combination of ApcMin/+-mediated tumor progression and high fat diet. The biological significance of these findings is discussed in the context of intestinal cancer progression. Conclusions These studies show that high-throughput metabolomics combined with appropriate statistical modeling and large scale functional approaches can be used to monitor and infer changes and interactions in the metabolome and genome of the host under controlled experimental conditions. Further these studies demonstrate the impact of diet on metabolic pathways and its relation to intestinal cancer progression. Based on our results, metabolic signatures and metabolic pathways of polyposis and intestinal carcinoma have been identified, which may serve as useful targets for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Jean-Eudes J Dazard
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
13
|
Metabolomic profiling of neoplastic lesions in mice. Methods Enzymol 2014. [PMID: 24924137 DOI: 10.1016/b978-0-12-801329-8.00013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Most cancers develop upon the accumulation of genetic alterations that provoke and sustain the transformed phenotype. Several metabolomic approaches now allow for the global assessment of intermediate metabolites, generating profound insights into the metabolic rewiring associated with malignant transformation. The metabolomic profiling of neoplastic lesions growing in mice, irrespective of their origin, can provide invaluable information on the mechanisms underlying oncogenesis, tumor progression, and response to therapy. Moreover, the metabolomic profiling of tumors growing in mice may result in the identification of novel diagnostic or prognostic biomarkers, which is of great clinical significance. Several methods can be applied to the metabolomic profiling of neoplastic lesions in mice, including mass spectrometry-based techniques (e.g., gas chromatography-, capillary electrophoresis-, or liquid chromatography-coupled mass spectrometry) as well as nuclear magnetic resonance. Here, we compare and discuss the advantages and disadvantages of all these techniques to provide a concise and reliable guide for readers interested in this active area of investigation.
Collapse
|
14
|
Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ, Veselkov K, Mirnezami R, Dezső B, Damjanovich L, Darzi A, Nicholson JK, Takáts Z. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med 2014; 5:194ra93. [PMID: 23863833 DOI: 10.1126/scitranslmed.3005623] [Citation(s) in RCA: 379] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rapid evaporative ionization mass spectrometry (REIMS) is an emerging technique that allows near-real-time characterization of human tissue in vivo by analysis of the aerosol ("smoke") released during electrosurgical dissection. The coupling of REIMS technology with electrosurgery for tissue diagnostics is known as the intelligent knife (iKnife). This study aimed to validate the technique by applying it to the analysis of fresh human tissue samples ex vivo and to demonstrate the translation to real-time use in vivo in a surgical environment. A variety of tissue samples from 302 patients were analyzed in the laboratory, resulting in 1624 cancerous and 1309 noncancerous database entries. The technology was then transferred to the operating theater, where the device was coupled to existing electrosurgical equipment to collect data during a total of 81 resections. Mass spectrometric data were analyzed using multivariate statistical methods, including principal components analysis (PCA) and linear discriminant analysis (LDA), and a spectral identification algorithm using a similar approach was implemented. The REIMS approach differentiated accurately between distinct histological and histopathological tissue types, with malignant tissues yielding chemical characteristics specific to their histopathological subtypes. Tissue identification via intraoperative REIMS matched the postoperative histological diagnosis in 100% (all 81) of the cases studied. The mass spectra reflected lipidomic profiles that varied between distinct histological tumor types and also between primary and metastatic tumors. Thus, in addition to real-time diagnostic information, the spectra provided additional information on divergent tumor biochemistry that may have mechanistic importance in cancer.
