1
|
Chen Y, Lu C, Shang X, Wu K, Chen K. Primary cilia: The central role in the electromagnetic field induced bone healing. Front Pharmacol 2022; 13:1062119. [DOI: 10.3389/fphar.2022.1062119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Primary cilia have emerged as the cellular “antenna” that can receive and transduce extracellular chemical/physical signals, thus playing an important role in regulating cellular activities. Although the electromagnetic field (EMF) is an effective treatment for bone fractures since 1978, however, the detailed mechanisms leading to such positive effects are still unclear. Primary cilia may play a central role in receiving EMF signals, translating physical signals into biochemical information, and initiating various signalingsignaling pathways to transduce signals into the nucleus. In this review, we elucidated the process of bone healing, the structure, and function of primary cilia, as well as the application and mechanism of EMF in treating fracture healing. To comprehensively understand the process of bone healing, we used bioinformatics to analyze the molecular change and associated the results with other studies. Moreover, this review summarizedsummarized some limitations in EMFs-related research and provides an outlook for ongoing studies. In conclusion, this review illustrated the primary cilia and related molecular mechanisms in the EMF-induced bone healing process, and it may shed light on future research.
Collapse
|
2
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor-β family of ligands. BMPs exhibit widespread utility and pleiotropic, context-dependent effects, and the strength and duration of BMP pathway signaling is tightly regulated at numerous levels via mechanisms operating both inside and outside the cell. Defects in the BMP pathway or its regulation underlie multiple human diseases of different organ systems. Yet much remains to be discovered about the BMP pathway in its original context, i.e., the skeleton. In this review, we provide a comprehensive overview of the intricacies of the BMP pathway and its inhibitors in bone development, homeostasis, and disease. We frame the content of the review around major unanswered questions for which incomplete evidence is available. First, we consider the gene regulatory network downstream of BMP signaling in osteoblastogenesis. Next, we examine why some BMP ligands are more osteogenic than others and what factors limit BMP signaling during osteoblastogenesis. Then we consider whether specific BMP pathway components are required for normal skeletal development, and if the pathway exerts endogenous effects in the aging skeleton. Finally, we propose two major areas of need of future study by the field: greater resolution of the gene regulatory network downstream of BMP signaling in the skeleton, and an expanded repertoire of reagents to reliably and specifically inhibit individual BMP pathway components.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| | - Vicki Rosen
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| |
Collapse
|
3
|
Jeon SA, Lee JH, Kim DW, Cho JY. E3-ubiquitin ligase NEDD4 enhances bone formation by removing TGFβ1-induced pSMAD1 in immature osteoblast. Bone 2018; 116:248-258. [PMID: 30125728 DOI: 10.1016/j.bone.2018.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/20/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022]
Abstract
Neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) is an E3 ubiquitin ligase that regulates animal growth and development. To investigate the role of NEDD4 in skeletogenesis in vivo, we established immature osteoblast-specific 2.3-kb Collagen Type I Alpha 1 chain (Col1α1) promoter-driven Nedd4 transgenic (Nedd4-TG, Col1α1-Nedd4Tg/+) mice and conditional knockout (Nedd4-cKO, Col1α1-Cre;Nedd4fl/fl) mice. The Nedd4-TG mice displayed enhanced bone mass accrual and upregulated gene expression of osteogenic markers in bone. In addition, bone formation was decreased in the Nedd4-cKO mice compared to that in their littermates. The proliferation of primary osteoblasts isolated from calvaria and the number and surface area of tibial osteoblasts were higher in the Nedd4-TG mice than those in their littermates. Throughout the osteoblast differentiation, the expression of Nedd4 and Tgfb1 were high at early stage of osteoblast maturation, but decreased at the later stage when Bmp2 expression level is high. TGFβ1 signaling was consolidated by degradation of pSMAD1, which was transiently induced by TGFβ1, in NEDD4-overexpressing osteoblasts. Furthermore, pERK1/2 signaling was enhanced in osteoblast from TG mice than those in their littermates. These results suggest that NEDD4 enhances osteoblast proliferation by removing pSMAD1 activated by TGFβ1, and potentiating pSMAD2 and pERK1/2 pathways at early stage of bone formation.