Collapse
|
15
|
Keun H. Metabolomic Studies of Patient Material by High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Methods Enzymol 2014; 543:297-313. [DOI: 10.1016/b978-0-12-801329-8.00015-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Bishop AC, Ganguly S, Solis NV, Cooley BM, Jensen-Seaman MI, Filler SG, Mitchell AP, Patton-Vogt J. Glycerophosphocholine utilization by Candida albicans: role of the Git3 transporter in virulence. J Biol Chem 2013; 288:33939-33952. [PMID: 24114876 DOI: 10.1074/jbc.m113.505735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Candida albicans contains four ORFs (GIT1,2,3,4) predicted to encode proteins involved in the transport of glycerophosphodiester metabolites. Previously, we reported that Git1, encoded by ORF 19.34, is responsible for the transport of intact glycerophosphoinositol but not glycerophosphocholine (GroPCho). Here, we report that a strain lacking both GIT3 (ORF 19.1979) and GIT4 (ORF 19.1980) is unable to transport [(3)H]GroPCho into the cell. In the absence of a GroPCho transporter, C. albicans can utilize GroPCho via a mechanism involving extracellular hydrolysis. Upon reintegration of either GIT3 or GIT4 into the genome, measurable uptake of [(3)H]GroPCho is observed. Transport assays and kinetic analyses indicate that Git3 has the greater transport velocity. We present evidence that GDE1 (ORF 19.3936) codes for an enzyme with glycerophosphodiesterase activity against GroPCho. Homozygous deletion of GDE1 results in a buildup of internal GroPCho that is restored to wild type levels by reintegration of GDE1 into the genome. The transcriptional regulator, Pho4, is shown to regulate the expression of GIT3, GIT4, and GDE1. Finally, Git3 is shown to be required for full virulence in a mouse model of disseminated candidiasis, and Git3 sequence orthologs are present in other pathogenic Candida species. In summary, we have characterized multiple aspects of GroPCho utilization by C. albicans and have demonstrated that GroPCho transport plays a key role in the growth of the organism in the host.
Collapse
Affiliation(s)
- Andrew C Bishop
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Shantanu Ganguly
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Norma V Solis
- Division of Infectious Disease, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Benjamin M Cooley
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | | | - Scott G Filler
- Division of Infectious Disease, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502; David Geffen School of Medicine at UCLA, Los Angeles, California 90024
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282.
| |
Collapse
|
17
|
Kim S, Lee S, Maeng YH, Chang WY, Hyun JW, Kim S. Study of Metabolic Profiling Changes in Colorectal Cancer Tissues Using 1D1H HR-MAS NMR Spectroscopy. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.5.1467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Jiménez B, Mirnezami R, Kinross J, Cloarec O, Keun HC, Holmes E, Goldin RD, Ziprin P, Darzi A, Nicholson JK. 1H HR-MAS NMR spectroscopy of tumor-induced local metabolic "field-effects" enables colorectal cancer staging and prognostication. J Proteome Res 2013; 12:959-68. [PMID: 23240862 DOI: 10.1021/pr3010106] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is a major cause of morbidity and mortality in developed countries. Despite operative advances and the widespread adoption of combined-modality treatment, the 5-year survival rarely exceeds 60%. Improving our understanding of the biological processes involved in CRC development and progression will help generate new diagnostic and prognostic approaches. Previous studies have identified altered metabolism as a common feature in carcinogenesis, and quantitative measurement of this altered activity (metabonomics/metabolomics) has the potential to generate novel metabolite-based biomarkers for CRC diagnosis, staging and prognostication. In the present study we applied high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy to analyze metabolites in intact tumor samples (n = 83) and samples of adjacent mucosa (n = 87) obtained from 26 patients undergoing surgical resection for CRC. Orthogonal partial least-squares discriminant analysis (OPLS-DA) of metabolic profiles identified marked biochemical differences between cancer tissue and adjacent mucosa (R(2) = 0.72; Q(2) = 0.45; AUC = 0.91). Taurine, isoglutamine, choline, lactate, phenylalanine, tyrosine (increased concentrations in tumor tissue) together with lipids and triglycerides (decreased concentrations in tumor tissue) were the most discriminant metabolites between the two groups in the model. In addition, tumor tissue metabolic profiles were able to distinguish between tumors of different T- and N-stages according to TNM classification. Moreover, we found that tumor-adjacent mucosa (10 cm from the tumor margin) harbors unique metabolic field changes that distinguish tumors according to T- and N-stage with higher predictive capability than tumor tissue itself and are accurately predictive of 5-year survival (AUC = 0.88), offering a highly novel means of tumor classification and prognostication in CRC.
Collapse
Affiliation(s)
- Beatriz Jiménez
- Section of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Robertson DG, Reily MD. The Current Status of Metabolomics in Drug Discovery and Development. Drug Dev Res 2012. [DOI: 10.1002/ddr.21047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Donald G. Robertson
- Applied and Investigative Metabolomics; Bristol-Myers Squibb Pharmaceutical Co.; Princeton; NJ; 08543; USA
| | - Michael D. Reily
- Applied and Investigative Metabolomics; Bristol-Myers Squibb Pharmaceutical Co.; Princeton; NJ; 08543; USA
| |
Collapse
|
20
|
Bista RK, Uttam S, Hartman DJ, Qiu W, Yu J, Zhang L, Brand RE, Liu Y. Investigation of nuclear nano-morphology marker as a biomarker for cancer risk assessment using a mouse model. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:066014. [PMID: 22734770 PMCID: PMC3382352 DOI: 10.1117/1.jbo.17.6.066014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 05/19/2023]
Abstract
The development of accurate and clinically applicable tools to assess cancer risk is essential to define candidates to undergo screening for early-stage cancers at a curable stage or provide a novel method to monitor chemoprevention treatments. With the use of our recently developed optical technology--spatial-domain low-coherence quantitative phase microscopy (SL-QPM), we have derived a novel optical biomarker characterized by structure-derived optical path length (OPL) properties from the cell nucleus on the standard histology and cytology specimens, which quantifies the nano-structural alterations within the cell nucleus at the nanoscale sensitivity, referred to as nano-morphology marker. The aim of this study is to evaluate the feasibility of the nuclear nano-morphology marker from histologically normal cells, extracted directly from the standard histology specimens, to detect early-stage carcinogenesis, assess cancer risk, and monitor the effect of chemopreventive treatment. We used a well-established mouse model of spontaneous carcinogenesis--Apc(Min) mice, which develop multiple intestinal adenomas (Min) due to a germline mutation in the adenomatous polyposis coli (Apc) gene. We found that the nuclear nano-morphology marker quantified by OPL detects the development of carcinogenesis from histologically normal intestinal epithelial cells, even at an early pre-adenomatous stage (six weeks). It also exhibits a good temporal correlation with the small intestine that parallels the development of carcinogenesis and cancer risk. To further assess its ability to monitor the efficacy of chemopreventive agents, we used an established chemopreventive agent, sulindac. The nuclear nano-morphology marker is reversed toward normal after a prolonged treatment. Therefore, our proof-of-concept study establishes the feasibility of the SL-QPM derived nuclear nano-morphology marker OPL as a promising, simple and clinically applicable biomarker for cancer risk assessment and evaluation of chemopreventive treatment.