Collapse
Affiliation(s)
- Seon-Ae Jeon
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ji-Hyun Lee
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
4
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor (TGF)-β family of ligands and exert most of their effects through the canonical effectors Smad1, 5, and 8. Appropriate regulation of BMP signaling is critical for the development and homeostasis of numerous human organ systems. Aberrations in BMP pathways or their regulation are increasingly associated with diverse human pathologies, and there is an urgent and growing need to develop effective approaches to modulate BMP signaling in the clinic. In this review, we provide a wide perspective on diseases and/or conditions associated with dysregulated BMP signal transduction, outline the current strategies available to modulate BMP pathways, highlight emerging second-generation technologies, and postulate prospective avenues for future investigation.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, Indiana 46222
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| |
Collapse
|
5
|
Lee JH, Jeon SA, Kim BG, Takeda M, Cho JJ, Kim DI, Kawabe H, Cho JY. Nedd4 Deficiency in Vascular Smooth Muscle Promotes Vascular Calcification by Stabilizing pSmad1. J Bone Miner Res 2017; 32:927-938. [PMID: 28029182 DOI: 10.1002/jbmr.3073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/16/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
The nonosseous calcification process such as atherosclerosis is one of the major complications in several types of metabolic diseases. In a previous study, we uncovered that aberrant activity of transforming growth factor β (TGF-β) signaling pathway could contribute to the vascular smooth muscle cells' (VSMCs) calcification process. Also, we identified NEDD4 E3 ligase as a key suppressor of bone morphogenetic protein (BMP)/Smad pathway via a polyubiquitination-dependent selective degradation of C-terminal phosphorylated Smad1 (pSmad1) activated by TGF-β. Here, we further validated and confirmed the role of Nedd4 in in vivo vascular calcification progression. First, Nedd4 deletion in SM22α-positive mouse tissues (Nedd4fl/fl ;SM22α-Cre) showed deformed aortic structures with disarranged elastin fibers at 24 weeks after birth. Second, vitamin D-induced aorta vascular calcification rate in Nedd4fl/fl ;SM22α-Cre mice was significantly higher than their wild-type littermates. Nedd4fl/fl ;SM22α-Cre mice showed a development of vascular calcification even at very low-level injection of vitamin D, but this was not exhibited in wild-type littermates. Third, we confirmed that TGF-β1-induced pSmad1 levels were elevated in Nedd4-deficient primary VSMCs isolated from Nedd4fl/fl ;SM22α-Cre mice. Fourth, we further found that Nedd4fl/fl ;SM22α-Cre mVSMCs gained mesenchymal cell properties toward osteoblast-like differentiation by a stable isotope labeling in cell culture (SILAC)-based proteomics analysis. Finally, epigenetic analysis revealed that methylation levels of human NEDD4 gene promoter were significantly increased in atherosclerosis patients. Collectively, abnormal expression or dysfunction of Nedd4 E3 ligase could be involved in vascular calcification of VSMCs by activating bone-forming signals during atherosclerosis progression. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seon-Ae Jeon
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Byung-Gyu Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Michiko Takeda
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jae-Jin Cho
- Department of Dental Regenerative Technology, School of Dentistry, Seoul National University, Dental Research, Institute, Seoul, Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Guo X, Huang X, Chen MJ. Reversible phosphorylation of the 26S proteasome. Protein Cell 2017; 8:255-272. [PMID: 28258412 PMCID: PMC5359188 DOI: 10.1007/s13238-017-0382-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/26/2017] [Indexed: 01/09/2023] Open
Abstract
The 26S proteasome at the center of the ubiquitin-proteasome system (UPS) is essential for virtually all cellular processes of eukaryotes. A common misconception about the proteasome is that, once made, it remains as a static and uniform complex with spontaneous and constitutive activity for protein degradation. Recent discoveries have provided compelling evidence to support the exact opposite insomuch as the 26S proteasome undergoes dynamic and reversible phosphorylation under a variety of physiopathological conditions. In this review, we summarize the history and current understanding of proteasome phosphorylation, and advocate the idea of targeting proteasome kinases/phosphatases as a new strategy for clinical interventions of several human diseases.