Collapse
Affiliation(s)
- Rajan K. Bista
- University of Pittsburgh, Department of Medicine and Bioengineering, Biomedical Optical Imaging Laboratory, Pittsburgh, Pennsylvania 15232
| | - Shikhar Uttam
- University of Pittsburgh, Department of Medicine and Bioengineering, Biomedical Optical Imaging Laboratory, Pittsburgh, Pennsylvania 15232
| | - Douglas J. Hartman
- University of Pittsburgh School of Medicine, Department of Pathology, Pittsburgh, Pennsylvania 15213
| | - Wei Qiu
- University of Pittsburgh School of Medicine, Department of Pathology, Pittsburgh, Pennsylvania 15213
| | - Jian Yu
- University of Pittsburgh School of Medicine, Department of Pathology, Pittsburgh, Pennsylvania 15213
| | - Lin Zhang
- University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15213
| | - Randall E. Brand
- University of Pittsburgh, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh, Pennsylvania 15232
| | - Yang Liu
- University of Pittsburgh, Department of Medicine and Bioengineering, Biomedical Optical Imaging Laboratory, Pittsburgh, Pennsylvania 15232
- Address all correspondence to: Yang Liu, University of Pittsburgh, Department of Medicine and Bioengineering, Biomedical Optical Imaging Laboratory, Department of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15232.; Tel: 412-623-3751; Fax: 412-623-7828; E-mail:
| |
Collapse
|
21
|
Feng J, Liu H, Bhakoo KK, Lu L, Chen Z. A metabonomic analysis of organ specific response to USPIO administration. Biomaterials 2011; 32:6558-69. [PMID: 21641028 DOI: 10.1016/j.biomaterials.2011.05.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/10/2011] [Indexed: 02/08/2023]
Abstract
As ultrasmall superparamagnetic particles of iron oxides (USPIO) have been widely used in clinical medicine as MRI contrast agents, hence their potential toxicity and adverse effects following administration have attracted particular attention. In the present study, high resolution magic-angle-spinning (1)H NMR spectroscopy coupled with multivariate statistical analysis was used to directly determine the metabolic consequences of specific-tissues, including kidney, liver and spleen following the intravenous administration of USPIO. Alterations of renal, hepatic and splenic function were reflected by changes in a number of metabolic pathways including small molecules involved in energy, lipid, glucose, and amino acids metabolism. The toxicological potential and metabolic fate of USPIO seems to be linked to their surface chemistry and particle size. Hierarchical principal component analysis was used to explore the multidimensional metabolic relationships between various biological matrices such as kidney, liver, spleen, plasma and urine. Information on the involvement of USPIO in transportation, absorption, biotransformation, biodistribution and secretion was derived from metabolic correlation analysis between different organs and biofluids. Such a metabonomic strategy provides methodology for investigating the potential adverse biological effects of similar nanoparticles on the environmental and human health and assessing the drug interventions on the targeted organ.
Collapse
Affiliation(s)
- Jianghua Feng
- Department of Electronic Science, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
22
|
Robust utilization of phospholipase-generated metabolites, glycerophosphodiesters, by Candida albicans: role of the CaGit1 permease. EUKARYOTIC CELL 2011; 10:1618-27. [PMID: 21984707 DOI: 10.1128/ec.05160-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycerophosphodiesters are the products of phospholipase-mediated deacylation of phospholipids. In Saccharomyces cerevisiae, a single gene, GIT1, encodes a permease responsible for importing glycerophosphodiesters, such as glycerophosphoinositol and glycerophosphocholine, into the cell. In contrast, the Candida albicans genome contains four open reading frames (ORFs) with a high degree of similarity to S. cerevisiae GIT1 (ScGIT1) Here, we report that C. albicans utilizes glycerophosphoinositol (GroPIns) and glycerophosphocholine (GroPCho) as sources of phosphate at both mildly acidic and physiological pHs. Insertional mutagenesis of C. albicans GIT1 (CaGIT1) (orf19.34), the ORF most similar to ScGit1, abolished the ability of cells to use GroPIns as a phosphate source at acidic pH and to transport [(3)H]GroPIns at acidic and physiological pHs, while reintegration of a GIT1 allele into the genome restored those functions. Several lines of evidence, including the detection of internal [(3)H]GroPIns, indicated that GroPIns is transported intact through CaGit1. GroPIns transport was shown to conform to Michaelis-Menten kinetics, with an apparent K(m) of 28 ± 6 μM. Notably, uptake of label from [(3)H]GroPCho was found to be roughly 50-fold greater than uptake of label from [(3)H]GroPIns and roughly 500-fold greater than the equivalent activity in S. cerevisiae. Insertional mutagenesis of CaGIT1 had no effect on the utilization of GroPCho as a phosphate source or on the uptake of label from [(3)H]GroPCho. Growth under low-phosphate conditions was shown to increase label uptake from both [(3)H]GroPIns and [(3)H]GroPCho. Screening of a transcription factor deletion set identified CaPHO4 as required for the utilization of GroPIns, but not GroPCho, as a phosphate source.