Collapse
Affiliation(s)
- Xing Guo
- The Life Sciences Institute of Zhejiang University, Hangzhou, 310058, China.
| | - Xiuliang Huang
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mark J Chen
- Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| |
Collapse
|
7
|
Lee JH, Cho JY. Proteomics approaches for the studies of bone metabolism. BMB Rep 2014; 47:141-8. [PMID: 24499667 PMCID: PMC4163882 DOI: 10.5483/bmbrep.2014.47.3.270] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/16/2013] [Accepted: 01/04/2014] [Indexed: 01/13/2023] Open
Abstract
Bone is an active tissue, in which bone formation by osteoblast is followed by bone resorption by osteoclasts, in a repeating cycle. Proteomics approaches may allow the detection of changes in cell signal transduction, and the regulatory mechanism of cell differentiation. LC-MS/MS-based quantitative methods can be used with labeling strategies, such as SILAC, iTRAQ, TMT and enzymatic labeling. When used in combination with specific protein enrichment strategies, quantitative proteomics methods can identify various signaling molecules and modulators, and their interacting proteins in bone metabolism, to elucidate biological functions for the newly identified proteins in the cellular context. In this article, we will briefly review recent major advances in the application of proteomics for bone biology, especially from the aspect of cellular signaling. [BMB Reports 2014; 47(3): 141-148]
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Veterinary Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Je-Yoel Cho
- Department of Veterinary Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
8
|
Cui Z, Scruggs SB, Gilda JE, Ping P, Gomes AV. Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. J Mol Cell Cardiol 2014; 71:32-42. [PMID: 24140722 PMCID: PMC3990655 DOI: 10.1016/j.yjmcc.2013.10.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/21/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the major intracellular degradation system, and its proper function is critical to the health and function of cardiac cells. Alterations in cardiac proteasomes have been linked to several pathological phenotypes, including cardiomyopathies, ischemia-reperfusion injury, heart failure, and hypertrophy. Defects in proteasome-dependent cellular protein homeostasis can be causal for the initiation and progression of certain cardiovascular diseases. Emerging evidence suggests that the UPS can specifically target proteins that govern pathological signaling pathways for degradation, thus altering downstream effectors and disease outcomes. Alterations in UPS-substrate interactions in disease occur, in part, due to direct modifications of 19S, 11S or 20S proteasome subunits. Post-translational modifications (PTMs) are one facet of this proteasomal regulation, with over 400 known phosphorylation sites, over 500 ubiquitination sites and 83 internal lysine acetylation sites, as well as multiple sites for caspase cleavage, glycosylation (such as O-GlcNAc modification), methylation, nitrosylation, oxidation, and SUMOylation. Changes in cardiac proteasome PTMs, which occur in ischemia and cardiomyopathies, are associated with changes in proteasome activity and proteasome assembly; however several features of this regulation remain to be explored. In this review, we focus on how some of the less common PTMs affect proteasome function and alter cellular protein homeostasis. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Ziyou Cui
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA
| | - Sarah B Scruggs
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Jennifer E Gilda
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA
| | - Peipei Ping
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
9
|
El-Heliebi A, Kroneis T, Wagner K, Meditz K, Kolb D, Feichtinger J, Thallinger GG, Quehenberger F, Liegl-Atzwanger B, Rinner B. Resolving tumor heterogeneity: genes involved in chordoma cell development identified by low-template analysis of morphologically distinct cells. PLoS One 2014; 9:e87663. [PMID: 24503940 PMCID: PMC3913634 DOI: 10.1371/journal.pone.0087663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/26/2013] [Indexed: 12/27/2022] Open
Abstract
The classical sacrococcygeal chordoma tumor presents with a typical morphology of lobulated myxoid tumor tissue with cords, strands and nests of tumor cells. The population of cells consists of small non-vacuolated cells, intermediate cells with a wide range of vacuolization and large heavily vacuolated (physaliferous) cells. To date analysis was only performed on bulk tumor mass because of its rare incidence, lack of suited model systems and technical limitations thereby neglecting its heterogeneous composition. We intended to clarify whether the observed cell types are derived from genetically distinct clones or represent different phenotypes. Furthermore, we aimed at elucidating the differences between small non-vacuolated and large physaliferous cells on the genomic and transcriptomic level. Phenotype-specific analyses of small non-vacuolated and large physaliferous cells in two independent chordoma cell lines yielded four candidate genes involved in chordoma cell development. UCHL3, coding for an ubiquitin hydrolase, was found to be over-expressed in the large physaliferous cell phenotype of MUG-Chor1 (18.7-fold) and U-CH1 (3.7-fold) cells. The mannosyltransferase ALG11 (695-fold) and the phosphatase subunit PPP2CB (18.6-fold) were found to be up-regulated in large physaliferous MUG-Chor1 cells showing a similar trend in U-CH1 cells. TMEM144, an orphan 10-transmembrane family receptor, yielded contradictory data as cDNA microarray analysis showed up- but RT-qPCR data down-regulation in large physaliferous MUG-Chor1 cells. Isolation of few but morphologically identical cells allowed us to overcome the limitations of bulk analysis in chordoma research. We identified the different chordoma cell phenotypes to be part of a developmental process and discovered new genes linked to chordoma cell development representing potential targets for further research in chordoma tumor biology.
Collapse
Affiliation(s)
- Amin El-Heliebi
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Thomas Kroneis
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria
- * E-mail: .
| | - Karin Wagner
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Katharina Meditz
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Julia Feichtinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
- Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Gerhard G. Thallinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
- Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Franz Quehenberger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | | | - Beate Rinner
- Center for Medical Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
10
|
Covian R, Balaban RS. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. Am J Physiol Heart Circ Physiol 2012; 303:H940-66. [PMID: 22886415 DOI: 10.1152/ajpheart.00077.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain α-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on (32)P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the evaluation of this possibility will require the application of approaches developed for bacterial cell signaling to the mitochondria.
Collapse
Affiliation(s)
- Raul Covian
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, Bethesda, Maryland 20817, USA
| | | |
Collapse
|
11
|
Bozic D, Grgurevic L, Erjavec I, Brkljacic J, Orlic I, Razdorov G, Grgurevic I, Vukicevic S, Plancak D. The proteome and gene expression profile of cementoblastic cells treated by bone morphogenetic protein-7 in vitro. J Clin Periodontol 2011; 39:80-90. [PMID: 22093042 DOI: 10.1111/j.1600-051x.2011.01794.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2011] [Indexed: 11/28/2022]
Abstract
AIM Regenerative periodontal therapy is often unpredictable and limited. Cementum regeneration is necessary for the proper repair of a periodontal ligament. The precise mechanism how bone morphogenetic protein-7 (BMP7) induces differentiation and mineralization of cementoblasts remains undetermined. The purpose of this study was to evaluate the effect of BMP7 on early proteome and gene expression profile of cementoblastic OCCM.30 cells in vitro. MATERIALS AND METHODS Immortalized murine cementoblasts (OCCM.30) were exposed to BMP7 and evaluated for: (1) proliferation; (2) mineralization; (3) early proteome profile using liquid chromatography-mass spectrometry (LC-MS); and (4) gene expression by quantitative RT-PCR. RESULTS Bone morphogenetic protein-7 increased the cell proliferation at 24 h and 48 h, while higher doses suppressed the cell proliferation at 48 h. BMP7 induced the mineralization of cementoblasts following 8 days of therapy. Using LC-MS we identified 1117 proteins from the cell lysate. Many belonged to extracellular matrix formation such as PCPE1, collagens, annexins and integrin receptors. RT-PCR analyses revealed a BMP7 dose-dependent upregulation of BMP1, TGFβ1, osterix, osteoprotegerin, procollagen I and II, PCPE1, and noggin, while BMP6 and chordin expression were decreased. The high BMP7 dose down regulated most of the genes 24 h following therapy. CONCLUSION Bone morphogenetic protein-7 promotes differentiation and mineralization of cementoblasts via inducing PCPE1 and BMP1 responsible for processing of type I collagen.
Collapse
Affiliation(s)
- Darko Bozic
- Department of Periodontology, University of Zagreb, School of Dental Medicine, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim BG, Park YJ, Libermann TA, Cho JY. PTH regulates myleoid ELF-1-like factor (MEF)-induced MAB-21-like-1 (MAB21L1) expression through the JNK1 pathway. J Cell Biochem 2011; 112:2051-61. [DOI: 10.1002/jcb.23124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Kim BG, Lee JH, Yasuda J, Ryoo HM, Cho JY. Phospho-Smad1 modulation by nedd4 E3 ligase in BMP/TGF-β signaling. J Bone Miner Res 2011; 26:1411-24. [PMID: 21308777 DOI: 10.1002/jbmr.348] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A considerable number of studies have focused on the regulation of mothers against decapentaplegic homologue (Smad)-dependent or -independent pathways in the signaling by each transforming growth factor β (TGF-β) superfamily member in diverse biologic contexts. The sophisticated regulation of the actions of these molecules and the underlying molecular mechanisms still remain elusive. Here we show new mechanisms of ambilateral R (receptor-regulated)-Smad regulation of bone morphogenetic protein 2 (BMP-2)/TGF-β1 signals. In a specific context, both signals regulate the nonclassic Smads pathway reciprocally, BMP-2 to Smad2/3 and TGF-β1 to Smad1/5/8, as well as their own classic linear Smad pathway. Interestingly, in this study, we found that C-terminal phosphorylated forms of each pathway Smad degraded rapidly 3 hours after stimulation of nonclassic signals but are dramatically restored by treatment with via proteasomal inhibition. Furthermore, an E3 ligase, neural precursor cell expressed, developmentally down-regulated 4 (Nedd4), also was found as one of the important modulators of the p-Smad1 in both BMP-2 and TGF-β1 action. Overexpressed Nedd4 suppressed the BMP-induced osteoblast transdifferentiation process of premyoblast C2C12 cells or alkaline phosphatase (ALP) level of human osteosarcoma cells and promoted TGF-β1-induced degradation of p-Smad1 via physical interaction and polyubiquitination. Conversely, siNedd4 potentiated BMP signals through upregulation of p-Smad1 and ALP activity, the effect of which led to an increased the rate of P(i) -induced calcification of human vascular smooth muscle cells. These new insights about proteasomal degradation-mediated phosphorylated nonclassic Smad regulation of BMP-2/TGF-β1 could, in part, help to unravel the complex mechanisms of abnormal nonosseous calcification by the aberrant activity of BMP/TGF-β/Smads.