Collapse
|
23
|
Robertson DG, Watkins PB, Reily MD. Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci 2010; 120 Suppl 1:S146-70. [PMID: 21127352 DOI: 10.1093/toxsci/kfq358] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Donald G Robertson
- Applied and Investigative Metabolomics, Bristol-Myers Squibb Co., Princeton, New Jersey 08543, USA.
| | | | | |
Collapse
|
24
|
Yakoub D, Keun HC, Goldin R, Hanna GB. Metabolic profiling detects field effects in nondysplastic tissue from esophageal cancer patients. Cancer Res 2010; 70:9129-36. [PMID: 20884633 DOI: 10.1158/0008-5472.can-10-1566] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The variable rate of missed cancer in endoscopic biopsies and lack of other biomarkers reduce the effectiveness of surveillance programs in esophageal cancer. Based on the "field cancerization" hypothesis that tumors arise within a transformed field with an altered biochemical phenotype, we sought to test if metabolic profiling could differentiate between histologically normal tissue from individuals with and without esophageal cancer. Thirty-five patients with esophageal adenocarcinoma and 52 age-matched controls participated in the study. Using 1H magic angle spinning-nuclear magnetic resonance spectroscopy of intact tissue, we generated metabolic profiles of tumor tissue, proximal histologically normal mucosa from cancer patients (PHINOM), and proximal histologically normal mucosa from a control group. Using multivariate regression and receiver-operator characteristic analysis, we identified a panel of metabolites discriminating malignant and histologically normal tissues from cancer patients and from that of controls. Whereas 26% and 12% of the spectral profile regions were uniquely discriminating tumor or control tissue, respectively, 5% of the profile exhibited a significant progressive change in signal intensity from controls to PHINOM to tumor. Regions identified were assigned to phosphocholine (PC), glutamate (Glu), myo-inositol, adenosine-containing compounds, uridine-containing compounds, and inosine. In particular, the PC/Glu ratio in histologically normal tissue signified the presence of esophageal cancer (n=123; area under the curve, 0.84; P<0.001). In conclusion, our findings support the hypothesis of the presence of metabonomic field effects in esophageal cancer, even in non-Barrett's segments. This indicates that metabolic profiling of tissue can potentially play a role in the surveillance of cancer by reporting on the phenotypic consequences of field cancerization.
Collapse
Affiliation(s)
- Danny Yakoub
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
25
|
Keun HC. Metabolic Profiling for Biomarker Discovery. Biomarkers 2010. [DOI: 10.1002/9780470918562.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 2010; 40:387-426. [PMID: 20717559 DOI: 10.1039/b906712b] [Citation(s) in RCA: 567] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The study of biological systems in a holistic manner (systems biology) is increasingly being viewed as a necessity to provide qualitative and quantitative descriptions of the emergent properties of the complete system. Systems biology performs studies focussed on the complex interactions of system components; emphasising the whole system rather than the individual parts. Many perturbations to mammalian systems (diet, disease, drugs) are multi-factorial and the study of small parts of the system is insufficient to understand the complete phenotypic changes induced. Metabolomics is one functional level tool being employed to investigate the complex interactions of metabolites with other metabolites (metabolism) but also the regulatory role metabolites provide through interaction with genes, transcripts and proteins (e.g. allosteric regulation). Technological developments are the driving force behind advances in scientific knowledge. Recent advances in the two analytical platforms of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have driven forward the discipline of metabolomics. In this critical review, an introduction to metabolites, metabolomes, metabolomics and the role of MS and NMR spectroscopy will be provided. The applications of metabolomics in mammalian systems biology for the study of the health-disease continuum, drug efficacy and toxicity and dietary effects on mammalian health will be reviewed. The current limitations and future goals of metabolomics in systems biology will also be discussed (374 references).
Collapse
Affiliation(s)
- Warwick B Dunn
- Manchester Centre for Integrative Systems Biology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | | | | | |
Collapse
|
27
|
Teahan O, Bevan CL, Waxman J, Keun HC. Metabolic signatures of malignant progression in prostate epithelial cells. Int J Biochem Cell Biol 2010; 43:1002-9. [PMID: 20633696 DOI: 10.1016/j.biocel.2010.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/03/2010] [Accepted: 07/05/2010] [Indexed: 12/14/2022]
Abstract
Prognostic markers that can distinguish indolent from aggressive prostate cancer could have substantial patient benefit, helping to target patients most in need of radical intervention, while avoiding overtreatment of a highly prevalent condition. The search for novel cancer biomarkers has been facilitated by the development of technologies for "global" biomolecular profiling, used in the sciences of transcriptomics, proteomics and metabolic profiling (metabonomics/metabolomics). Using an NMR-based approach we compared intracellular and extracellular metabolic profiles from the immortalised, non-tumourigenic prostate epithelial cell line, RWPE-1 and two tumourigenic sublines with increasing malignant phenotypes, WPE1-NB14 and WPE1-NB11, generated by N-methyl-N-nitrosourea (MNU) mutagenesis. Collectively, these cell lines present an in vitro model of prostate cancer progression and disease aggression. We observed progressive alterations to intracellular levels of multiple metabolites from choline and branched chain amino acid metabolic pathways from RWPE-1 to WPE1-NB14 to WPE1-NB11 cells. In addition specific perturbations to intracellular glycine and lactate and extracellular lactate and alanine were observed relative to the parent line. The pathways implicated by comparative metabolic profiling in this model are known to be altered in human prostate cancer, and potentially represent a source of biomarkers for prostate cancer aggression.
Collapse
Affiliation(s)
- Orla Teahan
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | | | | |
Collapse
|
28
|
Al-Saffar NMS, Jackson LE, Raynaud FI, Clarke PA, Ramírez de Molina A, Lacal JC, Workman P, Leach MO. The phosphoinositide 3-kinase inhibitor PI-103 downregulates choline kinase alpha leading to phosphocholine and total choline decrease detected by magnetic resonance spectroscopy. Cancer Res 2010; 70:5507-17. [PMID: 20551061 DOI: 10.1158/0008-5472.can-09-4476] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a major target for cancer drug development. PI-103 is an isoform-selective class I PI3K and mammalian target of rapamycin inhibitor. The aims of this work were as follows: first, to use magnetic resonance spectroscopy (MRS) to identify and develop a robust pharmacodynamic (PD) biomarker for target inhibition and potentially tumor response following PI3K inhibition; second, to evaluate mechanisms underlying the MRS-detected changes. Treatment of human PTEN null PC3 prostate and PIK3CA mutant HCT116 colon carcinoma cells with PI-103 resulted in a concentration- and time-dependent decrease in phosphocholine (PC) and total choline (tCho) levels (P < 0.05) detected by phosphorus ((31)P)- and proton ((1)H)-MRS. In contrast, the cytotoxic microtubule inhibitor docetaxel increased glycerophosphocholine and tCho levels in PC3 cells. PI-103-induced MRS changes were associated with alterations in the protein expression levels of regulatory enzymes involved in lipid metabolism, including choline kinase alpha (ChoK(alpha)), fatty acid synthase (FAS), and phosphorylated ATP-citrate lyase (pACL). However, a strong correlation (r(2) = 0.9, P = 0.009) was found only between PC concentrations and ChoK(alpha) expression but not with FAS or pACL. This study identified inhibition of ChoK(alpha) as a major cause of the observed change in PC levels following PI-103 treatment. We also showed the capacity of (1)H-MRS, a clinically well-established technique with higher sensitivity and wider applicability compared with (31)P-MRS, to assess response to PI-103. Our results show that monitoring the effects of PI3K inhibitors by MRS may provide a noninvasive PD biomarker for PI3K inhibition and potentially of tumor response during early-stage clinical trials with PI3K inhibitors.