Collapse
Affiliation(s)
- Byung-Gyu Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, and Second BK21 Program, Daegu 700-422, Korea
| | | | | | | | | |
Collapse
|
14
|
Lee EH, Park HJ, Jeong JH, Kim YJ, Cha DW, Kwon DK, Lee SH, Cho JY. The role of asporin in mineralization of human dental pulp stem cells. J Cell Physiol 2011; 226:1676-82. [PMID: 21413025 DOI: 10.1002/jcp.22498] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human adult dental pulp stem cells (hDPSCs) are a unique precursor population isolated from postnatal dental pulp and have the ability to regenerate a reparative dentin-like complex. In this study, we investigated the role of Asporin in hDPSCs, which was identified as a matrix protein in our previous dentin proteomic analysis. We isolated a clonogenic, highly proliferative population of cells from adult human dental pulp. These isolated hDPSCs were confirmed by fluorescence activated cell sorting (FACS) using stem cell-specific markers and have shown multilineage differentiation potential. The localization of Asporin was identified by immunohistochemistry in the globular calcification region in the junction of predentin and dentin. The gene and protein expression levels of Asporin were enhanced at the early stage of and then reduced during the late stage of differentiation of hDPSCs in mineralization media. ASPN knock-down using a lentiviral system suppressed the mineralization of hDPSCs. These results suggest that ASPN plays positive roles in the mineralization of hDPSCs and predentin to dentin.
Collapse
Affiliation(s)
- Eun-Hyang Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ubiquitin C-terminal hydrolase-L3 regulates Smad1 ubiquitination and osteoblast differentiation. FEBS Lett 2011; 585:1121-6. [DOI: 10.1016/j.febslet.2011.03.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/18/2011] [Accepted: 03/23/2011] [Indexed: 11/21/2022]
|
16
|
Cho HS, Ahn JM, Han HJ, Cho JY. Glypican 3 binds to GLUT1 and decreases glucose transport activity in hepatocellular carcinoma cells. J Cell Biochem 2011; 111:1252-9. [PMID: 20803547 DOI: 10.1002/jcb.22848] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glypican 3 (GPC3), a member of heparin sulfate proteoglycans, is attached to the cell surface by a glycosylphosphatidylinositol anchor and is reported to be overexpressed in liver cancers. In order to identify GPC3 binding proteins on the cell surface, we constructed a cDNA containing the C-terminal cell surface-attached form of GPC3 (GPC3c) in a baculoviral vector. The GPC3c bait protein was produced by expressing the construct in Sf21 insect cells and double purified using a His column and Flag immunoprecipitation. Purified GPC3c was used to uncover GPC3c-interacting proteins. Using an LC-MS/MS proteomics strategy, we identified glucose transporter 1 (GLUT1) as a novel GPC3 interacting protein from the HepG2 hepatoma cell lysates. The interaction was confirmed by immunoprecipitation (IP)-WB analysis and surface plasmon resonance (SPR). SPR result showed the interaction of GLUT1 to GPC3c with equilibrium dissociation constants (K(D) ) of 1.61 nM. Moreover, both incubation with GPC3c protein and transfection of Gpc3c cDNA into HepG2 cells resulted in reduced glucose uptake activity. Our results indicate that GPC3 plays a role in glucose transport by interacting with GLUT1.
Collapse
Affiliation(s)
- Hye-Sim Cho
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | | | | | | |
Collapse
|