Collapse
Affiliation(s)
- Nada M S Al-Saffar
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Beckonert O, Coen M, Keun HC, Wang Y, Ebbels TMD, Holmes E, Lindon JC, Nicholson JK. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 2010; 5:1019-32. [PMID: 20539278 DOI: 10.1038/nprot.2010.45] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabolic profiling, metabolomic and metabonomic studies require robust study protocols for any large-scale comparisons and evaluations. Detailed methods for solution-state NMR spectroscopy have been summarized in an earlier protocol. This protocol details the analysis of intact tissue samples by means of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy and we provide a detailed description of sample collection, preparation and analysis. Described here are (1)H NMR spectroscopic techniques such as the standard one-dimensional, relaxation-edited, diffusion-edited and two-dimensional J-resolved pulse experiments, as well as one-dimensional (31)P NMR spectroscopy. These are used to monitor different groups of metabolites, e.g., sugars, amino acids and osmolytes as well as larger molecules such as lipids, non-invasively. Through the use of NMR-based diffusion coefficient and relaxation times measurements, information on molecular compartmentation and mobility can be gleaned. The NMR methods are often combined with statistical analysis for further metabonomics analysis and biomarker identification. The standard acquisition time per sample is 8-10 min for a simple one-dimensional (1)H NMR spectrum, giving access to metabolite information while retaining tissue integrity and hence allowing direct comparison with histopathology and MRI/MRS findings or the evaluation together with biofluid metabolic-profiling data.
Collapse
Affiliation(s)
- Olaf Beckonert
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hwang GS, Yang JY, Ryu DH, Kwon TH. Metabolic profiling of kidney and urine in rats with lithium-induced nephrogenic diabetes insipidus by (1)H-NMR-based metabonomics. Am J Physiol Renal Physiol 2009; 298:F461-70. [PMID: 19923409 DOI: 10.1152/ajprenal.00389.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lithium (Li) treatment for bipolar affective disorders is associated with a variety of renal side effects. The metabolic response of the kidney to chronic Li treatment has rarely been studied. We applied a novel method of (1)H-nuclear magnetic resonance (NMR)-based metabonomics to integrate metabolic profiling and to identify the changes in the levels of metabolites in the kidney and urine from rats with Li-induced NDI. Metabolic profiles of urine and kidney homogenate [3 different zones (cortex, outer medulla, and inner medulla) or whole kidney] were investigated using high-resolution NMR spectroscopy coupled with pattern recognition methods. The accurate concentrations of metabolites in kidney homogenates and urine were rapidly measured using the target-profiling procedure, and the difference in the levels of metabolites was compared using multivariate analysis, such as principal component analysis and orthogonal partial least squares-discriminant analysis. Major endogenous metabolites for kidney homogenates contained products of glycolysis (glucose, lactate) and amino acids, as well as organic osmolytes (e.g., betaine, myo-inositol, taurine, and glycerophosphocholine). Many metabolites revealed changes in their levels, including decreased levels of organic osmolytes and amino acids in the inner medulla. A number of urinary metabolites were changed in Li-induced NDI, and in particular, elevated urinary levels of acetate, lactate, allantoin, trimethylamine, and creatine could suggest Li-induced renal cell stress or injury. Taken together, metabonomics of kidney tissue and urine based on (1)H-NMR spectroscopy could provide insight into the effects of Li-induced renal effects and cell injury.
Collapse
Affiliation(s)
- Geum-Sook Hwang
- Joint Bioanalytical Research Team, Korea Basic Science Institute, Seoul, Korea
| | | | | | | |
Collapse
|